
Novel methodologies for quantifying model uncertainty are combined with an extensive 

new database of in situ aerosol microphysical and chemical measurements to reduce 

uncertainty in aerosol effects on climate.
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E
arth’s planetary radiative balance is strongly 

affected by atmospheric aerosol particles, which 

reflect and absorb solar radiation and influence 

the albedo and other properties of clouds. Air pollu-

tion has altered the properties of aerosols and caused a 

change in radiative balance, or radiative forcing, over 

the industrial period of between near 0 and −2 W m−2 

(Boucher et al. 2013). This uncertainty has persisted 

through all Intergovernmental Panel on Climate 

Change (IPCC) assessment reports since 1996 and 

significantly limits our understanding of historical 

climate change and our confidence in climate change 

projections (Andreae et al. 2005; Seinfeld et al. 2016).

Changes in aerosols also have important effects on 

regional climate, atmospheric circulation, clouds, and 

precipitation (Shindell and Faluvegi 2009; Booth et al. 

2012; Philipona et al. 2009; Wang et al. 2014; Kaufman 

et al. 2005; Stevens and Feingold 2009; Rosenfeld 

et al. 2008; Smith et al. 2016; Bollasina et al. 2011). 

Our ability to reliably quantify the long-term effects 

of aerosols on these climate processes ultimately rests 

on being able to reliably simulate aerosol properties 

and radiative effects on regional and global scales.

The uncertainty in aerosol radiative forcing has 

not fallen over the last 20 years despite substantial 

developments in model complexity, numerous model 

intercomparison projects, and enormous investments 

in global observing systems. While our knowledge 

about aerosols has improved, this has not been 

translated into more robust global models—that is, 

models that can make reliable predictions in spite of 

uncertainties in the underlying processes (see sidebar 

“Model uncertainty, constraint, and robustness” for 

definitions of terms related to model uncertainty). A 

recent assessment shows that global aerosol models 

have a very large spread of a factor of 2–30 (depending 

on region) in their simulations of climate-relevant 

aerosol properties (Mann et al. 2014).

The main challenge we face in reducing uncer-

tainty is that models are now very complex, which 

can reduce their robustness (Knutti and Sedláček 

2012). Early models simulated just the mass of various 
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aerosol chemical components, but many now simulate 

the full aerosol size distribution and all the associated 

microphysical processes in order to more realistically 

simulate how aerosols interact with solar radiation 

and clouds (Ghan and Schwartz 2007). This added 

complexity affects how we tackle the uncertainty. 

First, simulated aerosol properties are controlled by 

dozens of poorly quantified processes (Textor et al. 

2006; Lee et al. 2013; Kipling et al. 2016; Kinne et al. 

2006), which are difficult to observe in isolation. 

Second, a wider range of measurements is needed 

to evaluate the models. Third, the necessary aerosol 

microphysical and chemical properties cannot be 

measured using satellite remote sensing instruments 

(Stier 2016), so model evaluation must rely on sparse 

measurements from aircraft, ships, and ground sta-

tions.

This article describes the Global Aerosol Synthesis 

and Science Project (GASSP; http://gassp.org.uk/), 

which has four main objectives:

• understand and reduce the persistent uncertainty 

in aerosol models and the associated aerosol radia-

tive forcing by constraining the spread of model 

simulations using a synthesis of aerosol measure-

ments;

• attribute the reduction in uncertainty to particu-

lar measurements so that we can understand the 

“value of measurements” and identify where new 

measurements should be prioritized;

• understand model robustness by exploring 

whether models constrained by measurements 

remain reliable when used to predict under new 

conditions, which is an essential requirement for 

calculating radiative forcing; and

• exploit our enormous investments in aerosol 

measurements of microphysical and chemical 

properties to reduce model uncertainty as much 

as possible.

Figure 1 shows the four main activities in GASSP.

Objective 1 collects and harmonizes in situ aerosol 

measurements from aircraft, ships, and ground sites 

to produce an easily accessed dataset suitable for sta-

tistical constraint of global aerosol models. The first 

phase of GASSP has focused on constraining aerosol 

microphysical and chemical properties that are not 

well constrained by Earth-observation datasets 

(Stier 2015). Future extension to cloud microphysical 

properties would be highly valuable for evaluating 

modeled aerosol–cloud interaction and associated 

radiative forcing.

Objective 2 focuses on developing new method-

ologies for comparing models against sparse in situ 

measurements. Our research has shown that there are 

inherent uncertainties associated with using sparse 

measurement data, caused, for example, by spatial in-

homogeneities that are not represented in the models 

(see section “Representativeness of sparse measure-

ments and the importance for model constraint”).
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Objective 3 is about developing methodologies to 

understand and quantify model uncertainty. GASSP 

has focused on the spread of model predictions 

caused by uncertainties in the processes and inputs 

(like emissions) in a model—known as parametric 

uncertainty—because there are established statisti-

cal methodologies for quantifying and reducing this 

source of uncertainty (see sidebar “Model uncertain-

ty, constraint, and robustness”). The spread of such 

simulations can be similar to the spread of several 

structurally different models (Lee et al. 2013; Mann 

FIG. 1. Schematic of the overall design of GASSP.

et al. 2014; Kipling et al. 2016), which is the measure 

of uncertainty used in many assessments (Kinne et al. 

2006; Lamarque et al. 2013; Eyring et al. 2016).

Objective 4 brings everything together to assess 

how the observational constraint of aerosol micro-

physical properties affects the range of aerosol radia-

tive forcing simulated by the model.

THE GASSP AEROSOL MEASUREMENT 

DATABASE. A synthesis of multiple measurements 

is a vital component of GASSP. As we describe in the 
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TABLE 1. List of ground-based monitoring station networks with aerosol measurements: particle number 

concentration N, particle number size distribution (NSD), cloud condensation nucleus concentration 

(CCN), speciated mass concentration/composition (Comp), black carbon mass concentration (BC), and 

particle mass concentration less than 2.5 µm in diameter (PM
2.5

). Short-term field campaign measure-

ment data made at some of these stations are included in Table ES1.

Network 

acronym
Network name Years Location Measurement

— EBAS 1990–2014 Europe, North America, Arctic, Ant-

arctica, Asia

N, NSD, Comp, 

BC, PM
2.5

ACTRIS 

CCN

Aerosols, Clouds, and Trace 

Gases Research Infrastructure 

CCN data

2010–14 Europe, Arctic, Brazil, South Korea CCN

ARM Atmospheric Radiation 

Measurement Program

1995–2015 Germany, United States, Brazil, 

Arctic, eastern Atlantic Ocean, China, 

India, Niger

N, NSD, CCN, 

Comp

AMS Global 

Database

Aerosol Mass Spectrometry 

Global Database

2000–11 Europe, North America, East Asia, 

South Africa, Atlantic Ocean, South 

America

Comp

IMPROVE Interagency Monitoring of Pro-

tected Visual Environments

1990–2014 North America (United States) PM
2.5

NAPS National Air Pollution Surveil-

lance Program

1990–2014 North America (Canada) PM
2.5

A-PAD Asia–Pacific Aerosol Database 2002–11 Asia PM
2.5

TABLE 2. Definition of GASSP aerosol variables and the instruments from which they are derived.

Aerosol 

property Variable

Example 

attributes Meaning of attributes

Instruments  

(see Table 3)

Example 

measurements

Number 

concentration

N Diameter 

D (nm)

Integral number concentration 

above a specified diameter where 

the upper size limit is essentially 

infinite

CPC N
3
, N

10

Number con-

centration in 

a specific size 

range

N Diameters 

D
1
 and D

2
 

(nm)

Integral number concentration 

of particles in a defined diameter 

range (NSD integral), where the 

upper size limit is small enough that 

it is not effectively infinite

SMPS, DMPS, 

APS, UHSAS, 

OPC, DMA

N
50–750

Number size 

distribution

NSD Diameters 

of the bin 

edges

Particle number size distribution; 

particle concentration per size 

range

SMPS, DMPS, 

APS, UHSAS, 

OPC, DMA

—

Cloud conden-

sation nucleus 

concentration

CCN Supersat-

uration S 

(%)

Number concentration of CCN at a 

defined supersaturation

CCNC CCN
0.2%

Particle mass 

concentration

PM Diameter 

D (μm)

Mass concentration of particulate 

matter with diameter smaller than a 

specified diameter

Gravimetric 

filter

PM
1
, PM

2.5

Speciated mass 

concentration

Comp — Mass concentration of nonrefracto-

ry chemical components

AMS, ACSM, 

PILS

SO
4
, Org, NO

3
, 

Chl, NH
4

Black carbon BC Diameters 

of the bin 

edges

Mass and number concentration and 

size distribution of refractory BC

SP2 BC
MASS

, BC
NUM
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“Model uncertainty and observational constraint” 

section, a diversity of measurements is a critical 

factor in constraining a complex model with many 

compensating sources of uncertainty.

The community’s considerable investment in 

measurements of aerosol microphysical and chemical 

properties is significantly underexploited to evaluate 

and constrain climate models, mainly because many 

datasets are not available in a harmonized form (i.e., 

standardized format, time units, variable names, etc.) 

in common repositories. A key objective of GASSP was 

therefore to harmonize a large fraction of the world’s in 

situ aerosol measurements and make them “user ready.”

The number and sophistication of aerosol mea-

surements has increased dramatically over the last 

20 years, providing essential data to evaluate the 

latest model simulations of aerosol microphysical 

properties (see sidebar “Developments in aerosol 

microphysical measurements”). Long-term mea-

surement programs have been established, such as 

the Global Atmosphere Watch (GAW) program; the 

Aerosols, Clouds, and Trace Gases Research Infra-

structure (ACTRIS); and the Interagency Monitor-

ing of Protected Visual Environments (IMPROVE) 

network. These data are generally readily available 

(see Table 1) and have been used to evaluate multiple 

models (Mann et al. 2014). However, many measure-

ments are made in short campaigns of typically a 

month duration. While some campaign data have 

been synthesized (Heintzenberg et al. 2000; Clarke 

and Kapustin 2002, 2010; Asmi et al. 2013) and used 

to evaluate multiple models (Mann et al. 2014), most 

data have been used to evaluate specific aspects of 

particular models under specific conditions, often 

called “golden days.”

We collected measurements related to six broad 

aerosol properties important to the effects of aerosols 

on climate: particle number concentration, cloud 

condensation nucleus concentration, particle number 

size distribution, particle mass concentration less than 

2.5 µm in diameter (PM
2.5

), chemical composition, and 

black carbon (BC) mass concentration (Table 2). The 

TABLE 3. Aerosol instruments used in GASSP.

Acronym Instrument Manufacturer Reference(s)

CPC Condensation particle counter Various (mostly TSI Inc.) —

SMPS 

(DMPS)

Scanning (differential) mobility 

particle sizer

Various [e.g., TSI Inc. (Shoreview, MN), 

Grimm GmbH (Ainring, Germany)]

Wiedensohler et al. 2012

DMA Differential mobility analyzer Various —

APS Aerodynamic particle sizer TSI Inc. (Shoreview, MN) —

UHSAS Ultra-high-sensitivity aerosol 

spectrometer

Droplet Measurement Technologies —

PCASP Passive Cavity Aerosol Spec-

trometer Probe (PCASP-100X)

Droplet Measurement Technologies —

OPC Optical particle counter GRIMM Aerosol Technik GmbH and 

Co.KG

—

CCNC Cloud condensation nuclei 

counter

Droplet Measurement Technologies, 

University of Wyoming

Roberts and Nenes 2005; 

Snider et al. 2006

— Aethalometer Magee Scientific Hansen and Novakov 1989

PSAP Particle soot absorption 

photometer

Radiance Research —

MAAP Multiangle absorption 

photometer

Thermo Scientific Petzold and Schönlinner 

2004

OCEC Organic carbon elemental 

carbon analyser

Sunset Laboratories, Desert Research 

Institute

Birch and Cary 1996

AMS Aerosol mass spectrometer Aerodyne Research Canagaratna et al. 2007

ACSM Aerosol chemical speciation 

monitor

Aerodyne Research Ng et al. 2011

PILS Particle into liquid sampler Brechtel Manufacturing Inc. Weber et al. 2001

SP2 Single particle soot photometer Droplet Measurement Technologies Schwarz et al. 2006

— Gravimetric filter analysis GENT sampling unit, IMPROVE module 

A with cyclone inlet, Teflon filter

Hopke et al. 1997
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measurements were made with 18 different aerosol in-

struments (Table 3), and within the six aerosol property 

classes there are about 70 different measured variables 

related to different particle size thresholds, cloud con-

densation nucleus supersaturations, etc. It is this diver-

sity of measurements, compared to gas-phase chemistry 

(Sofen et al. 2016), that makes it so challenging to use a 

wide array of aerosol data in model evaluation.

The GASSP database currently contains mea-

surements from 86 field campaigns (of a total of 119 

collected) and long-term measurements from over 

350 ground-based monitoring stations spanning 

1990–2015 (see Table ES1 in the online supplement). 

It includes 20 ship campaigns, 16 ground station 

campaigns, 29 aircraft campaigns, and 21 cam-

paigns involving multiple measurement platforms. 

We obtained data from 15 repositories (Table ES2) 

and, for 42 campaigns, through direct contact with 

investigators. The measurements include over 9,500 

f light hours (over 13,000 instrument hours) and 

22,000 ship hours (over 33,000 instrument hours). We 

estimate the total research investment in the aircraft 

measurements to be about $182 million (based on an 

average of $18,000 per flight hour plus $375,000 per 

detachment), not including personnel hours. The cost 

for ship measurements is about $57 million (based on 

$60,000 per day and $130,000 per cruise).

It took about 1.5 person years to collect and har-

monize 52,000 data files from about 20 original file 

types and formats ranging from simple text files to 

standard formats like National Aeronautics and Space 

Administration (NASA) Ames (Stephens 2008) or 

International Consortium for Atmospheric Research 

on Transport and Transformation (ICARTT; Aknan 

et al. 2013). Considerable effort was put into merging 

files and correcting or standardizing units, variable 

names, error flags, missing value indicators, and time 

dimensions. We also collated metadata (as well as 

missing metadata from published papers) such as the 

location of the measurement, the sampling conditions 

(e.g., standard or ambient pressure), and information 

on the instrument type, detection limits, particle size 

definition, occurrence of clouds, and whether the 

particles were dried or not.

The data were converted to a standardized Net-

work Common Data Form (netCDF) format (Pringle 

2017). We included a large number of data fields 

or “tags” within the global attributes of the file, 

with many adopted from the National Center for 

Atmospheric Research (NCAR) Research Aviation 

Facility (RAF) file format (NCAR 2009), such as the 

bounding box and time coverage of the measure-

ments. To make model evaluation more tractable, 

the information necessary to construct observed 

variables from model output variables is stored as 

GASSP file attributes.

GASSP uses data “levels” based on terminology 

widely used in remote sensing:

M
ost simply, uncertainty can be 

defined as the spread of outputs in 

model simulations.

Structural uncertainty arises 

because there are different ways of 

representing the physical processes in a 

model because of insuf�cient knowl-

edge, simpli�cations, different algo-

rithms, or missing processes. Structural 

differences between models explain a 

large part of the range of predictions 

between different models, often evalu-

ated through a multimodel ensemble 

(MME). The spread of outputs from a 

small number of models is often called 

the model diversity, and it is this diver-

sity that has persisted through all IPCC 

assessments.

Process or parametric uncertainty 

is caused by uncertain values of model 

input parameters, like chemical-rate 

coef�cients or emissions (Lee et al. 

2013). Parametric uncertainty can be 

quanti�ed using a set of simulations in 

which parameter values are systemati-

cally perturbed (a perturbed-parameter 

ensemble), an approach widely used in 

climate science (Allen et al. 2000; Pan 

et al. 1998; Lohmann and Ferrachat 

2010; Haerter et al. 2009; Sexton et al. 

2011; Shiogama et al. 2012; Yang et al. 

2013). They are often combined with 

statistical emulation (see sidebar “Mod-

el emulation to enable dense sampling 

of uncertainty”), which enables model 

outputs to be generated for all parts of 

parameter space.

Constraint of a model is the process 

of reducing the spread of model simula-

tions by comparing the simulations 

against measurements. There are various 

ways of de�ning plausible or accept-

able model simulations, taking account 

of the measurement uncertainty and 

the model–measurement sampling 

uncertainty (see “Representativeness of 

sparse measurements and the impor-

tance for model constraint” section; 

Lee et al. 2016).

Model–measurement sampling 

uncertainty is the uncertainty associ-

ated with comparing a model with a 

measurement. Measurements sample 

only a small part of the atmosphere 

so uncertainty arises because the real 

world has greater spatial heterogeneity 

and temporal variability than is repre-

sented in a model.

A robust model is one that is reli-

able and can make useful predictions 

under different sets of conditions in 

spite of uncertainties in the model and 

its inputs (Knutti and Sedláček 2012). 

The robustness of a model can only be 

assessed if the uncertainties have been 

systematically explored.

MODEL UNCERTAINTY, CONSTRAINT, AND ROBUSTNESS
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FIG. 2. The global distribution of key measurements in the GASSP database: number concentration from con-

densation particle counter (CPC) instruments; CCN; chemical composition from AMS and ACSM; size distribu-

tions from SMPS, DMPS, UHSAS, PCASP, DMA, and APS; and BC from SP2. (a) Ground-site measurements 

(sites within ±0.08° longitude and latitude are grouped under one symbol), (b) aircraft and ship measurements 

of chemical composition, (c) aircraft and ship measurements of CCN, (d) aircraft and ship measurements of 

BC, (e) aircraft and ship measurements of size distribution, and (f) aircraft and ship measurements of number 

concentration [Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Con-

tainer (CARIBIC) CPC data are shown in a separate map]. See sidebar “Developments in aerosol microphysical 

measurements” and Table 3 for a summary of instruments and abbreviations.
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Level 0:

• The original raw datasets in original format.

Level 1:

• netCDF conversion of the original data file.

• Files contain the measurements of the aerosol 

variables (and names) along with the reported time 

stamp, position (latitude, longitude, altitude), and 

meteorology (air temperature, air pressure, relative 

humidity) variables, where available.

• Files are split by instrument.

• Measurement data are unchanged from original 

quality-assured data products supplied by originator.

• Data tags are added to metadata for additional 

information and to enable searching.

Level 2:

• Files are in GASSP-standardized netCDF format 

(including data tags).

• Time stamp is standardized to seconds since 1 

January 1970 UTC (Unix time).

• Position and meteorology variables, where avail-

able, are given names compliant with Climate and 

Forecast (CF) metadata conventions (Eaton et al. 

2011).

• Aerosol variable names are standardized.

Gridded “level 3” data formats (commonly pro-

vided with remote sensing datasets) and aerosol 

climatologies (Heintzenberg et al. 2000) allow for 

easy data handling. However, because requirements 

differ for specific applications, GASSP has instead 

supported the development of the Community Inter-

comparison Suite (CIS; www.cistools.net; Watson-

Parris et al. 2016), an open-source command-line 

tool and Python library designed to read, aggregate, 

collocate, analyze, and visualize a wide range of 

ungridded and gridded datasets. CIS has a plug-in 

for NCAR-RAF and GASSP format data so the full 

GASSP level 2 database is accessible via CIS, allowing 

the in situ measurements to be collocated with model 

and many satellite products.

Figures 2 and 3 show the spatial and temporal 

distributions of the main measurement types. To give 

an impression of the density of measurements (albeit 

over several years), Fig. 4 shows particle concentra-

tions from aircraft campaigns. North America is by 

far the most sampled region in terms of the number 

of airborne measurements, with more than 50% of 

the measurements conducted there. Most of the other 

airborne measurements have been made over Europe, 

the Pacific, and the Arctic (but less so the high Arctic), 

with less than 5% over the Southern Ocean, Africa, and 

most of Asia. Shipborne measurements of total particle 

concentrations are widespread, but measurements of 

cloud condensation nuclei (CCN), particle composi-

tion, and BC (see sidebar “Developments in aerosol 

microphysical measurements”) are concentrated over 

A
 s the complexity of models increas- 

 es, so does the demand for more 

advanced measurements. In the last 

20 years many measurement tech-

niques have been developed that are 

capable of measuring aerosol particle 

number, size, composition, and other 

properties with high time resolution 

and on a variety of platforms. A full 

list of instruments in GASSP is given in 

Table 3.

Mobility particle size spectrom-

eters to measure size-resolved particle 

number concentrations have existed 

for a long time. International standards 

have been developed so that instru-

ments can be operated consistently 

and those data used with con�dence 

(Wiedensohler et al. 2012). The GASSP 

database includes measurements from 

scanning and differential mobility par-

ticle sizers (SMPS/DMPS), aerodynamic 

particle sizers (APS), differential mobil-

ity analyzers (DMA), ultra-high-sensi-

tivity aerosol spectrometers (UHSAS), 

passive cavity aerosol spectrometer 

probes (PCASP), and optical particle 

counters (OPC).

Size distributions can be compared 

directly with models (Mann et al. 2014), 

but are often summarized in terms 

of the particle number concentration 

above a particular size (e.g., N
50

 for 

particles larger than 50-nm diameter). 

Variables like N
50

 and N
100

 are often 

used by modelers as representative 

of CCN concentrations (Mann et al. 

2014).

Particle composition can now be 

measured in real time with AMS [and 

the related aerosol chemistry specia-

tion monitor (ACSM)] (Canagaratna 

et al. 2007; Ng et al. 2011). The instru-

ments provide quantitative data on the 

nonrefractory particle components, 

that is, organic matter, ammonium, 

sulfate, nitrate, and chloride.

Refractory BC mass can be mea-

sured in real time by SP2, which use 

laser-induced incandescence (Schwarz 

et al. 2006). High sensitivity allows air-

borne measurements even in pristine 

air. Previously, measurements had been 

made by combustion analysis or using 

optical absorption as a proxy, which in-

volves serious artifact issues (Andreae 

and Gelencsér 2006).

CCN measurements were previ-

ously made using parallel plate systems 

(Snider et al. 2006, 2010). Now the 

continuous �ow method (Roberts 

and Nenes 2005) commercialized by 

Droplet Measurement Technologies 

allows for faster measurements at 

supersaturations more representative 

of atmospheric conditions.

DEVELOPMENTS IN AEROSOL MICROPHYSICAL MEASUREMENTS
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FIG. 3. Number of data hours by year and month for the main aerosol instrument types: Particle number con-

centration using CPC, CCN concentrations using CCN counters (CCNC), speciated mass concentrations using 

AMS or ACSM instruments, BC mass concentration using the SP2 instrument, and particle number size distri-

bution (NSD) using SMPS, DMPS, UHSAS, PCASP, DMA, and APS. Instrument types are defined in Table 3.
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the Atlantic and Arctic. 

The availability of measure-

ments from aircraft and 

ships varies substantially 

with the time of year, with only 8% of global measure-

ments in winter (December–February).

Pristine (unpolluted) regions are considerably 

undersampled, especially on the continents. Such re-

gions are informative about aerosol conditions in the 

preindustrial era (Hamilton et al. 2014), which are an 

important component of the aerosol–cloud radiative 

forcing uncertainty because cloud properties are very 

sensitive to aerosol uncertainties in clean conditions 

(Carslaw et al. 2013a).

Until 2004 almost all measurements were of par-

ticle concentration or size distribution, but since then 

▶ FIG. 4. The 3D distribution 

of measurements of particle 

number concentrations at 

standard temperature and 

pressure (STP) measured by 

CPC with varying cutoff sizes. 

Each data point represents a 

5-min-average concentration. 

Data are shown for 20 aircraft 

f ield campaigns over several 

years: CARIBIC, SEAC4RS, 

TRACE-P, ACEASIA, ACE1, 

PEM tropics A, PEM tropics 

B, INTEX-NA, VOCALS-Rex, 

NEAQS-ITCT2004, ARCTAS, 

CALNEX, INDOEX, ARCPAC, 

Tex AQS2 0 0 6 ,  ITCT2 0 02 , 

A-FORCE, DC3, PASE, and 

MIRAGE (see online supplement 

for campaign details).

FIG. 5. Example of spatial sampling errors for a heterogeneous continental environment (Oklahoma). (a) Monthly 

average of a 10-km-resolution model field of surface BC concentrations representing measurement “reality.” 

A typical climate model grid box is also shown by the red box. (b) The deduced relative model–measurement 

sampling error. (c) The distribution of sampling errors for four aerosol properties: PM
2.5

, BC (at both the surface 

and 6 km), the number of particles larger than 10-nm diameter N
10

. The different bars in (c) refer to the 50th, 

82nd, and 96th interquantile ranges of the error distribution and the numbers refer to the standard deviation.
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many measurements of speciated particle composi-

tion have been made by the Aerodyne aerosol mass 

spectrometer (AMS) and BC concentrations from 

the single particle soot photometer (SP2) instrument.

REPRESENTATIVENESS OF SPARSE MEA-

SUREMENTS AND THE IMPORTANCE 

FOR MODEL CONSTRAINT. Even the largest 

consistent collection of in situ aerosol measure-

ments remains spatially and temporally sparse, rais-

ing important questions about how representative 

they are of what a low-resolution model simulates. 

Measurement sparseness can introduce measure-

ment–model sampling uncertainties (see sidebar 

“Model uncertainty, constraint, and robustness”).

In situ measurements at ground sites are particu-

larly important data in GASSP. To quantify the po-

tential spatial sampling errors in a typical continental 

environment, we used a high-resolution model to 

simulate “measurements” and compared them with 

spatially averaged fields representing a 100-km-scale 

global model grid cell (Schutgens et al. 2016a). Figure 5 

shows that sampling errors can be as large as 80% 

when using monthly mean model output, but the 

errors are typically less than 30%. The error depends 

on the spatial heterogeneity of the aerosols, so particle 

number concentrations and BC mass concentrations 

have much larger sampling errors than PM
2.5

 due to a 

greater heterogeneity in sources.

Our analysis suggests that spatial sampling errors 

significantly exceed measurement errors: measure-

ment errors for PM
2.5

 and BC mass concentrations 

are typically 15%, while typical instantaneous sam-

pling errors (for data sampled every hour) are about 

50% (Schutgens et al. 2016a). These errors can be 

reduced by about a factor of 3 by averaging over a 

month. However, there is a catch: long-term averag-

ing increases the likelihood that model–measure-

ment agreement is a result of compensating errors, 

such as underpredicting aerosol concentrations in 

polluted conditions but overpredicting them in clean 

conditions.

Another problem is that measurements are often 

discontinuous. Monthly mean sampling errors can 

be as high as 37% when measurements are discon-

tinuous, with sometimes significant regionwide biases 

(Schutgens et al. 2016b). These increased errors can be 

largely mitigated by sampling the model to the measure-

ment times before monthly averaging, for example, by 

using the CIS tools (Watson-Parris et al. 2016).

Flight campaign data present a particular chal-

lenge. In Fig. 6, we compare the spatial sampling 

FIG. 6. Spatial sampling errors (1-h mean) for BC mass 

concentrations for typical flight campaigns over the 

Congo during the biomass-burning season. The gray 

shades indicate sampling errors for north–south tracks 

through global model grid boxes, with the shade indi-

cating different quantile ranges (light: 2%–98%; me-

dium: 9%–91%). The red dashed line shows the 9%–91% 

quantile range for east–west tracks, while the black 

dashed line represents point measurements.

FIG. 7. (left) Calculated mean concentrations of particles larger than 3-nm diameter N
3
 (cm−3), (middle) the 

standard deviation in N
3
 due to the parametric uncertainty in the model, and (right) the ratio of the standard 

deviation to the mean. The standard deviations were calculated by perturbing 28 aerosol model parameters 

(Carslaw et al. 2013b).
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error distribution for instantaneous measurements 

from a f light campaign and a point measurement 

in a biomass-burning environment. While model 

sampling errors are smaller for f light measure-

ments than for single point measurements (be-

cause multiple point measurements are averaged 

across a model grid box), the errors can still exceed 

30%–50%. Campaigns in which aerosol plumes are 

deliberately followed will of course be particularly 

prone to model spatial sampling errors and biases, 

so they are not ideal for the statistical evaluation of 

global models.

FIG. 8. Map of aerosol “uncertainty clusters” for the concentration of particles larger than 50-nm diameter N
50

. 

The results were calculated using emulators, Monte Carlo sampling, and variance-based sensitivity analysis 

in each grid cell of the GLOMAP model (Lee et al. 2016). In each cluster the model parameters causing the 

uncertainty in N
50

 are similar and are shown by the bar chart thumbnails for each month. Each bar chart shows 

the fraction of N
50

 variance caused by each uncertain parameter, color coded according to the key [full figures 

are provided in Lee et al. (2016)]. Results are for annual-mean concentrations at the surface.

1868 | SEPTEMBER 2017



A 
perturbed-parameter ensemble 

(see sidebar “Model uncertainty, 

constraint, and robustness”) of several 

hundred simulations of a climate model 

can only sample the multidimensional 

parameter uncertainty space ex-

tremely sparsely. Even with just two 

parameter settings for each dimen-

sion (a typical high–low perturbation 

approach), around 1 billion simulations 

are needed to cover 30 dimensions 

with all possible parameter combina-

tions. In GASSP we therefore used 

emulators to enable a very dense 

sampling of the parameter space of the 

global model.

The purpose of emulation is to use 

the outputs from a perturbed param-

eter ensemble to generate continuous 

functions (multidimensional response 

surfaces) that describe how the model 

outputs vary across all the uncertain 

model parameters sampled by the 

simulations (the training data for the 

emulators). The emulators are validat-

ed by testing them against an additional 

set of model simulations.

Emulators can be built to describe 

the behavior of a model output at a 

speci�c location, the mean behav-

ior over a region, or globally (Lee 

et al. 2012, 2013; Carslaw et al. 2013a; 

Regayre et al. 2014, 2015). An emula-

tor is not a simpli�ed model. Rather, 

it is a way to generate model output 

at untried parts of a particular model’s 

parameter space.

In GASSP we used emulators to 

generate millions of “model variants” 

by sampling across the parameter 

space very densely in a Monte Carlo 

way. These model variants can be used 

to i) generate probability density func-

tions to characterize uncertainty in a 

model output, ii) perform a sensitivity 

analysis to determine which processes 

affect the uncertainty, iii) compare 

against measurements so that plau-

sible parts of parameter space can be 

found, and iv) test model robustness 

by using plausible parts of parameter 

space to quantify uncertainty in radia-

tive forcing.

We have found that about 6–10 

training simulations per parameter 

are needed to explore 30 dimensions 

of uncertainty in an aerosol–climate 

model, thus requiring about 180–300 

simulations. When the meteorology 

is well de�ned (such as in a nudged 

climate model), then 1-yr simulations 

are suf�cient (Lohmann and Ferrachat 

2010).

MODEL EMULATION TO ENABLE DENSE SAMPLING OF UNCERTAINTY

Our overall conclusion is that the model–measure-

ment sampling errors are likely to be nonnegligible 

compared to the model uncertainty that we are trying 

to constrain. Figure 7 shows the estimated standard de-

viation of monthly mean particle concentrations in the 

Global Model of Aerosol Processes (GLOMAP; Carslaw 

et al. 2013b; see “Model uncertainty and observational 

constraint” section). Over heterogeneous continental 

regions the standard deviation is about 50%–100%, so 

the spatial sampling errors 

for in situ measurements 

described above will limit 

the extent to which these 

model uncertainties can 

be reduced. Satellite mea-

surements (e.g., of aerosol 

optical depth) may help al-

leviate the spatial sampling 

▶ FIG. 9. The estimated reduc-

tion in uncertainty in modeled 

concentrations of particles 

larger than 50-nm diameter 

N
50

 when an N
50

 measurement 

in central Europe is used to 

constrain the model. The re-

duction in uncertainty broad-

ly mirrors the uncertainty 

cluster where anthropogenic 

aerosol parameters are the 

main source of uncertainty.

problem associated with in situ measurements, although 

they are of course very limited in the aerosol micro-

physical properties they can constrain. A combination 

of in situ and satellite data will likely be most effective.

MODEL UNCERTAINTY AND OBSERVA-

TIONAL CONSTRAINT. The objective of this 

aspect of GASSP was to quantify global model uncer-

tainty caused by uncertain processes and emissions 
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cloud condensation nuclei concentrations (Lee et al. 

2011, 2012, 2013), total particle concentrations (Fig. 7; 

Carslaw et al. 2013b), and aerosol–cloud radiative 

forcing since the preindustrial period (Carslaw et al. 

2013a). An improved perturbed parameter ensemble 

explored radiative forcing regionally and over recent 

decades (Regayre et al. 2014, 2015). Two other en-

sembles of the climate model used to diagnose aerosol 

effective radiative forcing (Boucher et al. 2013) will 

be described elsewhere.

Even a few hundred simulations in a perturbed pa-

rameter ensemble are too few to adequately represent 

the model uncertainty because the simulations rep-

resent extremely sparse points in multidimensional 

FIG. 10. Constraining the GLOMAP perturbed-parameter ensemble using multiple aerosol measurements. We 

used a selection of measurements of the total particle concentration N
tot

, particle concentrations larger than 

50-nm diameter N
50

, BC concentrations, and particle mass concentration less than 2.5 µm in diameter (PM
2.5

) 

in the boundary layer. (a) The relative error of each model simulation calculated across the measurements. 

(b) The N
50

 range (the maximum divided by the minimum in each grid cell) in the full ensemble and the best 

seven ensemble members. (c) The parameter values of the seven best ensemble members, showing that they 

are randomly distributed across parameter space.

and then to explore how in situ aerosol measurements 

can help to reduce this uncertainty and determine 

what effect this has on aerosol radiative forcing.

Model simulations to quantify sensitivity and uncertainty. 

We used perturbed parameter ensembles of the aero-

sol model GLOMAP implemented in the chemical 

transport model Tropospheric Off-Line Model of 

Chemistry and Transport (TOMCAT) and the gen-

eral circulation model Hadley Centre Global Environ-

ment Model (HadGEM) to quantify uncertainty. The 

GLOMAP–TOMCAT ensemble samples 28 uncertain 

aerosol parameters based on 168 simulations and 

has been used to explore uncertainty in present-day 
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parameter space. We there-

fore used the ensemble of 

simulations to build model 

emulators, which enable 

us to use Monte Carlo 

sampling to perform a full 

statistical analysis of the 

model (Lee et al. 2013). The 

sidebar “Model emulation 

to enable dense sampling 

of uncertainty” and Fig. 1 

provide more details.

Relating aerosol measure-

ments to causes of model 

uncertainty. One objective 

of GASSP is to understand 

which sources of uncer-

tainty in a model can be 

constrained by particular 

measurements. As an ex-

ample, Fig. 8 shows a map 

of the model parameters 

that control uncertainty 

in the number of particles 

larger than 50-nm dry di-

ameter N
50

, a variable that is commonly used to 

approximately represent cloud condensation nuclei 

concentrations in models (see sidebar “Developments 

in aerosol microphysical measurements”). The causes 

of uncertainty can be clustered into “uncertainty en-

vironments” within which the causes of uncertainty 

are similar (Lee et al. 2016). In Northern Hemisphere 

polluted regions (pink), measurements of N
50

 would 

help to constrain a range of aerosol microphysical 

parameters throughout the year, while in the boreal 

forest regions (pale yellow), N
50

 measurements would 

help to constrain aerosol processes in winter and fire 

emissions in summer.

The fact that model uncertainties can be clustered 

regionally suggests that large gaps in available mea-

surements may not necessarily affect how well we can 

constrain modeled aerosols as long as we have mea-

surements that are representative or characteristic of 

aerosols throughout these regions. To illustrate the 

constraint provided by even isolated measurements, 

Fig. 9 shows how much the N
50

 uncertainty could be 

reduced globally by constraining the model spread to 

match a measurement that is representative of aero-

sols over central Europe (Lee et al. 2016). Although 

this is only a single (monthly mean) measurement, 

Fig. 9 shows that it can have tremendous effect on 

model uncertainty provided its representativeness 

of the region can be defined. Such model sensitiv-

ity data could in the future guide us to where new 

measurements should be made, and what effect the 

measurement will have on model uncertainty.

Observational constraint and model robustness. We have 

tried two approaches to constrain the spread of simu-

lated aerosols. The first approach was to simply select 

a small number of simulations from the GLOMAP 

ensemble that best match the GASSP measurements 

(Fig. 10). A subset of the observationally most plau-

sible simulations can be selected (those with a small 

average error compared to multiple measurements), 

which leads to a much narrower uncertainty range 

compared to the full ensemble (Fig. 10b).

Selecting the best runs from an ensemble produces 

a model that is close to aerosol measurements, but 

it is not sufficient to understand the reduction in 

aerosol radiative forcing uncertainty. This is because 

the best simulations lie very sparsely in multidimen-

sional parameter space (Fig. 10c) so they are not 

statistically representative. Nevertheless, it is worth 

bearing in mind that in multimodel ensembles most 

modeling centers typically choose one model variant 

from the many that might be plausible (Kinne et al. 

2006; Lamarque et al. 2013; Mann et al. 2014; Eyring 

et al. 2016).

FIG. 11. Constraint of modeled CCN concentrations (represented by the num-

ber of particles larger than 50-nm dry diameter N
50

) over the North Atlantic 

and the effect on the uncertainty in cloud albedo radiative forcing from 1750 

to the present day. The white distribution shows the model spread before 

constraint and the red is after constraining CCN to lie within 300 cm–3 ± 30%, 

representing a typical measurement sampling uncertainty (see “Representa-

tiveness of sparse measurements and the importance for model constraint” 

section). From Lee et al. (2016).
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Our second approach was to use emulators (see 

sidebar “Model emulation to enable dense sampling 

of uncertainty”) to generate several million model 

variants that densely sample the 28-dimensional 

parameter space (Lee et al. 2016). The advantage of 

this approach is that we can find the observationally 

plausible regions of the model parameter space, rather 

than relying on just a few sparse simulations.

Figure 11 shows the result of selecting model vari-

ants from a set of 3,000,000 that match hypothetical 

measurements of N
50

 within a typical 30% sampling 

uncertainty over the North Atlantic (Lee et al. 2016). 

This relatively tight constraint of N
50

 concentrations 

has very little effect on the spread of the calculated 

cloud albedo radiative forcing, even though we have 

eliminated over 95% of the initial parameter space and 

the aerosol model is assumed to be the only source of 

uncertainty in the calculated forcing. Further work 

is now underway to relate all the measurement types 

in GASSP to their effectiveness at constraining the 

modeled radiative forcing.

This is an important discovery of the GASSP 

project—that even a tightly constrained global aero-

sol model can still generate a wide range of aerosol 

radiative forcings even though the change in aerosols 

directly causes the forcing, and we have assumed 

that the uncertainty in the simulated forcing comes 

only from the aerosol component of the model. The 

explanation is that the observationally plausible 

model variants lie in widely distributed parts of pa-

rameter space (just as in Fig. 10c). We describe these 

as “equifinal models” (Beven 2006). Only by sampling 

across the whole parameter space of the model has it 

been possible to demonstrate the existence of these 

equifinal models.

Identifying model structural errors. The comparison 

of a perturbed parameter ensemble with measure-

ments provides a way to identify potential model 

structural errors. For example, Fig. 12 shows that 

the full GLOMAP ensemble, sampling 28 dimen-

sions of parameter uncertainty, fails to reproduce the 

seasonal cycle of PM
2.5

 at one site despite an order of 

magnitude model spread. This bias, which is apparent 

in other aerosol properties, can be attributed to poor 

representation of regional aerosol emissions. The 

extensive GASSP aerosol database combined with the 

perturbed parameter ensembles provides an optimum 

way to detect such structural errors.

SUMMARY AND FUTURE PROSPECTS. 

GASSP set out to understand and reduce uncertainty 

in model simulations of aerosol radiative forcing 

caused by the uncertainties in the aerosol component 

of the model.

What have we learned about the nature and availability 

of aerosol in situ measurements in the context of model 

constraint? GASSP has created a harmonized dataset 

of nearly a quarter of a century of aerosol in situ 

measurements comprising over 46,000 measurement 

hours from aircraft and ships and from over 300 

surface sites (Fig. 2). We intend to make these data 

readily accessible for wider use with an appropriate 

data protocol and with the permission of the data 

providers and other data centers. The database can, 

and should, be added to in the future.

Aerosol measurements are highly diverse and dif-

ficult to harmonize (the GASSP database includes 70 

measured aerosol variables). However, this diversity 

is a strength because the aerosol system is complex 

FIG. 12. An example of using a perturbed-parameter ensemble to detect a structural deficiency in the GLOMAP 

model. The black line and error bars show measured particle mass concentration less than 2.5 µm in diameter 

(PM
2.5

). The gray lines show over 300 model simulations exploring combinations of 31 model parameters. The 

purple line shows the mean of the model ensemble.
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with many compensating uncertainties (Lee et al. 

2016), so optimum model constraint is achieved with 

the greatest diversity of measurements. While seek-

ing the most valuable measurements, we should also 

embrace measurement diversity and ensure that we 

have procedures that enable the measurement data to 

be ingested into models as easily as possible, such as 

GASSP has helped to facilitate.

The distribution of global aerosol in situ measure-

ments is not optimum for constraining models. The 

overwhelming focus of aerosol measurement cam-

paigns has been on “process-based studies” rather 

than to obtain a representative sample from different 

aerosol environments. Model uncertainty reduction 

would be accelerated if we put more effort into un-

derstanding the representativeness of measurements, 

how they characterize aerosol properties in different 

environments, and how they help to reduce the spread 

of plausible model simulations.

Pristine (unpolluted) environments are consider-

ably undersampled. Analysis in GASSP shows that 

much of the uncertainty in radiative forcing stems 

from the properties of pristine aerosol environments 

(Carslaw et al. 2013a). We have some idea where 

near-pristine, preindustrial-like environments ex-

ist (Hamilton et al. 2014), such as the summertime 

Arctic, some remote boreal regions, and the western 

Pacific, which should provide some guide to where 

future measurements could be prioritized.

The use of sparse point measurements imposes 

limits on how much model uncertainty can be re-

duced because the real atmosphere has greater spatial 

and temporal variability than a low-resolution global 

model (Schutgens et al. 2016a,b). Typical spatial sam-

pling errors of 30%–50% (Figs. 5, 6) are smaller than 

the current parametric uncertainty in single models 

(Fig. 7; Lee et al. 2013; Carslaw et al. 2013b) and mul-

tiple models (Mann et al. 2014), but may still be large 

enough to limit the reduction in radiative forcing 

uncertainty (Lee et al. 2016).

What have we learned about our ability to constrain 

radiative forcing uncertainty caused by uncertainty in 

aerosol models? Aerosol–climate models are close 

to becoming an overdetermined system with many 

interacting sources of uncertainty but a limited 

range of observations to constrain them (Haerter 

et al. 2009; Lohmann and Ferrachat 2010; Lee 

et al. 2016). Although the spread of aerosol model 

simulations can be constrained by measurements, 

there are many “model variants” that can achieve 

equally plausible model–measurement agreement, 

and these variants may simulate a wide range of 

aerosol forcings (Lee et al. 2016). The implication is 

that agreement of a single tuned model with mea-

surements does not imply a robust model; that is, 

there are likely to be other plausible model variants 

that will simulate different aerosol radiative forc-

ings. Such variants need to be identified if we are to 

quantify model uncertainty.

Given the complexity of the aerosol–cloud–climate 

system, there is unlikely to be a shortcut to reducing 

uncertainty. Rather, reduction in uncertainty will 

be achieved by simultaneously applying extensive 

and diverse observational constraints on the whole 

system. This means constraining aerosol, cloud, and 

radiation state variables as well as the relationships 

between them, which often relate to specific processes 

and the behavior of the system (Quaas et al. 2009; 

Feingold et al. 2016; Ghan et al. 2016).

What are the priorities for future research on aerosol 

measurements and model uncertainty? While there will 

always be a need to improve specific processes in mod-

els in order to eliminate structural errors, we argue that 

model development needs to be pursued in conjunc-

tion with intensified efforts to quantify and constrain 

model uncertainty. There is comparatively little effort 

devoted to understanding the radiative forcing prob-

lem from a system uncertainty point of view.

Further effort is needed to enable future aerosol 

measurements to be harmonized so that modelers and 

experimentalists can collaborate more easily to re-

duce model uncertainty. Network infrastructures like 

ACTRIS make a substantial contribution in this di-

rection, but extensive campaign-type measurements 

should also be harmonized. Measurement standards 

and quality control are vital (Wiedensohler et al. 

2012), but equally important is data harmonization 

to reduce the very large number of data formats that 

have proliferated (see “The GASSP aerosol measure-

ment database” section).

We should prioritize new measurements in a 

targeted way with the specific objective of reducing 

model uncertainty. GASSP has shown that we can 

define representative “uncertainty environments” 

(Fig. 8), which help to establish the effect that specific 

measurements will have on model uncertainty (Fig. 

9). Such information from models could help guide 

measurement strategies and priorities.

A greater number of longer-term measure-

ments with greater global coverage, particularly in 

undersampled environments, would help to constrain 

global aerosol models. Development and deployment 

of low-cost sensors might be one way to achieve the 

required coverage.
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A similar effort to GASSP dedicated to collecting 

and harmonizing cloud microphysical properties, 

such as droplet and ice crystal number concentrations, 

would be very valuable. While cloud droplet effective 

radii can be retrieved from satellite measurements, in 

situ measurements at cloud base, ideally along with 

updraft speed, would provide a strong constraint on 

modeled aerosol–cloud interactions.

A logical next step is to extend the statistical 

approach used in GASSP to multiple models and 

thereby merge efforts on parametric and structural 

uncertainty (Shiogama et al. 2014). Such an approach 

would be particularly useful for identifying the causes 

of model–observation bias because we will learn from 

the similarities and differences in the structural de-

ficiencies across models.

Finally, greater progress will be made through 

closer cooperation of modeling and observational 

scientists, as increasingly achieved in projects like 

AeroCom and ACTRIS. Such interaction is particu-

larly necessary in aerosol science because of the huge 

diversity and complexity of aerosol measurements. 

Greater interaction will enable a larger fraction of 

aerosol measurements to be used routinely in model 

evaluation and constraint, leading to a long-sought 

reduction in aerosol model uncertainty and enhancing 

our ability to simulate historical and future climates.
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