
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 136, Number 1, January 2008, Pages 103–110
S 0002-9939(07)08860-0
Article electronically published on September 24, 2007

THE GLOBAL ATTRACTIVITY OF THE RATIONAL
DIFFERENCE EQUATION yn = A +

(
yn−k

yn−m

)p

KENNETH S. BERENHAUT, JOHN D. FOLEY, AND STEVO STEVIĆ

(Communicated by Carmen C. Chicone)

Abstract. This paper studies the behavior of positive solutions of the recur-
sive equation

yn = A +

(
yn−k

yn−m

)p

, n = 0, 1, 2, . . . ,

with y−s, y−s+1, . . . , y−1 ∈ (0,∞) and k, m ∈ {1, 2, 3, 4, . . .}, where s =
max{k, m}. We prove that if gcd(k, m) = 1, and p ≤ min{1, (A + 1)/2},
then yn tends to A + 1. This complements several results in the recent litera-
ture, including the main result in K. S. Berenhaut, J. D. Foley and S. Stević,
The global attractivity of the rational difference equation yn = 1 +

yn−k

yn−m
,
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1. Introduction

This paper studies the behavior of positive solutions of the recursive equation

yn = A +
(

yn−k

yn−m

)p

, n = 0, 1, . . . ,(1)

with y−s, y−s+1, . . . , y−1 ∈ (0,∞) and k, m ∈ {1, 2, 3, 4, . . .}, where s = max{k, m}.
The case k = m is trivial, so from now on we will assume that k �= m.
Note that if g = gcd(k, m) > 1, then {yi} can be separated into g different

equations of the form

y(j)
n = A +

⎛
⎝ y

(j)

n− k
g

y
(j)
n−m

g

⎞
⎠

p

,(2)

where j ∈ {1, 2, . . . , g}. Hence, we may assume that gcd(k, m) = 1.
The study of properties of rational and nonlinear difference equations has been

an area of intense interest in recent years; cf. [1]–[25] and the references therein.
There is a relatively long history in studying equation (1). For example, for

p = 1, the case k = 2, m = 1 was studied in [2] by Amleh et al., the case k ∈ N,
m = 1 was studied by DeVault et al. in [11], and the case A > 1, k = 1, m ∈ N was
studied by Stević in [20]. The investigation of global stability and periodicity of
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104 K. S. BERENHAUT, J. D. FOLEY, AND S. STEVIĆ

positive solutions of equation (1), for the case p = A = 1, k, m ∈ N was completed
by results in [3] and [15]; see also [17] and [21].

The study of the case p > 1 was suggested in [14], where the authors noted that
some results from [2] for the case p = 1, k = 2, m = 1, can be translated to the
case p > 1, k = 2, m = 1. The first results for the case p < 1 were given in [23].
The existence of monotone solutions, for the case p > 0 and A > −1 was shown
in [5] by developing the technique from [6, 7, 8, 9, 10, 24] and [25]. Equations in
papers [4] and [12] were investigated by transforming them into some special cases
of equation (1).

The linearized equation associated with equation (1) for the case k = 2 and
m = 1 is

(A + 1)zn + pzn−1 − pzn−2 = 0,

and its characteristic roots are

λ1 =
−p +

√
p2 + 4p(A + 1)

2(A + 1)
and λ2 =

−p −
√

p2 + 4p(A + 1)
2(A + 1)

.

By some simple calculation we obtain

|λ1| =
2p

p +
√

p2 + 4p(A + 1)
< 1,

for every p, A > 0.
On the other hand, we have that

|λ2| < 1 ⇐⇒ 2p < A + 1.

Hence, when 2p < A + 1 equation (1) for the case k = 2 and m = 1 is locally
asymptotically stable by the Linearized Stability Theorem.

Motivated by this local stability result, in [22] Stević has posed the following
conjecture.

Conjecture 1. If k = 2, m = 1 and p, A ∈ (0, 1) are such that p < (A+1)/2, then
every positive solution of equation (1) converges to the unique equilibrium A + 1.

Among other results, here we confirm the conjecture by proving that the follow-
ing holds true for every k, m ∈ N, 0 < A < 1 and 0 < p ≤ (A + 1)/2.

Theorem 1. Suppose that m, k ≥ 1, and that p, A are positive numbers satisfy-
ing 0 < A < 1 and 0 < p ≤ (A + 1)/2. If the sequence {yi} satisfies (1) with
y−s, y−s+1, . . . , y−1 ∈ (0,∞) where s = max{m, k}, then, {yi} converges to the
unique equilibrium A + 1.

Remark 1 (The case k even and m odd). Note that the general characteristic
equation associated with the linearized equation for equation (1) is

(A + 1)λs + pλs−m − pλs−k = 0,(3)

and for k even and m odd, equation (3) has a real root λ0 < −1, when p > (A+1)/2.
To see this, suppose that p > (A + 1)/2, and set

f(λ) = A + 1 +
p

λm
− p

λk
.(4)

Now, note that f(−1) = A + 1 − 2p < 0, and for λ < −1,

f(λ) = A + 1 − p

|λ|m − p

|λ|k > A + 1 − 2p

|λ|min{m,k} > 0,(5)
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GLOBAL ATTRACTIVITY OF A RATIONAL DIFFERENCE EQUATION 105

for sufficiently large |λ|.

Hence, by the continuity of the function f on the interval (−∞,−1) it follows
that f(λ) = 0 for some λ ∈ (−∞,−1), as required.

Thus, by the Linearized Stability Theorem, the positive equilibrium ȳ = A + 1
of equation (1) is not stable, in this case. This fact in conjunction with Theorem 1
gives a full characterization of stability for the case k even and m odd, for A, p ∈
(0, 1). �

The paper proceeds as follows. In Section 2, we introduce some preliminary
lemmas and notation. Section 3 is devoted to global stability, where among other
results we give a proof of Theorem 1.

2. Preliminaries and notation

In this section, we introduce some preliminary lemmas and notation.
First, consider the simple transformed sequence {zi} defined by zn = yn −A, for

n ≥ −s. Then, equation (1) becomes

zn =
(

A + zn−k

A + zn−m

)p

,(6)

for n ≥ 0.
Now, define {z∗i } by

z∗i =
{

zi, if zi ≥ 1,
1
zi

, otherwise.(7)

The following elementary lemma will be useful.

Lemma 1. If x > 1 and 0 < A < 1, then

(8)
(

A + x

A + 1/x

)A+1
2

≤ x,

with the inequality if and only if x = 1, and if x ≥ 1 and A > 1, then the reverse
inequality to inequality (8) holds.

Proof. Assume first that A ∈ (0, 1). Then the inequality in (8) is equivalent to

gA(x)
def
= (A + 1) ln

(
A + x

Ax + 1

)
− (1 − A) lnx ≤ 0.(9)

Note that

lim
x→+∞

gA(x) = −∞ and gA(1) = 0.(10)

By some simple calculations we obtain that

g′A(x) = − A (x − 1)2 (1 − A)
(A + x) (Ax + 1)x

< 0,(11)

when x �= 1, since A ∈ (0, 1).
Hence, gA(x) is decreasing, and thus by (10) is negative on the interval (1,∞).
Now, assume that A > 1. Then limx→+∞ gA(x) = +∞ and gA(1) = 0. On the

other hand, by (11) it follows that g′A(x) > 0, from which the desired inequality
follows. �

Remark 2. Note that if A = 1 the inequality in (8) becomes equality.
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106 K. S. BERENHAUT, J. D. FOLEY, AND S. STEVIĆ

Next we prove a contraction lemma which will be helpful in showing convergence
of solutions in the transformed space obtained through (7).

Lemma 2. Suppose {zi} satisfies (6) with p ≤ (A + 1)/2 and A ∈ (0, 1]. Then,

1 ≤ z∗n ≤ max{z∗n−k, z∗n−m},(12)

for all n ≥ s.

Proof. Suppose that zn−k > zn−m and set x = max{z∗n−k, z∗n−m}. Note that if
zn−k ≥ 1, then 1 ≤ zn−k ≤ x and consequently

1/x ≤ zn−k ≤ x,(13)

and if zn−k < 1, then 1/zn−k = z∗n−k ≤ x from which (13) also holds. Similarly, we
have that

1/x ≤ zn−m ≤ x.(14)

Then, from (6), (13) and (14), for n ≥ s, we have that

z∗n = zn =
(

A + zn−k

A + zn−m

)p

≤
(

A + zn−k

A + zn−m

) A+1
2

≤
(

A + x

A + 1
x

)A+1
2

≤ x,(15)

where the final inequality in (15) follows from Lemma 1. Similarly, if zn−k ≤ zn−m,
then

z∗n =
1
zn

=
(

A + zn−m

A + zn−k

)p

≤
(

A + zn−m

A + zn−k

)A+1
2

≤
(

A + x

A + 1
x

)A+1
2

≤ x,(16)

and the lemma is proved. �

Now, set

Dn = max
n−s≤i≤n−1

{z∗i },(17)

for n ≥ s.
The following result is a simple consequence of Lemma 2 and (17).

Lemma 3. The sequence {Di} is monotonically nonincreasing in i, for i ≥ s.

Since Di ≥ 1 for i ≥ s, Lemma 3 implies that, as i tends to infinity, the sequence
{Di} converges to some limit, say D, where D ≥ 1.

Next, we have the following lemma concerning boundedness of solutions to equa-
tion (1).

Lemma 4. If p ∈ (0, 1), then every positive solution of equation (1) is bounded.

Proof. First, note that each n ∈ N0 can be written in the form lk + i, for some
l ∈ N0 and i ∈ {0, 1, . . . , k − 1}. Let l0 = l0(i) be the smallest element of N0 such
that l0k + i ≥ m. From (1) and since yn > A for every n ≥ 0, we have that

(18) ylk+i = A +
yp
(l−1)k+i

yp
lk+i−m

< A +
yp
(l−1)k+i

Ap
,

for every l ∈ N0 and i ∈ {0, 1, . . . , k − 1} such that lk + i ≥ m. Let (u(i)
l )l∈N be the

solution of the difference equation

u
(i)
l = A +

u
(i)
l−1

Ap
, u

(i)
l0

= yi(l0−1)+i.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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By (18) and induction we see that y(l−1)k+i ≤ u
(i)
l , l ≥ l0. Hence it is enough to

prove that the sequences (u(i)
l )l≥l0 , i ∈ {0, 1, . . . , k − 1}, are bounded.

Since the function
f(x) = A +

xp

Ap
, x ∈ (0,∞),

is increasing and concave for p ∈ (0, 1) it follows that there is a unique fixed point
x̄ of the equation f(x) = x and that the function f satisfies the condition

(f(x) − x)(x − x̄) < 0, x ∈ (0,∞).

Using this fact it is easy to see that if u
(i)
l ∈ (0, x̄] the sequence is nondecreasing

and bounded above by x̄ and if u
(i)
l ≥ x̄, it is nonincreasing and bounded below by

x̄. Hence for every u
(i)
l0

∈ (0,∞), each of the sequences u
(i)
l , i ∈ {0, 1, . . . , k − 1}, is

bounded, from which the result follows. �

3. Convergence of solutions to equation (1)

In this section, we study the global attractivity of the positive solutions of equa-
tion (1). First, we give a proof of Theorem 1.

Proof of Theorem 1. Note that it suffices to show that the transformed sequence
{z∗i } converges to 1.

By the definition in (17), the values of Di are taken on by entries in the sequence
{z∗j }, and as well, by Lemma 2, z∗i ∈ [1, Di] for i ≥ s. Now, for any ε > 0, we can
find an N such that

z∗N ∈ [D, D + ε],(19)

and for i ≥ N − s,

z∗i ∈ [1, D + ε].(20)

Note that, similar to (13) and (14), (20) implies that
1

D + ε
≤ zN−m, zN−k ≤ D + ε.(21)

We will show that D = 1, and from this, (7), (17) and the definition of D, the
result follows.

Now, suppose D > 1, and note that (19) implies that zN �= 1.
First, consider the case zN > 1. Then, from (19), we have that

zN = z∗N ∈ [D, D + ε].(22)

Solving for zn−k in (6), and employing (22) and (21), gives

D + ε ≥ zN−k = z
1/p
N (A + zN−m) − A

≥ D1/p

(
A +

1
D + ε

)
− A

≥ D
2

A+1

(
A +

1
D + ε

)
− A.(23)

This implies that (
A + D + ε

A + 1
D+ε

)
≥ D

2
A+1 .(24)
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Assume now that zN < 1. Then,

1
zN

= z∗N ∈ [D, D + ε].(25)

From (6), and employing (21) and (25), it follows that

D + ε ≥ zN−m = (z∗N )1/p (A + zN−k) − A

≥ D1/p

(
A +

1
D + ε

)
− A

≥ D
2

A+1

(
A +

1
D + ε

)
− A.(26)

From (26) we have that (24) holds in this case, as well. Since ε > 0 was arbitrary
and D > 1, by Lemma 1 we arrive at a contradiction, which implies that D = 1,
and the theorem follows. �

Remark 3. Note that the above argument breaks down when p > (A + 1)/2. In
particular, we have that for p > (A + 1)/2,(

A + x

A + 1/x

)p

> x,(27)

for x = 1 + ε, for sufficiently small ε > 0. To see this, similar to (9), set

hA,p(x) = p
(
ln(A + x) − ln(Ax + 1)

)
− (1 − p) lnx,(28)

and note that the condition hA,p(x) > 0 is equivalent to (27). Now, hA,p(1) = 0
and

h′
A,p(1) =

2p − (A + 1)
(A + 1)

> 0.(29)

Hence for sufficiently small ε > 0, hA,p(1 + ε) > 0.

The next theorem is devoted to the case p ∈ (0, 1) and A ≥ 1. It is simpler than
Theorem 1 and is essentially a consequence of the boundedness result in Lemma 4.

Theorem 2. Suppose that m, k ≥ 1, p ∈ (0, 1) and A ≥ 1. If the sequence {yi}
satisfies (1) with y−s, y−s+1, . . . , y−1 ∈ (0,∞) where s = max{m, k}, then, {yi}
converges to the unique equilibrium A + 1.

Proof. By Lemma 4, every solution {yn} of equation (1) is bounded which implies
that there are finite lim inf yn = λ and lim sup yn = Λ. Assume to the contrary that
λ < Λ. Taking the lim inf and lim sup in (1) it follows that

A +
λp

Λp
≤ λ < Λ ≤ A +

Λp

λp
.

From this and since p ∈ (0, 1), it follows that

AΛp + λp ≤ Λpλ < Λλp ≤ Aλp + Λp;

i.e.,
(A − 1)Λp < (A − 1)λp.

Since A ≥ 1, this is impossible. Therefore we have that λ = Λ, which implies the
result. �
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[4] K. S. Berenhaut and S. Stević, A note on the difference equation xn+1 = 1
xnxn−1

+

1
xn−3xn−4

, J. Differ. Equations Appl. 11 (14) (2005), 1225-1228. MR2182249
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