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Abstract

Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes1. For some 

patients dengue is a life-threatening illness2. There are currently no licensed vaccines or specific 

therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global 

spread3. The contemporary worldwide distribution of the risk of dengue virus infection4 and its 

public health burden are poorly known2,5. Here we undertake an exhaustive assembly of known 

records of dengue occurrence worldwide, and use a formal modelling framework to map the 

global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal 

information from dengue cohort studies and population surfaces to infer the public health burden 

of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial 

variations in risk influenced strongly by rainfall, temperature and the degree of urbanisation. 

Using cartographic approaches, we estimate there to be 390 million (95 percent credible interval 

284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level 

of clinical or sub-clinical severity). This infection total is more than three times the dengue burden 

estimate of the World Health Organization2. Stratification of our estimates by country allows 

comparison with national dengue reporting, after taking into account the probability of an apparent 

infection being formally reported. The most notable differences are discussed. These new risk 

maps and infection estimates provide novel insights into the global, regional and national public 

health burden imposed by dengue. We anticipate that they will provide a starting point for a wider 

discussion about the global impact of this disease and will help guide improvements in disease 

control strategies using vaccine, drug and vector control methods and in their economic 

evaluation. [285]

Dengue is an acute systemic viral disease that has established itself globally in both endemic 

and epidemic transmission cycles. Dengue virus infection in humans is often inapparent1,6 

but can lead to a wide range of clinical manifestations, from mild fever to potentially fatal 

dengue shock syndrome2. The lifelong immunity developed after infection with one of the 

four virus types is type-specific1 and progression to more serious disease is frequently, but 

not exclusively, associated with secondary infection by heterologous types2,5. No effective 

antiviral agents yet exist to treat dengue infection and treatment therefore remains 

supportive2. Furthermore, no licensed vaccine against dengue infection is available, and the 

most advanced dengue vaccine candidate did not meet expectations in a recent large trial7,8. 

Current efforts to curb dengue transmission focus on the vector, using combinations of 

chemical and biological targeting of Aedes mosquitoes and management of breeding sites2. 

These control efforts have failed to stem the increasing incidence of dengue fever epidemics 

and expansion of the geographical range of endemic transmission9. While the historical 

expansion of this disease is well documented, the potentially large burden of ill-health 
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attributable to dengue across much of the tropical and sub-tropical world remains poorly 

enumerated.

Knowledge of the geographical distribution and burden of dengue is essential for 

understanding its contribution to global morbidity and mortality burdens, in determining 

how to allocate optimally the limited resources available for dengue control and in 

evaluating the impact of such activities internationally. Additionally, estimates of both 

apparent and inapparent infection distributions form a key requirement for assessing clinical 

surveillance and for scoping reliably future vaccine demand and delivery strategies. 

Previous maps of dengue risk have used various approaches combining historical occurrence 

records and expert opinion to demarcate areas at endemic risk10-12. More sophisticated risk 

mapping techniques have also been implemented13,14, but the empirical evidence-base has 

since been improved, alongside advances in disease modelling approaches. Furthermore, no 

studies have used a continuous global risk map as the foundation for dengue burden 

estimation.

The first global estimates of total dengue virus infections were based on an assumed 

constant annual infection rate amongst a crude approximation of the population at risk (10% 

in 1 billion5 or 4% in 2 billion15), yielding figures of 80-100 million infections per year 

worldwide in 19885,15. As more information was collated on the ratio of dengue 

haemorrhagic fever to dengue fever cases and the ratio of deaths to dengue haemorrhagic 

fever cases, the global figure was revised to 50-100 million infections16,17, although larger 

estimates of 100-200 million have also been made10 (Figure 1). These estimates were 

intended solely as approximations but, in the absence of better evidence, the resulting figure 

of 50-100 million infections per year is widely cited and currently used by the World Health 

Organization (WHO). As the methods employed were informal, these estimates were 

presented without confidence intervals, and no attempt was made to assess geographical or 

temporal variation in incidence or the inapparent infection reservoir.

Here we present the outcome of a new project to derive an evidence-based map of dengue 

risk and estimates of apparent and inapparent infections worldwide based on the global 

population in 2010. We compiled a database of 8,309 geo-located records of dengue 

occurrence from a systematic search, resulting from 2,838 published literature sources as 

well as newer online resources18 (see Supplementary Information A; the full bibliography4 

and occurrence data are available from authors on request). Using these occurrence records 

we: chose a set of gridded environmental and socioeconomic covariates known, or 

hypothesised, to affect dengue transmission (see Supplementary Information B); 

incorporated recent work assessing the strength of evidence on national and sub-national-

level dengue present/absent status4 (Figure 2A); and built a boosted regression tree (BRT) 

statistical model of dengue risk that addressed the limitations of previous risk maps (see 

Supplementary Information C) to define the probability of occurrence of dengue infection 

(dengue risk) within each 5km × 5km pixel globally (Figure 2B). The model was run 336 

times to reflect parameter uncertainty and an ensemble mean map was created (see 

Supplementary Information C). We then combined this ensemble map with detailed 

longitudinal information on dengue infection incidence from cohort studies and built a non-

parametric Bayesian hierarchical model to describe the relationship between dengue risk and 
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incidence (see Supplementary Information D). Finally, we used the estimated relationship to 

predict the number of apparent and inapparent dengue infections in 2010 (see 

Supplementary Information E). Our definition of an apparent infection is consistent with that 

used by the cohort studies: an infection with sufficient severity to modify a person’s regular 

schedule, such as attending school. This definition encompasses any level of severity of the 

disease, including both clinical and sub-clinical manifestations.

We predict that dengue transmission is ubiquitous throughout the tropics with the highest 

risk zones in the Americas and Asia (Figure 2B). Validation statistics indicated high 

predictive performance of the BRT ensemble mean map with area under the receiver 

operating characteristic (AUC) of 0.81 (±0.02 SD, n = 336) (see Supplementary Information 

C). Predicted risk in Africa, though more unevenly distributed than in other tropical endemic 

regions, is much more widespread than suggested previously. Africa has the poorest record 

of occurrence data and, as such, increased information from this continent would help to 

better define the spatial distribution of dengue within it and to improve derivative burden 

estimates. We found high levels of precipitation and temperature suitability for dengue 

transmission to be most strongly associated among the variables considered with elevated 

dengue risk, although low precipitation was not found to strongly limit transmission (see 

Supplementary Information C). Proximity to low-income urban and peri-urban centres was 

also linked to greater risk, particularly in highly connected areas, suggesting that human 

movement between population centres is an important facilitator of dengue spread. These 

associations have previously been cited9, but have not been demonstrated at the global scale 

and highlight the importance of including socioeconomic covariates when assessing dengue 

risk.

We estimate that there were 96 million apparent dengue infections globally in 2010 (Table 

1). Asia bore 70% (67 [47-94] million infections) of this burden, and is characterised by 

large swathes of densely populated regions coinciding with very high suitability for disease 

transmission. India19,20 alone contributed 34% (33 [24-44] million infections) of the global 

total. The disproportionate infection burden borne by Asian countries is emphasized in the 

cartogram shown in Figure 2C. The Americas contributed 14% (13 [9-18] million 

infections) of apparent infections worldwide, of which over half occurred in Brazil and 

Mexico. Our results indicate that Africa’s dengue burden is nearly equivalent to that of the 

Americas (16 (11–22) million infections, 16% of the global total), representing a 

significantly larger burden than previously estimated. This disparity supports the notion of a 

largely hidden African dengue burden, being masked by symptomatically similar illnesses, 

under-reporting and highly variable treatment-seeking behaviour6,9,20. The countries of 

Oceania contributed less than 0.2% of global apparent infections.

We estimate that an additional 294 (217–392) million inapparent infections occurred 

worldwide in 2010. These mild ambulatory or asymptomatic infections are not detected by 

the public health surveillance system and have no immediate implications for clinical 

management. However, the presence of this huge potential reservoir of infection has 

profound implications for: (i) correctly enumerating economic impact (for example, how 

many vaccinations are needed to avert an apparent infection) and triangulating with 

independent assessments of disability adjusted life years (DALYs)21; (ii) elucidating the 
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population dynamics of dengue viruses22; and (iii) hypothesising about population effects of 

future vaccine programmes23 (volume, targeting efficacy, impacts in combination with 

vector control), which will need to be administered to maximise cross-protection and 

minimize post-vaccination susceptibility.

The absolute uncertainties in the national burden estimates are inevitably a function of 

population size, with the greatest uncertainties in India, Indonesia, Brazil and China (see full 

rankings in Supplementary E table T4). In addition, comparing the ratio of the mean to the 

width of the confidence interval24 revealed the greatest contributors to relative uncertainty 

(see full rankings in Supplementary E table T4). These were countries with sparse 

occurrence points and low evidence consensus on dengue presence, such as Afghanistan or 

Rwanda (see Figure 2A), or those with ubiquitous high risk, such as Singapore or Djibouti, 

for which our burden prediction confidence interval is at its widest (see Figure SD2 in 

Supplementary D). Therefore, increasing evidence consensus and occurrence data 

availability in low consensus countries and assembling new cohort studies, particularly in 

areas of high transmission, will reduce uncertainty in future burden estimates. Our approach, 

uniquely, provides new evidence to help maximize the value and cost-effectiveness of 

surveillance efforts, by indicating where limited resources can be targeted to have their 

maximum possible impact in improving our knowledge of the global burden and distribution 

of dengue.

Our estimates of total infection burden (apparent and inapparent) are more than three times 

higher than the WHO predicted figure (Supplementary Information E). Our definition of an 

apparent infection is broad, encompassing any disruption to the daily routine of the infected 

individual, and consequently is an inclusive measurement of the total population affected 

adversely by the disease. Within this broad class, the severity of symptoms will affect 

treatment-seeking behaviours and the probability of a correct diagnosis in response to a 

given infection. Our definition is therefore more comprehensive than those of traditional 

surveillance systems, which, even in the most efficient system, report a much narrower 

range of dengue infections. By reviewing our database of longitudinal cohort studies, in 

which total infections in the community were documented exhaustively, we find that the 

biggest source of disparity between actual and reported infection numbers is the low 

proportion of individuals with apparent infections seeking care from formal health facilities 

(see Figure SE5 and Supplementary Information E for full analysis). Additional biases are 

introduced by misdiagnosis and the systematic failure of health management information 

systems to capture and report presenting dengue cases. By extracting the average magnitude 

of each of these sequential disparities from published cohort and clinical studies, we can 

recreate a hypothetical reporting chain with idealised reporting and arrive at estimates that 

are broadly comparable to those countries reported to the WHO. This is most clear in more 

reliable reporting regions such as the Americas. Systemic underreporting and low 

hospitalisation rates have important implications, for example, in the evaluation of vaccine 

efficacy based on reduced hospitalised caseloads. Inferences about these biases may be 

made from the comparison of estimated versus reported infection burdens in 2010, 

highlighting areas where particularly poor reporting might be strengthened (see 

Supplementary Information E).
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We have strived to be exhaustive in the assembly of contemporary data on dengue 

occurrence and clinical incidence and have applied new modelling approaches to maximise 

the predictive power of these data. It remains the case, however, that the empirical evidence 

base for global dengue risk is more limited than that available, for example, for Plasmodium 

falciparum25 and P. vivax26 malaria. Records of disease occurrence carry less information 

than those of prevalence and, as databases of the latter become more widespread, future 

approaches should focus on assessing relationships between seroprevalence and clinical 

incidence as a means of assessing risk27. Additional cartographic refinements are also 

required to help differentiate endemic- from epidemic-prone areas, to determine the 

geographic diversity of dengue virus types and to predict the distributions of future risk 

under scenarios of socioeconomic and environmental change.

The global burden of dengue is formidable and represents a growing challenge to public 

health officials and policymakers. Success in tackling this growing global threat is, in part, 

contingent on strengthening the evidence base on which control planning decisions and their 

impact are evaluated. It is hoped that this evaluation of contemporary dengue risk 

distribution and burden will help to advance that goal. [1935].

Methods

Assembly of the occurrence database and its quality control

Occurrence data comprised of point or polygon locations of confirmed dengue infection 

presence derived from both peer-reviewed literature and HealthMap alerts18,31 (see 

Supplementary Information A). An occurrence was defined as one or more laboratory or 

clinically confirmed infection(s) of dengue occurring at a unique location (a 5km × 5km 

pixel) within one calendar year. All occurrence data underwent manual review and 

automatic quality control to ensure information fidelity and precise geo-positioning. In total, 

9,648 and 1,622 occurrence locations were obtained from literature searches and HealthMap 

respectively. After the quality control procedures, our final dataset contained 8,309 

occurrence locations (5,216 point locations and 3,093 small polygon centroids) spanning a 

period from 1960 to 2012. We assume any record of dengue occurrence, regardless of its 

age, represented an environment permissible for the disease, since dengue has expanded 

from a focal disease in Asia to a cosmopolitan disease of the tropics.

Explanatory covariates

We assembled gridded global data for a suite of eight explanatory covariates. The covariates 

were chosen based on factors known or hypothesised to contribute to suitability for dengue 

transmission (see Supplementary Information B). These covariates included: (i) annual 

maximum and minimum precipitation variables from a Fourier processed32 synoptic annual 

series interpolated from global meteorological stations33; (ii) a biological model combining 

the effects of temperature on the extrinsic incubation period of dengue virus and life-span of 

the Aedes aegypti vector to quantify the dengue-specific temperature suitability for 

transmission28,34,35; (iii) Fourier-processed annual average normalised difference vegetation 

index36 (iv); categorical demarcations of urban and peri-urban areas37; (v) an urban 

accessibility metric defining the travel time to nearest city of 50,000 people or more by land- 
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or water-based travel38; and (vi) an indicator of relative poverty derived from the finest 

geographic scale data available for economic productivity and adjusted for purchasing 

power parity39. No covariate grids were shown to be adversely affected by multicollinearity 

(see Supplementary Information B) and were standardised to ensure identical spatial 

resolution, extent and boundaries. For point records, covariate values corresponded to the 

pixel value containing the location of the point. For polygon occurrence records, covariate 

values were averaged across the whole polygon.

Predicting the probability of occurrence (risk) of dengue transmission

We used a boosted regression tree (BRT) approach to establish a multivariate empirical 

relationship between the probability of occurrence of a dengue virus infection and the 

environmental conditions sampled at each site from the covariate suite. The BRT method 

has been shown to fit complicated response functions efficiently, while guarding against 

overfitting, and is therefore widely used for vector and disease distribution mapping40,41. 

The BRT approach combines regression trees42 with gradient boosting43, whereby an initial 

regression tree is fitted and iteratively improved upon in a forward stagewise manner 

(boosting) by minimising the variation in the response not explained by the model at each 

iteration (see Supplementary Information C).

Like other niche mapping approaches, the BRT models require not only presence data but 

also absence data defining areas of disease absence and potentially unsuitable environmental 

conditions at unsampled locations. Since data on absence of disease are not-definitive, 

pseudo-absence data estimate areas of disease absence instead. No consensus approach has 

been developed to optimise the generation of pseudo-absence data and we therefore created 

an evidence-based probabilistic framework for generating pseudo-absences, incorporating 

the main biasing factors in pseudo-absence generation, namely: (i) geographical extent; (ii) 

number; (iii) contamination bias; and (iv) sampling bias. To represent areas of absence, na 

pseudo-absence points29,44,45 were randomly generated based on dengue presence or 

absence certainty measures at a national or subnational level4. Pseudo-absence locations 

were restricted to a maximum distance μ from any recorded presence site46,47. Additionally, 

to compensate for “contamination” of true but unobserved presences within the generated 

pseudo-absences48, np pseudo-presence points were generated using the same procedure 

used to generate the pseudo-absences. Variation in the parameter set π = {μ, μa, μp} resulted 

in independent samples of the possible states of the real distribution, with all parameter 

combinations representing a null distribution of possible states. Therefore, rather than using 

an individual parameter combination from π, we created an ensemble49 of 336 BRT models 

spanning reasonable ranges in π and evaluated the central tendency as the mean across all 

336 BRT models (see Supplementary Information C). The final ensemble BRT model was 

used to predict a global map of the probability of occurrence of dengue virus infection at a 

5km × 5km resolution.

Estimation of dengue burden and populations at risk

Formal literature searches were conducted for serological dengue virus incidence surveys. 

Inclusion criteria were restricted to longitudinal surveys of seroconversion to dengue virus-

specific antibodies carried out in parallel with active symptom surveillance in a defined 
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cohort. The surveys were abstracted, standardised and geopositioned (see Supplementary 

Information D). In total, 54 dengue incidence surveys were collected. Of these, 39 contained 

information about the ratio of inapparent to apparent infections.

The empirical relationship between incidence and the probability of occurrence was 

represented using a Bayesian hierarchical model. We defined a negative binomial likelihood 

function50 with constant dispersion and a rate characterised by a highly flexible data-driven 

Gaussian process prior51. The Gaussian process prior was parameterised with a quadratic 

mean function and a squared exponential covariance function51. Uninformative hyperpriors 

were assigned hierarchically to the prior parameters and the full posterior distribution 

determined by Markov Chain Monte Carlo (MCMC) sampling52. The entire model was 

fitted separately for apparent and inapparent infection incidences, with missing inapparent to 

apparent ratio values imputed in the MCMC. Using human population gridded data for the 

year 201053, estimates of apparent and inapparent dengue infections were calculated 

nationally, regionally and globally. These estimates were then compared to national clinical 

cases reported to the WHO and differences between our cartographic estimates and the 

WHO surveillance estimates were reconciled in a comparative analysis addressing key 

factors in traditional surveillance underreporting (see Supplementary Information E). [973].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Global estimates of total dengue infections
Comparison of previous estimates of total global dengue infections in individuals of all ages, 

1985 to 2010:  Halstead et al. 19885,  Monath et al. 199415,  Rodhain et al. 199617, 

Rigau-Perez et al. 199816,  TDR/WHO. scientific working group 200630,  Beatty et al. 

200910,  apparent infections from this study. Estimates are aligned to the year of estimate 

and, if not stated, aligned to the publication date. Red shading marks the credible interval of 

our current estimate, for comparison. Error bars from ref. 10 and ref. 16 replicated the 

confidence intervals provided in these publications.
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Figure 2. Global evidence consensus, risk and burden of dengue in 2010
a, shows National and subnational evidence consensus on complete absence (green) through 

to complete presence (red) of dengue4. b, shows the probability of dengue occurrence at 

5km × 5km spatial resolution of the mean predicted map (area under the receiver operator 

curve of 0.81 (±0.02 SD, n = 336)) from 336 boosted regression tree models. Areas with a 

high probability of dengue occurrence are shown in red and areas with a low probability in 

green. c, shows a cartogram of the annual number of infections for all ages as a proportion 

of national or sub-national (China) geographical area.
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Table 1

Estimated burden of dengue in 2010, by continent

Apparent Inapparent

Millions (credible interval) Millions (credible interval)

Africa 15.7 (10.5 - 22.5) 48.4 (34.3 - 65.2)

Asia 66.8 (47.0 – 94.4) 204.4 (151.8 – 273.0)

Americas 13.3 (9.5 - 18.5) 40.5 (30.5 - 53.3)

Oceania 0.18 (0.11 - 0.28) 0.55 (0.35 - 0.82)

Global 96 (67.1 - 135.6) 293.9 (217.0 – 392.3)
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