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ARTICLE

The global distribution and spread of the mobilized
colistin resistance gene mcr-1

Ruobing Wang1, Lucy van Dorp 2, Liam P. Shaw 2, Phelim Bradley3, Qi Wang1, Xiaojuan Wang1,

Longyang Jin1, Qing Zhang4, Yuqing Liu4, Adrien Rieux5, Thamarai Dorai-Schneiders6, Lucy Anne Weinert7,

Zamin Iqbal 3,8, Xavier Didelot9, Hui Wang1 & Francois Balloux 2

Colistin represents one of the few available drugs for treating infections caused by

carbapenem-resistant Enterobacteriaceae. As such, the recent plasmid-mediated spread of the

colistin resistance gene mcr-1 poses a significant public health threat, requiring global

monitoring and surveillance. Here, we characterize the global distribution of mcr-1 using a

data set of 457 mcr-1-positive sequenced isolates. We find mcr-1 in various plasmid types but

identify an immediate background common to all mcr-1 sequences. Our analyses establish

that all mcr-1 elements in circulation descend from the same initial mobilization of mcr-1 by an

ISApl1 transposon in the mid 2000s (2002–2008; 95% highest posterior density), followed

by a marked demographic expansion, which led to its current global distribution. Our results

provide the first systematic phylogenetic analysis of the origin and spread of mcr-1, and

emphasize the importance of understanding the movement of antibiotic resistance genes

across multiple levels of genomic organization.
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C
olistin was largely abandoned as a treatment for bacterial
infections in the 1970s owing to its toxicity and low renal
clearance, but has been reintroduced in recent years as an

antibiotic of ‘last resort’ against multi-drug-resistant infections1.
It is therefore alarming that the prevalence of resistance to colistin
has become a significant concern, following the identification of
plasmid-mediated colistin resistance conferred by the mcr-1 gene
in late 20152. Colistin resistance is emblematic of the growing
problems of antimicrobial resistance worldwide.

Up until 2015, resistance to colistin had only been linked to
mutational and regulatory changes mediated by chromosomal
genes3,4. The mobilized colistin gene mcr-1 was first described in
a plasmid carried by an Escherichia coli isolated in China in April
20112. The presence of colistin resistance on mobile genetic
elements poses a significant public health risk, as these can spread
rapidly by horizontal transfer, and may entail a lower fitness
cost5. At the time of writing, mcr-1 has been identified in
numerous countries across five continents. Significantly, mcr-1
has also been observed on plasmids containing other anti-
microbial resistance genes such as carbapenemases6–8 and
extended-spectrum β-lactamases9–11.

The mcr-1 element has been characterized in a variety of
genomic backgrounds, consistent with the gene being mobilized
by a transposon12–16. To date, mcr-1 has been observed on a wide
variety of plasmid types, including IncI2, IncHI2, and IncX417.
Intensive screening efforts for mcr-1 have found it to be highly
prevalent in a number of environmental settings, including the
Haihe River in China18, recreational water at public urban bea-
ches in Brazil19, and fecal samples from otherwise healthy indi-
viduals20,21. Although both Brazil and China have now banned
the use of colistin in agriculture, the evidence that mcr-1 can
spread within hospital environments even in the absence of
colistin use22 as well as in the community21 raises the possibility
that the spread of mcr-1 will not be contained by these bans.

The global distribution of mcr-1 over at least five continents is
well documented, but little is known about its origin, acquisition,
emergence, and spread. In this study, we aim to shed light on
these fundamental issues using whole-genome sequencing (WGS)
data from 110 novel mcr-1-positive isolates from China in con-
junction with an extensive collection of publicly available
sequence data sourced from the NCBI repository as well as the
Short Read Archive (SRA).

Our data and analyses support an initial single mobilization
event of mcr-1 by an ISApl1-mcr-1-orf-ISApl1 transposon
around 2006. The transposon was immobilized on several
plasmid backgrounds following the loss of the flanking ISApl1
elements, and spread through plasmid transfer. The current dis-
tribution of mcr-1 points to a possible origin in Chinese livestock.
Our results illustrate the complex dynamics of antibiotic resis-
tance genes across multiple embedded genetic levels (transposons,
plasmids, bacterial lineages and bacterial species), previously
described as a nested ‘Russian doll’ model of genetic mobility23.

Results
Data set. We compiled a global data set of 457 mcr-1-positive
isolates (Fig. 1a), including 110 new WGS from China, of which
107 were sequenced with Illumina short reads and three with
PacBio long-read technology. One hundred and ninety-five iso-
lates were sourced from publicly available assemblies in the NCBI
GenBank repository (73 completed plasmids, 1 complete chro-
mosome, 121 assemblies). A further 152 sequences were sourced
from the NCBI SRA, after being identified as mcr-1-positive using
a k-mer index of a snapshot of the SRA as of December 2016 (see
Methods). The whole data set consists of 256 short-read data sets,
6 long-read PacBio WGS, 121 draft assemblies, and 74 completed

assemblies. Accession numbers and metadata for the 457 isolates
are provided in supplementary data 1.

Isolates carrying mcr-1 were identified from 31 countries
(Fig. 1a). The countries with the largest numbers of mcr-1-
positive samples are China (212), Vietnam (58) and Germany
(25). Within China, nearly half (45%) of positive isolates stem
from the Shandong province (Fig. 1b). The vast majority of
mcr-1-positive isolates belong to E. coli (411), but the data set also
comprises mcr-1-positive isolates from another seven bacterial
species: Salmonella enterica (29), Klebsiella pneumoniae (8),
Escherichia fergusonii (2), Kluyvera ascorbata (2), Citrobacter
braakii (2), Cronobacter sakazakii (1), and Klebsiella aerogenes (1)
(Fig. 1a). The majority of isolates for which sampling dates were
available (80%), were collected between 2012 and 2016, with the
oldest available isolates dating back to 2008 (Fig. 1c). Isolates with
metadata on the sample source (n= 360) came from a range of
animal (n= 222), human (n= 108) and environmental (n= 30)
hosts.

The large number of mcr-1-positive isolates from China, and
the high incidence in the Shandong province can be largely
ascribed to the inclusion of our 110 newly sequenced isolates
including 49 from Shandong and to another 37 isolates from a
previous large sequencing effort13. However, even after discount-
ing the isolates from these two sources, China remains, together
with Vietnam one of the two countries with the highest number
of sequenced mcr-1-positive isolates.

Evolutionary model. It has been proposed that mcr-1 is mobi-
lized by a composite transposon formed of a ~2600 bp region
containing mcr-1 (1626 bp) and a putative open reading frame
encoding a PAP2 superfamily protein (765 bp), flanked by two
ISApl1 insertion sequences12. ISApl1 is a member of the IS30
family of insertion sequences, which utilize a ‘copy-out, paste-in’
mechanism with a targeted transposition pathway requiring the
formation of a synaptic complex between an inverted repeat (IR)
in the transposon circle and an IR-like sequence in the target.
Snesrud and colleagues12 hypothesized that after the initial for-
mation of such a composite transposon, these insertion sequences
would have been lost over time, leading to the stabilization of
mcr-1 in a diverse range of plasmid backgrounds (Fig. 2). In the
following, we sought to test this model by performing an explicit
phylogenetic analysis of the region surrounding mcr-1 using our
comprehensive global data set.

Immediate genomic background of mcr-1. If there had been a
unique formation event for the composite transposon, followed
by progressive transposition and loss of insertion sequences, we
would expect to be able to identify a common immediate back-
ground region for mcr-1 in all samples. Indeed, we were able to
identify and align a shared region or remnants of it in all
457 sequences surrounding mcr-1 (see Methods), supporting a
single common origin for all mcr-1 elements sequenced to date
(Fig. 3a). The majority of the sequences contained no trace of
ISApl1 (n= 260) indicating that the mcr-1 transposon had been
completely stabilized in their genomic background. Forty-two
sequences contained indication of the presence of ISApl1 both
upstream and downstream, either in full copies (n= 16), a full
copy upstream and a partial copy downstream (n= 7), a partial
copy upstream and a full copy downstream (n= 1), or partial
copies upstream and downstream (n= 18). Some sequences only
had ISApl1 present upstream as a complete (n= 55) or partial
(n= 99) sequence, and one sequence had only a partial down-
stream ISApl1 element. The downstream copy of ISApl1 was
inverted in some sequences (n= 3) and some sequences had full
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copies of ISApl1 present elsewhere on the same contig (n= 7),
consistent with its high observed activity in transposition24.

Further inspection of the transposon alignment revealed that
the 186 bp region between the 3’-end of the upstream ISApl1 and
mcr-1 contained IR-like sequences similar to the IRR and IRL of
ISApl1 (respectively: 93–142 bp, 23/50 identity; and 125–175 bp,
21/50 identity). The most variable positions in this 186 bp region
were at 177 bp and 142 bp, approximately coinciding with the end
of the alignment with the IRs and were more variable in
sequences lacking ISApl1, suggesting possible loss of function of
the transposition pathway associated with ISApl1 (Fig. 3d). Some
of these SNPs occurred in a stretch previously identified as the
promoter region for mcr-125, and this region showed strong
signals of recombination. A small number of sequences (3%) had
SNPs present in mcr-1 itself. These tended to be at the upstream/

5’-end of the sequence, particularly in the first three positions. A
subset of the sequences from Vietnam (n= 28) included a
secondary 1.7 kb insertion downstream of mcr-1 containing a
putative transposase, indicating subsequent rearrangements
involving this region after initial mobilization of the transposon
(Fig. 3e).

To reconstruct the phylogenetic history of the composite mcr-1
transposon, we created a sequence alignment for 457 sequences
(Fig. 3c) after removal of recombinant regions identified with
ClonalFrameML, including the region immediately upstream of
mcr-1 between positions 1212–1247 (Fig. 3d). A midpoint-rooted
maximum parsimony phylogeny showed that there was a
dominant sequence type with subsequent diversification, likely
indicating the ancestral form of the composite transposon (Fig. 4).
There was no discernible clustering of isolates by bacterial species
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(Supplementary Fig. 1) or sample source (Supplementary Fig. 2),
suggesting the composite transposon does not evolve differently
in these different backgrounds.

A Bayesian dating approach (BEAST) was applied to infer a timed
phylogeny of the maximal alignable region of the mcr-1 carrying
transposon (see Methods). Based on this 3522 site alignment we
infer a common ancestor for 364 dated isolates in 2006
(Supplementary Fig. 3; 2002–2008 95% highest poster density
(HPD) with a strict clock and coalescent model) with a mutation
rate around 7.51 × 10−5 substitutions per site per year (Supplemen-
tary Table 1). There was no clear overall geographic clustering in the
Maximum Clade Credibility (MCC) tree (Supplementary Figure 4).

Wider genomic background of mcr-1. Next, we explored the
wider genomic background upstream and downstream of the
conserved transposon sequences. We had sufficiently long
assembled contigs for 182 isolates to identify plasmid types based
on co-occurrence with plasmid replicons (see Methods) and
identified mcr-1 in 13 different plasmid backgrounds. IncI2 and
IncX4 were the dominant plasmid types, accounting for 51 and
38% of the isolates, respectively (Fig. 5) similar to the proportions
observed by Matamoros et al.15. One isolate in our data set was
definitively located on a complete chromosome. Though, we
cannot rule out the presence of a few other chromosomal copies
of mcr-1 located on short contigs.

The distribution of transposons carrying one or two copies of
ISApl1 was highly heterogeneous across these plasmid types. For
example, sequences with one or two copies of ISApl1 were found
on six and four types, respectively, which supports their mobility
compared with those without ISApl1, which were found in five
plasmid types. Of the contigs carrying one copy of ISApl1, 61%
were found in IncI2 plasmids, and 50% of contigs carrying two
copies of ISApl1 belonged to IncHI2 plasmids. Conversely, the
common IncX4 plasmids carried only two transposons with two
copies of ISApl1 and none with a single copy of the element.

We identified two extended plasmid backbone sequences that
could be aligned. The first such alignment encompasses a shared
sequence of 7161 bp between 108 plasmid backgrounds and has
been previously referred to as ‘Type A’13. These sequences
contain 54 sequences co-occurring with an IncI2 replicon, with 54
of unknown plasmid type, and encompass a large fraction of the
genetic diversity found in the mcr-1 transposon, although a large
proportion (9/108) belonged to the dominant sequence type (i.e.,
B07_1_WFA61 in Fig. 4). The second alignment is 34,761 bp long
and is common to nine IncX4 plasmids and partly overlaps with a
background previously defined as ‘Type D’13.

We applied BEAST to infer a timed phylogeny for each of these
alignable regions after removal of SNPs showing evidence of
recombination. For the IncI2 background we infer that a
common ancestor to all 108 isolates existed in 2006 (1998–2010
95% CI relaxed exponential clock model) assuming a constant
population size model (Supplementary Fig. 5). For the IncX4
backgrounds we dated the common ancestor of the eight isolates
to 2011 (2010–2013 95% CI relaxed exponential clock model)
assuming a constant population size model (Supplementary
Fig. 6). Posterior density distributions of root dating under
different population models are shown in Supplementary Figs. 7–
8. The difference in dating inferred for these two plasmid
backgrounds and the recent date obtained for IncX4 highlight the
dynamic nature of the integration of the mcr-1 carrying
transposon, even if in the IncX4 phylogeny isolates from East
Asia and Europe and the Americas cluster together. The inferred
mutation rates obtained for the IncI2 and IncX4 backgrounds
consistently lie around 5–10 × 10−5 substitutions per site per year
(Supplementary Table 1).

Environmental distribution of the composite mcr-1 transpo-
son. It has been suggested that agricultural use of colistin, as has
been widespread in China since the early 1980s21, caused the
initial emergence and spread of mcr-126,27. According to the
evolutionary model in Fig. 2, the ancestral mobilizable state is
represented by the transposon carrying both its ISApl1 elements.
The transposon is thought to lose its capability for mobilization
after the loss of both ISApl1 elements, although a single copy is
reportedly sufficient to keep some ability to mobilize, with the
upstream copy being functionally more important12. Comparing
human (n= 108) and non-human (n= 252) isolates, there were
significantly more sequences with some trace of the insertion
sequence ISApl1 both upstream and downstream in non-human
isolates (32/220 vs. 5/108, χ

2-test, p= 0.033). This comparison
held when only comparing agricultural isolates to human isolates
(n= 213) (28/213 vs. 5/108, χ2-test, p= 0.029). Furthermore, of
the 42 isolates that had ISApl1 fragments both upstream and
downstream, the majority were from Asia (n= 30) with only a
quarter from Europe (n= 10) (χ2 test, p= 0.12). This result is not
driven by an over representation of agricultural isolates from Asia
in our data set (χ2 test, p= 0.38).

Discussion
We assembled a global data set of 457 mcr-1-positive sequenced
isolates and could show that there was a single integration event
of mcr-1 into an ISApl1 composite transposon, followed by its
subsequent spread between multiple genomic backgrounds. Our
phylogenetic analyses point to a date for the insertion of mcr-1
into the gene transposon shared across our isolates in the mid
2000s (2002–2008 95% HPD). We could identify the likely
sequence of the ancestral transposon type and show the pattern of
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diversity supports a single mobilization with subsequent diversi-
fication during global spread.

Despite the limited number of WGSs for samples before 2012,
with the oldest sequence available from 2008 (Fig. 1c), our esti-
mate is consistent with the majority of available evidence from
retrospective surveillance data,26 which has found the presence of
mcr-1 in samples dating back to 2005 in Europe28. One retro-
spective study of Chinese isolates from 1970–2014 reported three
mcr-1-positive E. coli dating from the 1980s29, although mcr-1
then did not reappear until 2004. This observation seems sur-
prising in light of our results, which clearly exclude such an early
spread of mcr-1 at least on this ISApl1 transposon background.

Our estimates of the age of spread of the representative IncI2
and IncX4 plasmid backgrounds are more recent, dating to ~
2008 and 2013, respectively, but are both consistent with the age
of the transposon mobilization event. We did not constrain the
evolutionary rates in any of our phylogenetic analyses. It is thus
encouraging that the different rates are highly consistent between
the mcr-1 transposon and the two plasmid backgrounds.
Although this points to high internal consistency between our

estimates, we were surprisingly unable to find any previously
published estimates for the evolutionary rate of bacterial
plasmids.

The current distribution and observed genetic patterns are in
line with a center of origin in China. This is the place where we
observe the highest proportion of isolates carrying intact or
partial copies of the ISApl1 flanking elements. Transposon
sequences carrying ISApl1 elements were also overrepresented in
environmental and agriculture isolates, relative to those collected
from humans. This pattern is in line with agricultural settings
acting as the source of mcr-1 within bacteria isolated from
humans21. The current global distribution has been achieved
through multiple translocations, and is illustrated by the inter-
spersed geographic origins in our phylogenetic reconstructions. A
likely driver for the global spread is trade, in particular food
animals30 and meat, although direct global movement by colo-
nized or infected humans20 is also likely to have played a role in
the current distribution.

The origin of mcr-1 prior to its mobilization remains elusive.
Despite an exhaustive search of sequence repositories, including
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the short-read archive, we found not a single mcr-1 sequence
outside the ISApl1 transposon background. ISApl1 was first
identified in the pig pathogen Actinobacillus pleuropneumoniae31

suggesting that it may also have been an ancestral host for
mcr-1, although to our knowledge no mcr-1-positive
A. pleuropneumoniae isolates have been described. The phos-
phoethanolamine transferase from Paenibacillus sophorae has

also been proposed as a possible candidate32. However, this seems
most unlikely as Paenibacili are Gram-positive and are thus
intrinsically resistant to polymixins33. Moreover, although the
two sequences share functional similarities, this should be inter-
preted as a case of possible parallel evolution rather than direct
filiation33. Moraxella has also been suggested as being the source
of mcr-134, following the identification of genes in Moraxella with
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limited homology to mcr-1 (~60% nucleotide sequence identity).
However, this sequence identity is too low for Moraxella to be
considered as viable candidates for the origin ofmcr-1. The search
for the initial source of mcr-1 remains open until a mcr-1
sequence is identified outside of the ISApl1 sequence background.

We note that there are an increasing number of mobilized
genes that can confer colistin resistance, with mcr-2 reported less
than a year after mcr-1 was initially described35 and more recent
descriptions of the phylogenetically distant mcr-3, mcr-4, and
mcr-536–38. There appear to be commonalities between the
mechanisms of the mcr genes, despite their different sequences
and locations near to different insertion sequences. For example,
mcr-2 has 76.7% nucleotide identity to mcr-1 and was found in
colistin-resistant isolates that did not contain mcr-1, and
appeared to be mobilized on an IS1595 transposon35. Despite the
different insertion sequences, intriguingly, this mobile element
also contained a similar protein downstream of the mcr gene.
Indeed, in mcr-1, -2, and -3, the mcr gene has a downstream open
reading frame encoding, respectively, a putative PAP2 protein12, a
PAP2 membrane-associated lipid phosphatase35, and a dia-
cylglycerol kinase36, all of which have transmembrane domains
and are involved in the phosphatidic acid pathway39,40. Although
the PAP2-like orf in mcr-1 has been shown not to be required for
colistin resistance41, the presence of similar sequences down-
stream of other mcr genes implies some functional role, either in
the formation of the mobile element and/or in its continued
mobilization.

In summary, we assembled the largest data set to date of mcr-1-
positive sequenced isolates through our own sequencing efforts
combined with an exhaustive search of publicly available
sequence databases including unassembled data sets from the
SRA. Although this allowed us to obtain a truly global data set of
457 mcr-1-positive isolates covering 31 countries and five con-
tinents, we appreciate that the data is likely affected by complex
sampling biases, with an over representation of samples from
places with active surveillance and well-funded research com-
munities. Equally, although we took advantage of the most
sophisticated bioinformatics and phylogenetic tools currently
available, the complex ‘Russian doll’ dynamics of the transposon,
plasmids, and bacterial host limits our ability to reach strong
inferences on some important aspects of the spread of mcr-1.
Nevertheless, we believe our results highlight the potential for
phylogenetic reconstruction of antimicrobial resistance elements
at a global scale. We hope that future efforts relying on more
sophisticated computational tools and even more extensive
genetic sequence data will become part of the routine toolbox in
infectious disease surveillance.

Methods
Compilation of genomic data set. We blasted for mcr-1 in all NCBI GenBank
assemblies (as of 16th March 2017, n= 90,759) using a 98% identity cutoff. 195
records (0.21%; 121 assemblies, 73 complete plasmids, one complete chromosome)
contained at least one contig with a full-length hit to mcr-1 (1626 bases). We only
included samples with a single copy of mcr-1. The only isolate with multiple copies
was a previously published isolate with three chromosomal copies of mcr-1 and
seven copies of ISApl142.

We searched a snapshot of all WGS bacterial raw read data sets in the SRA
(December 2016), looking for samples containing mcr-1 by using a k-mer index (k
= 31), which we had previously constructed43; software available at: https://github.
com/phelimb/bigsi. A total of 184 data sets were found to contain at least 70% of
the 31-mers in mcr-1. After removing duplicates (i.e., those with a draft assembly
available) we could assemble contigs with mcr-1 for 152 of these.

Our final data set comprised 457 isolates from six genera across 31 different
countries, ranging in date from 2008 to 2017. Where only a year was provided as
the date of isolate collection the date was set to the midpoint of that year.

Whenever identified isolates did not comprise previously assembled genomes or
complete plasmids, the raw fastq files were first inspected using FastQC and
trimmed and filtered on a case-by-case basis. De novo assembly was then
conducted using Plasmid SPADES 3.10.0 using the–careful switch and otherwise

default parameters44. For those isolates sequenced using PacBio a different pipeline
was employed. Correction, trimming, and assembly of raw reads was performed
using Canu45 and assembled reads were corrected and trimmed using the tool
Circlator46. The quality of resultant assemblies was assessed using infoseq. In both
cases the mcr-1 carrying contigs in this final data set were identified using blastn
v2.2.3147.

We ran Plasmid Finder 1.348 with 95% identity to identify plasmid replicons on
the mcr-1 carrying contigs. In total, 182 unique contigs could be assigned a plasmid
type using this method.

Novel samples from China. We selected 110 mcr-1-positive isolates from China
for WGS from a larger survey effort of both clinical and livestock isolates. A total of
2824 non-repetitive clinical isolates, including 1637 E. coli and 1187 K. pneumoniae
were collected from 15 provinces of mainland China from 2011 to 2016. Seventy-
two isolates were resistant to polymyxin B, comprising 40 E. coli and four K.
pneumoniae carrying mcr-1. Livestock samples were collected from four provinces
of China in 2013 and 2016. One broiler farm of the Shandong province provided
chicken anal swabs, liver, heart, and wastewater isolated in 2013. In 2016, samples
including feces, wastewater, anal swabs, and internal organs of sick livestock were
collected from swine farms, cattle farms, and broiler farms in four provinces (Jilin,
Shandong, Henan, and Guangdong). A total of 601 E. coli and 126 K. pneumoniae
were isolated, of which 167 (137 E. coli and 30 K. pneumoniae) were resistant to
polymyxin B. We detected mcr-1 in 135 E. coli and two K. pneumoniae, as well as in
eight E. coli isolated from environmental samples, which were collected from
influents and effluents of four tertiary care teaching hospitals.

All of the isolates were sent to the microbiology laboratory of Peking University
People’s Hospital and confirmed by routine biochemical tests, the Vitek system
(bioMérieux, Hazelwood, MO, USA) and/or MALDI-TOF (Bruker Daltonics,
Bremen, Germany). The minimal inhibitory concentrations (MICs) of polymyxin B
was determined using the broth dilution method. The breakpoints of polymyxin B
for Enterobacteriaceae were interpreted with the European Committee on
Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org/
clinical_breakpoints) guidelines. Colistin-resistant isolates (MIC of ≥2 μg/ml) were
screened for mcr-1 by PCR and sequencing as described previously49.

Identification and alignment of mcr-1 transposon. We searched for the mcr-1
carrying transposon region across isolates by blasting for its major components:
ISApl1 (Actinobacillus pleuropneumoniae reference sequence: EF407820), mcr-1
(from E. coli plasmid pHNSHP45: KP347127.1), and short sequences representing
the sequences immediately upstream and downstream of mcr-1 (from KP347127.1)
using blastn-short. Contiguous sequences containing mcr-1 were aligned using
Clustal Omega50 and then manually curated and amended using jalview51,
resulting in a 3679 bp alignment containing the common ~2600 bp identified by
Snesrud and colleagues12. The downstream copy of ISApl1 was more often frag-
mented or inverted. Twenty-eight isolates, which were all assemblies from the same
study in Vietnam had a ~1.7 kb insertion downstream of mcr-1 (Fig. 3e) before the
downstream ISApl1 element.

Phylogenetic analyses. For constructing the transposon phylogeny, we excluded
the downstream ISApl1 and the insertion sequence observed in a small number of
samples, as well as regions identified as having signals of recombination by Clo-
nalFrameML52, resulting in a 3522 bp alignment. We removed two homoplastic
sites (requiring >1 change on the phylogeny), before constructing a maximum
parsimony neighbor-joining tree based on the Hamming distance between
sequences. We calculated branch lengths using non-negative least squares with
nnls.phylo in phangorn v2.2.053. Phylogenies were visualized with ggtree v1.8.154.

Phylogenetic dating. Given recombination can conceal the clonal phylogenetic
signal we also applied ClonalFrameML52 to identify regions of high recombination
in a subset of IncI2 and IncX4 plasmid background alignments. Where recombi-
nation hotspots were identified, they were removed from the alignment. In the
IncI2 alignment, this resulted in removing 1281 positions. No regions of high
recombination were detected in the IncX4 alignment. We applied root-to-tip
correlations to test for a temporal signal in the data using TempEST55. There was a
significantly positive slope for all three alignments (Supplementary Fig. 9–11).

We applied BEAUTi and BEAST v2.4.756,57 to estimate a timed phylogeny from
an alignment of IncI2 plasmids (7161 sites, 110 isolates) and IncX4 plasmids
(34,761 sites, 8 isolates). Sequences were annotated using their known sampling
times expressed in years. For both plasmid alignments, the HKY substitution
model was selected based on evaluation of all possible substitution models in
bModelTest. BEAST analyses were then applied under both a coalescent population
model (the coalescent Bayesian skyline implementation) and an exponential
growth model (Coalescent Exponential population implementation). In addition, a
strict clock, with a lognormal prior, and a relaxed clock (both lognormal and
exponential) were tested. MCMC was run for 50,000,000 iterations sampling every
2000 steps and convergence was checked by inspecting the effective sample sizes
and parameter value traces in the software Tracer v1.6.0. Analyses were repeated
three times to ensure consistency between the obtained posterior distributions.
Posterior trees for the best fitting model were combined in TreeAnnotator after a
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10% burn-in to provide an annotated MCC tree. MCC trees were plotted using
ggtree54 for both backgrounds: IncI2 (Supplementary Fig. 12) and IncX4
(Supplementary Fig. 13). The model fit across analyses was compared using the
Akaike’s information criteria model through 100 bootstrap resamples as described
in Baele and colleagues58 and implemented in Tracer v1.6 (Supplementary
Table 2).

Phylogenetic dating on the transposon was performed using an alignment of
364 isolates, which included only those with information on isolation date, across
3522 sites. As before BEAST analyses were applied under both a coalescent
population model (coalescent Bayesian skyline implementation) and an
exponential growth model (coalescent exponential population implementation). In
addition, a strict clock, with a lognormal prior, and a relaxed clock (both lognormal
and exponential) were tested. Analyses were run under a HKY substitution model
for 600 million iterations sampling every 5000 steps. Only analyses using a strict
clock model reached convergence after 600 million iterations. The resultant set of
trees were thinned by sampling every 10 trees and excluding a 10% burn-in and
combined using TreeAnnotator to produce a MCC tree. MCC trees were plotted
using ggTree48. As before the model fit was evaluated using AICM’s implemented
in Tracer v1.6.

Environmental distribution. For the purpose of testing the distribution of
sequences containing some trace of ISApl1, we classed isolates into broad categories
as either environmental (n= 39; bird, cat, dog, fly, food, penguin, reptile, vege-
tables), agricultural (n= 213; chicken, cow, pig, poultry feed, sheep, turkey), or
human (n= 108). We did not correct for study site with subsampling as we found
great diversity within sites, consistent with a recent study showing multiple diverse
mcr-1-positive strains within a single hospital sewage sample59.

Data access. All the data generated or analyzed in this study are available within
the paper and its supplementary information files. Accession numbers and meta-
data for all 457 isolates is provided in supplementary data 1. The newly sequenced
110 mcr-1-positive genomes have been submitted to the Short Read Archive under
Bioproject: PRJNA408214, Accession: SRP118547.
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