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Abstract. The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inven-
tory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around
the year 2010, we generated a global, spatially explicit dataset of above-ground live biomass (AGB; dry mass)
stored in forests with a spatial resolution of 1 ha. Using an extensive database of 110 897 AGB measurements
from field inventory plots, we show that the spatial patterns and magnitude of AGB are well captured in our map
with the exception of regional uncertainties in high-carbon-stock forests with AGB > 250 Mgha−1, where the
retrieval was effectively based on a single radar observation. With a total global AGB of 522 Pg, our estimate
of the terrestrial biomass pool in forests is lower than most estimates published in the literature (426–571 Pg).
Nonetheless, our dataset increases knowledge on the spatial distribution of AGB compared to the Global Forest
Resources Assessment (FRA) by the Food and Agriculture Organization (FAO) and highlights the impact of a
country’s national inventory capacity on the accuracy of the biomass statistics reported to the FRA. We also
reassessed previous remote sensing AGB maps and identified major biases compared to inventory data, up to
120 % of the inventory value in dry tropical forests, in the subtropics and temperate zone. Because of the high
level of detail and the overall reliability of the AGB spatial patterns, our global dataset of AGB is likely to have
significant impacts on climate, carbon, and socio-economic modelling schemes and provides a crucial baseline
in future carbon stock change estimates. The dataset is available at https://doi.org/10.1594/PANGAEA.894711
(Santoro, 2018).

1 Introduction

Above-ground live biomass (AGB) is identified as one of
54 essential climate variables (ECVs) by the Global Climate
Observing System (GCOS) because of its major role in the
global carbon cycle. Biomass stores carbon removed from
the atmosphere by photosynthesis in long-lived woody pools
and yields to carbon emissions to the atmosphere when dis-
turbed. Hence, accurate knowledge of its magnitude and spa-
tial distribution is a key and currently poorly constrained part
of the carbon cycle (Houghton, 2005). Information on for-

est biomass is required to quantify forest resources and de-
termine their benefit in terms of ecosystem services (Schep-
aschenko et al., 2015; Reichstein and Carvalhais, 2019), cli-
mate change mitigation, and biodiversity conservation (Soto-
Navarro et al., 2020). Biomass estimates allow the inference
of emissions from forest degradation (Houghton et al., 2009;
Li et al., 2017) and assistance with the derivation of emission
factors (IPCC, 2006; Herold et al., 2019). Information on
biomass also directly supports policy by quantifying national
carbon stocks in the context of reducing emissions from de-
forestation and degradation (REDD+), the Paris Agreement
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on Climate Change, and the United Nations Sustainable De-
velopment Goals (Gibbs et al., 2007; Herold et al., 2019). Fi-
nally, improved knowledge of carbon stock patterns and dy-
namics from better knowledge of forest biomass pools helps
to constrain Earth system models (Carvalhais et al., 2014;
Ciais et al., 2014; Bloom et al., 2016; Thurner et al., 2016;
Baccini et al., 2017; Thum et al., 2017; Le Quéré et al., 2018;
Exbrayat et al., 2019).

Previous estimates have suggested that plants store about
80 % of the live biomass forming the Earth’s biosphere, with
an estimated carbon pool of 450 Pg C (Bar-On et al., 2018).
Around 320 Pg C was allocated to the AGB, representing ap-
proximately 70 % of the overall pool, most of it stored in
woody biomass (Bar-On et al., 2018). However, our knowl-
edge of the terrestrial woody biomass stock is relatively un-
certain (Houghton et al., 2009). This uncertainty is well illus-
trated by the variance among forest biomass estimates from
inventory data. A global assessment of biomass in forests for
the year 2007 reported 362 Pg C based on a compilation of
forest inventory resources (Pan et al., 2011), whereas approx-
imately 300 Pg C was reported for the year 2010 based on
the national contributions to the Food and Agriculture Orga-
nization (FAO) Forest Resources Assessment (FRA) (FAO,
2010). This uncertainty is a consequence of the uneven char-
acterization of AGB in terms of precision and timeliness of
measurements (Houghton et al., 2009; Ciais et al., 2014)
and the lack of a universal inventory system using a stan-
dard set of survey and reporting procedures. Most countries
in the temperate and boreal zones have national forest in-
ventories (NFIs) that use systematic regular sampling, al-
beit some national differences, e.g. in the definition of forest
area (Tomppo et al., 2010). In contrast, many of the tropi-
cal countries have less developed inventory infrastructures or
have only recently started to develop such infrastructure, of-
ten with the support of international initiatives (e.g. the UN
REDD programme).

Remote sensing observations allow the estimation of
global ecosystem properties and parameters (Schimel et al.,
2015). No single measurement from remote sensing, how-
ever, represents a direct measure of the forest AGB. Nonethe-
less, the demand for spatially explicit estimates of AGB and
the wide range of satellite observations collected in the last
decades have fostered the development of a multitude of
retrieval models based either on empirical regression tech-
niques, physically based mathematical models, or machine
learning algorithms (Lucas et al., 2015; Lu et al., 2016; San-
toro and Cartus, 2018). The incapacity of remote sensing to
measure biomass and the approximations in retrieval mod-
els cause inaccurate estimates of AGB at the pixel level.
Even the spatial distribution of AGB in global and biome-
specific maps of remotely sensed AGB (Kindermann et al.,
2008; Saatchi et al., 2011b; Baccini et al., 2012; Thurner
et al., 2014; Liu et al., 2015; Avitabile et al., 2016; Hu et al.,
2016) sometimes presents remarkable differences (Mitchard
et al., 2013; Ometto et al., 2014; Schepaschenko et al., 2015;

Rodríguez-Veiga et al., 2017), implying a strong variability
in the global biomass pool estimate (Table S1 in the Supple-
ment).

Global datasets of forest AGB from remote sensing obser-
vations represent the stocks for a snapshot ranging between
2000 and 2010, and their coarse spatial resolution (≥ 500 m)
hinders description of the fine-scale spatial variability in
biomass. This aspect is of major importance when trying to
capture changes in land use, natural disturbances, and growth
patterns (Houghton et al., 2009) or monitor management
practices (Erb et al., 2018). Here, we assembled a wide set
of publicly available radar, lidar, and optical satellite obser-
vations suited to estimate forest variables with the objective
of generating a high-resolution global map of spatially ex-
plicit estimates of forest live AGB (unit: megagrams of dry
mass per hectare) so as to provide more recent, more detailed,
and possibly more accurate information on the spatial distri-
bution of global AGB with respect to existing datasets. Our
forest AGB map has a pixel size of 1 ha and is based on satel-
lite remote sensing observations from around the year 2010.
Here, we present the dataset together with an assessment of
its validity using an extensive database of plot-level mea-
surements of AGB. The significance of our map estimates is
demonstrated in the context of biomass stock assessments by
benchmarking with respect to the FAO FRA country statis-
tics. In addition, we compare our estimates and other pub-
lished estimates of forest AGB derived from remote sensing
observations with AGB measurements from inventory plots
to illustrate the reliability of our estimates.

2 Material and methods

2.1 Satellite data

The spatially explicit estimates of AGB were based on
the radar backscattered intensity recorded by the Phased
Array-type L-band Synthetic Aperture Radar (PALSAR) in-
strument, on board the Advanced Land Observing Satel-
lite (ALOS) satellite, and the Advanced Synthetic Aperture
Radar (ASAR) instrument operating at C-band, on board
the Environmental Satellite (Envisat) (Sect. S1 in the Sup-
plement). In addition, lidar-based metrics and surface re-
flectances were used throughout the process of biomass esti-
mation.

ALOS PALSAR was an active microwave sensor oper-
ating at L-band (wavelength of 23 cm). Between 2006 and
2011, PALSAR acquired images in the Fine Beam Dual
(FBD) polarization mode with 20 m spatial resolution. Im-
age acquisition followed a predefined observation scenario
with the aim of achieving spatially and temporally consistent
large-scale observational datasets (Rosenqvist et al., 2007).
Summertime acquisitions from the FBD mode (mostly May
to October) were used by the Japan Aerospace Exploration
Agency (JAXA) to generate yearly mosaics of the radar
backscatter for each year between 2007 and 2010 (Shimada,
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2010). Each image was orthorectified and radiometrically
terrain-corrected to gamma0 (Shimada, 2010). The mosaics
are publicly available and are provided in the form of im-
age tiles of 1◦ × 1◦ in latitude and longitude, resampled
to a grid with a pixel spacing of 0.000225◦. In this study,
we used the mosaics of the co-polarized horizontal-transmit
horizontal-receive (HH) and cross-polarized horizontal-
transmit vertical-receive (HV) backscatter images. Images
from 14 728 tiles were used to estimate biomass; 96 image
tiles showing evident radiometric offsets with respect to ad-
jacent ones, due for example to different environmental con-
ditions (e.g. frozen vs. unfrozen conditions), were manually
replaced with the corresponding image tile from the mosaic
of 2009. This replacement ensured homogeneity of the L-
band backscatter dataset across all landscapes.

Envisat ASAR was an active microwave sensor acquir-
ing images at C-band (wavelength of 6 cm) between 2002
and 2012. ASAR operated in four different modes over
land, with a spatial resolution of 30 m (Image Mode, IM,
and Alternating Polarization Mode, APM), 150 m (Wide
Swath Mode, WSM), and 1000 m (Global Monitoring Mode,
GMM). Approximately 80 % of the total number of obser-
vations consisted of GM observations. We processed the en-
tire dataset of ASAR images of the synthetic aperture radar
(SAR) backscatter made available by the European Space
Agency (ESA) through the Grid Processing on Demand plat-
form to stacks of terrain-geocoded, pixel-area-normalized,
and speckle-filtered images (Santoro et al., 2015b). Images
acquired with the IM and WSM were geocoded to a pixel
size of 0.0013888◦ in latitude and longitude, corresponding
to an area on the ground of roughly 150m × 150m at the
Equator. Images acquired with the GMM were geocoded to a
pixel size of 0.01◦ in latitude and longitude, corresponding to
an area on the ground of approximately 1000 m × 1000 m at
the Equator. To obtain global full coverage, the IM and WSM
images were further averaged and resampled to the pixel size
of the GMM dataset to form a single 1 km dataset of C-band
backscatter observations. Each image was divided into tiles
of 2◦ × 2◦ in latitude and longitude. For this study, we used
all Envisat ASAR images acquired in 2010 and 2011. The
density of the observations in time (Fig. S1 in the Supple-
ment) decreased from the polar latitudes, with several obser-
vations per day, to the tropical latitudes, with approximately
200 observations on average over 2 years. Areas with a small
number of observations correspond to regions seldom im-
aged during the lifetime of the Envisat mission (e.g. New
Zealand, Japan) or imaged only at high resolution when the
overlap of images from the adjacent orbital track was null
(e.g. California, western Amazon).

The parameterization of the biomass retrieval models re-
lating biomass to SAR backscatter observations was sup-
ported by the GLA14 data product of the Geoscience Laser
Altimeter System (GLAS) on board the Ice Cloud and Land
Elevation Satellite (ICESat) that operated between 2003 and
2009. GLA14 represented the waveforms over land only in

Figure 1. Flowchart of the AGB retrieval approach.

the form of the parameters of a multi-Gaussian model fitted
to the raw waveforms (Hofton et al., 2000), thus containing
information about the vertical structure of vegetation. Be-
cause GLAS observations consisted of approximately 65 m
large footprints acquired every 170 m along-track with a dis-
tance between tracks of the order of 60 km, the GLA14
dataset was not dense enough to allow direct spatially ex-
plicit estimates of biomass. Here, we used the entire archive
of GLA14 data products, provided by the National Snow and
Ice Data Centre (NSIDC), to estimate forest height after fil-
tering for footprints affected by topography and various noise
sources in the waveforms (Los et al., 2012; Simard et al.,
2011). In addition, we computed an estimate of the canopy
density for each footprint as the ratio of energy received
from the canopy (i.e. returns from above the ground peak) to
the total energy received. Our database of GLAS-based met-
rics consisted of 26.5 million footprints homogeneously dis-
tributed over all vegetated surfaces. While the SAR observa-
tions were used as predictors in the retrieval model (Sect. 3),
the lidar observations supported the estimation of parameters
of the retrieval model that are time-invariant such as forest
transmissivity (Sect. 3). Herewith, the time difference be-
tween the SAR imagery (2010) and the lidar observations
(2003–2009) did not impact the retrieval.

Global reflectances of Landsat 7 images (bands 3, 4, 5, and
7) acquired in 2010 were used to rescale biomass estimates
from ASAR to the pixel size of the ALOS PALSAR dataset.
The dataset was available in the form of a mosaic from the
USGS website (Hansen et al., 2013). The square pixels of
the mosaic had a spacing of 0.00027◦, i.e. roughly 30 m at the
Equator. The dataset was downloaded from Google Earth En-
gine and resampled with the nearest neighbour interpolation
technique to the geometry of the ALOS PALSAR dataset.
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2.2 AGB estimation

Unlike investigations that directly relate AGB to the remote
sensing data (Lu et al., 2016; Santoro and Cartus, 2018),
we estimated the density of the woody volume, referred to
as growing stock volume (GSV; unit: m3 ha−1), from which
AGB is then computed, for three reasons. First, the signal
backscattered by a forest is primarily affected by the density
and to some degree the height of the trees (Santoro et al.,
2015a). However, the short wavelength of the radar instru-
ments means that only the upper part of the volume is seen so
that an estimate of GSV (or AGB) would be the result of an
inference from the SAR observation. Second, it has not been
demonstrated that the SAR backscatter at C- and L-band is
sensitive to the wood density of trees for a given level of
GSV, thus not providing experimental support to a direct esti-
mation of AGB. Without such evidence, it is preferable to es-
timate a forest structural parameter from the SAR backscat-
ter and convert it to AGB using a separate layer combining
the wood density and the stem-to-total biomass expansion
factor, which does not depend on remote sensing observa-
tions. An open question is whether means exist that allow an
unbiased characterization of wood density and stem-to-total
biomass expansion globally. Third, our approach to estimate
AGB from remote sensing data mimics the approach based
on forest field inventory data (Brown, 1987; Jenkins et al.,
2003), where GSV is acknowledged to be the major predic-
tor of AGB. The relevance of GSV to estimation of AGB
is further emphasized by the country reports building up the
FAO 2010 FRA (FAO, 2010). Of the 233 country reports, we
identified 171 countries reporting numbers on AGB, and for
roughly two-thirds of these (111) the estimate of AGB was
derived from an estimate of GSV, based on inventory or ex-
pert knowledge, using a scaling factor.

The AGB retrieval algorithm is outlined in the flowchart
in Fig. 1 showing the interdependencies of datasets and re-
trieval models. We applied a model-based approach known
as BIOMASAR (Santoro et al., 2011; Cartus et al., 2012b)
separately to the ALOS PALSAR (Cartus et al., 2012b) and
the Envisat ASAR radar backscatter datasets (Santoro et al.,
2011, 2015a) to obtain two independent, spatially explicit es-
timates of GSV. BIOMASAR inverts the Water Cloud Model
(Pulliainen et al., 1994; Santoro et al., 2002).

σ 0
for = σ 0

gre
−βV + σ 0

veg

(

1 − e−βV
)

, (1)

where σ 0
for represents the forest backscatter, i.e. the SAR

backscatter observation from an ALOS PALSAR or an En-
visat ASAR image (Sect. 2.1), and σ 0

gr and σ 0
veg represent

the backscattering coefficients of the ground and vegetation
layer, respectively. The exponential function, e−βV , repre-
sents the two-way forest transmissivity, where β is an em-
pirically defined coefficient expressed in m−1, and V repre-
sents GSV. Equation (1) neglects multiple scattering, which
is acceptable for most forest conditions (Santoro et al., 2011;
Cartus et al., 2012a; Cartus and Santoro, 2019).

The model parameters β, σ 0
gr, and σ 0

veg need to be es-
timated in order to invert the model and obtain an esti-
mate of GSV from a measurement of the SAR backscatter.
Estimates of the coefficient β are obtained with a model-
based approach that relates canopy density and GSV ob-
servations through the transmissivity of the forest (Santoro
et al., 2015a). The estimation is stratified by the FAO global
ecological zones (Sect. S1, Fig. S2 and Table S2 in the
Supplement). To estimate σ 0

gr and σ 0
veg, we rely on a self-

calibration approach (Santoro et al., 2011) rather than us-
ing a set of reference measurements of the SAR backscat-
ter and in situ GSV values. The limited availability of in situ
information on biomass (e.g. from inventory plots or laser-
based maps) prevents adaptive calibration of retrieval algo-
rithms using conventional approaches. In many areas, partic-
ularly the tropics, the number of available plots is very lim-
ited so that models can only be calibrated using reference
information collected over large areas (Bouvet et al., 2018)
with the risk of missing spatial variability in the backscatter.
The model training approach is tailored to the radar wave-
length in order to accommodate the different relationships of
backscatter to biomass (BIOMASAR-C and BIOMASAR-L;
see Sects. S2 and S3 in the Supplement).

When N observations of the radar backscatter are avail-
able, a final estimate of GSV, with higher accuracy com-
pared to the individual estimates, is obtained by means of
a weighted linear combination of the individual estimates of
GSV obtained by inverting Eq. (1) for each backscatter ob-
servation (Santoro et al., 2011; Kurvonen et al., 1999).

Vmt =

∑N
i=1wi V̂i

∑N
i=1wi

(2)

In Eq. (2), the weights wi are defined as the difference
(σ 0

veg,i − σ 0
gr,i) so that GSV estimates obtained from images

with the strongest sensitivity to GSV are preferred to those
obtained from images with no sensitivity to GSV (Santoro
et al., 2011).

In this study, the BIOMASAR-C implementation was tai-
lored to ingest ASAR data (Sect. S2 in the Supplement)
and generated a GSV map at 1000 m spatial resolution by
combining individual estimates from the ASAR dataset. The
BIOMASAR-L implementation was tailored to ingest ALOS
PALSAR data and generate a GSV data product at 25 m
spatial resolution (Sect. S3 in the Supplement). The step in
Eq. (2) became redundant because of the strong correlation
of the ALOS PALSAR mosaics in time and the negligible
weight attributed to the HH-polarized component when com-
bined with the HV-polarized component. As a result, the re-
trieved GSV with BIOMASAR-L was based on the single
observation of the L-band SAR backscatter at HV polariza-
tion in the mosaic for 2010.

To merge estimates of GSV obtained at 25 and 1000 m, the
latter were rescaled to 25 m using a linear regression model
(BIOMASAR-C+ in Fig. 1). The HH- and HV-polarized
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ALOS PALSAR backscatter (σ 0
HH and σ 0

HV) and the Land-
sat bands 3, 4, 5, and 7 (B3, B4, B5, and B7) were used as
predictors in the model in Eq. (3):

log(V ) =a0 + a1σ
0
HV + a2σ

0
HH + a3B3 + a4B4

+ a5B5 + a6B7. (3)

The model was calibrated for each 1◦ × 1◦ tile at a pixel size
of 1000 m to predict the BIOMASAR-C estimate of GSV
at the 25 m scale. A bias correction had to be performed
when retransforming the logarithmic GSV predictions to lin-
ear scale. The bias was computed by differencing the orig-
inal BIOMASAR-C GSV and the predictions from Eq. (3)
aggregated to the 1000 m pixel size. In spite of its simplicity,
the multiple linear regression resulted in an overall superior
performance when compared to results obtained with more
sophisticated rescaling methods.

The final estimate of GSV was obtained by weighting the
rescaled ASAR-based estimates (VC+) and PALSAR-based
estimates (VL) of GSV. The weighting scheme accounted for
the different sensitivity of C- and L-band data to GSV, the
number of observations used for estimating GSV, local er-
rors in the model training and inversion, and residual un-
compensated topographic effects in the ALOS PALSAR mo-
saics (Sect. S4 in the Supplement). The GSV estimated with
BIOMASAR-L was given more weight in areas of high GSV
except in the case of steep terrain (Fig. S3 in the Supple-
ment). BIOMASAR-C+ GSV estimates were instead pre-
ferred in areas of low GSV and regions with rugged terrain
(Fig. S3 in the Supplement).

GSV = VC+ × wC + VL × wL (4)

To reduce the pixel-wise variability due to speckle in the
radar data and amplified by the weak sensitivity of the C-
and L-band backscatter to forest variables, spatial averag-
ing using a 4 × 4 window was applied. This decreased the
spatial resolution of the GSV estimates to 0.000888◦ in both
latitude and longitude, corresponding to an area of approxi-
mately 1 ha at the Equator.

The conversion of GSV to AGB in Eq. (5) requires
wood density (WD) and the biomass expansion factors
(BEFs), which give the allometric relationship between stem
mass and whole above-ground mass, including branches and
leaves.

AGB = GSV × WD × BEF (5)

The spatial variations in WD and BEF result from bio-
logical processes that respond to local conditions, as has
been demonstrated in regional studies showing environmen-
tal controls on the patterns of WD and BEF (Chave et al.,
2009; Thurner et al., 2014). Towards a global assessment of
WD patterns, we collected published databases based on in-
ventory data where wood density (WD) is reported and ex-
plored machine learning methods to maximize the informa-
tion content in relevant environmental variables (Sect. S5

in the Supplement). The final dataset of WD was obtained
by integrating several individual predictions (Sect. S5 in the
Supplement). To estimate the BEF, we used the generalized
power-law function relating branch and leaf biomass to stem
biomass (SB) (Thurner et al., 2014).

BEF =
p1SBp2 + SB

SB
(6)

Because of the uneven distribution of samples for which
biomass component measurements were available (Sect. S5
in the Supplement), the model in Eq. (6) was fitted to mea-
surements of BEF and stem biomass for tropical and extra-
tropical forests only, each stratified by leaf type (broadleaves,
evergreen conifers, and deciduous conifers). All BEF mod-
els decreased rapidly for increasing stem biomass reaching
an asymptote for low- to medium-stem biomass depending
on ecoregion and leaf type. The asymptotic BEF for tropical
broadleaf species was modelled with a value of 1.36, higher
than other forest types, which were characterized by values
of 1.15–1.20.

Spatially explicit estimates of WD and BEF were obtained
at 0.01◦ spatial resolution and resampled to the pixel size of
the GSV dataset using bi-cubic interpolation. The AGB esti-
mates resulting from the product of the GSV, WD, and BEF
estimates were obtained at a spatial resolution of 0.000888◦

in both latitude and longitude, i.e. with a pixel size of 1 ha at
the Equator.

2.3 Uncertainty model

The uncertainty in the AGB estimates was quantified by their
standard deviation. The standard deviation of the GSV esti-
mates obtained with the BIOMASAR-C approach, δVC, was
quantified by propagating the standard deviation of the mea-
sured SAR backscatter, σ 0

meas, and the estimates of the forest
backscatter model parameters σ 0

gr, σ 0
df, β, and Vdf (Santoro

et al., 2015a).
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√
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(

∂V
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)2

(7)

The same approach was applied to the BIOMASAR-L pro-
cedure, in which case the error model also included compo-
nents related to the average canopy density of dense forests,
ηdf; the average height of dense forests, hdf; and the two-way
attenuation coefficient, α. Following the results in Simard
et al. (2011) and Los et al. (2012), which validated GLAS-
based height estimates at boreal, temperate, subtropical, and
tropical forest sites, we assumed standard deviations for
height estimates at the GLAS footprint-level between 4 m
(boreal zone) and 10 m (tropical zone). As indicated by Gar-
cia et al. (2012), the estimation error in canopy cover from
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ICESAT GLAS as the ratio of energy returned from the
canopy to the total energy returned may be of the order of
15 to 20 %. We therefore assume a global error of 20 %. Dif-
ferently than for the C-band case (Santoro et al., 2015a), the
standard deviation of the coefficient β was inferred from the
relationship of the forest transmissivity, simulated with the
aid of GLAS height and optical canopy density estimates,
and GSV. The 95 % bounds of the estimates increased from
±0.002 ham−3 in the case of low values of β that are valid
in boreal and subtropical dry forests to ±0.007 ham−3 for
the highest values of β that are applied in the tropics. For the
two-way attenuation coefficient α, we assume a standard de-
viation of 0.25 dBm−1, which is roughly consistent with the
range of values reported in the literature.
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(8)

In the case of BIOMASAR-C, the standard deviation of the
multi-temporal GSV estimate was modelled as a linear com-
bination of the single-image GSV standard deviations from
Eq. (9) (Santoro et al., 2015a).

δVC,mt =

√

√

√

√

N
∑

i=1

w2
i δ(VC,i)2 (9)

The uncertainty associated with the predictions of GSV ob-
tained by rescaling the BIOMASAR-C GSV estimates was
related to the uncertainty in the coarse-resolution GSV esti-
mates and the scaling factors.

The relative standard deviation of the BIOMASAR-C
GSV estimates (δVC/Vc) was modelled as a function of the
GSV estimates (VC) by means of an exponential model. In
Eq. (10), the model coefficients a, b, and c were estimated
by means of a least squares regression for each of the FAO
global ecological zones.

δVC/VC = aebVC + c (10)

To characterize the error associated with the rescaling model,
we used the root mean square difference (RMSD) between
the original BIOMASAR-C GSV and the BIOMASAR-C+

GSV estimates aggregated to the pixel size of the former.
A polynomial function of the fourth order was found to ad-
equately reproduce the relationship between the GSV sets
across ecozones and was used to fit the observed trend in
GSV.

In the process of rescaling, we assumed that the standard
deviation scaled with the pixel area of the GSV predictions.
In Eq. (11), the scaling factor between standard deviations
was represented by the ratio between the pixel areas of the

rescaled product (Ac+) and the BIOMASAR-C data product
(Ac):

δVC+ = δVC

√

AC+

Ac

. (11)

The standard deviation of the GSV estimates was obtained
with the same weighted linear combination of the standard
deviations of the BIOMASAR-L and the BIOMASAR-C+

datasets:

δGSV = δVC+ × wC + δVL × wL. (12)

The standard deviation of AGB was expressed in terms of
partial derivatives of its components:

δAGB =
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(13)

The standard deviation of the wood density estimates, δWD,
was obtained by computing the variance of the predictions
for each measurement of wood density and fitting a linear
model (Fig. S4 in the Supplement). The standard deviation
of the BEF was expressed in terms of partial derivatives of
its components:

δBEF =

√

√

√

√

√

(

∂BEF
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)2
× δp1

2 +

(
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× δp2

2

+
(
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∂SB

)2
× δSB2.

(14)

In Eq. (14), δp1 and δp2 represent the standard deviations of
the two coefficients of the BEF model.

2.4 Validation

To assess the accuracy of the AGB estimates, we used a ref-
erence dataset of AGB observations from 110 897 forest field
inventory plots. The data were gathered from a variety of sur-
veys undertaken by national forest inventories and research
networks (Sect. S6 in the Supplement).

The opportunistic nature of our validation database led
to an uneven spatial distribution of the reference samples
(Fig. S5 in the Supplement) as well as a variety of plot sizes,
survey methods, and allometric equations used (Tables S3
and S4 in the Supplement). The plots were mostly smaller
than 1 ha (Table S3 in the Supplement), implying that they of-
ten represented a small fraction of the area covered by a 1 ha
map pixel. To reduce the effect of random errors caused by
the mismatch in resolution between the reference dataset and
our map model, we aggregated our map and the plot data to
0.1◦ grid cells. This represented a trade-off between captur-
ing the local-scale variability in AGB whilst allowing a num-
ber of plot measurements deemed sufficient to compute an
average AGB representative of the area within the grid cell.
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In the end, our assessment cannot provide an indication of the
validity of pixel-based AGB estimates. Instead, it provides a
measure of the accuracy of generalized spatial AGB patterns.
This is, however, a pragmatic approach when using measure-
ments not designed for validation of estimates from remote
sensing imagery but which often provide the only source of
information on AGB in poorly inventoried regions or regions
where national inventory data are not publicly available.

To provide a more comprehensive overview of the reli-
ability of the spatial patterns in areas not covered by the
database of plot inventory measurements, the analysis was
supplemented by a comparison of average GSV or AGB at
the level of inventory reference units (polygons, counties,
provinces, and ecoregions). The scope of this analysis was
primarily to identify systematic errors, on a large scale, that
may not become evident when comparing at the individual
plot level. For a quantitative assessment of the retrieval at the
scale of provincial and regional aggregates, we computed the
RMSD between map and reference biomass averages rela-
tive to the average reference biomass and the bias between
map and reference biomass averages. The RMSD was com-
puted as a weighted mean of the errors, where the weights
corresponded to the ratio of the forest area to the total for-
est area. For Russia (Sect. S6 in the Supplement), GSV and
AGB data were gathered for approximately 1600 forest man-
agements units (FMUs) ranging in size from 3000 ha (e.g.
intensive forestry or national parks in the European part)
to 30 000 000 ha (remote territories in Siberia). For coun-
tries with a well-established national forest inventory that
regularly publish regional statistics of forest biomass at the
level of administrative or ecological units, we assembled a
database of GSV and AGB averages representative of the
epoch 2010 (Sect. S6 in the Supplement).

2.5 Inter-comparison of AGB maps

The spatial distribution of AGB map estimates from our
dataset was compared with biome and global forest AGB
maps based on satellite remote sensing observations (Saatchi
et al., 2011b; Baccini et al., 2012; Thurner et al., 2014; Liu
et al., 2015; Avitabile et al., 2016; Santoro et al., 2015a) or
ancillary datasets (Kindermann et al., 2008). While an ad-
ditional assessment of our dataset against regional maps of
AGB would further contribute to building confidence in the
data product, it is felt that such investigations require their
own framework also making use of local reference data and
expert knowledge, as for example undertaken for Europe
(Avitabile and Camia, 2018), the US (Spawn et al., 2020),
and Tanzania (Næsset et al., 2020).

To do this, the datasets were first harmonized to a common
geographic map projection and resampled to a pixel size of
0.01◦. Datasets expressing AGB in carbon units (Mg C ha−1)
were converted to AGB using a carbon fraction default value
of 0.47 (IPCC, 2006) (Table S5 in the Supplement). All
datasets span a decade of input observations from 2000 to

2010 but could not be harmonized to reflect the conditions of
a single epoch due to the lack of information on growth rates.
This, however, is not expected to have significant effects on
the interpretation of the latitudinal profiles.

As a way of assessing the AGB patterns of each map,
we compared latitudinal averages based on values from the
0.1◦ validation grid cells with corresponding values from the
database of forest inventory plots. To obtain a homogeneous
representation of all latitudes, we grouped grid cells in 10◦

wide intervals.

3 Results

3.1 Global AGB dataset

The global AGB dataset (Fig. 2) was obtained by scaling
global estimates of GSV (Fig. S6 in the Supplement) us-
ing model-based estimates of wood density (Fig. S7 in the
Supplement) and stem-to-total biomass expansion factors
(Fig. S8 in the Supplement). The uncertainty in the AGB es-
timates is reported as standard deviation (Fig. 2). The models
for retrieving GSV and converting it to AGB were developed
for woody vegetation, so we evaluated the estimates corre-
sponding just to forest cover by regrouping the classes from
the Climate Change Initiative Land Cover (CCI-LC) dataset
of 2010 into forest and non-forest land (Sect. S1, Table S7 in
the Supplement).

At the 1 ha scale, the largest predicted value was
757 Mgha−1, corresponding to a GSV of 1087 m3 ha−1, in
forests of the US Pacific Northwest. However, for 99 %
of the world’s forests, AGB was estimated to be less than
360 Mgha−1, and 90 % was below 182 Mgha−1, which ex-
plains truncating the colour bar in Fig. 2 at 500 Mgha−1. The
spatial distribution of AGB followed a clear latitudinal gra-
dient (Fig. 2). In the Northern Hemisphere, AGB increased
steadily with decreasing latitude across the boreal zone (be-
tween 75 and 60◦ N), then remained fairly constant through-
out the temperate (between 60 and 40◦ N) and subtropical
(between 40 and 20◦ N) zones. AGB increased sharply as we
enter and leave the tropical zone between 20◦ N and 20◦ S,
though with a minimum at 13◦ N due to the large area of low-
biomass dry forests in the sub-Sahelian region. The AGB of
semi-tropical forests in the Southern Hemisphere between
20 and 33◦ S was slightly lower than in the corresponding
latitude range in the Northern Hemisphere because of the
larger proportion of low-density forest. The local maximum
at 25◦ S corresponded to the Atlantic forests of Brazil and
dense subtropical forests along the east coast of Australia,
where biomass accumulation is favoured by higher precip-
itation. Temperate forests had higher AGB in the Southern
Hemisphere (south of 33◦ S) than in the Northern Hemi-
sphere because of the predominant highly productive ever-
green and coniferous forest along the Chilean–Argentinean
Andes, in south-eastern Australia, and New Zealand. The
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peak at 42◦ S corresponds to the broadleaved forests of Tas-
mania.

The AGB standard deviation, expressed in Fig. 2 relative
to the AGB estimates, was on average 50 % with an inter-
quartile range of values between 44 % and 61 %. The rather
constant relative uncertainty is also illustrated by the hori-
zontal bars in the latitudinal profile of Fig. 2, which scale
with the AGB level. The relative standard deviation was
smaller than 100 % for approximately 95 % of the mapped
pixels, which explains truncating the colour bar of the AGB
standard deviation map in Fig. 2 at 100 %. The large major-
ity of the AGB estimates for which the standard deviation
exceeded the 100 % level were below 20 Mgha−1, such as in
sparsely vegetated regions corresponding to the transition to
tundra in Canada and Alaska, the Siberian Lowlands and Far
East Russia, or in poorly stocked forests such as in northern
China and western Madagascar.

The small-scale variability in AGB in forest landscapes is
captured by the 1 ha pixel spacing of the dataset (Figs. 3 and
4). The example in Fig. 3 shows the region of the Bratsk
Reservoir formed by the Angara River in central Siberia,
where forests are heavily managed for timber production.
Clear-felling activities occur in polygons often larger than
10 ha. The map for a 1◦ × 1◦ area east of the reservoir shows
forests with AGB above 100 Mgha−1, roughly correspond-
ing to a GSV of at least 200 m3 ha−1, interspersed with small
rectangular white shapes corresponding to clear-cut areas
(Fig. 3). Our estimates give more detailed information on the
spatial patterns of AGB in this region than the AGB product
by Thurner et al. (2014) based on remote sensing data with a
spatial resolution of 1000 m.

The example in Fig. 4 includes part of Trans-Amazonian
Highway south of the Amazon River in the state of Pará,
Brazil. This region is characterized by fish bone deforesta-
tion caused by lateral expansion of agriculture from the high-
way into pristine forest. The fish bone pattern is clear in our
AGB map (Fig. 4, top left panel), and some isolated, small-
scale patches of deforestation are also visible. For compari-
son, Fig. 4 shows AGB estimates by three pan-tropical maps
based on remote sensing observations (Saatchi et al., 2011b;
Baccini et al., 2012; Avitabile et al., 2016). Because it was
based on satellite data acquired around the year 2000, the de-
forestation patterns are less extended in the map by Saatchi
et al. (2011b) compared to the maps by Baccini et al. (2012),
based on observations taken in 2007, and Avitabile et al.
(2016), which merged the other two pan-tropical datasets.
The level of detail in our map is much greater because
of the 1 ha spatial resolution compared to 25 ha in Baccini
et al. (2012) and nearly 100 ha in Avitabile et al. (2016) and
Saatchi et al. (2011a)

3.2 Validity of AGB estimates

AGB averages were obtained for 6456 0.1◦ grid cells in-
cluding at least five inventory plots (Sect. S6 in the Sup-

plement). These grid cells represented approximately 1 % of
the Earth’s forest cover. The grid cell average AGB from
the field inventory database ranged from 0 to 1670 Mgha−1

(median: 43 Mgha−1; mean: 60 Mgha−1; 99th percentile:
351 Mgha−1). The AGB histogram was skewed towards low
values (Fig. 5a) because of the large proportion of measure-
ments from the National Forest Inventories of Spain and
Sweden (Table S4 in the Supplement). The grid cell av-
erage AGB from the map ranged from 0 to 358 Mgha−1

(median: 57 Mgha−1; mean: 67 Mgha−1; 99th percentile:
278 Mgha−1). The AGB histograms from the map (Fig. 5b)
and the field inventory (Fig. 5a) were similar, with a mode
at around 0, a decline to a shoulder, then a further decline
to a long tail. In the field inventory the shoulder covered
the range 25–50 Mgha−1 and was followed by a slow de-
cline, but for the map it extended to around 80 Mgha−1 and
then declined rapidly. This difference arises because the map
tends to give higher values than inventory in the lower AGB
range (Fig. 5c and Fig. S9 in the Supplement). These trends
have been reported for other pan-tropical and regional AGB
studies (Avitabile et al., 2016; Rodríguez-Veiga et al., 2019).
The scatterplot of map against inventory values of AGB in
Fig. 5c and the RMSD curve in Fig. S9 in the Supplement
indicate an agreement in trend between field inventory and
map values up to about 250 Mgha−1. Above 250 Mgha−1,
the map values rose as the field inventory value did, albeit
more gently and with much greater variance. Disaggregating
the data by major ecological domains, using the FAO global
ecological zones as reference, suggested slight differences in
the agreement between map and inventory values in tropical,
subtropical, and temperate forests (Fig. 5d–f).

3.3 Spatial distribution of AGB

Combining our AGB dataset with the CCI Land Cover
dataset and the FAO ecological zones, we estimated a total
AGB of 521 Pg for a forest area of 4825 million ha, corre-
sponding to a global average forest AGB of 108 Mgha−1

(Table 1). Using the carbon fraction default value of 0.47
(IPCC, 2006), we estimated a total above-ground carbon
stock of 246 Pg C. Tropical forests had the highest average
AGB (147 Mgha−1), representing 64 % of the total forest
AGB and 47 % of the total forest area. The second-largest
average AGB was found in temperate forests (102 Mgha−1),
which accounted for 14 % of the total AGB and 15 % of the
total forest area. Subtropical and boreal forests had similar
average AGB (75 and 60 Mgha−1, respectively), but the area
covered by the latter was almost 3 times larger. As a result,
the total AGB of boreal forests was more than twice as large
as that of subtropical forests and corresponded to 16 % of the
total AGB, thus being larger than the AGB pool in temperate
forests. The total AGB of subtropical forests accounted for
7 % of the global AGB. The contribution of polar forests to
the global AGB pool was negligible (0.1 %).
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Figure 2. Map estimates of AGB (a) and AGB standard deviation expressed relative to the AGB (b). The colour bar of the AGB map has
been truncated at 500 Mgha−1 to increase contrast. Similarly, the colour bar of the AGB relative standard deviation has been truncated at
100 %. The right-hand panel shows the profile of average AGB along latitude (thick solid line) and the two-sided average standard deviation
of AGB at a given latitude (horizontal bars).

Figure 3. AGB estimates from this study (left) and from Thurner et al. (2014) for a 1◦ × 1◦ area in central Siberia.

Looking at Fig. 6, the tropical rainforest (TAr) ecozone
hosted primarily high-density forests, with a median AGB of
238 Mgha−1 and the low end of the interquartile range above
150 Mgha−1. Besides tropical rainforests, only the tropical

mountain, temperate oceanic, and temperate mountain eco-
zones (TM, TeDo, and TeM, respectively) had median AGB
values above 100 Mgha−1 (Fig. 6). For the tropical, subtrop-
ical, and temperate ecozones, the AGB of forests in dry en-

Earth Syst. Sci. Data, 13, 3927–3950, 2021 https://doi.org/10.5194/essd-13-3927-2021



M. Santoro et al.: Global forest above-ground biomass pool for 2010 3937

Figure 4. AGB estimates by this study (a), Avitabile et al. (2016) (b), Saatchi et al. (2011b) (c), and Baccini et al. (2012) (d) for a 1◦ × 1◦

area in the state of Parà, Brazil.

Table 1. Total AGB, forest area, and average AGB per major ecozone.

Ecozone Total AGB (Pg) Forest area (106 ha) Average AGB (Mgha−1)

Tropical 331.3 2251.7 147
Subtropical 36.2 483.0 75
Temperate 71.6 698.3 102
Boreal 81.2 1352.5 60
Polar 0.6 39.8 18
Total 521.0 4825.4 108

vironments (shrubland, steppe, and desert) was lower than in
wet environments (rainforest, moist, humid, mountain, con-
tinental, and oceanic). The AGB of boreal forests decreased
with increasing latitude from the boreal coniferous (Ba) eco-
zone located at the southernmost edge of the boreal ecotone,
through the boreal mountain (BM) ecozone, to the boreal tun-
dra woodland (Bb) ecozone at the northernmost edge of the
boreal zone.

The AGB standard deviation relative to the AGB estimates
was fairly constant across most ecological zones (Fig. 6).
The median value ranged between 44 % and 57 %, except
for the tropical shrubland, tropical desert, and polar ecozones
(TBSh: 69 %; TBWh: 92 %; and P: 84 %). The largest pro-

portion of the AGB standard deviation was attributed to the
uncertainty in the GSV estimates (Fig. S10 in the Supple-
ment). The uncertainty in the wood density estimates ac-
counted for 7 % to 20 % (mean: 14 %) of the AGB standard
deviation (Fig. S10 in the Supplement), while the uncertainty
in the BEF accounted for between 2 % to 13 % of the AGB
standard deviation (mean: 7 %) with the exception of the
tropical desert zone (30 %) (Fig. S10 in the Supplement). The
uncertainty in the GSV was driven by the weak sensitivity of
the radar backscatter to increasing GSV, an effect further ex-
acerbated in wet environments (Santoro et al., 2015a), thus
explaining the slightly higher uncertainty in the tropics and
the subtropics. The larger uncertainty in sparsely forested
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Figure 5. Histograms of AGB from the field inventory database (a) and the map (b) for 0.1◦ grid cell values. (c) Scatterplot of map AGB
against field inventory values for 0.1◦ grid cells (grey circles); the filled circles show the median AGB of the map values in each 10 Mgha−1

wide interval of field inventory AGB values. The colour bar represents the number of grid cells within a given AGB interval. Similar
scatterplots are given for the tropical zone (d), the subtropical zone (e), the temperate zone (f), and the boreal and polar zones (g) according
to the FAO global ecological zones. On each scatterplot, we report the root mean square difference (RMSD) between map and field inventory
AGB relative to the mean value of the reference AGB and the bias, i.e. the difference between mean values of the map AGB and the reference
AGB. To improve presentation and because of the paucity of grid cells with AGB above 500 Mgha−1, axes are truncated at 500 Mgha−1.

Table 2. Total AGB (unit: Pg), forest area (unit: ha), and average AGB (unit: Mg ha−1) per continent from this study and from the FAO FRA
2010. The forest area column for the FRA does not account for countries reporting forest area but not AGB. For Asia, North and Central
America, and South America, 5 %, 1 %, and 10 % of the forest area did not contribute to the AGB to the FRA. For Africa, Europe and Russia,
and Oceania, less than 1 % of the forest area did not contribute to the FRA. The total forest area from the FRA is 4.033 × 106 ha.

Continent This study FAO FRA 2010

Total Forest area AGB Total Forest area AGB
AGB (Pg) (106 ha) (Mg ha−1) AGB (Pg) (106 ha) (Mg ha−1)

Africa 84.8 783.5 108 95.3 672.6 142
Asia 89.4 780.5 115 54.3 554.0 98
Europe and Russia 91.2 1268.3 72 73.7 1016.5 72
North and Central America 77.9 970.6 80 66.8 704.4 95
South America 155.9 850.0 183 162.3 788.9 206
Oceania 23.3 180.4 129 16.0 189.7 85
Total 522.5 4833.4 108 468.5 3926.1 119

regions compared to densely forested regions (Fig. 2) is a
consequence of the substantially larger uncertainty in the
σ 0

gr parameter compared to the uncertainty in the σ 0
veg in

the GSV retrieval model in Eq. (1) (Fig. S11 in the Supple-
ment). In sparse forests or forests with low woody biomass
stocks, the total backscatter from the forest is dominated by

the ground scattering component, i.e. the term with σ 0
gr in

Eq. (1), thus being affected by larger uncertainty compared
to the backscatter received from dense forests, for which the
largest contribution to the measured backscatter is attributed
to the scattering from the canopy, i.e. to the term with σ 0

veg in
Eq. (1).
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Figure 6. Box plot diagram of AGB (a) and its standard deviation by FAO global ecological zone. On each box, the central mark indicates
the median, the bottom and top edges delimit the interquartile range, and the whisker delimits the 1–99 percentile range. Labels of global
ecological zones: TAr – tropical rain forest, TAwa – tropical moist deciduous forest, TAwb – tropical dry forest, TBSh – tropical shrubland,
TBWh – tropical desert, TM – tropical mountain systems, SCf – subtropical humid forest, SCs – subtropical dry forest, SBSh – subtropical
steppe, SBWh – subtropical desert, SM – subtropical mountain systems, TeDo – temperate oceanic forest, TeDc – temperate continental
forest, TeBSk – temperate steppe, TeBWk – temperate desert, TeM – temperate mountain systems, Ba – boreal coniferous forest, Bb – boreal
tundra woodland, BM – boreal mountain systems, P – polar.

3.4 Assessment of global forest biomass resources

The most comprehensive summary of global forest resources
and biomass pools is reported by the FAO in their quinquen-
nial FRA. For the FRA, each country reports its values of
forest area (in hectares), total AGB (in petagrams), and av-
erage AGB (in Mgha−1) according to their inventory capa-
bilities. Forest area was derived from inventory data or re-
mote sensing data. AGB statistics were derived either from
measurements collected as part of national inventories, lo-
cal inventories, or estimates reported in the literature. Ad-
justments were applied by the FAO where necessary to en-
sure consistency with its own information sources on forest
area and biomass resources. While all 233 countries con-
tributing to the FRA for 2010 reported their estimates of
forest area, only 171 reported total AGB and average AGB.
Of the remaining 62 countries, accounting for approximately
2.6 % of the global land surface, 10 reported no forest cover,
while 7 (Fiji, Eritrea, Uruguay, Ecuador, Paraguay, Japan,
and Venezuela) reported an estimate of forest area exceeding
106 ha. Of the countries reporting on AGB, 111 derived their
average AGB from values of the average GSV using one or
multiple biomass conversion and expansion factor (BCEF)

values. This was common practice for countries lacking a
systematic national forest inventory. Among these, 79 re-
lied on default numbers published by the Intergovernmental
Panel on Climate Change (IPCC) (IPCC, 2006) (Table S7 in
the Supplement).

3.4.1 Global and continental statistics

The statistics on forest area, average AGB, and total AGB
from the FRA 2010 and from the combination of our AGB
dataset with the CCI Land Cover dataset are reported by con-
tinent (Table 2). Our total AGB estimate of 522 Pg was 11 %
higher than the value of 468 Pg reported by the FRA. This
difference is a consequence of the 23 % larger forest area esti-
mated from the CCI Land Cover dataset (Table 2) despite the
FRA reporting 9 % higher global average AGB than our es-
timate (119 vs. 108 Mgha−1; Table 2). Compared to Table 1,
based on the FAO global ecological zones dataset to delineate
land surfaces, we estimate an additional 8 × 106 ha of forest
area and an additional 1.5 Pg of total AGB as a consequence
of the more precise delineation of the land surface by the
Database of Global Administrative Areas used as reference
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Figure 7. Average AGB per country from the FAO FRA 2010 country reports and our map dataset. Countries have been grouped per
continent. The size of each circle is proportional to the forest area of the country derived from the CCI Land Cover dataset (same scaling
across all continents). The colour ramp associated with the circles gives a graphical representation of the relative country forest area (different
for each continent).

Table 3. Total AGB (Pg) for five latitude ranges roughly corresponding to the temperate forests of the Southern Hemisphere (60–30◦ S),
the humid and dry tropics of the Southern Hemisphere (30–10◦ S), the wet tropics (10◦ S–10◦ N), the humid and dry tropics of the Northern
Hemisphere (10–30◦ N), and the temperate and boreal forests of the Northern Hemisphere (30 and 90◦ N). Values marked with superscript 1
indicate partial coverage of the latitude range by the corresponding map; n/a indicates not available in the latitude range. The forest area for
each range is reported on the last line.

Source Latitude range

60–30◦ S 30–10◦ S 10◦ S–10◦ N 10–30◦ N 30–90◦ N

This study 12.5 49.8 253.9 37.3 160.8
Saatchi et al. (2011a) 4.0 1 51.8 253.7 69.0 1 13.1 1

Baccini et al. (2012) n/a 55.8 1 278.8 39.4 1 n/a
GEOCARBON (Avitabile et al., 2016) 10.3 39.9 248.0 19.3 108.2
for the tropics (Santoro et al., 2015a)
and for the Northern Hemisphere
Thurner et al. (2014) n/a n/a n/a n/a 114.7
Liu et al. (2015) 9.6 58.6 278.6 53.1 169.3
Kindermann et al. (2008) 13.1 74.8 242.8 48.1 175.8

Forest area (106 ha) 109.3 584.0 1366.1 497.8 2294.7

for the countries’ boundaries (GADM, http://www.gadm.org,
last access: 9 August 2021).

For the three continents spanning the tropics, we found
the highest average AGB in South America, although our es-
timate (183 Mgha−1) was 11 % lower than the correspond-
ing value from the FRA (206 Mgha−1) (Table 2). South
America also contained the largest total AGB pool. Although
our estimate (155.9 Pg) was only 4 % smaller than the FRA

(162.3 Pg), the FRA did not provide AGB for approximately
10 % of the forest area of South America (Table 2). We found
a larger difference between our results and those of FAO for
Africa. The average AGB from our dataset was 24 % lower
than the FRA (108 Mgha−1 vs. 142 Mgha−1; Table 2), whilst
the total AGB was only 11 % smaller than in the FRA (84.8
vs. 95.3 Pg) due to the larger forest area we used from the
CCI Land Cover dataset. In contrast, for Asia the average

Earth Syst. Sci. Data, 13, 3927–3950, 2021 https://doi.org/10.5194/essd-13-3927-2021

http://www.gadm.org


M. Santoro et al.: Global forest above-ground biomass pool for 2010 3941

Figure 8. Difference between country AGB from our map and FRA (expressed relative to the FRA AGB) (a), NFI capacities for the year
2010 (Romijn et al., 2015) (b), Pearson’s correlation coefficient (c), relative RMSD (d), and mean difference between map estimates of
country AGB and values from the FRA for NFI capacity level (e). Number of countries per NFI capacity level: 51 (low), 30 (limited), 26
(intermediate), 37 (good), and 23 (very good).

AGB from our dataset (115 Mgha−1) was 17 % higher than
in the FRA (98 Mgha−1) (Table 2), while our estimate of
total AGB exceeded that from the FRA by 64 % (89.4 vs.
54.3 Pg) mainly because of the 40 % larger forest area esti-
mated from the CCI Land Cover dataset.

For the two continents spanning the northern boreal and
temperate zones, the average AGB values from our estimates
were well below 100 Mgha−1 (Table 2). The average AGB
estimate for Europe differed by less than 1 % (Table 2) com-
pared to the FRA, whereas for North and Central America
the difference was 15 %. Because the forest area estimated
from the CCI Land Cover dataset was larger than the FRA
values, the total AGB estimated from our dataset was larger
than the values reported in the FRA by 20 % for Europe and
14 % for North and Central America.

Finally, the smallest of the continental pools of AGB was
in Oceania, where our larger estimate of total AGB compared
to the FRA was primarily explained by our estimate of AGB
being on average almost 35 % larger than the value derived
from the FRA.

3.4.2 National statistics

At the level of individual countries, the agreement between
the total and average AGB values from out dataset and from
the FRA differed depending on the continent (Figs. 7 and 8,
Table S7 in the Supplement). The largest difference be-
tween our average AGB and FRA AGB was in Africa (me-
dian difference: −60 %; 51 countries), where for most coun-
tries the average AGB reported in the FRA exceeded the
value from our dataset (Fig. 7). This is probably due to ei-
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Figure 9. Total AGB from the FAO FRA 2010 country reports and
from our dataset (see Table S7 in the Supplement for details).

ther AGB underestimation in countries dominated by high-
density forests or to high biomass conversion and expansion
factors (BCEFs) used by countries with low-density forest
when estimating values of AGB from their original measure-
ments of GSV (Table S7 in the Supplement). In addition,
several countries used a small sample of plots for the cal-
culations as well as small-sized plots for heterogeneous for-
est areas, leading to large uncertainties in the values reported
to the FRA. In Europe and South America, where the span
of the average AGB was similar to Africa, we also saw un-
derestimation patterns above 200 Mgha−1 (Fig. 7). Nonethe-
less, we did not identify the trend in the range 0–200 Mgha−1

seen in Africa. For European and South American countries,
the assessment of the reliability of our AGB averages at the
country level was more meaningful because of the better de-
veloped national inventories (Fig. 8b) and the direct estima-
tion of AGB from the inventory measurements, thus bypass-
ing the use of a standard BCEF like in African countries
(Table S7 in the Supplement). Indeed, the smallest differ-
ences between the average AGB from the FRA and from our
dataset were obtained in Europe (median difference: −8 %;
42 countries) and South America (median difference: 2 %; 9
countries) (Fig. 8a).

For North and Central America (19 countries), Asia (35
countries), and Oceania (9 countries), the median difference
between our average AGB estimates and the FRA numbers
was between −23 % and −27 % (Fig. 7, Table S7 in the Sup-
plement). The disagreement for North and Central America
was largest for the Caribbean countries (Fig. 8a), for most of
which the reference data used in the FRA had low to moder-
ate quality, and the NFI capacity was mostly low or limited.

The scatterplot for Asian countries shows data points of
average AGB clustered along the identity line (Fig. 7) but

with two distinct regions. For the Asian Middle East, stretch-
ing as far as Pakistan and the former Soviet countries of the
Asian continent, the average AGB from our dataset was on
average 70 % smaller than the values reported in the FRA
(Fig. 8a). The FRA country reports were based on highly
stocked forest, which may not be representative of the true
average AGB. In contrast, the average AGB estimated from
our dataset was approximately 27 % larger than the values
reported in the FRA for the southern and eastern regions of
the Asian continent (Fig. 8a). Several countries of Southeast
Asia assumed their forests to be strongly degraded, which
justified the use of low reference values for the average GSV,
and hence AGB, when reporting to the FRA.

Our estimates of average AGB for Australia (brown
marker, Fig. 7, Oceania panel) and Papua New Guinea (green
marker, Fig. 7, Oceania panel) exceed the values in the FRA
while being smaller for New Zealand (cyan marker, Fig. 7,
Oceania panel). Australia reported their biomass stock based
on models calibrated with a small number of inventory mea-
surements. For Papua New Guinea the FRA AGB was based
on commercial volume for trees with a diameter at breast
height of at least 50 cm, thus being a fraction of the true
AGB. For New Zealand, the result was comparable to those
obtained for European countries with large AGB, which are
characterized by similar forest types and structures.

In this assessment, the impact of a country’s NFI capacity
(Romijn et al., 2015) on the quality of the values reported to
the FRA is illustrated by the statistical parameters reported in
Fig. 8c–e. The agreement between country AGB computed
from our map and reported in the FRA increased with ca-
pacity level (correlation coefficient between 0.46 and 0.91,
relative RMSD between 30 % and 74 %, mean difference be-
tween −42 % and −12 %). Several countries with mean AGB
above 200 Mgha−1 and thus in the AGB range prone to un-
derestimation (Fig. 5) were associated with an intermediate
NFI capacity level (Fig. 8b), which partly explains the some-
what poor agreement between our average AGB and the av-
erage AGB reported in the FRA (Fig. 8c–e).

In terms of forest area, the orders of magnitude in the map
and the FRA agreed, but in most cases the area obtained from
the CCI Land Cover dataset was larger than the country val-
ues reported to the FRA. The CCI value was on average 24 %
greater than in the FRA except for the countries of North and
Central America, where the average difference was 81 %.
The discrepancy can be explained in terms of the different
definitions of forest used in CCI when generating land cover
maps and in the FRA when using national data of different
quality to generate the country estimates. However, the esti-
mate of forest area obtained in this study is likely to be an un-
derestimate since it excluded land cover classes with a sparse
tree and vegetation component that could be attributed to for-
est under less restrictive definitions of percentage tree cover
(Mermoz et al., 2018).

As a result, our country estimates of total AGB were only
slightly different from the FRA estimates (Fig. 9) because
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Figure 10. Profiles of average AGB along latitude for each dataset listed in Table 3 (a), together with the corresponding relative difference
between the latitudinal AGB derived from the other datasets and this study (b–d), expressed in percentage values relative to our estimates.

the lower AGB densities from our dataset were compen-
sated by the larger forest area values in the CCI Land Cover
dataset (Table S7 in the Supplement). For Asian and Euro-
pean countries, the difference was 7 % and 5 % on average,
respectively. The difference was larger throughout the Amer-
ican continent, where total AGB estimated in this study ex-
ceeded that in the FRA on average by 33 % (North and Cen-
tral America) and 23 % (South America). Only for Africa and
Oceania did we obtain a total AGB smaller than the FRA, on
average −37 % for Africa and −29 % for Oceania, because
of the large difference between average AGB values obtained
in this study and those reported by the FAO.

3.5 Comparison of map estimates of AGB

All map datasets analysed in this study including ours (Ta-
ble 3) showed similar latitudinal trends (Fig. 10a), with the
highest AGB in the Southern Hemisphere at 40◦ S and across
the Equator and low AGB in the dry tropics at around 20◦ S
and north of 10◦ N. However, there were some large differ-
ences between the maps (Fig. 10a), illustrating the current
uncertainty about the global forest carbon pools.

For the wet tropics between 15◦ S and 10◦ N, the AGB
from our dataset was close to that from the pan-tropical
dataset by Saatchi et al. (2011a) (Fig. 10b) but is between
10 % and 50 % lower than the values by Baccini et al. (2012),
and the GEOCARBON dataset. The analysis of the latitudi-
nal averages based on the 0.1◦ grid cell AGB values show an
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Figure 11. Relative difference in AGB from maps and plot inventory data averaged over the 0.1◦ grid cell validation cells (a–c). The number
of grid cells stratified by 10◦ wide latitude intervals is illustrated in (d).

overestimate of AGB in these two datasets by about 10 % to
60 %. In contrast, the average AGB values from our dataset
were only higher than the corresponding values from the plot
inventory database by a few per cent (Fig. 11a and b).

The differences between our dataset and each of the pan-
tropical AGB datasets were much larger in tropical and sub-
tropical regions north and south of the wet tropics. In the
Northern Hemisphere, between 10 and 30◦ N, Saatchi et al.
and Baccini et al. (2011a, 2012) exceeded our estimates
by between 40 % and 110 % (Fig. 9b). For the same lati-
tude range, the GEOCARBON dataset differed from our val-
ues by 110 % to −47 % with increasing latitude (Fig. 10b).
The latitudinal averages at the 0.1◦ grid cells confirmed that
all three maps were strongly biased, while our dataset was
closer to the values obtained from the plot inventory dataset

(Fig. 11). The GEOCARBON dataset presented both pos-
itive and negative biases, being about 50 % of the average
AGB from the plot inventory dataset (Fig. 11a). The over-
estimate exceeded 100 % of the average AGB from the plot
inventory dataset in the case of Saatchi et al. and Baccini
et al. (2011a, 2012) (Fig. 11b). In the Southern Hemisphere,
between 35 and 15◦ S, the GEOCARBON dataset and Bac-
cini et al. (2012) exceeded our AGB by 20 % to 160 %,
whereas Saatchi et al. (2011a) differed from our values by
between +20 % and −60 % (Fig. 10b). The comparison at
the level of the 0.1◦ grid cells indicates an overestimate
by GEOCARBON and Baccini et al. (2012) between 20 %
and 60 % of the average AGB from the plot inventory data
(Fig. 11a and b, respectively). The difference between the av-
erage AGB from our dataset and from Saatchi et al. (2011a)
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with respect to values from the plot inventory dataset were
instead mostly below 20 %.

For the Southern Hemisphere temperate forests south
of 35◦ S, our AGB exceeded the values from Saatchi
et al. (2011a) and the GEOCARBON dataset. The compari-
son was, however, of limited value because of the incomplete
coverage by the former and the coarse-resolution estimates
used to fill gaps in the latter.

North of 30◦ N, we did not observe differences between
our dataset, Thurner et al. (2014) and the GEOCARBON
dataset. This was expected since all studies were based on
the same Envisat ASAR dataset and the BIOMASAR algo-
rithm. The only difference was visible at about 70◦ N (Fig. 9b
and 6c) because of the tendency of ASAR to overestimate
biomass in sparse tree vegetation. This difference is, how-
ever, of minor importance in the context of global estima-
tion of AGB stocks because the AGB hardly ever exceeded
30 Mgha−1 at these latitudes in any of the datasets (Fig. 10a),
this being consistent with values based on forest inventory
measurements (Stolbovoi and McCallum, 2002; Gillis et al.,
2005). Figure 11a and c confirm that the three maps present
similar spatial patterns of AGB; the difference with respect
to the plot inventory dataset was about 20 %–30 % for all
datasets except for GEOCARBON at 60◦ N, where the differ-
ence was 60 % of the plot inventory value. These results were
attributed to the higher spatial resolution of our map. The
coarse-resolution AGB datasets by Liu et al. and Kindermann
et al. (2015, 2008) agreed with our estimates in the large
unbroken tracts of forest in the wet tropics between 10◦ S
and 10◦ N and in the boreal zone around 60◦ N (Fig. 10d).
However, the estimates of AGB by Liu et al. (2015) were
up to 70 % lower than our estimates in fragmented forest
landscapes, e.g. between 50 and 20◦ S and between 20 and
50◦ N (Fig. 10d). The dataset by Kindermann et al. (2008)
was better correlated with our estimates, the difference rarely
exceeding 30 % in absolute terms.

All AGB datasets yielded similar values of total AGB in
the wet tropics between 10◦ S and 10◦ N (Table 3), with our
estimate being intermediate compared to the others. For the
latitude ranges corresponding to the humid and dry tropics,
our total AGB was much lower than Saatchi et al. and Bac-
cini et al. (2011a, 2012) (87.1 vs. 120.8 and 95.2 Pg, re-
spectively) because of their substantially higher estimates
of AGB outside the rainforest region. It was also different
from Liu et al. and Kindermann et al. (2015, 2008) (87.1
vs. 111.7 and 122.9 Pg, respectively) because the coarse spa-
tial resolution of the data did not allow forest fragmentation
to be accounted for. For boreal and temperate forests (Ta-
ble 3, column: 30–90◦ N), the total AGB from our dataset was
larger than in Thurner et al. and the GEOCARBON dataset
(160.8 vs. 114.7 and 108.2 Pg, respectively). In both these
datasets, a more stringent definition of forest than the CCI
Land Cover dataset was used, resulting in a large number of
AGB estimates equal to 0 Mgha−1 in areas labelled as forest
by the CCI Land Cover dataset. Our estimate of total AGB

was slightly lower than that from Liu et al. and Kindermann
et al. (2015, 2008) because these datasets did not account for
forest fragmentation. The values were difficult to compare
for the latitude range including the temperate forests of the
Southern Hemisphere (Table 3, column: 60–30◦ S) because
of the approximations underlying the AGB values obtained
in the other maps (extrapolation from coarse-resolution esti-
mates in GEOCARBON, statistics of large countries in Kin-
dermann et al. (2008), and use of inversion models trained in
the tropics in Liu et al., 2015).

4 Data availability

The AGB and GSV datasets can be downloaded from
http://globbiomass.org/products/global-mapping, last ac-
cess: 9 August 2021, or from the PANGAEA repository at
https://doi.org/10.1594/PANGAEA.894711 (Santoro, 2018).

5 Discussion and conclusions

Overall, the results indicate that our maps reproduced known
spatial patterns of AGB (Fig. 5, Figs. S12 and S13 in the Sup-
plement) and GSV (Fig. S14 in the Supplement) correctly,
although with some systematic errors (Fig. S12, Table S8 in
the Supplement). Independent assessments confirmed these
indications (Spawn et al., 2020; Schepaschenko et al., 2021).
The dispersion of the AGB estimates about the identity line
in Fig. 5 was often explained by regional biases (Fig. S12
in the Supplement) arising from approximations in the re-
trieval model and the use of remote sensing data with differ-
ent spatial resolutions (Table S8 in the Supplement). Hence,
the global RMSD and bias statistics in Fig. 5c had limited
informative value when trying to explain our results. Instead,
values at the level of continents or domains provided a more
realistic indication of the quality of the AGB dataset since we
could identify a predominant error source in each (Table S8
in the Supplement).

Interpreting Table S8 in the Supplement, errors were partly
a consequence of a simple model relating SAR observa-
tions to biomass through three unknown parameters whose
estimates relied on several assumptions and generalization
rules. In addition, to avoid unrealistic model fits when rely-
ing on external data for model training, our model training
procedure was forced to follow the average relationship be-
tween SAR backscatter and biomass. This reduced the vari-
ability in the predicted backscatter with respect to the mea-
sured backscatter, which translated to overestimation in the
low AGB range and underestimation in the high AGB range,
as evidenced by Fig. 5. In spite of these weaknesses, we
preferred such an approach to the traditional model train-
ing based on a dataset of reference biomass measurements
because of the paucity of reference measurements available
globally, which would lead to major AGB biases in regions
not represented in the training dataset.
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Underestimation of AGB in dense mature forests (Fig. 5
and Fig. S9 in the Supplement) were further exacerbated by
the weak sensitivity of SAR backscatter to forest variables
(Table S8 in the Supplement). The range of AGB beyond
150 Mgha−1, in particular in wet biomes, corresponded to
a backscatter range at C- and L-band of less than 0.3 dB
(Cartus and Santoro, 2019; Santoro et al., 2015a) and thus
had substantial uncertainty. Combining estimates of biomass
from multiple C-band Envisat ASAR observations increased
the accuracy of the AGB retrieval compared to individual es-
timates (Santoro et al., 2011). However, the ALOS PALSAR
L-band dataset consisted of a single observation so that any
contribution to the SAR backscatter not related to the for-
est itself translated into a bias. This was most relevant in
the wet tropics, where AGB was estimated solely on such
single observations. Imperfect modelling of the ALOS PAL-
SAR backscatter in sloping terrain caused an additional bias,
which propagated through to the estimate of AGB (Fig. S14
in the Supplement).

Characterization of the spatial variability in wood density
and biomass expansion factors was critical. We acknowledge
that in less sampled regions, such as savannahs, the estimates
of AGB might have been limited by the observations used to
estimate WD and BEF. Nonetheless, even if we could not
quantify the impact of local BCEF biases on the AGB esti-
mates because GSV observations were unavailable for most
of the inventory, our understanding of the retrieval errors (Ta-
ble S8 in the Supplement) and uncertainties (Fig. S10 in the
Supplement) indicates that the main contributors to the er-
rors were not associated with the BCEF layer. This interpre-
tation, however, is affected by the opportunistic dataset of
plot inventory measurements available to assess the AGB es-
timates. We agree that further research opportunities should
focus on understanding the implications of local wood for-
mation strategies to AGB estimates at local scales and across
environmental gradients.

Our estimate of the total AGB in forests increased from
522 to 596 Pg when further accounting for the woody
biomass in non-forest CCI land cover classes. An additional
4 Pg was estimated in cropland and non-vegetated land cover
types, resulting in a terrestrial woody AGB pool of 600 Pg,
corresponding to approximately 282 Pg C assuming the mean
carbon fraction in woody vegetation of 0.47 (IPCC, 2006).
Based on our dataset and accounting for additional maps of
non-woody biomass and auxiliary datasets, a more compre-
hensive report of the global carbon stock both above- and
below-ground was recently published (Spawn et al., 2020).
The lack of AGB estimates for the western Pacific islands
had a negligible effect on our total AGB values. AGB un-
derestimates and substantial uncertainty in our dataset arose
from having only a single observation of L-band backscat-
ter and the inability of C-band observations to resolve levels
of AGB in forests with high biomass stocks. This effectively
led to use of a single radar observation to estimate biomass in
dense tropical forests, causing our values to be at the low end

of the range of estimates of the terrestrial AGB pool (Table 3
and Table S1 in the Supplement). Although our estimates for
the wet tropics were affected by bias, our dataset provides
new insights into the spatial distribution and levels of AGB in
tropical, subtropical, and temperate forests (Table 3, Fig. 10)
and provides overall more accurate spatial patterns of the ter-
restrial carbon pool than previous maps (Fig. 11). For the bo-
real domain, our estimates agreed with previous maps, which
were reported to be unbiased (Table 3, Fig. 10), whilst pro-
viding a more detailed portrait of the spatial distribution of
AGB (Fig. 3) because of the higher spatial resolution of the
remote sensing datasets used in this study (1 vs. 100 ha).

At the country level, we demonstrate the benefit of our
map-based estimates of AGB and total AGB in the con-
text of global reporting of biomass pools (Table 2, Fig. 7).
Nonetheless, our dataset may not be sufficiently accurate for
individual countries to use it as the only basis for reporting
biomass and carbon pools, in particular for countries where
the AGB estimates may be experiencing systematic retrieval
errors (e.g. predominant high AGB, limited sensitivity of the
backscatter to biomass, strong topography). However, it may
provide support to national reporting in conjunction with a
forest inventory system (Næsset et al., 2020). Our dataset
agreed well with values reported in the 2010 FRA for coun-
tries with an established national forest inventory (Fig. 7, Ta-
ble S7 in the Supplement). However, for countries reporting
AGB on the basis of expert knowledge, best-guess estimates,
and default parameters, we identified clear regional patterns
of either overestimation (e.g. in Africa; see Fig. 7) or un-
derestimation (e.g. in Asia; see Fig. 7), which could be re-
lated to the capacity of national forest inventories (Fig. 8).
Although the global average AGB in our map differs from
the FRA value by only 8 % (108 vs. 119 Mgha−1; Table 2),
the smaller forest area reported in the FRA implies that our
total AGB estimate exceeded the value reported in the FRA
by 11 %.

Our dataset provides new insights on the spatial distri-
bution and magnitude of terrestrial woody AGB as well as
a valuable resource for climate and carbon modelling be-
cause of its completeness, standardized estimation proce-
dure, and high level of detail. The major caveat of past and
current spaceborne remote sensing observations used to es-
timate biomass is their limited sensitivity to any forest pa-
rameter. Such limitations may be partly overcome by com-
bining measurements and models, as demonstrated in this
study. Nonetheless, it will only be during the 2020s that ob-
servations from space will allow accurate quantification of
the terrestrial biomass pool. The availability of a wide range
of observations from space, including lidar (Dubayah et al.,
2020) and P-band SAR (Quegan et al., 2019), is expected to
provide more detailed information on the vertical structure
of forests, thus adding up to the information by backscatter
measurements sensitive mostly to horizontal properties and
thus of limited reliability in tall and dense forests.
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