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Mirjam Cvetiča,b and Ling Lina

aDepartment of Physics and Astronomy, University of Pennsylvania,

209 S. 33rd Street, Philadephia, PA 19104-6396, U.S.A.
bCenter for Applied Mathematics and Theoretical Physics, University of Maribor,

Maribor, Slovenia

E-mail: cvetic@physics.upenn.edu, lling@physics.upenn.edu

Abstract: We show that F-theory compactifications with abelian gauge factors generally

exhibit a non-trivial global gauge group structure. The geometric origin of this structure lies

with the Shioda map of the Mordell-Weil generators. This results in constraints on the u(1)

charges of non-abelian matter consistent with observations made throughout the literature.

In particular, we find that F-theory models featuring the Standard Model algebra actually

realise the precise gauge group [SU(3) × SU(2) × U(1)]/Z6. Furthermore, we explore the

relationship between the gauge group structure and geometric (un-)higgsing. In an explicit

class of models, we show that, depending on the global group structure, an su(2) ⊕ u(1)

gauge theory can either unhiggs into an SU(2)×SU(2) or an SU(3)×SU(2) theory. We also

study implications of the charge constraints as a criterion for the F-theory ‘swampland’.

Keywords: F-Theory, Compactification and String Models, Gauge Symmetry

ArXiv ePrint: 1706.08521

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP01(2018)157

mailto:cvetic@physics.upenn.edu
mailto:lling@physics.upenn.edu
https://arxiv.org/abs/1706.08521
https://doi.org/10.1007/JHEP01(2018)157


J
H
E
P
0
1
(
2
0
1
8
)
1
5
7

Contents

1 Motivation 1

2 Shioda map and the centre of gauge groups 3

2.1 Fractional U (1) charges in F-theory 5

2.2 Non-trivial central element from the Shioda map 7

2.3 Preferred charge normalisation in F-theory 8

3 The global gauge group of F-theory models 9

3.1 Models with su(5)⊕ u(1) singularity 9

3.2 Models with more Mordell-Weil generators 10

3.2.1 Higher Mordell-Weil rank 10

3.2.2 Inclusion of Mordell-Weil torsion 12

3.3 F-theory Standard Models 13

4 Relationship to (un-)higgsing 15

4.1 Unhiggsing the u(1) in a Bl1P112 fibration 15

4.2 Charge constraints on su(2) matter from higgsing 16

4.3 Higher rank gauge algebras 19

5 A criterion for the F-theory swampland 20

5.1 Singlet charges as measuring sticks 20

5.2 The swampland criterion 22

6 Summary and outlook 23

A Integrality of fluxed-induced Fayet-Iliopoulos terms 25

1 Motivation

F-theory [1–3] provides a beautiful connection between the physics of string compactifi-

cations and the geometry of elliptically fibred Calabi-Yau manifolds. One of the most

basic relationships is the emergence of non-abelian gauge symmetries in F-theory via sin-

gular fibres in codimension one of the fibration. These are, according to Kodaira’s and

Neron’s classifications [4–7], in one-to-one correspondence to simple Lie algebras that fur-

nish the gauge symmetries. By now, there exist a plethora of techniques to systematically

engineer non-abelian gauge symmetries in F-theory [8–15]. In comparison, the geometric

origin of abelian gauge symmetries associated with the Mordell-Weil group of rational sec-

tions [2, 3, 16, 17] is much less understood. This is in part to due the fact that sections are
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inherently global objects that can only be fully described within a globally defined geom-

etry. Consequently, there are only a handful of concrete constructions of global F-theory

models with abelian gauge symmetries explicitly realised [17–28].

An approach to construct models with both abelian and non-abelian gauge symmetries

is to first pick a global fibration known to have sections, and then using the aforementioned

techniques to introduce suitable singularities in codimension one. This approach has been

used throughout the literature to construct phenomenologically appealing models (in ad-

dition to the previous references, see also [29–34]). However, as it is so often the case in

geometry, the Mordell-Weil group of sections and codimension one singularities are not

completely independent of each other. Indeed, it turns out that the existence of tor-

sional sections1 not only enforces specific codimension one singularities corresponding to a

semi-simple Lie algebra g, it also restricts the possible matter representations [35, 36] (see

also [27, 37]). An equivalent formulation is to say that the gauge group is not G — the

simply connected Lie group associated to g — but rather G/Z, where Z is a subgroup of

the centre of G. It is important to note that in this case, only representations transforming

trivially under Z are allowed. Because field theoretically, only non-local operators such as

line operators are sensitive to this quotient structure [38], one often refers to G/Z as the

structure of the global gauge group, in order to distinguish it from the gauge algebra that

is seen by local operators. If Z 6= {1}, we will refer to the global group structure to be

‘non-trivial’.

The analysis of [36] produced only models that have a non-trivial global structure

in the non-abelian sector of the gauge group. However, the central subgroup Z can also

overlap with a subgroup of the abelian sector. The most prominent example of such a

non-trivial gauge group structure is in fact presumed to be the Standard Model of particle

physics. Indeed, the Standard Model spectrum is invariant under a Z6 subgroup that lies

in the centre Z3×Z2×U(1) ⊂ SU(3)×SU(2)×U(1) (for a review see, e.g., [39]). Thus the

global gauge group is expected to be [SU(3) × SU(2)× U(1)]/Z6.
2 Sometimes, this global

structure is seen as further evidence for an SU(5) GUT, since it is a direct consequence of

breaking SU(5) to the Standard Model (see, e.g., [41]).

It may therefore seem surprising, that F-theory compactifications realising the Stan-

dard Model gauge algebra without an explicit GUT structure [27, 33, 42, 43] actually

reproduces exactly the same representations which are invariant under the Z6 centre of

SU(3) × SU(2) × U(1)Y . Furthermore, since there is no evidence for these models to

have torsional sections, one might wonder if this agreement is purely coincidental, or if

there is some further hidden structure in the geometry giving rise to the non-trivial global

gauge group.

In this paper, we will show that the latter is the case. In fact, we will present an

argument — very similar to that for torsional sections in [36]—showing that generically,

1By the Mordell-Weil theorem, the Mordell-Weil group is a finitely generated abelian group, hence must

be isomorphic to Zm×
∏

i Zki . Sections lying in
∏

i Zki are called torsional, as opposed to those in the free

part Zm that give rise to abelian symmetries in F-theory.
2To be precise, the quotient could be by any subgroup of Z6 from the field theory perspective. Line

operators differentiating between the possibilities have been recently classified in [40].
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F-theory compactifications with abelian gauge factors exhibit a non-trivial gauge group

structure. We will demonstrate in section 2 that the Shioda map [44–46] of sections gen-

erating the Mordell-Weil group relates the u(1) charges of matter non-trivially to their

representations under the non-abelian part of the gauge algebra. This relationship, which

leads to a non-trivial centre of the universal covering of the actual gauge group, can be

equivalently understood as a refined charge quantisation condition, which has been previ-

ously observed throughout the literature. Examples hereof will be presented in section 3,

including those leading to F-theory ‘Standard Models’. In section 4, we address the issue

if and how, in F-theory, such non-trivial gauge group structures can arise from the break-

ing, a.k.a. higgsing, of a larger non-abelian gauge group, similar to breaking SU(5) to the

Standard Model. Because of the intricate geometric description of higgsing, we will content

ourselves with the discussion of a concrete class of models having su(2)⊕ u(1) gauge alge-

bra. For these, we demonstrate explicitly, how different gauge group structures arise from

different breaking patterns that are captured beautifully in the geometry. An interesting

implication of our findings is presented in section 5, where we argue that the geometric

properties leading to the non-trivial global gauge group structure can also be interpreted as

a criterion for effective field theories to be in the F-theory ‘swampland’. This swampland

criterion is formulated in terms of a charge constraint on matter representations of the

non-abelian gauge algebra. In section 6, conclusions and outlook for further investigations

are presented.

2 Shioda map and the centre of gauge groups

Because our main argument is based on the Shioda map, we will first present a brief

review of its prominent role in F-theory, which will also help to set up the notation. Let

π : Yn+1 → Bn be a smooth, elliptically fibred Calabi-Yau space of complex dimension

n + 1, with (singular) Kodaira fibres over a codimension one locus {θ = 0} ≡ {θ} ⊂ Bn,

and Mordell-Weil rank m. In addition to the zero section σ0, the Mordell-Weil (MW)

group has independent sections σk, 1 ≤ k ≤ m, which generate the free part (we will

call σk a ‘free’ generator of the MW-group). In the following, we will denote the divisor

classes of the (zero) sections by (Z) Sk. Furthermore, we have the exceptional divisors

Ei = (P1
i → {θ}), 1 ≤ i ≤ r, which are P1-fibrations over {θ}. Note that by definition,

the zero section does not intersect the exceptional divisors, Z · P1
i = 0.3 In this set-up, the

Shioda-Tate-Wazir theorem [46] implies that the Néron-Severi (NS) group (i.e., divisors

modulo algebraic equivalence) of Yn+1 ≡ Y ,4 satisfies

NS(Y )⊗Q = spanQ(S1, . . . , Sm)⊕ spanQ(Z,E1, . . . , Er)⊕ (NS(B)⊗Q)︸ ︷︷ ︸
T

. (2.1)

The subspace T is spanned by the zero section Z, the exceptional divisors Ei, and any

divisor DB pulled back from the base B with π. Finally, let us introduce the height

3Put differently, one usually defines the affine node of the generic Kodaira fibre over (an irreducible

component of) {θ} as the one that is intersected by the zero section.
4Strictly speaking, the Shioda-Tate-Wazir theorem is only proven for threefolds. However, it is usually

assumed in the F-theory literature that it also holds for four- and fivefolds.
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pairing 〈 , 〉 : NS(Y )×NS(Y )→ NS(B), given by the projection 〈D1, D2〉 = π(D1 ∩D2) of

the intersection.

For n ≥ 2, we know [2, 3, 47] that F-theory compactified on Yn+1 gives rise to a

gauge theory in d = 10− 2n dimensions with gauge algebra u(1)⊕ r⊕g and charged matter

arising from singular fibres over codimension two loci of Bn. The semi-simple (non-abelian)

algebra g is determined by the singularity types over {θ}. In particular, the exceptional

divisors Ei, i = 1, . . . , rank(g) = r, being dual to harmonic (1, 1)-forms ωi, give rise —

via the standard expansion C3 =
∑

iAi ∧ ωi of the M-theory 3-form — to gauge fields Ai
taking value in the Cartan subalgebra h of g. The W-bosons, i.e., states forming the roots

of g, originate from M2-branes wrapping the P1
i fibres of Ei.

On the other hand, the u(1) gauge fields arise from expanding C3 along the (1, 1)-forms

ωu(1)k which are Poincaré-dual (PD) to divisors ϕ(σk) associated with the free generators

σk of the Mordell-Weil group. This so-called Shioda map [44–46] is a homomorphism

ϕ : MW → NS(Y ) ⊗ Q with ker(ϕ) = MW(Y )torsion, that satisfies 〈ϕ(σ), D〉 = 0 for any

D ∈ T . These conditions can be recast in terms of intersection numbers:

〈ϕ(σ), DB〉 = 0 ⇐⇒ ϕ(σ) · f = 0 , (2.2)

〈ϕ(σ), Z〉 = 0 ⇐⇒ ϕ(σ) · CB = 0 , (2.3)

〈ϕ(σ), Ei〉 = 0 ⇐⇒ ϕ(σ) · P1
i = 0 . (2.4)

The first two conditions ensure that the intersection product of ϕ(σ) with the generic fibre f

and any curve CB of the base (lifted by the zero-section) vanishes. Physically, this is related

to the requirement that the u(1) gauge field lifts properly from d − 1 to d dimensions in

the M-/F-theory duality. The last condition is nothing other than the statement that the

gauge bosons of g are uncharged under the u(1).

These conditions determine the Shioda map up to an overall scaling: since ϕ relates

a section σ to a divisor class, we expect that ϕ(σ) ∼ S+(correction terms), where S is

the class of σ itself. To satisfy the first condition (2.2), the correction terms must contain

−Z.5 The second condition (2.3) introduces a term of the form π−1(DB), where the exact

divisor DB ∈ NS(B) depends on the concrete model. We will neglect the discussion of

this term, since its intersection number with any fibral curve Γ is zero and hence does not

contribute to the u(1) charge of localised matter. Finally, the last condition (2.4) gives rise

to a correction term of the form
∑

i liEi, where the coefficients li ∈ Q will be discussed in

more detail momentarily. Thus the Shioda map for any sections σ reads

ϕ(σ) = λ

(
S − Z + π−1(DB) +

∑
i

liEi

)
, (2.5)

where the overall factor λ is not fixed by (2.2) – (2.4); however, because ϕ is a homomor-

phism, i.e., ϕ(σ1 + σ2) = ϕ(σ1) + ϕ(σ2), the factor has to be the same for all sections.

Accordingly, the u(1)k charge of matter states which arise as M2-branes wrapping fibral

curves Γ — given by the intersection number qk(Γ) = ϕ(σk) · Γ — are only determined up

5We could in fact shift by any other section Sk instead of Z to satisfy (2.2); however, because ϕ is a

homomorphism, we need ϕ(σ0)
!
= 0. Therefore, the shift has to be the divisor class Z of the zero section.
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to an overall scaling, which does not have a direct physical meaning. Therefore, we often

find in the literature that the scaling is chosen such that all charges are integral. While

there is in principle nothing wrong with such a rescaling, the factor can be misleading when

we analyse the global gauge group structure. As we will see, by setting λ = 1, we can read

off the global gauge group directly from the coefficients li. Field theoretically, this points

towards a ‘preferred’ u(1) charge normalisation, in which case the u(1) charge lattice for

each representation R of g has lattice spacing 1. In this formulation, we can also interpret

the non-trivial global gauge group as a relative shift by a fractional number of the charge

lattice for different g-representations. Of course, these restrictions on the u(1) charges

have been previously observed, e.g., they are quantified in the literature [13–15, 48] for

g = su(5), and derived more generally from the consistency of large gauge transformation

in the circle reduction of F-theory [49]. The novelty of this paper is the observation that

these charge restrictions are explicitly tied to the global gauge group structure for any

F-theory compactification with non-trivial Mordell-Weil group.

2.1 Fractional U (1) charges in F-theory

In the following, we will focus the discussion on a rank one Mordell-Weil group with a single

free generator σ. The generalisation to higher Mordell-Weil rank (and also the inclusion of

torsion) is straightforward and will be presented in section 3.2 with explicit examples. For

the purpose of these notes, let us fix the factor λ in the Shioda map to 1:

ϕ(σ) := S − Z + π−1(DB) +
∑
i

liEi . (2.6)

Since the following discussion revolves around the fractional coefficients li, let us recall

that they arise from requiring the intersection numbers of ϕ(σ) with the fibre P1
i s of the

exceptional divisors Ei to vanish, see (2.4). This imposes

li =
∑
j

(C−1)ij
(
(S − Z + π−1(DB)) · P1

j

)
=
∑
j

(C−1)ij
(
(S − Z) · P1

j

)
. (2.7)

Here, C−1 denotes the inverse of Cij = −Ei·P1
j , which is the Cartan matrix of the algebra g.6

In general, the coefficients li are fractional numbers that in particular depend on the

intersection properties between the divisor S − Z and the fibres P1
i of the exceptional

divisors Ei. However, there is always a positive integer κ such that κ li ∈ Z for all i. For

example, we know that the entries of the inverse Cartan matrix of su(na) are z/na with

z ∈ Z. Hence, if g =
⊕

a su(na), then the smallest such κ is the least common multiple

of all na. Note that this immediately implies charge quantisation (i.e., we really have a

compact abelian gauge factor): since κϕ(σ) is a manifestly integer class, its intersection

number with fibral curves is always integral. So the u(1) charges (measured with respect

to ϕ(σ)) of all states realised geometrically (i.e., as M2-branes on fibral curves) lie in a

lattice of spacing 1/κ.

6If g =
⊕

a ga, where ga are simple Lie algebras, then C is the block diagonal matrix formed by the

Cartan matrices of ga.
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In fact, the Shioda map (2.6) makes an even more refined statement. Because S and

Z are divisor classes of sections, they are manifestly integer, i.e., their intersection product

with fibral curves Γ must be integer as well. But then, the charge of the matter state w

associated with Γ must satisfy

qw = ϕ(σ) · Γ =

(
S − Z +

∑
i

liEi

)
· Γ

=⇒ qw −
∑
i

liEi · Γ = qw −
∑
i

li wi = (S − Z) · Γ ∈ Z ,
(2.8)

where, in the second line, we have used the standard result that the Dynkin labels of a

weight w associated with a fibral curve Γ is given by wi = Ei ·Γ ∈ Z. Curves Γw,v localised

at the same codim 2 locus, but realising different states w,v of the same g-representation,

differ by an integer linear combination µk P1
ks, since these P1s correspond to the simple

roots of the algebra g.7 For these, we have

∑
i

li wi =
∑
i

liEi · Γw =
∑
i

liEi · (Γv +
∑
k

µk P1
k) =

∑
i

(
li vi −

∑
k

µk liCik

)
(2.7)
=
∑
i

li vi −
∑
k

µk (S − Z) · P1
k︸ ︷︷ ︸

∈Z

.

(2.9)

Thus, we can associate to each g-representation Rg a κ-fractional number between 0 and 1,

L(Rg) :=
∑
i

li wi mod Z , (2.10)

which is independent of the choice of weight w ∈ Rg. For a representation (qR,Rg) of

u(1)⊕ g, this allows to rewrite (2.8) as a condition for the u(1) charge,

qR − L(Rg) ∈ Z . (2.11)

So for any matter with g-representation Rg, the possible u(1) charges arrange in a lattice

of integer spacing. However, for different representations, the lattices do not in general

align. In fact, from what we have seen above, they can differ by multiples of 1/κ.

The geometric origin of (2.11) lies in the intersection properties of divisors and codi-

mension one singular fibres over {θ}. Indeed, the non-integrality of the coefficients li (2.7),

which leads to the non-trivial integrality condition (2.8), stems from the zero section Z

and the generating section S intersecting P1 fibres of possibly different exceptional divisors

Ei. This so-called split [14, 31] of the fibre structure over {θ} by the section can be easily

determined in concrete models, e.g., directly from the polytope in toric constructions [13].

The analysis carried out to obtain (2.11) is essentially equivalent to the study of the fi-

bre splitting patterns in the presence of sections and the allowed u(1) charges, e.g., as

in [14, 48] for classifying all possible u(1) charges of su(5) matter. Here, we have rephrased

7 By (2.4), these states must have the same u(1) charge, hence form a single representation (qR,Rg) of

the full algebra u(1)⊕ g.
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it in a way that allows for a more straightforward connection to the global structure of the

gauge group. An alternative way of deriving (2.8) is to consider circle compactifications of

F-theory and require consistency of the large gauge transformations along the circle [49].

Note that the above discussion, in particular the derivation of (2.11) for matter lo-

calised in codimension two, is based purely on codimension one properties. Hence, all argu-

ments and conclusions hold for F-theory compactifications to six, four and two dimensions.

2.2 Non-trivial central element from the Shioda map

To see how the above observation relates the Lie algebra u(1)⊕g to the global gauge group

Gglob, first note that Gglob has U(1) × G̃ as a cover, where G̃ is the simply connected

Lie group associated to g. We can now define an element of the centre Z(U(1) × G̃) =

U(1)×Z(G̃), which has to act trivially on all geometrically realised weights. For that, we

first define the element Ξ := q −
∑

i liEi of the Cartan subalgebra u(1) ⊕ h ⊂ u(1) ⊕ g,

where q is the generator of u(1). Its action on the representation space of an irreducible

representation R = (qR,Rg) of u(1) ⊕ g is then simply defined through its action on the

weights w ∈ R. Explicitly, denoting by wi the Dynkin labels of w under g, we have

Ξ(w) := qRw −

(∑
i

li wi

)
× 1w , (2.12)

where 1 is the identify matrix in the representation Rg. By exponentiating this equation,

we obtain the action of a group element in U(1) × G̃ on weights of R,

Cw := exp (2πiΞ) w =

[
exp(2πi qR)⊗

(
exp(−2πi

∑
i

li wi)× 1

)]
w

(2.10)
=
[
exp(2πi qR)⊗ (exp(−2πiL(Rg))× 1)

]
w .

(2.13)

Evidently, C — being proportional to the identify element of G̃ — commutes with every

element, i.e., C is in the centre U(1)×Z(G̃). Let us now restrict the action to representa-

tions realised in the F-theory compactification, i.e., weights w that arise from fibral curves

Γ. Because the tensor product8 is bilinear, the expression can be also written as

Cw =

[
exp[2πi (qR −

∑
i

li wi︸ ︷︷ ︸
∈Z from (2.8)

)]⊗ 1

]
w = w , (2.14)

i.e., C acts trivially on weights w arising from fibral curves Γ! But on the other hand, we

also know from the previous discussion that there is a positive integer κ such that κ li ∈ Z
for all i, see paragraph after (2.7).9 Going back to (2.13), for which we introduce the

short-hand notation

Cw = [QR ⊗ (ξw × 1)] w , (2.15)

8The tensor product arises, because any finite dimensional irreducible representation of a product group

is a tensor product of irreducible representations of the factors.
9It is implicitly assumed that we choose κ to be the smallest positive integer such that κ li ∈ Z for all i.

– 7 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
7

we see that for weights in a any representation of G̃, we have

(ξw × 1)κ ≡ (exp(2πi li wi)× 1)κ = exp(2πi κ li wi)× 1 = 1 . (2.16)

In other words, ξw × 1 generates a Zκ subgroup of the centre Z(G̃). But because we have

shown that all states in geometrically realised representations must be acted on trivially

by Qw ⊗ (ξw × 1), we conclude that the global gauge group structure should be

Gglob =
U(1)× G̃
〈C〉

∼=
U(1)× G̃

Zκ
. (2.17)

As mentioned before, the whole discussion applies to F-theory compactified to six, four

and two dimensions.

Note that, strictly speaking, the second equality in (2.17) is merely a definition of the

notation [U(1) × G̃]/Zκ. Indeed, from a purely representation theoretic point of view, we

do not know that (Qw)κ = 1 for every charged state (the charges could be quantised finer

than 1/κ). However, we have seen above that the geometry of the F-theory model actually

dictates the charges to be quantised in units of 1/κ, i.e., Cκ = id. In our discussion, both

charge quantisation and the central element C follow from the same observation, namely

the integrality condition (2.8). Hence, the notation (U(1) × G̃)/Zκ can also be seen as

encoding the u(1) charge quanta of an F-theory compactification.

The reader might recognise the above argument, leading up to (2.13), from [36], which

related the presence of κ-torsional sections to the Zκ-center of purely non-abelian groups

(i.e., no U(1) factor in the cover of Gglob). Indeed, there one arrives by the same logic

at (2.15) with Q = 1. In that case the conclusion is simply that ξw × 1, which generates a

subgroup of the centre Z(G̃), must act trivially.

Finally, we note that even though the above discussion has been limited to a single

u(1) factor, the analysis readily extends to multiple sections σk (free or torsional). Because

the Shioda map (2.6) of any Mordell-Weil generator σ (free or torsional) takes the form

S − Z + (non-sectional divisors), one quickly realises that each Mordell-Weil generator σk
gives rise to an independent trivially acting central element Ck. Thus, the global gauge

group structure is a quotient by a product of Zκk ’s. We will come back to explicit examples

hereof in section 3.2.

2.3 Preferred charge normalisation in F-theory

Let us revisit the possible rescaling (2.5) of the Shioda map and the resulting normali-

sation of u(1) charges in F-theory. In field theory, the overall scaling of the u(1) charge

is unphysical, and can be chosen to our convenience. Likewise, as mentioned before, the

Shioda map is only defined up to a constant rescaling. However, in F-theory we have a

preferred normalisation provided by the integer divisor classes of sections.

Explicitly, given free generator σ, we know that its divisor class S must be integer and

intersecting the generic fibre once. Any rescaling of S cannot preserve these properties.

Furthermore, if we rescale ϕ(σ) = S − Z + liEi by an integer κ, then, depending on the

non-abelian gauge algebra and the fibre split structure, κ li could be integer, which makes
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the u(1) generator potentially ‘blind’ to the central element C. Indeed, if we were to repeat

the analysis leading to (2.8) with the divisor κϕ(σ), then the equivalent expression becomes

qwκ −
∑
i

κ li︸︷︷︸
∈Z

wi = κ (S − Z) · Γ ∈ Z ,

which does not provide any non-trivial relation between the u(1) charge and the weight

vectors w. On the other hand, if we rescale the u(1) charge by a fractional number λ, then

it is no longer guaranteed that λ (S − Z) · Γ is always an integer.

Therefore, it is only with the normalisation ϕ(σ) = S − Z + . . . of the u(1) generator,

that we can make the non-trivial relation (2.8) manifest in any F-theory compactification.

Comparing to the field theory perspective, where any rescaling of u(1) charges has no

physical meaning, we conclude that the appropriate field theoretic data associated with this

preferred normalisation are the global gauge group structure and the charge quantisation

of individual g-representations. Equivalently, by first establishing these data, one is then

free to choose any normalisation for the u(1) charge in the field theory.

3 The global gauge group of F-theory models

In this section, we will apply the above analysis to concrete models with u(1)s that have

been constructed over the last few years in the literature.

3.1 Models with su(5) ⊕ u(1) singularity

Let us begin with arguably one of the most studied F-theory model, namely the so-called

U(1)-restricted Tate model [18] given by the hypersurface

y2 + a1 x y z + a3 y z
3 = x3 + a2 x

2 z2 + a4 x z
4 . (3.1)

The origin of the u(1) symmetry in the restricted Tate model can be traced to the appear-

ance of a rational section

σ : [x : y : z] = [0 : 0 : 1] (3.2)

with divisor class S, in addition to the standard zero section σ0 : [x : y : z] = [1 : 1 : 0]

with class Z [19]. By tuning the coefficients ai following Tate’s algorithm [11, 50, 51], a2 =

a2,1 θ, a3 = a3,2 θ
2, a4 = a4,3 θ

3, the elliptic fibration (3.1) develops an su(5) singularity

over {θ}. The resolution of this singularity introduces four exceptional Cartan divisors

Ei, of which only E3 is intersected once by S − Z.10 Inserting into (2.7) then yields

li = 1
5(2, 4, 6, 3)i. The corresponding central element (2.13) generates a subgroup Z5 ⊂

SU(5) × U(1), which has to act trivially on representations realised geometrically. Hence,

the global gauge group of the U(1)-restricted Tate model with su(5) singularity must be

(SU(5)×U(1))/Z5. Note that for these values of li, (2.10) yields L(10) = 4
5 and L(5) = 2

5 .

Hence, by (2.11), any 10 representation must have u(1) charge 4
5 mod Z, while any 5

10Recall that the zero section Z intersects the affine node of I5 fibre over {θ}. The affine node is separated

from the P1
3 node by the fibre of E4. In the notation of [14], this is a fibre split type (0||1).
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representation has charge 2
5 mod Z. This is of course consistent with the spectrum, which

in terms of the normalised u(1) generator ϕ(σ) = S − Z + liEi reads

10−1/5 , 5−3/5 , 52/5 , 11 .

Note that there are also su(5) ⊕ u(1) models with a Z5 centre that is embedded dif-

ferently into the U(1), leading to different charge assignments. One such example can be

constructed via ‘toric tops’ [10, 52] in a Bl1P112-fibration [17]. It is labelled ‘top 2’ in

the appendix of [20], which is equivalent to the model ‘Q(4, 2, 1, 1, 0, 0, 2)’ in [14]. With-

out going into the details of this model, we note that the sections Z and S intersect in

neighbouring nodes of su(5) fibre (i.e., fibre split type (0|1) in the notation of [14]). The

Shioda map is then S − Z + 1
5(1, 2, 3, 4)iEi, which also leads to a Z5 centre. However,

the u(1) charges are constrained to be 1
5 mod Z for 5-matter and 2

5 mod Z for 10-matter.

Correspondingly, the spectrum reads

102/5 , 56/5 , 5−4/5 , 51/5 , 11 , 12 .

Of course there are also models without a non-trivial global gauge group structure. An

example is the model labelled ‘top 4’ in the appendix of [20], or ‘Q(3, 2, 2, 2, 0, 0, 1)’ in [14].

Here, both sections Z and S intersect the affine node of su(5) (i.e., fibre split type (01)).

So the Shioda map is ϕ(σ) = S − Z, without any shifts by Cartan divisors. The central

element (2.13) then just imposes that all charges must be integral. Thus, the global gauge

group is SU(5)×U(1), which of course is consistent with the spectrum

100 , 51 , 5−1 , 50 , 11 , 12.

3.2 Models with more Mordell-Weil generators

3.2.1 Higher Mordell-Weil rank

We have mentioned in the previous section that a higher rank m of the Mordell-Weil

group implies that there are possibly m independent non-trivial central elements acting

trivially on representations. We will illustrate this now with concrete examples, in which

the Mordell-Weil rank is 2. The simplest fibration that has two independent free sections

arise from a generic cubic in an Bl2P2 = dP2 fibration [20, 21].11 We will denote the divisor

classes of the two sections σ1,2 generating the Mordell-Weil group by S1,2 and stick with

the above notation of Z being the zero section.

For simplicity, we focus on models with non-abelian gauge algebra su(2), and label

the single Cartan divisor by E1. All three such models arising from toric tops have been

constructed in [33]. Dubbed tops I, II and III, each of them turn out to have a different

global gauge group structure, so it is instructive to analyse each individually. In top I, the

Shioda map ϕ takes the sections to

ϕ(σ1) = S1 − Z + π−1(DB) +
1

2
E1 ,

ϕ(σ2) = S2 − Z + π−1(D′B) .
(3.3)

11A more general model with MW rank 2 has been recently constructed in [28]; as shown there, the

Bl2P2-fibration arises as a specialisation of this general construction.
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Therefore, the u(1) charges (q1, q2) of su(2) matter must satisfy q1 − 1
2w ∈ Z and q2 ∈ Z,

where w is the Dynkin label of su(2) states. Only the first condition leads to a central

element acting non-trivially on su(2) states. Clearly, it is an element of order 2, because

2 q1 − w ∈ Z. We can also translate the second condition into a central element C2 =

e2πi q2 ∈ U(1)2. However, this element evidently just imposes charge quantisation q2 ∈ Z.

So the global gauge group structure is

GI =
SU(2)×U(1)1

Z2
× U(1)2

C2

∼=
SU(2)×U(1)1

Z2
×U(1)2 . (3.4)

The non-abelian part of the spectrum arranges consistently into

2( 1
2
,−1) , 2( 1

2
,1) , 2( 1

2
,0) .

In the top II model, the Shioda map of the sections are

ϕ(σ1) = S1 − Z + π−1(DB) +
1

2
E1 ,

ϕ(σ2) = S2 − Z + π−1(D′B) +
1

2
E1 .

(3.5)

Now both u(1) charges must satisfy qi− 1
2 w ∈ Z. Put differently, there are now two central

elements of order 2,

CII
1 = (ξ × 1)⊗ e2πi q1 ⊗ 1 ,

CII
2 = (ξ × 1)⊗ 1⊗ e2πi q2 ,

(3.6)

of the covering group G̃ = SU(2) × U(1)1 × U(1)2 that have to act trivially on all repre-

sentations. Each therefore generates a separate Z2 subgroup of G̃, leading to the actual

gauge group

GII =
SU(2)×U(1)1 ×U(1)2

Z(1)
2 × Z(2)

2

, (3.7)

where it needs to be understood that Z(i)
2 lies in the center of SU(2)×U(1)i. Consequently,

the su(2) matter are charged as

2( 1
2
, 3
2
) , 2( 1

2
,− 1

2
) , 2( 1

2
, 1
2
) .

Finally, there is also the top III with Shioda map

ϕ(σ1) = S1 − Z + π−1(DB) ,

ϕ(σ2) = S2 − Z + π−1(D′B) ,
(3.8)

which clearly leads to trivial central elements. Hence, the gauge group in this case is just

GIII = SU(2)×U(1)1 ×U(1)2. The spectrum in this case is12

2(1,0) , 2(1,1) , 2(0,1) , 2(0,0) .

12Note that we have included a completely uncharged doublet here that was previously missed in [33].

In fact, the codimension two locus of I3 fibres corresponding to this matter was noticed. However, the

monodromy around a codimension 3 sublocus interchanging two of the fibre components was misinterpreted

as projecting out the matter states. But due to the vanishing charges, this doublet is actually a real

representation, i.e., the two fibre components are homologically equivalent. Thus the monodromy in higher

codimension exchanging them is not surprising and actually expected geometrically. A similar observation

holds for singlets charged under a discrete Z2 symmetry [27, 53].
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Before we move on, let us briefly comment on a peculiar behaviour of the centre when

we rotate the u(1)s. Concretely, it was noted in [33] that, if we redefine the u(1) charges

(qa, qb) = (−q1, q2 − q1) in top II, the spectrum is identical to that of top I. In fact, this

is a consequence of a toric symmetry relating tops I and II. How is it compatible with

the seemingly different gauge group structures (3.4) and (3.7)? To understand this, let us

rewrite the central elements (3.6) in terms of the rotated u(1) charges. Explicitly, we have

e2πi q1 ⊗ 1 = e−2πi qa ⊗ 1 and 1⊗ e2πi q2 = 1⊗ e2πi (qb−qa) = e−2πi qa ⊗ e2πi qb . So the central

elements are

CII
1 = (ξ × 1)⊗ e−2πi qa ⊗ 1 ,

CII
2 = (ξ × 1)⊗ e−2πi qa ⊗ e2πi qb = CII

1 ◦ (1⊗ 1⊗ e2πi qb) ≡ CII
1 ◦ C̃II

2 ,
(3.9)

where here we use ◦ to denote the group multiplication in SU(2) × U(1)2. Note that we

are dealing with central elements, hence they all commute. In the gauge group (3.7) of

top II, both CII
1,2 must act trivially on all states. The above equation implies that this is

equivalent to CII
1 and C̃II

2 acting trivially. But since C̃II
2 lies in U(1)b, we have

GII =
SU(2)×U(1)a

〈CII
1 〉

× U(1)b

〈C̃II
2 〉

. (3.10)

Now the second quotient structure just imposes that the U(1)b charges are integer for

all states, which is also implemented in (3.4) by the second quotient. Therefore, we have

shown that by rotating the u(1)s in top II, the global gauge group structure (3.7) (including

charge quantisation) turns out to be equivalent to that of top I (3.4).

3.2.2 Inclusion of Mordell-Weil torsion

Let us now look at a model with Mordell-Weil group Z ⊕ Z2. This example — studied

extensively in [36] (and also appears in a slightly different fashion in [27])—has, in addition

to the zero section a section σf generating the free part and a section σr generating the

2-torsional part of the Mordell-Weil group. The fibration has two su(2) factors with Cartan

divisors C and D, i.e., the covering gauge group is SU(2)C × SU(2)D × U(1). Under the

Shioda map, the free section with divisor class S maps onto

ϕ(σf ) = S − Z + π−1(DB) +
1

2
C , (3.11)

giving rise to the central element (ξ×1)⊗1⊗e2πi q ∈ Z(f)
2 ⊂ SU(2)C×U(1). For the torsional

section, one may determine the Shioda map analogously [36] through the conditions (2.2)

to (2.4). This yields

ϕ(σr) = V − Z + π−1(D′B) +
1

2
(C −D) . (3.12)

Because of the 2-torsional property of σr and ϕ being a homomorphism, we know that

ϕ(σr) = 0. Analogous to the derivation of (2.8) (with qw = 0), it means that 1
2 (wC −wD),

with wC,D being the weights of SU(2)C × SU(2)D irreps, must be integral. So it defines

another central element exp(πi(wC − wD)) generating the ‘diagonal’ Z(r)
2 of the Z2 × Z2
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centre of SU(2)C × SU(2)D, which has to act trivially on representations of the F-theory

compactification. Therefore, the global gauge group structure is

SU(2)C × SU(2)D ×U(1)

Z(f)
2 × Z(r)

2

, (3.13)

where, in order for the notation to make sense, we need to clarify that Z(f)
2 acts only on

SU(2)C ×U(1) representations, whereas Z(r)
2 acts on SU(2)C × SU(2)D representations.

Note that the Z(r)
2 quotient forbids any matter transforming as the fundamental repre-

sentation under a single SU(2) factor, irrespective of the U(1) charge. On the other hand,

any matter transforming in the fundamental representation of SU(2)C must have U(1)

charge 1
2 mod Z due to the Z(f)

2 quotient. Thus, it is not surprising that the spectrum

of the model contains, in addition to a charge 1 singlet, only bifundamental matter with

charge 1/2.

3.3 F-theory Standard Models

We now come to a class of somewhat more phenomenologically interesting models, namely

elliptic fibrations realising the Standard Model gauge algebra gSM = su(3) ⊕ su(2) ⊕ u(1)

in F-theory.

The first model, presented in [27] (and labelled there as XF11) has gSM as the full gauge

algebra and the exact Standard Model spectrum (at the level of representations). The

inclusion of fluxes in [42] resulted in a first globally consistent three-chiral-family Standard

Model construction in F-theory. As mentioned in the introduction, the Standard Model

spectrum is consistent with a global gauge group structure (SU(3) × SU(2) × U(1))/Z6.

With the new insights from section 2, we can now explicitly show that in F-theory, we

indeed can construct such a global structure. In the XF11 model, the Shioda map of the

free section is

ϕ(σ) = S − Z + π−1(DB) +
1

2
E

su(2)
1 +

1

3
(2E

su(3)
1 + E

su(3)
2 ) , (3.14)

where Eh
i denotes the Cartan generator(s) of the corresponding subalgebra h.13 If we

denote the weight vectors of su(3) resp. su(2) by (w1, w2) resp. ω and the u(1) charge by

q, then the integrality condition (2.8) for XF11 reads

q − 1

2
ω − 1

3
(2w1 + w2) ∈ Z . (3.15)

Because ω,wi ∈ Z, the smallest positive integer κ such that κ q ∈ Z for all possible charges

q is κ = 6. Thus, the central element

CXF11
=
[
e−2πi

2w1+w2
3 × 1SU(3)

]
⊗
[
e−2πi

ω
2 × 1SU(2)

]
⊗ e2πi q (3.16)

13Compared to [27], we have switched the order of the su(3) Dynkin labels by exchanging E
su(3)
1 and

E
su(3)
2 . This exchanges the notion of 3 and 3, making the charges identical to that of the Standard Model.
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acting on SU(3)× SU(2)×U(1) representations has order 6, so it defines a Z6 subgroup of

the centre, i.e., the global gauge group is

GF11 =
SU(3)× SU(2)×U(1)

Z6
. (3.17)

The condition (3.15) implies that fundamental matter charged only under su(3) must have

charges 1
3 mod Z, while pure fundamentals of su(2) have q = 1

2 mod Z. Inspecting the

highest weight of the bifundamental, ω = 1, w1 = 1, w2 = 0, we see that this representation

must have charge 1
6 mod Z. Correspondingly, the geometric spectrum,

(3,2)1/6 , (1,2)−1/2 , (3,1)2/3 , (3,1)−1/3 , (1,1)1 , (3.18)

agrees with that of the Standard Model.

A different class of Standard-Model-like models was constructed in [33], of which we

have examined the su(2) sector already above. The su(3) sector is constructed in the

analogous fashion with tops, which can be then combined with any su(2) top to yield the

non-abelian part of gSM. Due to the rank 2 Mordell-Weil group, these models have an

additional u(1) symmetry, which can be used to implement certain selection rules. As

elaborated on in [33], for each combination of the tops, there are again multiple ways of

identifying the hypercharge u(1) as a linear combination of the geometric u(1)s; the choice

is tied to the role of the selection rule and the identification of the geometric spectrum with

that of the Standard Model. For definiteness, we focus on one particular choice of tops

and identification, for which there also exists an extensive analysis including G4-fluxes [43].

In this case, the Shioda map, which for the first section also yields the hypercharge u(1)

generator, reads

u(1)Y : ϕ(σ1) = S1 − Z + π−1(DB) +
1

2
E

su(2)
1 +

1

3
(2E

su(3)
1 + E

su(3)
2 ) ,

ϕ(σ2) = S2 − Z + π−1(D′B) +
1

3
(2E

su(3)
1 + E

su(3)
2 ) .

(3.19)

Analogously to the XF11 model, the first section leads to a central element of SU(3) ×
SU(2)×U(1)Y generating a Z(Y )

6 subgroup. Meanwhile, the second section clearly generates

a Z(2)
3 ⊂ SU(3)×U(1)2. Hence, the global gauge group is

SU(3)× SU(2)×U(1)Y ×U(1)2

Z(Y )
6 × Z(2)

3

. (3.20)

Consistently, the (U(1)Y ,U(1)2) charges of the fundamental representations arrange as fol-

lows:

• (3,2) must have charge ( 16 mod Z, 13 mod Z).

• (3,1) must have charge ( 13 mod Z, 13 mod Z).

• (1,2) must have charge ( 12 mod Z, 0 mod Z).
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Geometrically, the representations of the su(3)⊕ su(2)⊕u(1)Y subalgebra agrees with that

of the Standard Model (with additional singlets with no hypercharge). However, the u(1)2
charge discriminates between states that would be otherwise indistinguishable under the

Standard Model algebra. Note that, in order to get in touch with the actual Standard

Model, one ultimately needs to lift the second u(1) from the massless spectrum, which

would require further investigation, see [43].

4 Relationship to (un-)higgsing

In this section, we want to explore the origin of the non-trivial global gauge group structure

in higgsing processes. In F-theory, u(1)s can often be unhiggsed into the Cartan of non-

abelian gauge algebras [17, 27, 28, 54, 55]. Given that the Cartan charges of non-abelian

matter are naturally integrally quantised, one might wonder if and how this is related to

the restrictions on the u(1) charges after breaking the non-abelian symmetry.

In fact, the F-theory Standard Model fibration XF11 we discussed in section 3.3 is shown

in [27] to geometrically unhiggs into a Pati-Salam-like theory with [SU(4) × SU(2)2]/Z2

gauge group. In this case, the Z6 centre of the Standard Model is known to arise from the

representation theory of [SU(4)×SU(2)2]/Z2.
14 One may ask whether it is possible to also

unhiggs XF11 to an SU(5) fibration.

However, the geometric description of unhiggsing is in general quite involved, since one

does not a priori know the deformation corresponding to the specific unhiggsing process.

In order to gain some further intuition, we therefore restrict our analysis to a specific class

of models, for which we have a good handle on the geometry. For these, we show explicitly

that the restrictions on the u(1) charges leading to the global gauge group structure arise

from a larger, purely non-abelian gauge theory. As we will see, the unhiggsed non-abelian

gauge algebra depends on the fibre split structure induced by the section.

4.1 Unhiggsing the u(1) in a Bl1P112 fibration

The class of models we analyse have non-abelian gauge algebras engineered in a Bl1P112

fibration, a.k.a. the Morrison-Park model [17]. Such models have a gauge algebra of the

form g⊕u(1). Note that a broad class of such constructions has been classified through an

analogue of Tate’s algorithm in [14]. They can be realised as a toric hypersurface defined

by the vanishing of the polynomial

P := w2 s+ b0w u
2 s+ b1 u v w s+ b2 v

2w + c0 u
4 + c1 u

3 v + c2 u
2 v2 + c3 u v

3 , (4.1)

where [u : v : w] are the projective P112 coordinates.15 Furthermore, s is the blow-up

coordinate whose vanishing defines the addition rational section generating the Mordell-

14Note that the unhiggsed non-abelian group does not necessarily have to have a non-trivial global

structure in order to induce one after breaking, cf. SU(5)→ [SU(3)× SU(2)×U(1)]/Z6.
15The authors of [17] showed that, due to the constant coefficient in the w2 s-term, one can in fact absorb

the terms with b0 and b1 through a coordinate redefinition, effectively setting them to 0. The inclusion

of these terms allows for a more straightforward construction of non-abelian algebras, either via Tate’s

algorithm or via tops. Here, we have adopted the notation set in appendix B of [17], which is related to

the notation of [14] by exchanging b0 ↔ b2; also, the coordinates (u, v, w) are labelled (w, x, y) in [14].

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
7

Figure 1. The split types of an I2-fibre by two sections (red dots): (01) on the left and (0|1) on

the right.

Weil group. As already discussed in [17], this fibration has a complex structure deformation,

b2 → 0, which enhances the gauge algebra from u(1) to an su(2)b localised over c3 = 0. In

the absence of any additional non-abelian singularities, this enhancement can be understood

as the inverse, i.e., unhiggsing, of breaking the su(2)b to u(1) with its adjoint representation.

Under this breaking, the resulting singlets of the Morrison-Park model with charge 1 and 2,

respectively, are remnants of fundamentals and adjoints, respectively, of the su(2)b theory.

By tuning the coefficients bi, cj to vanish to certain powers along a divisor {θ} of the

base, i.e., bi = bi,k θ
k and similarly for cj , the fibres overs {θ} develop Kodaira singularities

corresponding to a certain simple gauge algebra g. The above deformation still exists for

these gauge enhanced models in the form of b2,k → 0 (we will abusively write b2,k ≡ b2).

This deformation will then modify the fibres over c3,k′ ≡ c3 to have an su(2) singularity,

since a generic choice for {θ} will not affect this codimension one locus. Likewise, the

codimension two enhancement leading to the fundamentals of su(2) will still persist in the

presence of the divisor {θ}, as it will generically not contain this codimension two locus.

4.2 Charge constraints on su(2) matter from higgsing

To keep things simple, we will focus on the easiest example with g = su(2)a from I2-

singularities over {θ}, which we construct using ‘toric tops’. The subscript a is to dis-

tinguish it from the su(2)b gauge algebra, which arises from unhiggsing the u(1). The

spectrum of these models consists of singlets with charges 1 and 2, and fundamentals of

su(2)a. The charges of these fundamentals depend on the fibre split, which for g = su(2)a
can only be of type (01) or (0|1) (see figure 1). With the techniques of [10], one finds two

different Bl1P112 fibrations with additional su(2)a singularities, corresponding to the (01)

and (0|1) split type, respectively.

In the (01) split model, whose resolved geometry is given by the vanishing of the poly-

nomial

c0 e
2
0 s

3u4+c1 e0 s
2u3 v+c2 su

2 v2+c3 e1uv
3+b0 e0 s

2u2w+b1 suvw+b2 e1 v
2w+sw2 ,

(4.2)

the su(2) fibre over {θ} is formed by the P1 fibres of the divisors E0 = {e0} and E1 =

{e1}. Both the zero section Z = [{u}] and the additional section S = [{s}] intersect

the component {e0}. Therefore the Shioda map of the section S simply yields S − Z;

correspondingly, we find su(2)a fundamentals with charges 1 and 0. Their loci can be read
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of from the discriminant of this fibration:

∆(01)∼ (b21−4c2)
2︸ ︷︷ ︸

type III, no matter

(b22 c2−b1 b2 c3+c23)︸ ︷︷ ︸
21

[b21 c0−b0 b1 c1+c21+(b20−4c0)c2]︸ ︷︷ ︸
20

θ2+O(θ3).

(4.3)

By tuning b2 → 0, we see from the discriminant (4.3) that the locus of the 21 curve now

becomes c23 — precisely the locus of the su(2)b singularity:

∆̃(01) ∼ (b21 − 4 c2)
2︸ ︷︷ ︸

type III, no matter

[b21 c0 − b0 b1 c1 + c21 + (b20 − 4 c0) c2]︸ ︷︷ ︸
P

θ2 c23 +O(θ3, c33) . (4.4)

Again, the first curve, {b21 − 4 c2}, intersects both su(2)a,b divisors at codimension two loci

of type III enhancement, indicating the absence of any matter. The intersections of the

curve {P} with {θ} and {c3} give rise to fundamentals of each su(2) factor. Finally, at

the intersection {θ} ∩ {c3}, we have bifundamentals of su(2)a ⊕ su(2)b. Since there are

fundamentals of each su(2) factor present, the global gauge group of the unhiggsed model

must be SU(2)a × SU(2)b.

Clearly, the higgsing in this case proceeds via adjoint breaking of su(2)b, which pre-

serves su(2)a. Geometrically, we immediately see that the uncharged 20 matter in (4.3) are

completely unaffected by the (un-)higgsing process, as they arise from the su(2)a funda-

mentals along {θ}∩{P} in (4.4). On the other hand, the charged fundamentals 21 in (4.3)

arise from the bifundamentals sitting at {c3}∩{θ} before the higgsing; by the deformation

that turns on b2, they are localised at {b22 c2− b1 b2 c3 + c23}∩ {θ} after higgsing. Hence, we

can directly interpret the u(1) after higgsing as the remnant su(2)b Cartan generator. This

explicitly identifies the u(1) charge lattice with the weight lattice of su(2)b. In the ‘preferred

normalisation’, in which the singlets arising from higgsed remnants of su(2)b fundamentals

and adjoints have charges 1 and 2, this implies that all u(1) charges must be integer —

which is equivalent to the statement of the integrality condition (2.8) applied to the Shioda

map S − Z. In terms of the global gauge group structure, have Gglob = SU(2)×U(1).

The toric (0|1) split su(2)a ⊕ u(1) model is the vanishing of the polynomial

c0 e0 s
3u4+c1 e0 s

2u3 v+c2 e0 su
2 v2+c3 e0uv

3+b0 s
2u2w+b1 suvw+b2 v

2w+e1 sw
2 .

(4.5)

The su(2)a doublets have charges 3/2 and 1/2, consistent with the integrality condi-

tion (2.8) for the Shioda map S − Z + E1/2. Therefore, the global gauge group structure

is [SU(2)×U(1)]/Z2. The discriminant of this fibration is

∆(0|1) ∼ (b21 − 4 b0 b2)
2︸ ︷︷ ︸

type III

b2︸︷︷︸
23/2

Q︸︷︷︸
21/2

θ2 +O(θ3) , (4.6)

whereQ is a lengthy polynomial in the coefficients bi, cj . However, since b2 is now an explicit

factor of the θ2 term of the discriminant, tuning b2 → 0 will clearly enhance the vanishing
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order of the discriminant in θ. Indeed, we find that after tuning, the discriminant becomes

∆̃(0|1) = ∆(0|1)|b2=0 = c23 θ
3 ∆res

= − θ3︸︷︷︸
(3,2)

(b21 − 4 c2 θ)
2︸ ︷︷ ︸

type III

(b21 c0 − b0 b1 c1 + b20 c2 + c21 θ − 4 c0 c2 θ)︸ ︷︷ ︸
P1→(1,2)

c23 +O(c33)

= − c23︸︷︷︸
(3,2)

b31︸︷︷︸
type IV

(b31 c0 − b0 b21 c1 + b20 b1 c2 − b30 c3)︸ ︷︷ ︸
P2→(3,1)

θ3 +O(θ4) ,

(4.7)

indicating an enhancement to su(3)a ⊕ su(2)b. At the intersection of the su(3)a divisor

{θ} and the su(2)b divisor {c3} we naturally find bifundamentals (3,2). Furthermore, the

codimension two locus {P1} ∩ {c3} now supports fundamentals (1,2) of su(2)b, and the

locus {P2} ∩ {θ} supports fundamentals (3,1) of su(3)a.

The deformation process of turning on the b2 term now corresponds to bifundamental

higgsing. To see this, let us first look at the group theory. The fundamental and adjoint

representations decomposes as

su(3)→ su(2)⊕ u(1)3 : 3→ 21 ⊕ 1−2 , 8→ 30 ⊕ 23 ⊕ 2−3 ⊕ 10 ,

su(2)→ u(1)2 : 2→ 1−1 ⊕ 11 , 3→ 12 ⊕ 10 ⊕ 1−2 .
(4.8)

Hence, the representations of the product algebra decompose according to

su(3)⊕su(2)→ su(2)⊕u(1)3⊕u(1)2 : (3,2)→2(1,−1)⊕2(1,1)⊕1(−2,−1)⊕1(−2,1) ,

(3,1)→2(1,0)⊕1(−2,0) ,

(1,2)→1(0,−1)⊕1(0,1) ,

(8,1)→3(0,0)⊕2(3,0)⊕2(−3,0)⊕1(0,0) ,

(1,3)→1(0,2)⊕1(0,0)⊕1(0,−2) .

(4.9)

Therefore, by giving a vev to one of the singlets under the decomposition of the bifunda-

mental, one breaks su(3)a⊕su(2)b to su(2)a⊕u(1), where the u(1) is a linear combination of

the Cartans u(1)3 and u(1)2 such that the singlet receiving the vev is neutral under it. This

leaves the possibilities u(1) = u(1)2 ± (u(1)3/2), where we have chosen the normalisation

such that the singlets after higgsing have charges 1 and 2. It can be easily checked, that

the two possibilities will in the end lead to the same su(2)a ⊕ u(1) spectrum up to a sign

for the u(1) charge. So by fixing u(1) = u(1)2 + (u(1)3/2), we find

su(3)⊕ su(2)→ su(2)⊕ u(1) : (3,2)→ 2−1/2 ⊕ 23/2 ⊕ 1−2 ⊕ 10 ,

(3,1)→ 21/2 ⊕ 1−1 ,

(1,2)→ 1−1 ⊕ 11 ,

(8,1)→ 30 ⊕ 23/2 ⊕ 2−3/2 ⊕ 10 ,

(1,3)→ 12 ⊕ 10 ⊕ 1−2 .

(4.10)

First, note that the charges agrees with the spectrum of the toric (0|1) split su(2)a ⊕ u(1).

Furthermore, comparing the matter loci (4.6) to those of the unhiggsed su(3) ⊕ su(2)
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theory (4.7), one can explicitly verify that the locus {Q}∩{θ}, supporting the 21/2 matter

of the (0|1) model, decomposes upon unhiggsing into

{Q} ∩ {θ} b2→0−→ {c3} ∩ {θ}︸ ︷︷ ︸
(3,2)

∪ {P2} ∩ {θ}︸ ︷︷ ︸
(3,1)

. (4.11)

This confirms the geometric origin of the 21/2 matter states we expected from the group

theoretic higgsing process (4.10). On the other hand, the codimension two locus of the 23/2

matter, {b2}∩{θ}, is promoted to the su(3) divisor {θ}, so, as expected, the adjoints of su(3)

contribute to 23/2 upon higgsing. The additional states originating from the bifundamentals

are accounted for by explicitly checking the multiplicities. Note that the unhiggsed theory

also contains pure fundamentals of each gauge factor, hence the unhiggsed global gauge

group must be SU(3) × SU(2). So we conclude that the global gauge group structure,

[SU(2) × U(1)]/Z2, of the (0|1) split model is a direct consequence of the bifundamental

higgsing process of an SU(3) × SU(2) model, both field theoretically and geometrically

in F-theory.

4.3 Higher rank gauge algebras

We have also repeated the above analysis for (01) and (0|1) split types with higher rank

gauge algebras that appear in the classification of ‘canonical’ Tate-like models in [14]. This

contains all A- and D-type algebras up to rank 5 as well as all exceptional algebras and

so(7). We find that for any algebra g along {θ} with (01) split, the tuning b2 → 0 never

affects g, i.e., the vanishing order of the discriminant along θ does not enhance further

with this tuning. It only leads to an su(2) singularity along {c3}, as we have seen before.

This is consistent with the tuning corresponding to adjoint (un-)higgsing of u(1)↔ su(2),

as the Shioda map in these cases will always be S − Z, and hence the global gauge group

being G×U(1).

For (0|1) split type su(n) ⊕ u(1) models arising from In singularities in codimension

one, the tuning b2 → 0 unhiggs the model to su(n+ 1)⊕ su(2). A more general treatment

of the group theoretic decomposition (4.9) and (4.10) including 2-index anti-symmetric

representations16 confirms that the charges and global gauge group structure are consistent

with bifundamental breaking. For the other singularity types with (0|1) split, we could

verify that the tuning always enhances the singularity, i.e., increasing the rank of the

gauge algebra along {θ} while still producing an su(2) along {c3}. This suggests that

the higgsing, that produces the non-trivial global gauge group structure for the (0|1) type

g ⊕ u(1) model, is not achieved with adjoints. However, to determine the exact matter

content of the (un-)higgsed model requires a more detailed analysis, which we postpone to

future works.

We also performed the same analysis for (0||1) split types, i.e., where the section

S and zero-section Z intersect next-to-neighbouring nodes of g’s affine Dynkin diagram.

16For su(6) ⊕ su(2) → su(5) ⊕ u(1), the inclusion of three-index anti-symmetric representations of su(6)

produces 10−3/5 states, in addition to the 102/5 states that arises from two-index anti-symmetrics of su(6).

Those states, which also fit into the charge distribution of (0|1) models (see [48]), arise in non-canonical

models [14, 30].
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Naively, one finds an even higher enhancement along {θ} upon setting b2 → 0 (e.g., for In
singularities we find su(n) → su(n + 2)). However, these tuned geometries always exhibit

non-minimal codimension two loci (i.e., where the Weierstrass functions (f, g,∆) vanish

to orders (4, 6, 12)), indicating that there is — at least in F-theory compactifications to

6D— hidden strongly coupled superconformal physics. We hope to return to this issue in

the future.

5 A criterion for the F-theory swampland

We have seen that the geometry of elliptic fibrations imposes very stringent constraints on

the u(1) charges of matter states in F-theory compactifications. A natural question that

arises is if these constraints go beyond consistency conditions from a (supersymmetric)

effective field theory (EFT) perspective. Put differently, do they give rise to criteria for

an EFT to be in the ‘swampland’ [56, 57] of F-theory? Given that in an EFT description,

the global gauge group structure is often very obscure (e.g., because the spectrum of line

operators is difficult to determine), it would be advantageous to have a criterion based

solely on the gauge algebra g ⊕
⊕

k u(1)k and the particle spectrum, which usually are

directly accessible.

However, from the field theory perspective, there is no physically preferred normalisa-

tion for the u(1) charge, whereas the integrality constraints appearing in F-theory models

are only manifest in the geometrically preferred normalisation discussed in section 2.3.

Thus, to formulate a swampland criterion based on charges, we first need to establish a

method to fix the charge normalisation from the field theory perspective. As we would like

to argue now, singlet states (i.e., states uncharged under any non-abelian gauge symme-

tries) should provide such a reference for the normalisation.

5.1 Singlet charges as measuring sticks

Recall the geometrically preferred charge normalisation of F-theory discussed in section 2.3.

This normalisation corresponds to having u(1) generators ωk = ϕ(σk) that arise from the

normalised Shioda map ϕ (2.6) for free Mordell-Weil generators σi. For simplicity, let us

first look at the single u(1) case. In the preferred normalisation, singlets of g have integral

charges, because their associated fibral curves satisfy Γ ·Ei = 0, so q1 = (S−Z) ·Γ ∈ Z. In

fact, we observe that in all u(1) models with matter constructed so far in the literature, the

charges of singlets computed with ϕ(σk) for a free generator σk of the Mordell-Weil group,

are mutually relatively prime (there is at least one pair of coprime numbers). This was

expected to hold in [17], and viewed as a geometric incarnation of charge minimality [58–61],

though a precise proof of this statement is to date not available. If this statement holds

in general, then singlets uniquely determine the preferred normalisation, since no rescaling

of the u(1) generator can preserve the charges to be integral and mutually relatively prime

at the same time.

Observe that for a single u(1), integer linear combinations of the singlet charges span

Z if and only if the singlet charges are integer and mutually relatively prime. This follows

straightforwardly from elementary number theory, which says that x, y are coprime integers
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if and only if there are integers a, b such that a x+ b y = 1. The obvious generalisation to

m u(1)s is to require that a basis of u(1) generators ωk is in the preferred normalisation

(i.e., arise as Shioda-maps ωk = ϕ(σk) of free Mordell-Weil generators σk), if and only

if the corresponding singlet charges are all integer and span the full integer lattice Zm.

Geometrically, this requirement is equivalent to say that the (Shioda-mapped) Mordell-

Weil lattice is dual, with respect to the intersection pairing, to the lattice spanned by the

fibral curves corresponding to singlets. Similar to the case of a single u(1), this condition is

not proven in general. For the purpose of this discussion, we will assume its validity, noting

that it is true in all F-theory models with multiple u(1)s and charged matter constructed

so far in the literature [20–25, 28, 34].

One may worry about cases where there are no singlets present at all, e.g., in F-theory

models with non-higgsable u(1)s [62–64]. However, since we are interested in the interplay

of non-abelian matter with the u(1)s, these particular models are not of concern because

the tuning required for additional non-abelian algebra is expected to enhance the non-

higgsable u(1)s into non-abelian symmetries.17 Whether this phenomenon persists in all

non-higgsable F-theory models, or if there are (higgsable) u(1)s with non-mutually rela-

tively prime singlet charges, requires a more in-depth geometric analysis beyond the scope

of this work.

Before we turn to the actual swampland conjecture, we would like to discuss how the

normalisation condition carries over in cases where u(1)s are broken by either a higgsing

or a fluxed-induced Stückelberg mechanism. In the case of higgsing, i.e., giving a vacuum

expectation value to a collection of massless states (in a D-flat manner), the breaking mech-

anism can be described geometrically by a complex structure deformation of the elliptic

fibration. This deformation yields another F-theory compactification, where the massless

u(1)s are again realised by a non-trivial Mordell-Weil group.18 Thus, the above formulation

of the normalisation condition carry over directly.

On the other hand, a G4-flux-induced breaking mechanism (which in F-theory is only

possible in 4D and 2D) is not geometrised. Hence, we have to understand field theoretically

how the singlet charges behave in such a situation. In the following, we will restrict our

attention to four-dimensional compactifications, noting that the 2D case proceeds analo-

gously [68]. In 4D, the field theoretic description of flux-induced breaking of u(1)s has been

worked out in detail in type II (see [69–71] for a review) and subsequently in F-theory [72].

In the latter setting, a non-zero flux induces a mass matrix

Mkl =
∑
α

ξk,α ξl,α with ξk,α =

∫
Y
G4 ∧ ωk ∧ π∗Jα , (5.1)

for the u(1) gauge fields dual to the generators ωk = ϕ(σk), k = 1, . . . ,m. The flux-induced

Fayet-Iliopoulos terms ξk,α are labelled by a basis Jα of H1,1(B), i.e., divisors on the base of

the elliptic fourfold π : Y → B. Massless u(1)s are now precisely those linear combinations

17We thank Wati Taylor and Yi-Nan Wang for pointing this out.
18If there are remnant Zk symmetries, then the complex structure deformation could yield a genus-one

fibration without rational sections [53, 54, 65–67]. However, it is generally believed that there is always an

elliptic fibration — the Jacobian fibration — with well-defined rational sections, giving the same F-theory.
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ω̃s =
∑

k λ
s
k ωk, which lie in the kernel of Mkl. Due to (5.1), this is equivalent to requiring

∀α :
∑
i

ξk,α λ
s
k = 0 , (5.2)

which, depending on the G4-flux, may or may not have non-trivial solutions.

Crucially, one can show that the FI-terms ξk,α can be taken to be integers due to the

quantisation condition of G4 (see appendix A). Therefore, a non-trivial solution space V

of (5.2) can be generated by integer vectors λsk, s = 1, . . . , m̃ = dimV . In other words, the

massless u(1)s are generated by integer linear combinations ω̃s = λsk ωk = ϕ(λsk σk) of the

Mordell-Weil generators. Hence, there must exist m̃ free Mordell-Weil generators σ̃s that

span V . Since the full singlet charge lattice was by assumption dual to the Mordell-Weil

lattice, it must also contain the sublattice dual to Λ = spanZ(σ̃s). In other words, there

is a basis ω̃s = ϕ(σ̃s) for the massless u(1) generators, in which the singlet charges are all

integer and their integer linear span fills out every lattice site of Zm̃.

So we have established that in an F-theory compactification with m massless u(1)s,

there are always m free Mordell-Weil generators σk, such that the associated u(1)s are

dual to the Shioda-divisors ωk = ϕ(σk) given by (2.6). In this geometrically preferred

normalisation, the singlet charges are all integer and span the full Zm lattice. From the

field theoretic point of view, which only has direct access to the singlet charges, it is crucial

to realise that this normalisation is unique up to a unimodular transformation of the u(1)

generators, i.e., a change of basis for the Mordell-Weil (sub-)group. To see that, let us

denote by qk, k = 1, . . . ,m the charges of singlet states Qk, which form a basis dual to ωk,

i.e., (qk)i = δki. Now suppose that we picked a different basis ω′l for the u(1) generators, in

which the singlet charges again span Zm, with basis q′k dual to the ω′k. While the qk and

q′k correspond to different physical states Qk and Q′k, their charge vectors both span Zm,

so there must exist a change of basis, i.e., a unimodular matrix U , such that Q′k = UklQl.

For the dual generators ωk and ω′k, the corresponding transformation ω′k = U−1kl ωl is then

again unimodular. Therefore, the sections σ′k = U−1kl σl generate the same lattice as σk,

i.e., they are also Mordell-Weil generators. Thus, the u(1) generators ω′k = ϕ(σ′k) are also

in the geometrically preferred normalisation.

5.2 The swampland criterion

Having established that the singlet charges provide a measuring stick for determining the

preferred normalisation, we are now in a position to formulate the criterion which needs to

be satisfied by EFTs arising from an F-theory compactification. Given a theory with an

unbroken u(1)⊕m ⊕ g gauge symmetry, normalise the u(1)s such that the singlet charges

are integer and span Zm. As argued above, we assume that this is always possible in

F-theory. In this case, the corresponding u(1) generators ωk are given by the Shioda-

map (2.6) of some free Mordell-Weil generators σk. Then, due to (2.10) and (2.11), the

difference q
(1)
k − q

(2)
k of the u(1)k charges for any two representations R(i) = (q

(i)
k ,R(i)

g )

must be integer if R
(1)
g = R

(2)
g . In other words, the condition states that singlets under

the non-abelian gauge algebra provide a reference for the spacing of u(1) charges, which

has be respected also by all non-abelian matter in a given g-representation, even if these

– 22 –



J
H
E
P
0
1
(
2
0
1
8
)
1
5
7

may have fractional charges. Any EFT that does not satisfy this criterion must lie in the

F-theory ‘swampland’, i.e., cannot be an F-theory compactification.

Note that this condition goes beyond anomaly cancellation. An example in 6D is given

by a tensorless su(2)⊕u(1) theory with 10 uncharged adjoint hypers, 64 fundamental hypers

with charge 1/2, 8 fundamental hypers with charge 1, 24 singlet hypers with charge 1, and

79 uncharged hypers. Clearly, the u(1) is properly normalised according to our condition

above, since there are only one type of charged singlets with charge 1. However, despite the

anomalies [73] been cancelled with Green-Schwarz coefficients a = −3, bu(1) = 4, bsu(2) = 6,

the presence of both charge 1 and 1/2 su(2) fundamentals does not meet our ‘swampland’

criterion. In 4D, the constraints are even weaker, since a completely vector-like spectrum

is always gauge-anomaly-free, independent of charges or representations.

In summary, our necessary condition for an effective field theory with gauge algebra

u(1)⊕m ⊕ g to be an F-theory compactification requires to first establish a ‘preferred’

normalisation. This normalisation is determined by having all singlet charges being integer,

and their integer span generates Zm. Then, the difference of charges for matter in the

same g-representation must be integer. Any field theory not satisfying this condition must

lie in the F-theory swampland. We re-emphasise that this criterion relies on the two

key assumptions consistent with the current literature: (a) F-theory models with gauge

algebra u(1)⊕m ⊕ g and charged matter always have singlets, and (b) their charges in the

preferred normalisation span the full integer lattice. Were it not for these assumptions,

we could always rescale the u(1)s so that all charges are integer, and the above conditions

are trivially satisfied. To sharpen our criterion will eventually require a rigorous proof of

both assumptions.

Finally, we point out that our arguments are based on intersection properties of the

Shioda map divisors with fibral curves, which in the F-theory compactification give rise to

massless states in the effective field theory. On the other hand, there are also massive states

in string compactifications coming from higher Kaluza-Klein states or KK reductions along

non-harmonic forms. In light of the recent development of the weak gravity conjecture

(see [57, 74–79] for an incomplete list) which puts constraints on u(1) charges of states

relative to their masses, an interesting question is whether the global gauge group structure

is also respected by massive states in F-theory. If so, it would certainly be interesting to

explore if and how our F-theory swampland arguments fit into more general quantum

gravity concepts.

6 Summary and outlook

In this work, we have shown that F-theory compactifications with an abelian gauge factor

generically come equipped with a non-trivial gauge group structure [G × U(1)]/Z. The

finite subgroup Z = Zκ ⊂ Z(G) × U(1) of the centre is generated by an element C,

which we have constructed explicitly from the Shioda map of the Mordell-Weil genera-

tor. Geometrically, different centres Z arise from different fibre split types, i.e., relative

configurations of the zero and the generating sections on the codimension one singular

fibres determining G. At the level of representations, the construction — generalising that
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for torsional sections [36]—imposes specific constraints on the allowed u(1) charges qR of

each G-representation R, such that Z acts trivially on (qR,R). These constraints can

be equivalently viewed as a refined charge quantisation condition: there is a normalisa-

tion (2.6) of the u(1) such that all charges of matter in a given G-representation R span

a (one-dimensional) lattice with integer spacing. A non-trivial gauge group structure is

then reflected in a relative shift between charge lattices of different G-representations by

multiples of 1/κ.

We have exemplified our findings in several concrete models that have been constructed

throughout the literature. Using these examples, we have also demonstrated that the

argument straightforwardly generalises to multiple u(1) factors, i.e., higher rank Mordell-

Weil groups, and also to cases with both free and torsional sections. Each generator

(free or torsional) leads to an independent central element (possibly trivial), such that

in general, Z is a product of Zκk factors. In particular, when applied to the ‘F-theory

Standard Models’ [27, 33, 42, 43], we found that these models realise the physical Standard

Model gauge group [SU(3)×SU(2)×U(1)Y ]/Z6. Correspondingly, the geometric spectrum

completely agrees with the physical representations of the su(3)⊕ su(2)⊕ u(1)Y algebra.

We have also explored the connections of u(1) charge restrictions to the process of

unhiggsing into a larger non-abelian group. Relying on simple class of geometries with

su(2) ⊕ u(1) gauge algebra, we have shown explicitly that the two different global gauge

group structures unhiggs, both geometrically and field theoretically, into different non-

abelian gauge groups. Concretely, geometries with gauge group SU(2) × U(1) arise as

adjoint higgsing of SU(2)× SU(2), whereas [SU(2)×U(1)]/Z2 is a result of bifundamental

higgsing of SU(3)×SU(2). Note that the non-abelian gauge groups in which we unhiggs do

not have any non-trivial structure, i.e., there are no torsional sections. In general, models

in the same class with gauge group [G×U(1)]/Z unhiggs under the same complex structure

deformation into G′ × SU(2) with G ⊆ G′; equality holds only if Z = {1}.
However, for [G× U(1)]/Z models, where the zero section and the Mordell-Weil gen-

erator do not intersect the same or neighbouring fibre components in codimension one, the

unhiggsing procedure introduces codimension two non-minimal loci. In compactifications

on a threefold, one would usually associate such a non-minimal locus with the existence

of tensionless strings and interpret it as a superconformal sector of the 6D field theory.

Clearly, it would be exciting to investigate how superconformal physics enters the global

gauge group structure, and also gain insight into 4D compactifications, where non-minimal

loci are less understood. It is worth pointing out that the centre also plays a crucial role in

the higgsing of u(1)s to discrete symmetries [27, 80]. With the explicit description of the

centre laid out in these notes, we look forward to apply our new insights to phenomeno-

logically more appealing models with discrete symmetries [81].

We have also studied how the non-trivial global gauge group structures give rise to

an F-theory ‘swampland’ criterion. Formulated in terms of u(1) charges, a field theory

with gauge algebra g⊕ u(1) that arises from F-theory must satisfy the following condition.

By normalising the u(1) such that all singlet charges are integer and span the full integer

lattice, charges of matter having the same non-abelian g-representation, which individually

can be fractional, must differ from each other by integers. Our analysis also shows that this
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criterion generalises to the case of multiple u(1)s, which remain massless in the low energy

effective theory after a higgsing and/or turning on G4-flux. While this condition is stronger

than cancellation of field theory anomalies and hence can be used to rule out swampland

theories, their validity is based on the assumption that in F-theory compactifications, the

singlets serve as a ‘measuring stick’ for the u(1) charges. Geometrically, it is based on

the observation that any F-theory model with u(1)s and charged matter have in particular

charged singlets, whose corresponding fibral curve in the elliptic fibration spans a lattice

that is dual to the (free) Mordell-Weil lattice under the intersection pairing. Note that this

observation extends the conjecture [17] made for a singlet u(1), that singlet charges com-

puted with respect to the normalised Shioda-map (2.6) are integer and mutually relatively

prime. To make the swampland criterion precise will therefore require a careful analysis

of the intersection structures between sections and codimension two fibres in elliptically

fibred Calabi-Yau manifolds. Nevertheless, it would be interesting to study the connection

of this swampland criterion to other quantum gravity conditions such as the weak gravity

conjecture and extensions thereof.
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A Integrality of fluxed-induced Fayet-Iliopoulos terms

In this appendix, we show that the fluxed-induced FI-terms (5.1) can be taken to be

integers in (5.2), which determines the massless linear combinations of u(1)s. First, recall

the consistency conditions [82] for G4-flux in F-theory compactified on an elliptic fourfold

π : Y → B:

G4 ∈ H2,2(Y ) such that

∀DB ∈ H1,1(B) and ∀CB ∈ H2,2(B) :

∫
Y
G4 ∧ Z ∧ π∗DB =

∫
Y
G4 ∧ π∗CB = 0 ,

(A.1)

where Z is the cohomology form dual to the divisor of the zero-section. These so-called

transversality conditions ensure that the flux preserves 4D Lorentz symmetry in the M-/F-

theory duality. Furthermore, in order not to break the non-abelian gauge algebra g with

Cartan divisors Ei, we impose

∀DB ∈ H1,1(B) :

∫
Y
G4 ∧ Ei ∧ π∗DB . (A.2)
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Because of these conditions, the fluxed-induced FI-terms (5.1) for a u(1) generator ωk =

ϕ(σk), with σk a Mordell-Weil generator with divisor class Sk, simplifies to

ξk,α =

∫
Y
G4∧ωk∧π∗Jα =

∫
Y
G4∧(Sk−Z+liEi+π

∗DB)∧π∗Jα =

∫
Y
G4∧Sk∧π∗Jα . (A.3)

The basis elements Jα for the Kähler form JB of the base can be taken to be integer

cohomology forms dual to divisor. Then we can invoke the quantisation condition [83],

G4 +
1

2
c2(Y ) ∈ H4(Y,Z) , (A.4)

where c2(Y ) is the second Chern class of Y . Therefore, since the section classes Sk are also

integer, the FI-terms (A.3) satisfy

Z 3
∫
Y

(
G4 +

1

2
c2(Y )

)
∧ Sk ∧ π∗Jα = ξi,α +

1

2

∫
Y
c2(Y ) ∧ Sk ∧ π∗Jα . (A.5)

Because c2(Y ) ∈ H4(Y,Z), the last term is at most half-integer. In other words, 2ξk,α ∈ Z
for all k and α. Since an overall factor of the FI-terms does not affect the solutions of the

masslessness condition (5.2) for u(1)s, we can thus assume from the beginning that ξk,α ∈ Z.
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[12] C. Lawrie and S. Schäfer-Nameki, The Tate Form on Steroids: Resolution and Higher

Codimension Fibers, JHEP 04 (2013) 061 [arXiv:1212.2949] [INSPIRE].

[13] V. Braun, T.W. Grimm and J. Keitel, Geometric Engineering in Toric F-theory and GUTs

with U(1) Gauge Factors, JHEP 12 (2013) 069 [arXiv:1306.0577] [INSPIRE].
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