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1. Introduction

According to Einstein’s theory of general relativity, a vacuum spacetime with cosmologi-
cal constant A€R is a (3+1)-dimensional manifold M equipped with a Lorentzian metric
g satisfying the Einstein vacuum equation Ein(g)=Ag, where Ein(g)=Ric(g)—1R,g is

the Einstein tensor. An equivalent formulation of this equation is
Ric(g)+Ag=0. (1.1)

A Kerr—de Sitter spacetime, discovered by Kerr [89] and Carter [18], models a stationary,
rotating black hole within a universe with A>0: far from the black hole, the spacetime
behaves like de Sitter space with cosmological constant A, and close to the event horizon
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of the black hole like a Kerr black hole. Fixing A>0, a (3+1)-dimensional Kerr—de Sitter
spacetime (M°, g) depends, up to diffeomorphism equivalence, on two real parameters,
namely the mass M, >0 of the black hole and its angular momentum a. For our purposes,
it is in fact better to consider the angular momentum as a vector acR3. The Kerr—
de Sitter family of black holes is then a smooth family g of stationary Lorentzian metrics,
parameterized by b=(M.,a), on a fixed 4-dimensional manifold M°=R;, x (0, 00), x S
solving the equation (1.1). The Schwarzschild—de Sitter family is the subfamily (M°, ),
b=(M.,0), of the Kerr—de Sitter family; a Schwarzschild-de Sitter black hole describes
a static, non-rotating black hole. We point out that, according to the currently accepted
Lambda cold dark matter (ACDM) model, the cosmological constant is indeed positive
in our universe [120], [116].

The equation (1.1) is a non-linear second-order partial differential equation (PDE)
for the metric tensor g. Due to the diffeomorphism invariance of this equation, the
formulation of a well-posed initial value problem is more subtle than for (non-linear)
wave equations. This was first accomplished by Choquet-Bruhat [59], who with Geroch
[21] proved the existence of maximal globally hyperbolic developments for sufficiently
smooth initial data. We will discuss such formulations in detail later in this introduction
as well as in §2. The correct notion of initial data is a triple (2o, h, k), consisting of

e a 3-manifold X,

e a Riemannian metric kA on X,

e a symmetric 2-tensor k on X,
subject to the constraint equations, which are the Gauss—Codazzi equations on ¥y implied
by (1.1). Fixing ¥y as a submanifold of M°, a metric g satisfying (1.1) is then said to
solve the initial value problem with data (3o, h, k) if

e Y is spacelike with respect to g;

e h is the Riemannian metric on ¥y induced by g;

e k is the second fundamental form of ¢ within M°.

Our main result concerns the global non-linear asymptotic stability of the Kerr—de Sit-
ter family as solutions of the initial value problem for (1.1); we prove this for slowly
rotating black holes, i.e. near a=0. To state the result in the simplest form, let us fix
a Schwarzschild-de Sitter spacetime (M°, gp,), and within it a compact spacelike hy-
persurface XoC{t.=0}CM° extending slightly beyond the event horizon r=r_ and the
cosmological horizon r=r; let (hy,, ks,) be the initial data on ¥ induced by gp,. De-
note by ¥, the translates of ¥y along the flow of 9;,, and let QOZUt*go 3, CM” be the
spacetime region swept out by these; see Figure 1.1. Note that since we only consider
slow rotation speeds, it suffices to consider perturbations of Schwarzschild—de Sitter ini-
tial data, which in particular includes slowly rotating Kerr—de Sitter black holes initial
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Figure 1.1. Setup for the initial value problem for perturbations of a Schwarzschild—de Sitter
spacetime (M°, gy, ), showing the Cauchy surface o of Q and a few translates X¢,; here
en >0 is small. Left: product-type picture, illustrating the stationary nature of gy,. Right:
Penrose diagram of the same setup. The event horizon is H*={r=r_}, the cosmological
horizon is HT={r=r4}, and the (idealized) future timelike infinity is i*.

data (and their perturbations).

THEOREM 1.1. (Stability of the Kerr—de Sitter family for small a; informal version)
Suppose (h, k) are smooth initial data on Xg, satisfying the constraint equations, which
are close to the data (hy,, kb, ) of a Schwarzschild—-de Sitter spacetime in a high-regularity
norm. Then, there exist a solution g of (1.1) attaining these initial data at 3¢, and black

hole parameters b which are close to by, so that

9=9y=0(e™"")
for a constant a>0 independent of the initial data; that is, g decays exponentially fast to
the Kerr—de Sitter metric g,. Moreover, g and b are quantitatively controlled by (h, k).

In particular, we do not require any symmetry assumptions on the initial data. We
refer to Theorem 1.4 for a more precise version of the theorem. Above, we measure the
pointwise size of tensors on X by means of the Riemannian metric i, and the pointwise
size of tensors on the spacetime M° by means of a fixed smooth stationary Riemannian
metric gg on M°. The norms we use for (h—hy,, k—kp,) on ¥y and for g—g, on X,
are then high-regularity Sobolev norms; any two choices of gr yield equivalent norms.
If (h,k) are smooth and sufficiently close to (hp,, k,) in a fixed high-regularity norm,
the solution g we obtain is smooth as well, and in a suitable Fréchet space of smooth
symmetric 2-tensors on M° depends smoothly on (h, k), as does b.

As far as the maximal globally hyperbolic development (MGHD) of the initial data
(h, k) is concerned, Theorem 1.1 states that it contains a subset isometric to 2° on which
the metric decays at an exponential rate to gp.

We stress that a single member of the Kerr—de Sitter family is not stable: small
perturbations of the initial data of, say, a Schwarzschild-de Sitter black hole, will in
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general result in a solution which decays to a Kerr—de Sitter metric with slightly different
mass and non-zero angular momentum. We are not aware of any way by which one can
determine the final black hole parameters b, but which does not require finding the global
solution of the initial value problem. Investigating any such method, potentially via
making a connection to different notions of mass on asymptotically hyperbolic manifolds
[144], [150], [27], [20], would be a very interesting problem.

Earlier global non-linear stability results for the Einstein equation include Friedrich’s
work [61] on the stability of (341)-dimensional de Sitter space, the monumental proof
by Christodoulou and Klainerman [25] of the stability of (3+1)-dimensional Minkowski
space. Partial simplifications and extensions of these results were proved by Anderson [3]
on higher-dimensional de Sitter spacetimes, Lindblad and Rodnianski [98], [99] and Bieri—
Zipser [14] on Minkowski space, further Ringstrém [121] for a general Einstein—scalar field
system, as well as by Rodnianski and Speck [122] (and the related [128]) on Friedmann—
Lemaitre-Robertson-Walker spacetimes; see §1.3 for further references. Theorem 1.1
is the first result for the Einstein equation proving an orbital stability statement (i.e.
decay to a member of a family of spacetimes, rather than decay to the spacetime one is
perturbing), and the flexibility of the techniques we use should allow for investigations
of many further orbital stability questions. Natural examples are the non-linear stability
of the Kerr—-Newman—de Sitter family of rotating and charged black holes as solutions of
the coupled Einstein-Maxwell system,(!) and the stability of higher-dimensional black
holes.

The proof of Theorem 1.1 will be given in §11. It uses a generalized wave coordinate
gauge adjusted ‘dynamically’ (from infinity) by finite-dimensional gauge modifications.
The key tool is the precise analysis of the linearized problem around a Schwarzschild—
de Sitter metric. We develop a robust framework that has powerful stability properties
with respect to perturbations; we will describe its main ingredients, in particular the
manner in which we adapt our choice of gauge, in §1.1. (As a by-product of our anal-
ysis, we obtain a very general finite-codimension solvability result for quasilinear wave
equations on Kerr—de Sitter spaces, see Appendix B.) The restriction to small angular
momenta in Theorem 1.1 is then due to the fact that the required algebra is straight-
forward for linear equations on a Schwarzschild—de Sitter background, but gets rather
complicated for non-zero angular momenta; we explain the main calculations one would
have to check to extend our result to large angular momenta in Remark 1.5. Our frame-
work builds on a number of recent advances in the global geometric microlocal analysis of
black hole spacetimes which we recall in §1.1; ‘traditional’ energy estimates play a very

minor role, and are essentially only used to deal with the Cauchy surface ¥y and the

(1) Since the first version of this paper, this has been accomplished by the first author [73].
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artificial boundaries at r=r,£e)s in Figure 1.1. For solving the non-linear problem, we
use a Nash—Moser iteration scheme, which proceeds by solving a linear equation globally
at each step, and is thus rather different in character from bootstrap arguments. (See
also the introduction of [75].)

Our main theorem and the arguments involved in its proof allow for further con-
clusions regarding the phenomenon of ringdown, the problem of black hole uniqueness,
and suggest a future path to a definitive resolution of Penrose’s strong cosmic censorship
conjecture for cosmological spacetimes; see §1.2 for more on this.

Using our methods, we give a direct proof of the linear stability of slowly rotating
Kerr—de Sitter spacetimes in §10 as a ‘warm-up’, illustrating the techniques developed in

the preceding sections.

THEOREM 1.2. Fiz a slowly rotating Kerr—de Sitter spacetime (M°,gp), and ¥g as
above. Suppose (h' k') is a pair of symmetric 2-tensors, with high regularity, solving
the linearized constraint equations around (hy, ky). Then, there exist a solution r of the

linearized Finstein vacuum equation
Dy, (Ric+A)(r) =0,

attaining these initial data at Yo, and b'€R* such that

d
r—— ’ = O eiat*
ds Gb+sb o ( )
for a constant a>0 independent of the initial data; that is, the gravitational perturbation

r decays exponentially fast to a linearized Kerr—de Sitter metric.

We stress that the non-linear stability is only slightly more complicated to prove
than the linear stability, given the robust framework we set up in this paper; we explain
this in the discussion leading up to the statement of Theorem 1.4.

Theorem 1.2 is the analogue of the recent result by Dafermos, Holzegel and Rod-
nianski [37] on the linear stability of the Schwarzschild spacetime (i.e. with A=0 and
a=0). We will discuss the differences and similarities of their paper (and related works)
with the present paper in some detail below.

We point out that the Ricci-flat analogues of Theorems 1.1 and 1.2, i.e. with cos-
mological constant A=0, remain very interesting and challenging problems to study: the
limit A—0% is rather degenerate in that it replaces an asymptotically hyperbolic problem
(far away from the black hole) by an asymptotically Euclidean one, which in particular
drastically affects the low frequency behavior of the problem, and thus the expected de-
cay rates (polynomial rather than exponential). Furthermore, for A=0, one needs to use



NON-LINEAR STABILITY OF KERR—DE SITTER 7

an additional ‘null-structure’ of the non-linearity to analyze non-linear interactions near
the light cone at infinity (‘null infinity’), while this is not needed for A>0. See §1.3 for
references and further discussion.

We take this opportunity to comment on the role of the small positive cosmological
constant and black holes in an astronomical context. While on the spatial scales relevant
for the study of isolated gravitational systems the cosmological constant is negligible, no
matter what its value is (or even what sign it has), the positivity of A is important on the
infinite time scale on which one must work when studying stability questions. Put differ-
ently, A is negligible for the large, but finite time scale corresponding to the spatial scale
on which it is negligible; thus, for large times (which in particular covers computations
in numerical general relativity), A can be ignored. The idealized case A=0 is nonetheless
very interesting not only from a mathematical but also from a practical point of view,
as it allows for the clean definition of quantities of physical (and experimental) interest
such as null infinity, gravitational wave energy, the Christodoulou memory effect, etc.

1.1. Main ideas of the proof

For the reader unfamiliar with Einstein’s equations, we begin by describing some of the
fundamental difficulties one faces when studying equation (1.1). Typically, PDEs have
many solutions; one can specify additional data. For instance, for hyperbolic second-order
PDEs such as the wave equation, say on a closed manifold cross time, one can specify
Cauchy data, i.e. a pair of data corresponding to the initial amplitude and momentum of
the wave. The question of stability for solutions of such a PDE is then whether for small
perturbations of the additional data the solution still exists and is close to the original
solution. Of course, this depends on the region on which we intend to solve the PDE, and
more precisely on the function spaces we solve the PDE in. Typically, for an evolution
equation like the wave equation, one has short time solvability and stability, sometimes
global in time existence, and then stability is understood as a statement that globally
the solution is close to the unperturbed solution, and indeed sometimes in the stronger
sense of being asymptotic to it as time tends to infinity.

The Einstein equation is closest in nature to hyperbolic equations. Thus, the stability
question for the Einstein equation (with fixed A) is whether when one perturbs ‘Cauchy
data’, the solutions are globally ‘close’, and possibly even asymptotic to the unperturbed
solution. However, since the equations are not hyperbolic, one needs to be careful by what
one means by ‘the’ solution, ‘closeness’ and ‘Cauchy data’. Concretely, the root of the
lack of hyperbolicity of (1.1) is the diffeomorphism invariance: if ¢ is a diffeomorphism
that is the identity map near an initial hypersurface, and if g solves Einstein’s equations,
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then so does ¢*¢g, with the same initial data. Thus, one cannot expect uniqueness of
solutions without fixing this diffeomorphism invariance; by duality, one cannot expect
solvability for arbitrary Cauchy data either.

It turns out that there are hyperbolic formulations of Einstein’s equations; these
formulations break the diffeomorphism invariance by requiring more than merely solving
Einstein’s equations. A way to achieve this is to require that one works in coordinates
which themselves solve wave equations, as in the pioneering work [59] and also used
in [98], [99]; very general hyperbolic formulations of Einstein’s equations, where the
wave equations may in particular have (fixed) source terms, were worked out in [60].
More sophisticated than the source-free wave coordinate gauge, and more geometric in
nature, is DeTurck’s method [48] (see also the paper by Graham-Lee [65]) which fixes
a background metric ¢° and requires that the identity map be a harmonic map from
(M°,g) to (M°,g°), where g is the solution we are seeking. This can be achieved by
considering a PDE that differs from the Einstein equation due to the presence of an
extra gauge-fixing term:

Ric(g)+Ag—®(g,¢°) =0. (1.2)

We call this the gauged Einstein equation (sometimes also called reduced Einstein equa-
tion). For suitable ®, discussed below, this equation is actually hyperbolic. One then
shows that one can construct Cauchy data for this equation from the geometric initial
data (2o, h, k) (with Xo<—M*) so that ® vanishes at first on ¥y, and then identically
on the domain of dependence of ¥y. Thus, one has a solution of Einstein’s equations as
well, in the gauge ®(g, ¢°)=0.

Concretely, fixing a metric g° on M*, the DeTurck gauge (or wave map gauge) takes

the form
D(g,9°)=06;T(g9), T(9)=9(g°)"04Gyg°, (1.3)

where ¢ is the symmetric gradient relative to g, J, is its adjoint (divergence), and
Ggr:=r—3(try7)g is the trace reversal operator. Here Y(g) is the gauge 1-form. One
typically chooses g° to be a metric near which one wishes to show stability, and in the
setting of Theorem 1.1 we will in fact take g°=gs,; thus Y(gs,) vanishes. Given initial
data satisfying the constraint equations, one then constructs Cauchy data for g in (1.2),
giving rise to the given initial data and moreover solving YT(g)=0 (note that Y(g) is a
first-order non-linear differential operator) at ¥y. Solving the gauged Einstein equation
(1.2) and then using the constraint equations, the normal derivative of Y(g) at 3¢ also
vanishes. Then, applying 6,G, to (1.2) shows, in view of the second Bianchi identity,
that 0,G,40,; Y (g9)=0. Since
DgP :=20,Gy 6,
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is a wave operator, this shows that T(g) vanishes identically. (See §2 for more details.)

The specific choice of gauge, i.e. in this case the choice of background metric ¢°,
is irrelevant for the purpose of establishing the short-time existence of solutions of the
Einstein equation. Indeed, if one fixes an initial data set but chooses two different
background metrics g°, then solving the resulting two versions of (1.2) will produce two
generally different symmetric 2-tensors g on M° which attain the given data and solve the
Einstein equation; however, they are always related by a diffeomorphism, i.e. one is the
pull-back of the other by a diffeomorphism. On the other hand, global (or even just long
time) ezistence of solutions of the Einstein equation by means of hyperbolic formulations
like (1.2) depends very sensitively on the choice of gauge, as does the asymptotic behavior
of global solutions. (Global existence and large time asymptotics are strongly coupled,
as one can usually only obtain the former when one has a precise understanding of the
latter.) Thus, finding a suitable gauge is the fundamental problem in the study of (1.1),
which we overcome in the present paper in the setting of Theorem 1.1.

Let us now proceed to discuss (1.2) from the perspective most useful for the present
paper. (For a general overview of the large body of work on Kerr and Kerr—de Sitter
spacetimes in the last decades, we refer the reader to §1.3.) The key advances in under-
standing hyperbolic equations globally on a background like Kerr—de Sitter space were
the paper [140] by the second author, where microlocal tools were introduced and used to
provide a Fredholm framework for global non-elliptic analysis; for waves on Kerr—de Sitter
spacetimes, this uses the microlocal analysis at the trapped set of Wunsch—Zworski [147]
and Dyatlov [56] as an external input. In the paper [75], the techniques of [140] were ex-
tended to non-stationary settings, using the framework of Melrose’s b-pseudodifferential
operators, and shown to apply to semi-linear equations; in [71], the techniques were ex-
tended to quasilinear equations on de Sitter-like spaces by introducing operators with
non-smooth (high regularity b-Sobolev) coefficients. In [76], the additional difficulty
of trapping in Kerr—de Sitter space was overcome by Nash—Moser iteration-based tech-
niques, using the simple formulation of the Nash—Moser iteration scheme given by Saint-
Raymond [124].

The papers [140], [75], [71], [76] show global existence and asymptotic stability of
solutions to (systems of) second-order quasilinear PDEs under the following conditions:

(1) the second-order terms in the PDE are given by the wave equation with respect
to a metric g which depends on the unknown (vector-valued) function u, as well as on
the gradient Vu;

(2) for u=0, the metric g is a Kerr—de Sitter metric (one can also handle small
stationary perturbations of the Kerr—de Sitter metric, though this is not used in the
present paper);
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(3) the linearized operator at u=0, which we denote by L, satisfies a subprincipal
sign condition on the trapped set;
(4) the equation Lv=0 has no resonances o €C in the closed upper half-plane, that

is, there do not exist mode solutions of the form v(t,,x)=e" "t w(z) with Im o >0.

Conditions (3) and (4) rule out ways in which the linearized equation could fail to
be asymptotically stable. More precisely, (3) rules out growing high-frequency solutions
localized near the trapped set, and (4) rules out a bounded frequency solution which
is either oscillating or exponentially growing in time. The result of the above series of
papers is to show that these are the only two ways in which stability of the non-linear
equation could fail. The absence of resonances in the closed upper half-plane is clearly
a desirable condition when solving non-linear equations. That it is sufficient, given the
other assumptions, relies on the fact that solutions of Lv=0 (with L not necessarily satis-
fying assumption (4)) with smooth initial data and (compactly supported) forcing admit
partial asymptotic expansions into a finite sum of mode solutions with frequencies o;€C,
plus a remainder term with decay e~ a>—1Imo;, provided the operator L satisfies
suitable estimates. These are so-called high-energy estimates for the Mellin-transformed
normal operator family L(c)w(z):=e " L(e~"tw)|,._y, namely, polynomial bounds on

L as |Reo|—o0, Imo>—a, acting between suitable Sobolev

the operator norm of L(c)~
spaces. The main result of [140] is that L(o)~! is a meromorphic family of operators
satisfying such estimates; the poles of this family are precisely the resonances. (This
result strongly uses the asymptotically hyperbolic nature of the de Sitter end of Kerr—
de Sitter spacetimes.) Provided that high-energy estimates hold for a>0 (which requires
assumption (3)), this implies that solutions of Lv=0 are a finite sum of mode solutions
and an exponentially decaying remainder term; the asymptotic expansion here is proved

by means of a contour-shifting argument on the Fourier-transform side; see §5.2.2.

Now, for the DeTurck-gauged Einstein equation (1.2), where the unknown function
is the metric g itself, condition (3) at the trapped set holds, but condition (4) on reso-
nances does not. That is, non-decaying (Im o >0) and even exponentially growing modes
(Im 0>0) exist. In fact, even on de Sitter space, the linearized DeTurck-gauged Einstein
equation, with g° equal to the de Sitter metric, has ezponentially growing modes, cf. the
indicial root computation of [65] on hyperbolic space—the same computation also works
under the metric signature change in de Sitter space; see Appendix C. Thus, the key
achievement of this paper is to provide a precise understanding of the nature of the reso-
nances in the upper half-plane, and how to overcome their presence. We remark that the
first condition, at the trapping, ensures that there is at most a finite-dimensional space

of non-decaying mode solutions.

We point out that all conceptual difficulties in the study of (1.2) (beyond the diffi-
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culties overcome in the papers mentioned above) are already present in the simpler case
of the static model of de Sitter space, with the exception of the presence of a non-trivial
family of stationary solutions in the black hole case; in fact, what happens on de Sitter
space served as a very useful guide to understanding the equations on Kerr-de Sitter
space. Thus, in Appendix C, we illustrate our approach to the resolution of the black
hole stability problem by reproving the non-linear stability of the static model of de Sitter
space.

In general, if one has a given non-linear hyperbolic equation whose linearization
around a fixed solution has growing modes, there is not much one can do: at the linearized
level, one then gets growing solutions; substituting such solutions into the non-linearity
gives even more growth, resulting in the breakdown of the local non-linear solution. A
typical example is the ordinary differential equation (ODE) u/=wu?, with initial condi-
tion at zero: the function u=0 solves this, and given any interval [0, 7] one has stability
(changing the initial data slightly), but for any non-zero positive initial condition, re-
gardless how small, the solution blows up at finite time, and thus there is no stability on
[0,00). Here the linearized operator is just the derivative v+—v’, which has a non-decaying
mode 1 (with frequency o=0). This illustrates that even non-decaying modes, not only
growing ones, are dangerous for stability; thus they should be considered borderline un-
stable for non-linear analysis, rather than borderline stable, unless the operator has a
special structure. Now, the linearization of the Kerr—de Sitter family around a fixed
member of this family gives rise (up to infinitesimal diffeomorphisms, i.e. Lie derivatives)
to zero resonant states of the linearization of (1.2) around this member; but these will of
course correspond to the (non-linear) Kerr—de Sitter solution when solving the quasilinear
equation (1.2), and we describe this further below.

The primary reason one can overcome the presence of growing modes for the gauged
Einstein equation (1.2) is of course that the equation is not fixed: one can choose from
a family of potential gauges; any gauge satisfying the above principally wave, asymptot-
ically Kerr—de Sitter, condition is a candidate, and one needs to check whether the two
conditions stated above are satisfied. However, even with this gauge freedom, we are
unable to eliminate the resonances in the closed upper half-plane, even ignoring the zero
resonance which is unavoidable as discussed above. Even for Einstein’s equations near
de Sitter space—where one knows that stability holds by [61]—the best we can arrange in
the context of modifications of DeTurck gauges is the absence of all non-decaying modes
apart from a resonance at zero, but it is quite delicate to see that this can in fact be
arranged. Indeed, the arguments rely on the special asymptotic structure of de Sitter
space, which reduces the computation of resonances to finding indicial roots of regular
singular ODEs, much like in the Riemannian work of Graham-Lee [65]; see Remark C.3.
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While we do not have a modified DeTurck gauge in the Kerr—de Sitter setting which
satisfies all of our requirements, we can make partial progress towards this goal in a
crucial respect. Namely, if L is the linearization of (1.2), with ¢°=gy,, around g=gy,,
then

Lr = Dy(Ric+A)(r)+0,(0,G,47); (1.4)

the second term here breaks the infinitesimal diffeomorphism invariance—if r solves the
linearized Einstein equation D,(Ric+A)(r)=0, then so does r+d;w for any 1-form w.
Now suppose ¢ is a growing mode solution of L¢=0. Without the gauge term present, ¢
would be a mode solution of the linearized Einstein equation, i.e. a growing gravitational
wave; if non-linear stability is to have a chance of being true, such ¢ must be ‘unphysical’,
that is, equal to 0 up to gauge changes, i.e. p=04;w. This statement is commonly called
mode stability; we introduce and prove the slightly stronger notion of ‘ungauged Einstein
mode stability’ (UEMS), including a precise description of the zero mode, in §7. One
may hope that even with the gauge term present, all growing mode solutions such as ¢
are pure gauge modes in this sense. To see what this affords us, consider a cutoff x(t.),

identically 1 for large times but 0 near ¥g. Then
L(é;(xw)) = 5;9, 0= 59695;(Xw);

that is, we can generate the asymptotic behavior of ¢ by adding a source term 6,6—which
s a pure gauge term—to the right-hand side; looking at this the other way around, we
can eliminate the asymptotic behavior ¢ from any solution of Lr=0 by adding a suitable
multiple of ;6 to the right-hand side. In the non-linear equation (1.2) then, using the
form (1.3) of the gauge-fixing term, this suggests that we try to solve

Ric(g)+Ag—4,(Y(g9)—0) =0,

where 6 lies in a fixed finite-dimensional space of compactly supported 1-forms corre-
sponding to the growing pure gauge modes; that is, we solve the initial value problem for
this equation, regarding the pair (6, g) as our unknown. Solving this equation for fixed 6,
which one can do at least for short times, produces a solution of Einstein’s equations
in the gauge Y (g)=0, which in the language of [60] amounts to using non-trivial gauge
source functions induced by 1-forms 6 as above; in contrast to [60] however, we regard the
gauge source functions as unknowns (albeit in a merely finite-dimensional space) which
we need to solve for.

Going even one step further, one can hope (or try to arrange) for all Kerr—de Sitter
metrics ¢, to satisfy the gauge condition Y(gy)=0 (which of course depends on the
concrete presentation of the metrics): then, we could incorporate the Kerr—de Sitter
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metric that our solution g decays to by adding another parameter b; that is, we could
solve

(Ric+A)(g5+9) =g, 15(T(9p+9)—0) =0 (1.5)

for the triple (b,0,g), with § now in a decaying function space; a key fact here is that
even though we constructed the 1-forms 6 from studying the linearized equation around
b, adding 0 to the equation as done here also ensures that, for nearby linearizations, we
can eliminate the growing asymptotic behavior corresponding to pure gauge resonances;
a general version of this perturbation-type statement is the main result of §5. If both our
hopes (regarding growing modes and the interaction of the Kerr—de Sitter family with
the gauge condition) proved to be well-founded, we could indeed solve (1.5) by appealing
to a general quasilinear existence result, based on a Nash—Moser iteration scheme; this
is an extension of the main result of [76], accommodating for the presence of the finite-
dimensional variables b and 6. (We shall only state a simple version, ignoring the presence
of the non-trivial stationary family encoded by the parameter b, of such a general result
in Appendix A.)

This illustrates a central feature of our non-linear framework: The non-linear itera-
tion scheme finds not only the suitable Kerr—de Sitter metric the solution of (1.1) should
converge to, but also the correct gauge modification 0!(*)

Unfortunately, neither of these two hopes proves to be true for the stated hyperbolic
version of the Einstein equation.

First, consider the mode stability statement: we expect the presence of the gauge
term in (1.4) to cause growing modes which are not pure gauge modes (as can again
easily be seen for the DeTurck gauge on de Sitter space); in view of UEMS, they cannot
be solutions of the linearized Einstein equation. When studying the problem of linear
stability, such growing modes therefore cannot appear as the asymptotic behavior of a
gravitational wave; in fact, one can argue, as we shall do in §10, that the linearized
constraint equations restrict the space of allowed asymptotics, ruling out growing modes
which are not pure gauge. While such an argument is adequate for the linear stability
problem, it is not clear how to extend it to the non-linear problem, since it is not at all
robust; for example, it breaks down immediately if the initial data satisfy the non-linear

constraint equations, as is of course the case for the non-linear stability problem.

(?) For the initial value problem in the ODE example u'=u?, one can eliminate the constant

asymptotic behavior of the linearized equation by adding a suitable forcing term, or equivalently by
modifying the initial data; thus, the non-linear framework would show the solvability of u’=u?, u(0)=uo,
with ug small, up to modifying ug by a small quantity—and this is of course trivial, if one modifies it
by —up! A more interesting example would be an ODE of the form (95 +1)dzu=u?, solving near u=0;
the decaying mode e~ % of the linearized equation causes no problems, and the zero mode 1 can be
eliminated by modifying the initial data—which now lie in a 2-dimensional space—Dby elements in a
fixed 1-dimensional space.
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It turns out that the properties of DgCP:%gGgé;, or rather a suitable replacement
ﬁgcp, are crucial for constructing an appropriate modification of the hyperbolic equation
(1.2). Recall that DSP is the operator governing the propagation of the gauge condition
Y (g)—60=0, or equivalently the propagation of the constraints. The key insight, which
has been exploited before in the numerics literature [66], [117], is that one can modify
the gauged Einstein equation by additional terms, preserving its hyperbolic nature, to
arrange for constraint damping, which says that solutions of the correspondingly modified
constraint propagation operator ﬁgcp decay exponentially. Concretely, note that in g
the part §,G, is firmly fixed, since we need to use the Bianchi identity for this to play
any role. However, we have flexibility regarding 47 as long as we change it in a way that
does not destroy at least the properties of our gauged Einstein equation that we already
have, in particular the principal symbol. Now, the principal symbol of the linearization
of ®(g,¢°) depends on d; only via its principal symbol, which is independent of g, so we
can replace §; by any, even g-independent, differential operator with the same principal

symbol, for instance by considering

0w =0y wHy1 dt. ®sw—"200 trg, (dt. ®sw),

where 7; and 9 are fixed real numbers. What we show in §8 is that, for gy being a
Schwarzschild—de Sitter metric (a=0), we can choose 1,720 so that, for g=gg, the
operator ﬁgCP:%gGgg* has no resonances in the closed upper half-plane, i.e. only has
decaying modes. We call this property stable constraint propagation (SCP). Note that,
by a general feature of our analysis, this implies the analogous stability statement when
g is merely suitably close to gg, in particular when it is asymptotic to a Kerr—de Sitter
metric with small a. Dropping the modifications by ¢ and b considered above for brevity,
the hyperbolic operator we will study is then Ric(g)JrAng*T(g).

The role of SCP is that it ensures that the resonances of the linearized gauged
Einstein equation in the closed upper half-plane (corresponding to non-decaying modes)
are either resonances (modes) of the linearized ungauged Einstein operator D(Ric+A)
or pure gauge modes, i.e. of the form d;6 for some 1-form ¢; indeed, granted UEMS, this
is a simple consequence of the linearized second Bianchi identity applied to (1.4) (with
45 there replaced by 5).

Second, we discuss the (in)compatibility issue of the Kerr—de Sitter family with the
wave map gauge when the background metric is fixed, say gp,. Putting the Kerr—de Sitter
metric g, into this gauge would require solving the wave map equation U, g, ¢=0 glob-
ally, and then replacing g, by ¢.(gy) (see Remark 2.1 for details); this can be rewritten
as a semi-linear wave equation with stationary, non-decaying forcing term (essentially

Y(gp)), whose linearization around the identity map for b=>by has resonances at zero
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and, at least on de Sitter space where this is easy to check, also in the upper half-plane.
While the growing modes can be eliminated by modifying the initial data of the wave map
within a finite-dimensional space, the zero mode, corresponding to Killing vector fields of
by, cannot be eliminated; in the above ODE example, one cannot solve u'=u%+1, with
1 being the stationary forcing term, globally if the only freedom one has is perturbing
the initial data.

We remark that this difficulty does not appear in the double null gauge used e.g. in
[37]; however, the double null gauge formulation of Einstein’s equations does not fit into

our general non-linear framework.

The simple way out is that one relaxes the gauge condition further: rather than
demanding that Y(g)—60=0, we demand that Y(g)—Y(gs) —0=0 near infinity if g, is
the Kerr—de Sitter metric that ¢ is decaying towards; recall here again that our non-
linear iteration scheme finds b (and 6) automatically. Near X, one would like to use
a fixed gauge condition, since otherwise one would need to use different Cauchy data,
constructed from the same geometric initial data, at each step of the iteration, depending

on the gauge at Xy. With a cutoff x as above, we thus consider grafted metrics

Gbo b = (1=X) by + X0,

which interpolate between gy, near X, and g, near future infinity.

Remark 1.3. We again stress that the two issues discussed above, SCP and the
change of the asymptotic gauge condition, only arise in the non-linear problem. However,
by the perturbative statement following (1.5), SCP also allows us to deduce the linear
stability of slowly rotating Kerr—de Sitter spacetimes directly, by a simple perturbation
argument, from the linear stability of Schwarzschild—de Sitter space; this is in contrast to
the techniques used in [37] in the setting of A=0, which do not allow for such perturbation

arguments off a=0.

The linear stability of Schwarzschild—de Sitter spacetimes in turn is a direct con-
sequence of the results of [140] together with UEMS, proved in §7, and the symbolic
analysis at the trapped set of §9.1 (which relies on [72]); see Theorem 10.1. The rest
of the bulk of the paper, including SCP, is needed to build the robust perturbation
framework required for the proof of non-linear stability (and the linear stability of slowly

rotating Kerr—de Sitter spacetimes).

We can now state the precise version of Theorem 1.1 which we will prove in this
paper.
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THEOREM 1.4. (Stability of the Kerr—de Sitter family for small a; precise version)
Let h, keC>=(Xg; S?T*Xq) be initial data satisfying the constraint equations, and suppose
h and k are close to the Schwarzschild-de Sitter initial data (hy,, ks,) in the topology of
H?L(30; S2T*%0) D H?°(X0; S?T*%). Then there exist Kerr—de Sitter black hole param-
eters b close to by, a compactly supported gauge modification €C®(Q2°;T*Q°) (lying in
a fived finite-dimensional space ©) and a symmetric 2-tensor GEC™(Q°; S2T*°), with
g=0(e=%) together with all its stationary derivatives (here a>0 independent of the

initial data), such that the metric

9=9p+g
solves the Einstein equation
Ric(g)+Ag=0 (1.6)
in the gauge
T(g)_T(gbo,b)_ezov (17)

where we define T(g)::gyglglégGgg]b0 (which is (1.3) with ¢°=gy,), and with g attaining
the data (h,k) at Xo.

See Theorem 11.2 for a slightly more natural description (in terms of function spaces)
of g. In order to minimize the necessary bookkeeping, we are very crude in describing
the regularity of the coefficients, as well as the mapping properties, of various operators;
thus, the number of derivatives used in this theorem is far from optimal. (With a bit
more care, as in [76], it should be possible to show that 12 derivatives are enough, and
even this is still rather crude.)

As explained above, the finite-dimensional space © of compactly supported gauge
modifications appearing in the statement of Theorem 1.4, as well as its dimension, can
be computed in principle: it would suffice to compute the non-decaying resonant states
of the linearized, modified Einstein operator Dy, (Ric+A)—S*ngO T. While we do not
do this here, this can easily be done for the static de Sitter metric, see Appendix C.

The reader will have noticed the absence of 6* (or 0;) in the formulation of Theo-
rem 1.4, and in fact at first sight 6* may seem to play no role: indeed, while the non-linear

equation we solve takes the form
Ric(g)+Ag—0"(Y(9) =Y (gbo,5) —0) =0, (1.8)

the non-linear solution g satisfies both the Einstein equation (1.6) and the gauge condition
(1.7); therefore, the same g (not merely up to a diffeomorphism) also solves the same
equation with 47 in place of 5*! But note that this is only true provided the initial data
satisfy the constraint equations. We will show however that one can solve (1.8), given
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any Cauchy data, for (b,0,g); and we only use the constraint equations for the initial
data at the very end, after having solved (1.8), to conclude that we do have a solution of
(1.6). On the other hand, it is not possible to solve (1.8) globally for arbitrary Cauchy
data if one used J; instead of 6%, since modifying the parameters b and 6 is then no longer
sufficient to eliminate all non-decaying resonant states, the problematic ones of course
being those which are not pure gauge modes. From this perspective, the introduction
of 6* has the effect of making it unnecessary to worry about the constraint equations—
which are rather delicate—Dbeing satisfied when solving the equation (1.8), and thus paves
the way for the application of the robust perturbative techniques developed in §5.

Remark 1.5. There are only three places where the result of the paper depends on
a computation whose result is not a priori ‘obvious’. The first is UEMS itself in §7; this
is, on the one hand, well established in the physics literature, and on the other hand its
failure would certainly doom the stability of the Kerr—de Sitter family for small a. The
second is the subprincipal symbol computation at the trapped set, in the settings of SCP
in §8.2 and for the linearized gauged Einstein equation in §9.1, which involves large (but
finite!) dimensional linear algebra; its failure would break our analysis in the DeTurck-
type gauge we are using, but would not exclude the possibility of proving Kerr—de Sitter
stability in another gauge. (By contrast, the failure of the radial point subprincipal
symbol computation would at worst affect the threshold regularity % in Theorem 4.4,
and thus merely necessitate using slightly higher regularity than we currently use.) The
third significant computation finally is that of the semiclassical subprincipal symbol at
the zero section for SCP, in the form of Lemma 8.18, whose effect is similar to the

subprincipal computation at the trapped set.

These are also exactly the ‘non-obvious’ computations to check if one wanted to
extend Theorem 1.4 to a larger range of angular momenta, i.e. allowing the initial data h
and k to be close to the initial data of a Kerr—de Sitter spacetime with angular momentum
in a larger range (rather than merely in a neighborhood of zero). The rest of our analysis
does not change for large angular momenta, provided the Kerr—de Sitter black hole
one is perturbing is non-degenerate (in particular subextremal) in a suitable sense; see

specifically the discussions in [140, §6.1] and around [140, equation (6.13)].

Likewise, these are the computations to check for the stability analysis of higher-
dimensional black holes with A>0; in this case, one in addition needs to extend the

construction of the smooth family of metrics in §3 to the higher-dimensional case.
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1.2. Further consequences

As an immediate consequence of our main theorem, we find that Kerr—de Sitter space-
times are the unique stationary solutions of Einstein’s field equations with positive cos-
mological constant in a neighborhood of Schwarzschild—de Sitter spacetimes, as measured
by the Sobolev norms on their initial data in Theorem 1.4. This gives a dynamical proof
of a corresponding theorem for A=0 by Alexakis—Ionescu—Klainerman [2], who prove the
uniqueness of Kerr black holes in the vicinity of a member of the Kerr family.

Moreover, our black hole stability result is a crucial step towards a definitive resolu-
tion of Penrose’s strong cosmic censorship conjecture for positive cosmological constants.
(We refer the reader to the introduction of [102] for an overview of this conjecture.)
In fact, we expect that ongoing work by Dafermos-Luk [39] on the C° stability of the
Cauchy horizon of Kerr spacetimes should combine with our main theorem to give, un-
conditionally, the CO stability of the Cauchy horizon of Kerr-de Sitter spacetimes. The
decay assumptions along the black hole event horizon which are the starting point of the
analysis of [39] are merely polynomial, corresponding to the expected decay of solutions
to Einstein’s equations in the asymptotically flat setting; however, as shown in [77] for
linear wave equations, the exponential decay rate exhibited for A>0 should allow for a
stronger conclusion; a natural conjecture, following [77, Theorem 1.1], would be that the
metric has H'/2+%/* regularity at the Cauchy horizon, where >0 is the surface gravity
of the Cauchy horizon. (Indeed, the linear analysis in the present paper can be shown
to imply this for solutions of linearized gravity.) We refer to the work of Costa, Girao,
Natdrio and Silva [32]-[34] on the non-linear Einstein-Maxwell-scalar field system under
the assumption of spherical symmetry for results of a similar flavor.

Lastly, we can make the asymptotic analysis of solutions to the (linearized) Einstein
equation more precise and thus study the phenomenon of ringdown. Concretely, for
the linear problem, one can in principle obtain a (partial) asymptotic expansion of the
gravitational wave beyond the leading order, linearized Kerr—de Sitter, term; one may
even hope for a complete asymptotic expansion akin to the one established in [17], [53]
for the scalar wave equation. For the non-linear problem, this implies that one can ‘see’
shallow quasinormal modes for timescales which are logarithmic in the size of the initial
data. See Remark 11.3 for further details. Very recently, the ringdown from a binary

black hole merger has been measured for the first time [1].

1.3. Previous and related work

The aforementioned papers [140], [75], [76]—on which the analysis of the present paper
directly builds—and our general philosophy to the study of waves on black hole space-
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times, mostly with A>0, build on a host of previous works.

On Schwarzschild—de Sitter space, Bachelot [6] set up the functional analytic scat-
tering theory, and S& Barreto-Zworski [123] and Bony-Héfner [17] studied resonances
and exponential wave decay away from the event horizon; Melrose, S4 Barreto and Vasy
[108] proved exponential decay to constants across the horizons.

The precise study of waves on rotating Kerr—de Sitter spacetimes requires an anal-
ysis at normally hyperbolically trapped sets, which was first accomplished in the break-
through work of Wunsch—Zworski [147]. This was later extended and simplified by
Nonnenmacher-Zworski [115] and Dyatlov [56]; see also [74]. This enabled Dyatlov
to obtain full asymptotic expansions for linear waves on exact, slowly rotating Kerr—
de Sitter spaces into quasinormal modes (resonances) [53], following his earlier work on
exponential energy decay [51], [52]; see also the more recent [54].

Using rather different, physical space, techniques, Dafermos—Rodnianski [43] proved
super-polynomial energy decay on Schwarzschild—de Sitter spacetimes. Such techniques
were also used by Schlue in his analysis of linear waves in the cosmological part of Kerr—
de Sitter spacetimes [127], and by Keller for the Maxwell equation [88]. We furthermore
mention Warnick’s physical space approach to the study of resonances [145].

Regarding work on spacetimes without black holes, but in the microlocal spirit, we
mention specifically the works [9]-[12].

The general microlocal analytic and geometric framework underlying our global
study of asymptotically Kerr—de Sitter-type spaces by compactifying them to manifolds
with boundary, which are then naturally equipped with b-metrics, is Melrose’s b-analysis
[110]. The considerable flexibility and power of a microlocal point of view is exploited
throughout the present paper, especially in §5, §8 and §9. We specifically mention the
ease with which bundle-valued equations can be treated, as first noted in [140], and
shown concretely in [72], [78], where the authors prove decay to stationary states for
Maxwell’s (and more general) equations. We also point out that a stronger notion of
normal hyperbolicity, called r-normal hyperbolicity—which is stable under perturbations
[79]—was proved for Kerr and Kerr—de Sitter spacetimes in [147], [54], and allows for
global results for (non-)linear waves under very general assumptions [140], [76]. Since, as
we show, solutions to Einstein’s equations near Kerr—de Sitter always decay to an exact
Kerr—de Sitter solution (up to exponentially decaying tails), the flexibility afforded by
r-normal hyperbolicity is not used here.

Linear and non-linear wave equations on black hole spacetimes with A=0, specifi-
cally Kerr and Schwarzschild, have received more attention. They do not directly fit into
the general frameworks mentioned above; a fundamental difference is that waves decay at
most at a fixed polynomial rate on general asymptotically flat (A=0) spacetimes, which
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is in stark contrast to the exponential decay rate on spacetimes with asymptotically hy-
perbolic (A>0) ends. Directly related to the topic of the present paper is the recent proof
of the linear stability of the Schwarzschild spacetime under gravitational perturbations
without symmetry assumptions on the data [37], which we already discussed above; a less
quantitative version of this was obtained by simpler means by Hung, Keller, and Wang
[83]. After pioneering work by Wald [143] and Kay—Wald [87], Dafermos, Rodnianski and
Shlapentokh—Rothman [42], [44] recently proved polynomial decay for the scalar wave
equation on all (exact) subextremal Kerr spacetimes; Tataru and Tohaneanu [131], [132]
proved Price’s law, i.e. precise polynomial decay rates, for slowly rotating Kerr space-
times, and Marzuola, Metcalfe, Tataru and Tohaneanu obtained Strichartz estimates
[104], [137]. There is also work by Donninger, Schlag and Soffer [49] on L™ estimates
on Schwarzschild black holes, following L estimates of Dafermos and Rodnianski [40],
and of Blue and Soffer [16] on non-rotating charged black holes giving L® estimates.
Apart from [37], bundle-valued (or coupled systems of) equations were studied in par-
ticular in the contexts of Maxwell’s equations by Andersson and Blue [15], [4], [5] and
Sterbenz—Tataru [130] (see also [84], [50]), and for Dirac equations by Finster, Kamran,
Smoller and Yau [58]. Non-linear problems on exterior A=0 black hole spacetimes were
studied by Dafermos, Holzegel and Rodnianski [38], who constructed backward solutions
of the Einstein vacuum equations settling down to Kerr exponentially fast (regarding
this point, see also [45]); for forward problems, Dafermos [35], [36] studied the non-linear
Einstein—Maxwell-scalar field system under the assumption of spherical symmetry. We
also mention Luk’s work [101] on semi-linear equations on Kerr, as well as the steps
towards understanding a model problem related to Kerr stability under the assumption

of axial symmetry [85].

A fundamental driving force behind a large number of these works is Klainerman’s
vector field method [90]; subsequent works by Klainerman and Christodoulou [91], [24]
introduce the ‘null condition” which plays a major role in the analysis of non-linear in-
teractions near the light cone, in particular in (3+1)-dimensional asymptotically flat
spacetimes—in the asymptotically hyperbolic case which we study here, there is no ana-

logue of this condition.

Using these and related techniques, a number of works prove the global non-linear
stability of Minkowski space as a solution to Finstein’s field equations coupled to various
matter models; we mention the works by Speck [129] for the Einstein—Maxwell system,
LeFloch-Ma [96] for the Einstein equation coupled to a massive scalar field, Taylor [133]
for Einstein—Vlasov, and references therein. There is also a large amount of literature
studying stability questions under symmetry assumptions on the spacetime: we only

mention the work by Choquet-Bruhat and Moncrief [22], in which they in particular
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solve for a (time-dependent) finite-dimensional (Teichmiiller) parameter, but we point

out that this is unrelated to the finite-dimensional gauge issues discussed in §1.1.

There is also ongoing work by Dafermos—Luk [39] on the stability of the interior
(‘Cauchy’) horizon of Kerr black holes; note that the black hole interior is largely un-
affected by the presence of a cosmological constant, but the a-priori decay assumptions
along the event horizon, which determine regularity properties at the Cauchy horizon, are
vastly different: the merely polynomial decay rates on asymptotically flat (A=0) space-
times, as compared to the exponential decay rate on asymptotically hyperbolic (A>0)
spacetimes, is a low frequency effect, related to the very delicate behavior of the resolvent
near zero energy on asymptotically flat spaces. A precise study in the spirit of [140] and
[46] is currently in progress [67].

In the physics community, hole perturbation theory, i.e. the study of linearized per-
turbations of black hole spacetimes, has a long history. For us, the most convenient
formulation, which we use heavily in §7, is due to Ishibashi, Kodama and Seto [93], [92],
[86], building on earlier work by Kodama—Sasaki [94]. The study was initiated in the
seminal paper by Regge—Wheeler [118], with extensions by Vishveshwara [142] and Zerilli
[149], analyzing metric perturbations of the Schwarzschild spacetime; a gauge-invariant
formalism was introduced by Moncrief [113], later extended to allow for coupling with
matter models by Gerlach-Sengupta [62] and Martel-Poisson [103]. A different approach
to the study of gravitational perturbations, relying on the Newman—Penrose formalism
[114], was pursued by Bardeen—Press [7] and Teukolsky [136], who discovered that certain
curvature components satisfy decoupled wave equations; their mode stability was proved
by Whiting [146]. We refer to Chandrasekhar’s monograph [19] for a more detailed

account.

For surveys of numerical investigations of quasinormal modes, often with the goal
of quantifying the phenomenon of ringdown discussed in §1.2, we refer the reader to
the articles [95] and [13], and the references therein. We also mention the paper by
Dyatlov—Zworski [57] connecting recent mathematical advances in particular related to

quasinormal modes with the physics literature.

1.4. Outline of the paper

We only give a broad outline and suggest ways to read the paper; we refer to the intro-
ductions of the individual sections for further details.
e In §2 we discuss in detail the constraint equations and hyperbolic formulations of

Einstein’s equations.
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e In §3 we give a precise description of the Kerr—de Sitter family and its geometry,
as needed for the study of initial value problems for wave equations.

e In §4 we describe the key ingredients of the proof in detail, namely UEMS, SCP
and ESG, ‘essential spectral gap;’ the latter is the statement that solutions of the lin-
earized gauged Einstein equation, with our modification that gives SCP, have finite as-
ymptotic expansions up to exponentially decaying remainders. As mentioned before,
the key element here is that the subprincipal symbol of our linearized modified gauged
Einstein equation has the correct behavior at the trapped set.

e In §5 we recall the linear global microlocal analysis results both in the smooth and
in the non-smooth (Sobolev coefficients) settings, slightly extending these to explicitly
accommodate initial value problems with non-vanishing initial data. (Our earlier works
considered only inhomogeneous PDEs with vanishing initial conditions.) We also show
how to modify the PDE in a finite-rank manner in order to ensure solvability on spaces
of decaying functions in spite of the presence of non-decaying modes (resonances).

e In §6 we do some explicit computations for the Schwarzschild-de Sitter metric
that will be useful in the remaining sections.

e In §7 we show the mode stability for the (ungauged) linearized Einstein equation
(UEMS), in §8 we show the stable gauge propagation (SCP), while in §9 we show the
final key ingredient, the essential spectral gap (ESG) for the linearized gauged Einstein
equation.

e In §10 we put these ingredients together to show the linear stability of slowly
rotating Kerr—de Sitter black holes.

e In §11 we show their non-linear stability. (In §11.3 we construct initial data sets.)

In order for the reader to see that the linear stability result is extremely simple given
the three key ingredients and the results of §5.1, we suggest reading §2-4 and taking the
results in §4 for granted, looking up the two important results in §5.1 (Corollaries 5.8
and 5.12), and then reading §10. Following this, one may read §11.2 for the proof of
non-linear stability, which again uses the results of §4 as black boxes together with the
perturbative analysis of §5.2, in particular Theorem 5.14. Only the reader interested in

the (very instructive!) proofs of the key ingredients needs to consult §6-9.

Appendix A recalls basic notions of Melrose’s b-analysis. In Appendix B, we state
and prove a very general finite-codimensional solvability theorem for quasilinear wave
equations on (Kerr—)de Sitter-like spaces. In Appendix C finally, we illustrate some of
the key ideas of this paper by proving the non-linear stability of the static model of
de Sitter space; we recommend reading this section early on, since many of the obstacles
we need to overcome in the black hole setting are exhibited very clearly in this simpler
setting.
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1.5. Notation

For the convenience of the reader, we list some of the notation used throughout the paper,
and give references to their first definition. (Some quantities and sets will be shrunk later

in the paper as necessary, but we only give the first reference.)

ogr ... constraint propagation operator; see (2.13)

ﬁgp ....... modified constraint propagation operator; see (4.4)

oy ........ wave operator for arranging linearized gauge conditions; see (2.20)
o exponential decay rate; see §4.2

B ......... space of black hole parameters (CR?); see (3.1)

b .. fixed Schwarzschild-de Sitter parameters, by € B; see (3.3)

| A trapped set on Schwarzschild-de Sitter space; see (3.30)

Og vevnnnn divergence, (Ggu)s,...i,, =—Ui; ..., j;

Oy s symmetric gradient, (8gu)i; =5 (ui;+u;si)

§ e modified symmetric gradient; see (4.5)

D distributions, on a domain with corners, with supported character at

the boundary; see [81, Appendix B]

D% ... space of data for initial value problems for wave equations;
see Definition 5.6

Jb oeevennnn Kerr—de Sitter metric with parameters b€ B; see §3.2

Gy «vonnnn. dual metric of gy

gy ..., linearized (around g¢,) Kerr—de Sitter metric, with linearized parameters
b’ €Ty, B; see Definition 3.7

(gp)T(®') ... linearized Kerr—de Sitter metric put into the linearized wave map gauge;
see Proposition 10.2

Ggooovvnn trace reversal operator; see (2.4)

H, ........ Hamilton vector field of the function p on phase space; see Appendix A.1

He ........ Sobolev space of extendible distributions on a domain with boundary or

corners; see [81, Appendix B]

H>™ weighted b-Sobolev space; see (A.10)

H>™(Q)"~  space of restrictions of elements of H, “(M) vanishing in the past of X
to the interior of 2; see §A.2

HS’O‘ ...... weighted b-Sobolev space of extendible distributions on a domain with
corners; see (A.15)

Hg:g ...... semiclassical weighted b-Sobolev space; see Appendix A.3

Ly ooiiinn. b-conormal bundle of the horizons of (M, g;); see (3.23)

M ......... compactification of M° at future infinity; see (3.19)
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Mo static coordinate chart C M° of a fixed Schwarzschild—de Sitter space-
time; see (3.11)

Me ool open 4-manifold on which the metrics g, are defined; see (3.9)

M. ........ black hole mass; see (3.1)

Mg ....... mass of a fixed Schwarzschild—de Sitter black hole; see (3.3)

Uy ol algebra of b-pseudodifferential operators; see Appendix A.2

Wy p oooennnn algebra of semiclassical b-pseudodifferential operators; see Appen-
dix A.3

Ry «ovvnnn (generalized) radial set of (M, gp) at the horizons; see (3.24)

Ry oo curvature term appearing in the linearization of Ric; see (2.9)

Res(L) .... set of resonances of the operator L; see (5.16)

Res(L,o0) .. linear space of resonant states of L at o; see (5.17)

Res*(L,o) . linear space of dual resonant states of L at o; see (5.19)

bgx . b-cosphere bundle; see Appendix A.1

)/ S Cauchy surface of the domain Q; see (3.33)

Sp o characteristic set of Gp; see (3.20)

b static time coordinate; see (3.4)

or Boyer—Lindquist coordinate; see (3.12)

[ timelike function, smooth across the horizons; see (3.6)

b b-cotangent bundle; see Appendix A.1

b L. radially compactified b-cotangent bundle; see (A.1)

Ug ........ small neighborhood of by (parameters of slowly rotating Kerr—de Sitter
black holes); see Lemma 3.3

) space of b-vector fields; see Appendix A.1

X boundary of M at future infinity; see (3.19)

X oo spatial slice of the static chart M; see (3.11)

Y . boundary of €2 at future infinity; see §3.5

T ..o gauge 1-form; see (3.35)

Q.o domain with corners C M on which we solve wave equations; see (3.33)

wr @) ..... 1-form used to put g;(b') into the correct linearized gauge;

see Proposition 10.2.

Furthermore, we repeatedly use the following acronyms:

ESG ....... essential spectral gap; see §4.3
SCP ....... stable constraint propagation; see §4.2
UEMS ..... ungauged Einstein mode stability; see §4.1
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2. Hyperbolic formulations of the Einstein vacuum equations
2.1. Initial value problems; DeTurck’s method

Einstein’s field equations with a cosmological constant A for a Lorentzian metric g of

signature (1,3) on a smooth manifold M take the form
Ric(g)+Ag=0. (2.1)
The correct generalization to the case of n+1 dimensions is Ein(g)=Ag, which is equiv-

2A
(Ric+>g:0;
n—1

by a slight abuse of terminology and for the sake of brevity, we will however refer to (2.1)

alent to

as the Einstein vacuum equations also in the general case. Given a globally hyperbolic
solution (M, g) and a spacelike hypersurface ¥oC M, the negative definite Riemannian
metric h on ¥y induced by ¢ and the second fundamental form k(X,Y)=(VxY,N),
X, YeTY, of ¥ satisfy the constraint equations

Ry, +(trp k)?— k|7 = (1—n)A,
opk+dtry k=0,

(2.2)
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where Ry, is the scalar curvature of h, and (657),=—7,;" is the divergence of the sym-
metric 2-tensor r. We recall that, given a unit normal vector field N on X, the constraint

equations are equivalent to the equations
Eing(N,N)=3(n—1)A, Eing(N,X)=0, X €T, (2.3)
for the Einstein tensor Eing,=G4Ric(g), where
Ggr=r—1(tryr)g. (2.4)

Conversely, given an initial data set (Xo, h, k), where ¥ is a smooth 3-manifold, h
is a negative definite Riemannian metric on ¥y and k is a symmetric 2-tensor on ¥, one
can consider the non-characteristic initial value problem for the Einstein equation (2.1),
which asks for a Lorentzian 4-manifold (M, g) and an embedding o< M such that h
and k are, respectively, the induced metric and the second fundamental form of ¥g in M.
We refer to the survey of Bartnik-Isenberg [8] for a detailed discussion of the constraint
equations; see also §11.3.

As explained in the introduction, solving the initial value problem is non-trivial be-
cause of the lack of hyperbolicity of Einstein’s equations due to their diffeomorphism
invariance. However, as first shown by Choquet-Bruhat [59], the initial value problem
admits a local solution, provided (h, k) are sufficiently regular, and the solution is unique
up to diffeomorphisms in this sense; Choquet-Bruhat—Geroch [21] then proved the exis-
tence of a mazimal globally hyperbolic development of the initial data. (Sbierski [125]
recently gave a proof of this fact which avoids the use of Zorn’s lemma.)

We now explain the method of DeTurck [48] for solving the initial value problem in
some detail; we follow the presentation of Graham and Lee [65]. Given the initial data
set (Xo, h, k), we define M =R,0 x Xy and embed ¥y {2=0}C M; the task is to find a
Lorentzian metric g on M near ¥ solving the Einstein equation and inducing the initial
data (h,k) on 3. Choose a smooth non-degenerate background metric ¢°, which can

have arbitrary signature. We then define the gauge 1-form
T(9) ::9(90)_1557(;990ECOO(MvT*M)a (2.5)

viewing g(g") ! as a bundle automorphism of 7% M. As a non-linear differential operator
acting on geC>®(M, S*T* M), the operator T(g) is of first order.

Remark 2.1. A simple calculation in local coordinates gives

Y(9) = 9useg” (T(9) 50 ~T(9°)7). (2.6)
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Thus, Y(g)=0 if and only if the pointwise identity map Id: (M, g)— (M, ¢°) is a wave
map. Now, given any local solution g of the initial value problem for Einstein’s equations,
we can solve the wave map equation O, j,0¢=0 for ¢: (M, g)— (M, ¢g") with initial data
¢|s, =Ids, and D¢|s,=Idrs,. Indeed, recalling that

(Og,909)" = g™ (8,0,0" ~T(9)5, 00" +T(g°)5;0,0'0, 87 ), o) = (" (z")),

we see that [y ,0¢=0 is a semi-linear wave equation, hence a solution ¢ is guaranteed
to exist locally near g, and ¢ is a diffeomorphism of a small neighborhood U of %
onto ¢(U); let us restrict the domain of ¢ to such a neighborhood U. Then g¥:=¢.g is
well defined on ¢(U), and ¢: (U, g)—(¢(U), ¢g¥) is an isometry; hence we conclude that
Id: (¢(U), g7)—=((U), ¢°) is a wave map, so T(g¥)=0. Moreover, by our choice of initial

conditions for ¢, the metric g¥ induces the given initial data (h, k) pointwise on ¥q.

With (65u) =75 (U +ty;,) denoting the symmetric gradient of a 1-form w, the

non-linear differential operator
Ppr(g) :=TRic(g)+Ag—3,Y(g) (2.7)

is hyperbolic. Indeed, following [65, §3], the linearizations of the various terms are given
by
DyRic(r) = 5047 —056Gyr+2,(r), (2.8)

where (0g7) 0 =—7u0:,.> and
Ry (1) = r"A(Rg)xW,\+%(Ric(g),ﬁ‘my—|—Ric(g),,)‘r,\u), (2.9)

and
DY (r)=—08,Gyr+% (r)—2(r), (2.10)

where

C:L{l/ - % ((90)71)%>\(92)\;V +gg)\;,u 7921/;)\)7 D* = g,U«VCZfI”
(g(r>x:ngCﬁyruy; @(T)K:DATKA?
so DgPpr(r) is equal to the principally scalar wave operator %Dgr plus lower-order
terms. Therefore, one can solve the Cauchy problem for the quasilinear hyperbolic system

Ppr(g)=0, where the Cauchy data

’YO(Q) = (g|207‘cazog|20) = (90791)7
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g0, g1 GC“(EO,SQTgoM), are arbitrary. Moreover, we saw in Remark 2.1 that every
solution of the Einstein vacuum equations can be realized as a solution of Ppr(g)=0 by
putting the solution into the wave map gauge YT (g)=0. (On the other hand, a solution of
Ppr(g)=0 with general Cauchy data (go, g1) will have no relationship with the Einstein
equation!)

We can now explain how to solve the initial value problem for (2.1). Given an initial
data set (2o, h, k), so h,keC>®(Zq, S?T*X) (in local coordinates, 3 x3 matrices), one
first constructs go, g1 €C* (X0, S*T5;, M) (in local coordinates, 4x4 matrices) with the
following properties:

e g is of Lorentzian signature;

e the data on Xy induced by a metric g with v0(g)=(g0, g1) are equal to (h, k);

® Y(g)|s,=0 as an element of C*° (3, T3, M).

Note here that the metric induced on ¢ (which we want to be equal to k) only depends
on go, while the second fundamental form and gauge 1-form (which we want to be k and
Y(g), respectively) only depend on (go, g1); in other words, any metric g with the same
Cauchy data (go, g1) induces the given initial data on Xy and satisfies T(g)=0 at X,. We
refer the reader to [135, §18.9] for the construction of the Cauchy data, and also to §3.6
for a detailed discussion in the context of the black hole stability problem.

Next, one solves the gauged Einstein equation

PDT(g):O7 70(9):(90791)7 (211)

locally near ¥y. Applying G, to this equation and using the constraint equations (2.3), we
conclude that (Gy46;Y (g))(INV, N)=0, where N is a unit normal to ¥oCM with respect
to the solution metric g, and (G40, (g))(NV, X)=0 for all X€T,. It is easy to see
[135, §18.8] that T(g)|s,=0 and these equations together imply Ly ,Y(g)|s,=0. The
final insight is that the second Bianchi identity,(®) written as J,G,Ric(g)=0 for any
metric g, implies a hyperbolic evolution equation for Y(g), which we call the (unmodified)

constraint propagation equation, to wit
CP
O, Y(g)=0, (2.12)
where DgCP is the (unmodified) constraint propagation operator defined as
CP.__ *
Uy" :=20,Gydy. (2.13)

The notation is justified: one easily verifies DgpuzDgu—Ric(g)(u, -), with O, being

the tensor Laplacian on 1-forms. The terminology is motivated by the following fact:

(3) The second Bianchi identity is in fact in a consequence of the diffeomorphism invariance
Ric(¢*g)=¢*Ric(g) of the Ricci tensor; see [23, §3.2].
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given a solution g of (2.11) with arbitrary initial data, and a spacelike surface X1 (with
unit normal N) at which Y(g)|s, =0, the constraint equations (2.3) are equivalent to
(Y(9)s,, LnTY(9)|x,)=0; it is in this sense that (2.12) governs the propagation of the
constraints.

Now, the uniqueness of solutions of the Cauchy problem for the equation (2.12)
implies T(g)=0, and thus g indeed satisfies the Einstein equation Ric(g)+Ag=0 in the
wave map gauge Y(g)=0, and g induces the given initial data on ¥. This justifies the
terminology ‘gauged Einstein equation’ for the equation (2.11), since its solution solves
the Einstein equation in the chosen gauge.

2.2. Initial value problems for linearized gravity

Suppose now that we have a smooth family g5, s€(—¢,¢), of Lorentzian metrics solving
the Einstein equation Ric(gs)+Ags=0 on a fixed (n+1)-dimensional manifold M, and a
hypersurface Yo C M which is spacelike for g=gq. Let

d

r=—
dsgs s=0

Differentiating the equation at s=0 gives the linearized (ungauged) FEinstein equation
Dy(Ric+A)(r)=0. (2.14)

The linearized constraints can be derived as the linearization of (2.2) around the initial
data induced by gg, hence they are equations for the linearized metric A’ and the linearized
second fundamental form k', with 1/, k' €C> (3, S*T*%,); alternatively, we can use (2.3):
if N, is a unit normal field to Xy with respect to the metric g5, so Ny also depends
smoothly on s, then differentiating (Eing, —3(n—1)Agy)(Ns, N;)=0 at s=0 gives

(DyEin(r)—4(n—1)Ar)(N,N)=0, (2.15)

where we used (2.3) to see that the terms coming from differentiating either of the Nj
gives 0; on the other hand, using the Einstein equation, the derivative of Eing, (N, X)=0

at s=0 takes the form

DBin(r)(N, X) +3(n-1)Ag(N', X) =0, N'= LN,
s s=0
now gs(Ng, X)=0 yields g(N’, X)=—r(N, X) upon differentiation, and hence we arrive
at
(DyEin(r)—1(n—1)Ar)(N, X)=0, XeT%,. (2.16)
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If moreover each of the metrics g5 is in the wave map gauge Y (gs)=0, with T given

in (2.5) for a fixed background metric ¢g°, then we also get
Dy (r)=0;

therefore, in this case, r solves the linearized gauged Finstein equation

Dy(Ric+A)(r)—6,D,Y(r)=0. (2.17)
As in the non-linear setting, one can use (2.17), which is a principally scalar wave equation
as discussed after (2.7), to prove the well-posedness of the initial value problem for the
linearized Einstein equation: given an initial data set (h’, k") of symmetric 2-tensors on
satisfying the linearized constraint equations, one constructs Cauchy data (rg,r1) for the
gauged equation (2.17) satisfying the linearized gauge condition at ¥y; solving the Cauchy
problem for (2.17) yields a symmetric 2-tensor r. The linearized constraints in the form
(2.15)~(2.16) imply that G407 DY (r)=0 at X, which as before implies Ly , Dy Y (r)=0
at Y. Finally, since Ric(g)+Ag=0, linearizing the second Bianchi identity in g gives

34GyDy(Ric+A)(r) =0,

and thus (2.17) implies the evolution equation OS* (D, (r))=0, and hence Dy Y (r)=0,
and we therefore obtain a solution r of (2.14).

Analogously to the discussion in Remark 2.1, one can put a given solution r of
the linearized Einstein equation (2.14), with g solving Ric(g)+Ag=0, into the linearized
gauge Dy Y (r)=0 by solving a linearized wave map equation. Concretely, the diffeomor-
phism invariance of the non-linear equation (2.1) implies that Dy(Ric+A)(d;w")=0 for
all w'eC> (M, T*M); indeed, 0, ’:%L’(w/)ug is a Lie derivative. Thus, putting r into the
gauge DY (r)=0 amounts to finding w’ such that

DY (r+d,w")=0 (2.18)
holds, or equivalently

Ofw’ =2D,Y(r), (2.19)
where we define

Of =—2D,Y-5;, (2.20)

which agrees to leading order with the wave operator O, on 1-forms due to (2.10). Thus,
one can solve (2.19), with any prescribed initial data vo(w’), and then (2.18) holds. Taking
~o(w')=0 ensures that the linearized initial data, i.e. the induced linearized metric and
linearized second fundamental form on g, of r and r+5;w’ coincide.

We remark that, if one chooses the background metric ¢° in (2.5) to be equal to the

metric g around which we linearize, then DY (r)=—0,G4r by (2.10), and thus
OF =0g+A;
see also (2.13).
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3. The Kerr—de Sitter family of black hole spacetimes

Let us fix the cosmological constant A>0. The Kerr—de Sitter family of black holes,
which we will recall momentarily, is parameterized by the mass M,>0 and the angular
momentum a of the black hole. We shall only consider black holes which are not ‘too
large’, 9AM?Z <1, which for Schwarzschild-de Sitter black holes ensures that the cosmo-
logical horizon is outside of the event horizon; and the angular momentum will be small,
la| <1, i.e. we only study slowly rotating Kerr—de Sitter black holes.

Since the SO(3)-action on Kerr—de Sitter metrics (via pull-back) degenerates at a=0,

it will be useful to in fact use the larger, and hence redundant, parameter space
B={(M.,a): M.>0,ac R*} CR*, (3.1)

This allows us to keep track of the rotation axis a/|a| of the black hole for a=|a|#0.
(Here, | -| denotes the Euclidean norm in R3.) The subfamily of Schwarzschild-de Sitter
black holes is then parameterized by elements (M.,0)C B, M.>0. As explained in the
introduction, the relevance of Kerr—de Sitter spacetimes in general relativity is that they

are solutions of the Einstein vacuum equations with a cosmological constant:
Ric(gs)+Ags =0.

In this section, we will define a manifold M° and the Kerr—de Sitter family g;, of
smooth, stationary Lorentzian metrics on M°; we proceed in two steps, first defining
Schwarzschild—de Sitter metrics in §3.1, and then Kerr—de Sitter metrics §3.2, in particu-
lar proving the smoothness of the family. A key aspect of our approach to the black hole
stability problem is that we work on a compactification of Kerr—de Sitter space at future
infinity; we discuss this in §3.3. In §3.4 and §3.5, we describe the geometric structure
of these spacetimes in detail and explain how to set up initial value problems for wave
equations. In §3.6 finally, we construct Cauchy data for hyperbolic formulations of the

Einstein equation, in suitable wave map gauges, out of geometric initial data.

3.1. Schwarzschild—de Sitter black holes
We fix a black hole mass M, >0 such that

9AM?Z, € (0,1), (3.2)

and let
bo=(M.,0)€B (3.3)
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Figure 3.1. Penrose diagram of Schwarzschild—de Sitter space. The form (3.4) of the metric
is valid in the shaded region. Here, H* denotes the future/past event horizon, H* the
future/past cosmological horizon, and i* future/past timelike infinity. Also indicated are two
level sets of the static time coordinate ¢, and a level set of r (dashed).

be the parameters for a non-rotating Schwarzschild-de Sitter black hole. In the static
coordinate patch M=R; xZ, xS?, which covers the exterior region (also known as the
domain of outer communications) of the black hole, with the interval Z defined below,

the metric is defined by

2M.o Ar?

" 3 (3.4)

Gbo = Kby dt* _:U'b_ol dr®—r? g7 Hbg (T) =1-

where ¢ is the round metric on S*. The non-degeneracy condition (3.2) ensures that
Lo, () has exactly two positive simple roots 0<ry,, - <rp, + <00, and then the given form
of the metric gy, is valid for

T €L :=(Thy,— Thy,+)- (3.5)

See Figure 3.1.
The singularity of the expression (3.4) at r=ry, + is resolved by a change of coordi-

nates: we let

te=t—Fyp (r), Fj,(r)==%(tp,(r) " +cp,=(r)) near r=ry, s, (3.6)
where ¢y, + (1) is smooth up to r=rp, +; then,

Gbo = M A3 E£2(1+ pipyCoy 1) dby dr+ (26, 5+ poy G, 1) dr® =174 (3.7)

It is easy to see that one can choose ¢y, ,+ such that dt, is timelike up to r=ry, +. In fact,
there is a natural choice of ¢, + making \dt*%bo constant, which will be convenient for

computations later on.



NON-LINEAR STABILITY OF KERR—DE SITTER 33

LEMMA 3.1. Let r.:=+/3M. /A be the unique critical point of pp, in (Tog.—Tbo.+),
and let ci, = pip, (Tc)_1/2= (1— v/ 9AM30)_1/2. Then,

r ( ) { _iubo(r)_l \Y% 1—6%*/%0(7“), if r<re, (3 8)
r)= .
" oo (T)il V lfctz*ﬂbo (’I"), Z'f"" >Te,

defines a smooth function Fy,(r) on I up to an additive constant. Let t,=t—Fp (r).

Then the metric gy, and the dual metric Gy, are given by

Goo = Mo A2 E20/ 1=}, dt, dr—c} dr? —r2g,
Gbo = C%* 81?* +2y 1703*/1“50 at*arfy’bo 87%77’72$7

for £(r—r.)>0, where ¢ is the dual metric on S?. In particular, |dt.|E=cf .

Proof. For Fy, as in (3.6), we have |dt*|éb0 =—(2cpy,+ + 140, cgmi). For this to be con-
stant, |dt*|éb0 =c? , with ¢;, determined in the course of the calculation, the smoothness

of the functions ¢y, + at rp, .+ forces

Chgx = i (14 V1—=¢F py, )-

In order for the two functions :i:(ub_o1 +¢py,+) to be real-valued and to match up, together
with all derivatives, at a point 7. € (74, , Tby,+ ), We thus need to arrange that the function
defined as +v/1—¢f s, in £(r—r.)>0 is smooth and real-valued. This forces r. to be
the unique critical point of p, on (rp,,—, b, ,+ ), which is a non-degenerate maximum, and
i =pupy(re) ™t this in turn is also sufficient for the smoothness of (3.8), and the lemma

is proved. O

Remark 3.2. Once we have chosen a function Fy,, or rather its derivative Fgo, for
instance as in the above lemma, then one can define ¢y, - €C*>([rp,,—, rpy,+)), 1.€. up to but

excluding 7y, +, and likewise cp, + €C*((7y, -, 76y, +]), Dy (3.6); that is, cp, +=+Fy *Mb_01~

We can extend c¢p, 1+ in an arbitrary manner smoothly (with the choice given in this
lemma even uniquely by analyticity, but this is irrelevant) beyond r=ry, . We can now

define the smooth manifold
M =Ry, xX, X=I.xS* TI.=(r;_,rr:):=reg.-—3cn,Tbg++3en),  (3.9)

for £p/>0 small, and g¢,, defined by (3.7) up to and beyond r=m, +, is a smooth
Lorentzian metric on M° satisfying Einstein’s equations. See Figure 3.2 (and also Fig-
ure 1.1). At the end of §3.2, we will compactify M° at future infinity, obtaining a manifold
M with boundary.
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Figure 3.2. The smooth manifold M° (shaded) within Schwarzschild-de Sitter space, and two
exemplary level sets of the timelike function t«. The form (3.7) of the metric in fact extends
beyond the dashed boundary of M°, r=r+43e,;, all the way up to (but excluding) the black
hole singularity »=0 and the conformal boundary =00 of the cosmological region.

Using the polar coordinate map, we can also view the spatial slice X as
X={peR3r;_<|p|<rr }CR>. (3.10)
The static coordinate chart on M° (i.e. the dashed region in Figure 3.1) is the region
M=R,;xXCM°, X=IxS? (3.11)

with Z defined in (3.5).

3.2. Slowly rotating Kerr—de Sitter black holes

Given Schwarzschild-de Sitter parameters by=(M. ¢,0)€B and the smooth manifold
(3.9) with time function ¢,€C>(M*), we now proceed to define the Kerr—de Sitter fam-
ily of metrics, depending on the parameters b€ B, as a smooth family g, of stationary
Lorentzian metrics on M° for b close to bg.

Given the angular momentum a=|a| of a black hole of mass M, (spinning around the
axis a/|a|€R3 for a#£0), the Kerr—de Sitter metric with parameters b=(M.,a) in Boyer—
Lindquist coordinates (t,r, ¢,0) R X Ty x S(lb x (0, 7), with Z;, CR an interval defined below,
takes the form

5 (dr2 d92> 2,812 0
=0 —+— |~ 53
i ) (1+20)%0

b .
m (dtfa(81n2 0) dd))Q,
b

(adt—(r*4a?) dp)?
(3.12)
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where

(1) = (r? +a?) (1- %AT‘Q) —2M.r, o} =7r2+a’cos’, N\, = %Aa2, s, =1+ )y cos? 6.

(3.13)
For a=0, we have jiy(r)=r?uy(r), with u, defined in (3.4). For a#0, the spherical
coordinates (¢,6) are chosen such that the vector a/|a|€S? is defined by #=0, and
the vector field 9, generates counterclockwise rotation around a/|a|, with R? carrying
the standard orientation. Thus, for a=(0,0,a), a>0, the coordinates (¢,0) are the
standard spherical coordinates of S2<+R3. We note that, using these standard spherical
coordinates, the expression for g(ar, (0,0,—a)) is given by (3.12) with a replaced by —a: this
simply means that reflecting the angular momentum vector across the origin is equivalent

to reversing the direction of rotation.

LEMMA 3.3. Let 1p,,— <rp,,+ denote the unique positive roots of fip,. Then, for b in
an open neighborhood by €U C B, the largest two positive roots

Ty,— <Th+
of [ depend smoothly on beUp. In particular, for b near by, we have

75,2 = Tbo,+| <emr,
and so ry . €I, with I defined in (3.9).

Proof. This follows from the simplicity of the roots ry, + of fip, and the implicit

function theorem. O

The interval Z, in which the radial variable r of the Boyer—Lindquist coordinate
system takes values is then

Ty =(Tp,— b+ )-

The coordinate singularity of (3.12) is removed by a change of variables
te=t—Fy(r), ¢«=0—Dp(r), (3.14)

where Fy, ®;, are smooth functions on (7, —, 7 +) such that

Fé(T)Zi(WHb,i), @Z(r)zi(wjtéb,i) (3.15)

near r=rp 1, with ¢, + and ¢, + smooth up to 74 1. Here, for b=by, we take

Chy— €EC((r1,—,7by,+)) and  cpy+ €CZ((bg,—»T1.4))s

with 77 1 defined in (3.9), to be equal to any fixed choice for the Schwarzschild-de Sitter
space (M, gy, ), e.g. the one in Lemma 3.1.
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LEMMA 3.4. Fiz radii v1 and ro with 1y, +ep <ri<ro<rp,+—em. Then, there
exists a neighborhood by €Up C B such that the following holds:
(1) There exist smooth functions
Up X (rr,—,1m2) 3 (b,1)—>cp, (1),

Upx(r1,71.4) 2 (b,1) — cp 1. (1),

which are equal to the given cp, + for b=by, such that the two functions

n ( (1+Xp) (r*+a?) +Cb7i>

Hb
agree on (r1,72).
(2) There exist functions
Upx (rr,—,r2) 3 (b1) — &, - (7),

Up x(T1, 7“1,+) 3 (b,7)— 5b,+(7’)7

with a='é, . smooth, and ¢, +=0, such that the two functions
1+X)a
+ ((,,b) +Cb,j:>
Hb
agree on (r1,72).

Proof. We can take ¢, _=cp, - on (r1,_,72); then, for a cutoff xeC>*(R), with y=1

on [r1,m2] and x=0 on [ry, + —€n, r1.+), We put

2(14+ M) (12 +a?
SRS D

A completely analogous construction works for ¢, +: we can take ¢, - =0 and put

. 2(1+Xp)a
Copy =———=——
Hb
Clearly, the functions a='é, . depend smoothly on b. O

This lemma ensures that the definitions on F} and ®; in the two regions in (3.15)

coincide, hence making F} and ®, well-defined up to an additive constant. Using

aF)—(r*+a*)®, =+(acp . —(r*+a*)é 1)
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and
(1+Xp) 07

Ho
for r>ry (+ sign) or r<ry (— sign), one now computes

F]—a(sin? 0) ;,1( +cp+ —a(sin® e)abi)

.2
= e ) 40 . )

14+Ap)2 07
ﬂb .92 ~ 2
——(dt dr— 0)(do. £ d 3.16
T (e ke dr—o(sin® 0)(dg. 2, - ) (3.16)
2 2

+ r/\b(dt*icl)’i dr—a(sin’ 0)(de. £+ dr)) dr— i—z do?,
which now extends smoothly to (and across) rp .. Since one can compute the volume form
to be(*) |dgy|=(14Xp) 202 (sin6) dt. dr do, df, the metric g, in the coordinates used in
(3.16) is a non-degenerate Lorentzian metric, apart from the singularity of the spherical
coordinates at #=0, 7, which we proceed to discuss: first, we compute the dual metric

to be
Qng = —ip(Or FCp,+. O, Fp,+0s, )2
+2a(14+Xp) (0r F b, O, F o, 05, ) 0o,

i2(1+)‘b>(r2+a2)(ar:Fcb,iat*:Féb,ia(p*)at* (3.17)
14+X)?

_%(G(SHP9)815*4-34)*)2—%5892.
s, sin” 0

Smooth coordinates on S? near the poles #=0, 7 are x=sin# cos ¢, and y=sin @ sin ¢,,
and for the change of variables ¢ d¢,+ndf=\dz+vdy, one finds sin? §=22+y> and
(=vz—\y, that is,

0p. =Y0z — 20y,

and thus the smoothness of ngb near the poles follows from writing —, times the term

coming from the last line of (3.17) as

1+Xp)? -
%(ﬁ* + 2207 = (14+Xp)*((sin ™2 9)835* +02)+ (32 — (14+X2)%)03.
Indeed, the first summand is smooth at the poles, since (sin™2 9)82* +02=¢ is the dual
metric of the round metric on S? in spherical coordinates; and we can rewrite the second
summand as

— (24N (1+cos? 8)) Ny (sin® 0) 93 (3.18)

(%) For these calculations, a convenient frame of TM° is

vl :87“:Fcb,i8t* q:5b7i8¢*7 'U2:a(Sin2 e)at* +8¢*: 03:875* and 1)4:89~
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and observe that (sin® )92 = (1—22% —y?) (20, +yd,)? is smooth at (z,y)=0 as well. Since

the volume form is given by
|dgs| = (1+)\b)_2(r2+a2(1—x2—y2))(1—x2—y2)_1/2 dt, dr dx dy,

and thus smooth at the poles, we conclude that g, indeed extends smoothly and non-
degenerately to the poles.
Using the map

(te, 7, Pu, 0) — (s, T8I0 O COS Py, T SIN O 8IN Gy, 7 cOsO) ERy, X X C M°,

with X CR? as in (3.10), we can thus push the metric g, forward to a smooth, stationary,
non-degenerate Lorentzian metric, which we continue to denote by g,, on M°, and g3, is
equal (pointwise!) to the extended Schwarzschild-de Sitter metric defined in §3.1. The
Boyer—Lindquist coordinate patch of the Kerr—de Sitter black hole with parameters be B
is the subset {ry - <r<ry .} CM".

Since the choice of spherical coordinates does not depend smoothly on a near a=0,
the smooth dependence of gy, as a family of metrics on M°, on b is not automatic; we

thus prove the following result.

PROPOSITION 3.5. Let the neighborhood Ug CB of by be as in Lemma 3.3. Then,

the smooth Lorentzian metric g, on M° depends smoothly on bEB.

Here, the smoothness of the family g, is equivalent to the statement that the map
BxRy, x X 3 (b, ts,p) — gu(ts, p),

with gp(t«,p) on the right the matrix of g, at the given point in the global coordinate
system (t.,p)€M?°, is a smooth map Up xRy, x X —R**4,

Proof. Given (M.,a)€ B with a=|a|#0, let us denote the spherical coordinate sys-
tem on X with north pole =0 at a/|a| by (¢ «, ), so the push-forwards of the functions
in (3.13) to M° are simply obtained by replacing 6 by 6. Then, if (7, ¢p 4, 0) are the

polar coordinates of a point p€ X, we have
r=|p|, acosf,= <a, ﬁ>, a? sin? 0y = |a|2—a? cos? 6,
p

where |- | and (-, -) denote the Euclidean norm and inner product on X CR3, respectively.
Since 0¢ X, this shows that 7, a cos 6, and a? sin? 0y, and hence the push-forwards of ji,
0b, Ap and s, are smooth (in b) families of smooth functions on M°, as are ¢, 1 and a='é, +
(which only depend on r), on their respective domains of definition, by Lemma 3.4.
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We can now prove the smooth dependence of the dual metric G on b: in light of
the expression (3.17) and the discussion around (3.18), all we need to show is that the
vector fields 0y, 0, ady, . and a(sinf,)dp, depend smoothly on a, in particular near
a where they are defined to be identically zero. (Note that the 2-tensor in (3.18) is a
smooth multiple of a?(sin®6,)93 .) Indeed, this proves that Gy is a smooth family of
smooth sections of S?T'M°, and we already checked the non-degeneracy of Gy at the
poles, where the spherical coordinates are singular.

For 9;, and for the radial vector field 8, =|p|~'pd,, which do not depend on b, the

smoothness is clear. Further, we have
ady, . =Vaxp atpeX,

i.e. differentiation in the direction of the vector axp. Indeed, if a=aé3:=(0,0,a), both

sides equal a(zd, —yd,) on RS . and if acR? is any given vector and ReSO(3) is a ro-
tation with Ra=ae3, a=|al, then (R.(ady, .))|p,=(a0s,., .)|r(p), which we just observed
to be equal to Vaz, x r(p) =R« Vaxyp-

In a similar vein, one sees that
a(sin 0y)dg, = |p|_1VpX(pxa) at pe X,

and the latter expression is clearly smooth in a, finishing the proof of the proposition. [

Remark 3.6. If one were interested in analyzing the non-linear stability of Kerr—
de Sitter spacetimes for general parameters—i.e. dropping the assumption of small an-
gular momentum—one notes that the construction described in this section can be per-
formed in the neighborhood of any Kerr—de Sitter spacetime which is non-degenerate in

the sense that the two largest roots of fi, are simple and positive.

Given the smooth family of Kerr—de Sitter metrics g, on M° defined in the previous

section, we can define its linearization around any g, bEUp.

Definition 3.7. For belp and b’ €T}, B, we define the element g; (b') of the linearized
Kerr—de Sitter family, linearized around g, by
d
/ /
9u(b) = —gb+svr
ds s—0
Notice here that UpCBCR?* is an open subset of R*, and thus we can identify
T,B=R*. The linearization of the Kerr-de Sitter family around g, is the 4-dimensional
vector space g;(TpB)={g,(V'): ' €T, B}.
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Remark 3.8. Define d, to be the number of parameters needed to describe a lin-
earized Kerr—de Sitter metric modulo Lie derivatives (i.e. the number of ‘physical degrees
of freedom’); that is,

95(Ts B)

T, = . dy=dimT},.
*" (vano;,)Ngy(L,B) b

Then one can show that

{4, ifa=0,
dp=
2, ifa#0.

See also the related discussion at the end of [37, §6.2.2]. The reason for d,=4 for
Schwarzschild—de Sitter parameters b is that slowly rotating Kerr—de Sitter metrics with
rotation axes which are far apart are related by a rotation by a large angle. This is one of
the reasons to use the redundant (for non-zero angular momenta) parametrization (3.1)
of the Kerr—de Sitter family.

3.3. Compactification

In order to make full use of the asymptotic structure of Kerr—de Sitter spaces, it is

convenient to compactify the spacetime M°, defined in (3.9), at future infinity: we define

and put
M= (MU([0,00)r X X))/ ~y  (tar ) ~ (7(2,), 2),

which is a smooth manifold with boundary, where the smooth structure is defined such

that 7 is a boundary defining function, i.e. 7€C° (M) vanishes simply at 7=0. Thus,
M2[0,00), x X (3.19)

as manifolds with boundary. We often regard X as the boundary at infinity of M.
On M, we can now use the natural bundles PT'M (the b-tangent bundle), ®T* M (the b-
cotangent bundle), and their tensor powers. We refer the reader to Appendix A for precise
definitions of these objects. The bundles "T'M and PT*M are naturally isomorphic to
the usual translation-invariant (in ¢.) tangent/cotangent bundle on M°. Crucially, they
extend smoothly to X; analysis on M near X, or b-microlocal analysis in PT*M near
PT% M, is thus automatically (and necessarily) uniform, i.e. gives uniform control on
M° as t,—00. Structures central to understanding waves uniformly as ¢, — oo, such as

horizons or trapping, arise naturally as submanifolds of PT% M at which the null-geodesic
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flow (lifted to the cotangent bundle) has a special structure (invariant manifolds, saddle
points of the flow, etc.).

The use of the compactification, a common technique in geometric analysis, means
that we do not need to repeatedly refer to the asymptotic structure when making state-
ments about t,— o0, though one could equivalently do that without introducing the
compactification. Thus, to some extent, compactifying is a matter of taste, but it pro-
vides a very convenient language.

Note that smooth functions on M are smooth functions of (7,z)=(e~**,z) down to

7=0, hence they have Taylor expansions at 7=0 into powers of T=¢7%*

; in particular,
they are invariant under translations in ¢, up to a remainder which decays exponentially
fast as t,—o00. Since 0;, =—70; and dt,=—d7 /7, and since functions on M*° which are
constant in ¢, extend to smooth functions on M, we can thus rephrase Proposition 3.5

as follows.

ProrosITION 3.9. If Up C B is a neighborhood of by as in Lemma 3.4, the family gy

of Kerr—de Sitter metrics with b€ B is a smooth family of non-degenerate signature-(1,3)
sections of C>(M;S2PT*M).

The stationary nature of g, can be recast in this setting as the invariance of g, with

respect to dilations in 7 in the product decomposition (3.19) of M.

3.4. Geometric and dynamical aspects of Kerr—de Sitter spacetimes

The dual metric function G, €C>(PT*M) is defined by G(z, C):|§|%Gb)z for ze M and
CEPTF M, and the characteristic set is

Yy =G, 1 (0) CPT*M\o, (3.20)

which is conic in the fibers of PT*M. We occasionally identify 3, with its closure in
the radially compactified (in the fibers) b-cotangent bundle, minus the zero section o, so
¥, CPT*M\o. See (A.1) for the definition of PT* M. Sometimes, we also identify ¥, with
its boundary at fiber infinity %, cPS*M cPT*M. Since by construction dt,=—dr /T is

timelike everywhere on M, we can split the characteristic set into its two connected

components
Y, =% u%,,

the future (resp. backward) light cone X (resp. ¥ ), where

Zf—{CGEb::I:<C,d:> >0}. (3.21)
Gy



42 P. HINTZ AND A. VASY

(The sign in the superscript will always indicate the future/past component of the char-
acteristic set.)

We now discuss two main features of the null-geodesic flow on (M, gp): the saddle
point structure (corresponding to the red-shift effect) at the event and cosmological
horizons of Kerr—de Sitter spacetimes, and the trapped set for Schwarzschild—de Sitter,
i.e. the photon sphere. The global dynamics of the null-geodesic flow of slowly rotating
Kerr—de Sitter spacetimes were described in detail in [140, §6.3 and §6.4]. Here, we
merely recall that for a future-causal null-bicharacteristic 7, i.e. an integral curve of the
Hamilton vector field Hg, within 3, one of the following three possibilities must occur
in the backward direction along ~: either

(1) ~ tends to the trapped set (strictly speaking, the boundary of T', defined in (3.30),
within PT*M at future infinity), or

(2) v tends to one of the radial points Ry _ or Ry 4+ (the b-conormal bundle of the
event or cosmological horizon at future infinity), defined in (3.24), or

(3) ~y crosses the initial Cauchy hypersurface {t.=0} in finite time.

We first describe the null-geodesic flow on (M, g) near the horizons: defining ¢y and
¢o near r=ry, 1 exactly like ¢, and ¢, in (3.14), except with ¢, + =6, » =0 simplifies our
calculations: introducing smooth coordinates on PT*M by letting To=e 0 and writing

b-covectors over the point (79, r,w)EM as
dTO
o T—+§ dr+C dpo+ndo
0

the dual metric function can be read off from (3.17) by taking ¢ + =¢é, + =0, and replacing
O,, Or, 0s, and Oy by —o, &, ¢ and 7, respectively, so

05 Gy = —[ip&> £2a(1+Xp)ECF2(1+ ) (r? +a*) 0
(14 A)? (3.22)

— m(@(Sil’lQ Q)U_C)Q _}fb'r]Q

Denote the b-conormal bundles of the horizons by
Ly ="N*"{r=ry}\o={(70,7p+,0,0;0,£,0,0)}\0C Zp. (3.23)

(The sign in the subscript will always indicate the horizon at which one is working, ‘—’
denoting the event horizon at r=r, _ and ‘+’ the cosmological horizon at r=r ;.) One
easily checks that the vector field H 2, =0?Hg, (equality holding on ¥) is tangent to

Ly, +, s0 Ly + is invariant under the Hg,-flow. Since

dr,dr)a, =0 and gi(dt,,dr)g, =+(14+X)(ri . +a?) at r=ry.,
b b b b, 5
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R Ry
PTE M\ o - -

>

A A

ci Vo

b,+

r=Tp,— T=Tp,+

Figure 3.3. The b-conormal bundles £1 of the horizons as well as their boundaries R in
bT)"‘(M\o. The arrows indicate the Hamilton vector field Hg,. In I'", the subscripts are
replaced by ‘—’, and the directions of the arrows are reversed.

dr is future lightlike at £, , and past lightlike at £, . This allows us to locate the

components of £, ;. in the two halves of the characteristic set. To wit, if
Ly,=LyNYy and Ly, =Ly N%,,

adhering to our rule that signs in superscript indicate being a subset of the future/past

light cone, then
L, ={+£<0}nLy - and Ly, ={££>0}NL .

Let
Ly=Ly ULS CXy and L, =L, UL, C¥%,

be the components of £L=L; ;UL — within the future/past light cones X} .

Let us identify X with the boundary at future infinity {0}, x X C M; see (3.19). We

then define the boundaries at future infinity of the above invariant manifolds by
+ + "

Ry () = L4y NP Tx M; (3.24)
each of them itself is invariant under the Hg,-flow. Moreover, we denote the boundaries
of Rl(f()i) at fiber infinity by (‘)Rl(j()i) cPS% M, likewise for ££7i()i). See Figure 3.3.

We claim that the (generalized) radial sets OR; are saddle points for (a rescaled
version of the) null-geodesic flow Hg,. Concretely, 9R; has stable manifold 9L CS* M
transversal to ®S% M, with unstable manifold ¥; NPT M within the boundary at future
infinity, i.e. it is a source within PT% M; on the other hand, R, has unstable manifold
oL, CPS*M and stable manifold X, NPT M, i.e. it is a sink within P7% M. To verify

this claim, let us introduce coordinates

o=1¢|7Y, =00, (=0C, H=dn (3.25)
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of PT*M near 873;, and define the rescaled Hamilton vector field
HQ%G}; = éHQ%Gb’ (326)

which is homogeneous of degree zero with respect to dilations in the fibers of PT* M,
hence extends to a smooth vector field on PT*M tangent to PS* M. Let us consider the
Hg,-flow near OR; first, where &z(f =7=0. There, with ‘+’ denoting the component of

the characteristic set (i.e. +££>0), one computes

0 ' Hpc, 0= Hpe, €71 = 6720, (05 Gy) = Fhiy (ro,+) = £y (6,41,
TO_IHQ%GZ,TO = @80(9%Gb) = :|:2(1+)\b)(7‘§,+ +a2)'

The calculation at R, is completely analogous. Defining

(7 2(1+ ) (r? . +a?)
Bb,+,0 1= A §7¢)| and [y .= — bt ) (3.27)
p |y (75,2

and using that log 7o —log 7 is a function of r only, while Hg,r=0 at L4 1, we thus find

0 'Hg,0=Po+0, —7 "Hg,m=Ppx00+  at Ry, (3.28)
é_lHGbé: _/Bb,i,07 _T_lHGbT: _ﬁb,i,oﬁb,i at Rl:,i

We note that the functions Sy . ¢ are functions on the 2-spheres {r=0,r=r; . }; if be B
are Schwarzschild—de Sitter parameters, so a=0, then they are in fact constants.
In order to finish the proof of the saddle point structure of the flow in the normal

directions at ORy, it suffices to note that, using (3.22), the function

o (1+Xp)?
00:= ¢ <( )

)]
Hp S11

which is smooth on PT*M, satisfies He,00=%20,+ 000 at Ry by (3.28), i.e. with the
same sign as 9Hg, 0; and g is a quadratic defining function of R, within 9%,NPS% M.
(See [77, §3.2] for further details.)

We next discuss the trapped set in the exterior region of a Schwarzschild—de Sitter

spacetime with parameters by=(M. o,0). Writing covectors in static coordinates as
—odt+&dr+n, neT*S?, (3.29)

the dual metric function is given by

Gbo = /”'b_olo-Q _Nbo£2_7472|7]|2a
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so the Hamilton vector field equals
Ha,, = =24y, 000 = 241g€0r =1 Hyypa (1, 0% + 115, &% = 27 0] ) .

Now, in up, >0 and within the characteristic set Xp,, we have Hgbor:—Qub()g:O if and
only if £=0; for £=0, hence u;)logzr*2|77|2, we then have Hébor:—ZuboHG%g:O if and

only if Mz;)zﬂf,o 02=2r=3|n|?, which is equivalent to
_ 2\ _ o4
0= (pp,r %) =2r""(BM.o—r),

hence the radius of the photon sphere is 7p=3M. o, and the trapped set in phase space
T*M°\o is
T={(t,rp,w;0,0,n):0° = up,r2[n|*}. (3.30)

The trapped set has two components:
I=T"UI'* and Fi:FﬂEfo. (3.31)

At T, we have
HGbo = —QMZ;IO'at—T_QHMP. (332)

3.5. Wave equations on Kerr—de Sitter spacetimes

Within M, we next single out a domain Q2C M on which we will solve various wave equa-
tions, in particular Einstein’s field equations, in the course of our arguments. Concretely,
let

Y= [Tbo,— —EM 5 Tbo,+ —|—<€M]7. xS?c X

be a smoothly bounded compact domain in the spatial slice X, and let
Q=[0,1],xYCM and Xo={r=1}NnQ. (3.33)

Then € is a submanifold with corners of M. We will often identify Y, which is isometric
to each spatial slice {r=c}NQ, c€[0,1], with the boundary of 2 at future infinity, so
Y={r=0}NN. See Figure 3.4. We discuss function spaces on domains such as € at the

end of §A.2.
By a slight abuse of notation, we define the finite part of Q as

Q0= [0, OO)t* XK

so Q° still contains the initial hypersurface Xo={t,=0}.
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2

Yo
1
Tbo,~ Tbo,+

Figure 3.4. The domain Q (shaded), with its boundary Y=QNX at future infinity, as a

smooth domain with corners within M. The Cauchy surface is ¥p, extending a bit beyond

the horizons of slowly rotating Kerr—de Sitter spacetimes.

By construction of the function t,, the surface ¥ is spacelike with respect to all
metrics gy, bEUE. Furthermore, we claim that the lateral boundary R;, xdY, which has
two components (one beyond the event and one beyond the cosmological horizon), is

spacelike: indeed, this follows from (3.17) and
0y Gy (dr,dr) = —fu, >0

there; more precisely, by (3.21), the outward pointing conormal +dr is future timelike at
r=rp + Tep for sufficiently small ;.

The Cauchy data of a function weC*(£2°; E'), which is a section of some tensor
bundle E=®" T*Q°, are defined by

Yo(u) := (uls,, (Lo, u)|s,) €CT(Xo0; Bx,) C™ (Xo; B, )- (3.34)

Given a linear operator LeDiff?(M*; E), with smooth coefficients, whose principal
symbol is scalar and equal to G, ®Id for some parameters beldp, one can then study
initial value problems for L. Using energy estimates, see e.g. [134, §6.5] or [81, §23], and

also §5.2.1, one can show that
Lu=f in Q°,
{ Yo(u) = (uo,u1) on Xy,
with forcing f€C>(Q°; E) and initial data ug,u; €C*(X; Ex,), has a unique solution
u€eC>®(Q°; E). The future timelike nature of the outward pointing conormal at the lateral

boundary of 2° ensures that no boundary data need to be specified there.

3.6. Kerr—de Sitter type wave map gauges

Let us fix the background metric for the wave map gauge 1-form (2.5) to be the fixed

Schwarzschild—de Sitter metric gs,, so

Y (9) =995, 59GgGbo- (3.35)
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Now gy, satisfies the gauge condition Y(gp,)=0, but the particular form of the metrics
gb, b#£bg, we constructed is rather arbitrary, so in general we expect T (gp)#0 for b£bg.
Therefore, we need to study more flexible gauges; a natural candidate is Y(g) — Y (g5)=0,
but for the formulation of the non-linear stability problem for the Einstein equation (2.1),
one would like to have a fixed gauge near Xy (we will choose the wave map gauge relative
to gn, ), yet a gauge relative to the metric g, of the final state. To implement such gauges,
fix a cutoff function

X€C®(R), x(t.)=0fort, <1, x(t.)=1fort,>2, (3.36)

and define
oy ,bs 7= (1=X)Gbs +XGbs (3.37)

which is a Lorentzian metric for by, bo €Up smoothly interpolating between gy, and gp,.

We will then consider the gauge condition

T<g)_T(gb1,b2) =0.

For by =bo=b, this becomes T (g)—Y(g,)=0.
Denote the Kerr—de Sitter initial data by

(hy, kp) €C®(Z0; S2T*X0) BC™(Xo; S*T* %), (3.38)

that is, hy is the pull-back of g, to ¥g, and kp is the second fundamental form of ¥ with
respect to the ambient metric g,. In the remainder of this section, we merely study the
initial gauge. In Proposition 3.10 below, we construct a map %, taking initial data on ¥
into Cauchy data for the gauged Einstein equation with gauge condition Y (g)— Y (g»)=0,
so that it maps the Kerr—de Sitter initial data to

i (he, k) =70(90) = (96]50> Lox, 9b]50) = (9], 0)-

The point is that this guarantees that the metric g, itself, rather than a pull-back of
it by some diffeomorphism, is the solution of the gauged Einstein equation with gauge
T(g)—7T(gp)=0 and initial data i,(hy, kp)-

The flexibility in choosing the gauge in this manner is very useful in the proof of
linear stability of g, given in §10, which is naturally done with the global choice of gauge
T(g)—Y(gp)=0. For the full non-linear result, as indicated above, we will use only a
single gauge Y(g)—Y(gp,)=0 near Xy, which reads Y(g)=0 there; thus, for non-linear
stability, we shall only use Proposition 3.10 for b=by.
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ProprOSITION 3.10. There exist neighborhoods
HCCHXo; S*T*Y) and K CC(Xg; S?T*%)

of hy, and ky,, respectively, so that, firstly, hy€ H and ky€ K for all beUp (shrinking

Ug, if necessary); and secondly, for each beEUp, there exists a map
ip: (HNC™(Z0; ST*%0)) x (KNC™H(Xo; S*T*%))
— C™(S0; S*T5, M°) x C™ 1 (So; S*T55, M*),
smooth for all m>=1 (and smoothly depending on beUp), with the following properties:
(1) if ip(h,k)=(g0,01), and g€C(M*;S*T*M"*) is any symmetric 2-tensor with
Y0(9)=(g0,91), then h and k are, respectively, the metric and the second fundamental

form of X induced by g, and Y(g)—"(g5)=0 at Xo;
(2) for Kerr—de Sitter initial data (3.38), one has iy(hp, kv)=20(gs)-

The constraint equations play no role in the construction of the map i, as expected
following the discussion of the initial value problem in §2.1, and hence we do not need

to restrict the spaces H and K further here.
Proof. If we define ¢, €C*° () and w,€C™ (g, T*%p) by writing
Gb = Gy dt2+2dt . -wy,+hy,
then we can define go in (go, 91)=ip(h, k) simply by
go = ¢p dt2+2dt, -wy+h;

this will be a non-degenerate Lorentzian signature section of S 2T§0 M=, if h is sufficiently
close in CY to hy, (and hence to h;). This choice of go fixes a future timelike unit vector

field N 1. T3, and we now need to choose g; so that
go(VETY,N)=k(X,Y), X,YeT%,

at Xo={t.=0}, and such that g, =0 if (h, k)=(hp, ks); here the superscript denotes the

metric with respect to which V is the Levi-Civita connection. That is, we want
go(VET" =VR)Y. N) =k(X,Y)~go(VEY, N); (3.39)

by definition of gg, the right-hand side is identically zero for (h,k)=(hy, ks). The differ-
ence of the two covariant derivatives on the left-hand side is tensorial in X and Y, and

in a local coordinate system, one computes

Q(VZOth*gl Oy _VZO au) = 9(}){)\ ((8;tt*)(gl)uk+(avt*)(gl)u>\ - (akt*)(gl)uu)ax
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at t,=0, hence, using Xt,=0=Y%,, (3.39) is equivalent to

—(Nt.)g1(X,Y) =2(k(X,Y) —g0(VRY, N)), (3.40)
which determines g7 on TYyxTY, since Nt,>0 by the future timelike nature of dt.
and N. Hence, the symmetric 2-tensor g; €C™(Zo; SQTg0 M) is determined uniquely
once we fix the values of g, (N, N) and ¢1 (X, N) for X €T%y.

These values in turn are determined by the gauge condition, which reads
YT(go+teg1)—T(gs) =0 at t.=0.

Using (2.6) gives

Y(go+t91) =T (90)u+5(90)" (But) (g1)ru+(Ont) (1) — (Byuti) (91)02)
at t,=0, so the gauge condition is equivalent to

(T(g96) =" (g0)) (V) = (T(go+1tx91) =L (g0)) (V')
= g1(Vot., V) =5 (VL) trg, g1 = (Ggo91) (V¥ 1, V)
for all VeTy,M°. Now V9%t, L T'Y is a non-zero scalar multiple of the unit normal vec-
tor N, hence (3.41) determines (Ggy91)(N, X)=g1 (N, X) for X €T%. Since (3.40) de-
termines g1 (X,Y) for X, Y €T, we have sufficient information to calculate the value of
trg, g1—91(N, N); and then we can solve g1 (N, N)=2(Gg,g1)(N, N)+(trg, g1 —91(N, N))
for g1(N, N). Note that if (h, k)=(hs, kp), this construction gives g =0.

This finishes the construction of ¢g; and hence of 4,; the smoothness and mapping

(3.41)

properties follow from an inspection of the proof. O

As a consequence, we show that the linearization of i, yields correctly gauged Cauchy
data for the linearized gauged Einstein equation; we phrase this for smooth data for
simplicity.

COROLLARY 3.11. Let belp. Suppose (h,k) are smooth initial data on o sat-
isfying the constraint equations (2.2), let (go,g1)=tp(h, k), and let g be a symmetric
2-tensor with vo(9)=(go,g1). Moreover, suppose (h', k') are smooth solutions of the lin-
earized constraint equations around (h,k), let (ro,71)=D gyis(h', k"), and let v be a
smooth symmetric 2-tensor with ~o(r)=(rg,r1).

Then r induces the data (W', k") on Xg, and DyY(r)=0 at Xy.

The case of main interest will be g=gs.

Proof. The first statement follows immediately from the definition of i;. Since
Y(ip(h+sh', k+sk')=T(gs) at Zp for all small s€R, the linearized gauge condition
DY (r)=0 at 3 follows by differentiation and evaluation at s=0. O

Since D, 1)t is a linear operator with smooth coefficients, the conclusion continues
to hold even for distributional A’ and %'
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4. Key ingredients of the proof

Throughout this section, we continue to use the notation of §3, so let
b():(M.’0,0) € B, M.,0>O, (41)

be parameters for a Schwarzschild—de Sitter spacetime. We describe the three main ingre-
dients using which we will prove the non-linear stability of slowly rotating Kerr—de Sit-
ter black holes: first, UEMS—the mode stability for the ungauged Einstein equation,
Dy, (Ric+A)(r)=0—see §4.1; second, SCP—the existence of a hyperbolic formulation
of the linearized Einstein equation for which the constraint propagation equation ex-
hibits mode stability, in a form which is stable under perturbations—see §4.2; and third,
ESG—quantitative high-energy bounds for the linearized Einstein equations which are
stable under perturbations—see §4.3. We recall that the key for the non-linear problem
is to understand the linear stability problem in a robust perturbative framework, and
the ingredients SCP and ESG will allow us to set up such a framework, which then also
makes UEMS a stable property.

Motivated by the discussion in §1.1 of our approach to the non-linear stability prob-
lem, the linearized gauged Einstein equation which we will study to establish the linear

stability of slowly rotating Kerr—de Sitter spacetimes is
Lyr = (D, (Ric+A)—§* Dy, T)r =0, (4.2)

where Y(g) is the gauge 1-form defined in (3.35), and where 0* is a modification of 65,
which we define in (4.5) below. For proving the linear stability of the metric gy, using the
linearization of the gauge condition Y(g)—7Y(gp)=0 around g=g, leads to the condition
Dy, Y(r)=0, and hence to the form of L; given here.

4.1. Mode stability for the ungauged Einstein equation

THEOREM 4.1. (UEMS—Ungauged Einstein equation: mode stability) Let by be the
parameters of a Schwarzschild-de Sitter black hole as in (4.1).
(1) Let 0€C, Imo >0, 0#£0, and suppose that

h(t,,z) =e "t hy(x),
with ho€C™ (Y, S*T38)), is a mode solution of the linearized Einstein equation

Dy, (Ric+A)(h) =0. (4.3)
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Then there exists a 1-form w(t., z)=e~ "t wq(z), with woeC>®(Y,T3:Q°), such that
h=dg, w.

(2) For all keNy, and all generalized mode solutions

k
h(te,x) =Y tlhj(x), h; €C®(Y,S*Ty°), j=0,...,k,
§=0
of the linearized Einstein equation (4.3), there exist b’ €Ty B and weC>®(Q°, S*°T*Q°)
such that
h= géo(b’)+5;b0w.

Thus, (1) asserts that any mode solution h of the linearized Einstein equations
which is exponentially growing, or non-decaying and oscillating, is a pure gauge solution
h=6g, w= 1L, v, coming from an infinitesimal diffeomorphism (Lie derivative), i.e. does
not constitute a physical degree of freedom for the linearized Einstein equation. On the
other hand, (2) asserts that mode solutions with frequency o =0, and possibly containing
polynomially growing terms, are linearized Kerr—de Sitter metrics, up to a Lie derivative.
Thus, the only non-decaying mode solutions of the linearized Einstein equation (4.3), up
to Lie derivatives, are the linearized Kerr-de Sitter metrics g (b'), linearized around the
Schwarzschild—de Sitter metric gy, .

Observe here that a small displacement of the center of a black hole with parameters
b=(M., a), preserving its mass and its angular momentum vector, corresponds to pulling
back the metric g, on M° by a translation; the restriction of the pull-back metric to
Q° is well defined. Therefore, on the linearized level, the change in the metric due to
an infinitesimal displacement of the black hole is given by the Lie derivative of g; along
a translation vector field. This justifies our restriction of the space B of black hole
parameters to only include mass and angular momentum, but not the center of mass.

The particular form of the Kerr—de Sitter metrics g, and its linearizations used here
is rather arbitrary: if ¢p: M°— M° is a smooth family of diffeomorphisms that commute
with translations in ¢, then one obtains another smooth family of Kerr—de Sitter metrics
on the extended spacetime M* by setting g»:=¢;gp. Given a solution h of (4.3), we have
Dy, (Ric+A)(¢;,h)=0, and the conclusion h=Lx gy, in (1) for X =w* implies

Gl = 3L 551). x -

In order to see the invariance of (2) under ¢, we in addition compute

* . d
:¢bogé0(b/)+£ng0) X= £¢b0+5b' 9

d
~/ / ~
b, (b ) = Gbo+sb’
? ds ’ s=0

s=0
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hence the linearized metrics indeed agree under the diffeomorphism ¢, up to a Lie de-
rivative, as desired. In particular, UEMS is independent of the specific choice of the
functions ¢, + and & 4+ in (3.15).

We stress that Theorem 4.1 only concerns the mode stability of a (single) Schwarz-
schild—de Sitter black hole; the assumption does not concern the mode stability of nearby
slowly rotating Kerr—de Sitter spacetimes. We give the proof of the theorem in §7.

4.2. Mode stability for the constraint propagation equation

Recall from (2.12), or rather its modification, taking the modification of §; into account,
that for a solutions r of the linearized gauged Einstein equation (4.2) (with arbitrary

Cauchy data), the linearized gauge 1-form g=Dg, T(r) solves the equation

OSF 0=25,,Gg, 0 0=0. (4.4)

b

The asymptotic behavior of general solutions p€C>(M°, T*M*) of this equation depends

on the specific choice of §*. We will show the following result.

THEOREM 4.2. (SCP—Stable constraint propagation) One can choose 6%, equal to
5;b0 up to order-zero terms, such that there exists a>0 with the property that smooth so-
lutions p€C™®(M*, T*M"°) of the equation ﬁgbig:O decay exponentially in t, with rate
that is, p=0(e~ ).

In fact, we will give a very concrete definition of §*. Namely, we will show that
S*u:zéghou—i—vdt*-u—%eﬂu,dt*>gbogb0 (4.5)

works, for e<1 close to 1 and for sufficiently large v>0, for all b near by. We give the
proof of Theorem 4.2 in §8.

We recall from §1.1 that the usefulness of SCP stems from the observation that, for a
non-decaying smooth mode solution 7 of the equation Ly, =0, the constraint propagation
equation ﬁgfg’ Dy,

ungauged Einstein equation Dy, (Ric+A)r=0. We can then appeal to UEMS to obtain

Y(r)=0 implies Dy, Y(r)=0, and hence r in fact solves the linearized

very precise information about r. Thus, all non-decaying resonant states of L;, are
pure gauge solutions, plus linearized Kerr-de Sitter metrics g (b'); and furthermore all
non-decaying resonant states r satisfy the linearized gauge condition Dg, T(r)=0.

In fact, we will show in §10, using the additional ingredient ESG below, that SCP
is sufficient to deduce the mode stability, and in fact linear stability, of slowly rotating
Kerr—de Sitter black holes as well.

Note here that, as in §4.1, the above theorem only concerns a (fixed) Schwarzschild—
de Sitter metric.
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4.3. High-energy estimates for the linearized gauged Einstein equation

The final key ingredient ensures that solutions of the linear equations which appear in
the non-linear iteration scheme have asymptotic expansions up to exponentially decaying
remainder terms. Specifically, we need this to be satisfied for solutions of the linearized
gauged Einstein equation (4.2) for b=by, and for perturbations of this equation. Since
the linear equations we will need to solve are always invariant under translations in ¢,
up to operators with exponentially decaying coefficients, the following theorem suffices

for this purpose.

THEOREM 4.3. (ESG—Essential spectral gap for the linearized gauged Einstein equa-
tion; informal version) For the choice of 5* in SCP, the linearized Einstein operator Ly,
defined in (4.2) has a positive essential spectral gap; that is, there exists a>0 and in-
tegers Np >0, d; =1 for 1<j< Ny, and njp=>0 for 1<j< Ny and 1<4<d;, as well as
smooth sections a;o, €C®(Y, S?T3Q°), such that solutions r of the equation Ly,r=0 with

smooth initial data on ¥g have an asymptotic expansion

Ny dj nje
r=>_> mie ( D e tag (x)> +r (4.6)
j=1¢=1 k=0
in Q°, with rjp€C and r'=0(e” ).
The same holds true, with possibly different Ny, dj, nje and aje, but the same
constant a>0, for the operator Ly, with beUp.

In order to give a precise and quantitative statement, which in addition will be
straightforward to check, we recall from [140] and, directly related to the present context,
from [72] that the only difficulty in obtaining an asymptotic expansion (4.6) is the precise
understanding of the operator L, at the trapped set I'CT*M°\o defined in (3.30);
we discuss this in detail in §5. Concretely, one is set if, for a fixed t,-independent
positive definite inner product on the bundle S2T*M°, one can find a stationary, elliptic
pseudodifferential operator (ps.d.o.) Q€W’(M°;End(S?T*M")), defined microlocally
near ', with microlocal inverse Q~, such that in the coordinates (3.29), we have

i|‘7101<21i(QLb0Q_(QLbOQ)*)> <arld (4.7)

in T*=I'N{+o<0} (recall (3.31)), where ar is a positive constant satisfying ar <3 vmin,
with vy, the minimal expansion rate of the Hg,, -flow in the normal directions at T,
defined in [55, equation (5.1)] and explicitly computed for Schwarzschild-de Sitter space-
times in [54, §3] and [72, §2]. If one arranges the estimate (4.7), it also implies the same
estimate at the trapped set for perturbations of L;, within any fixed finite-dimensional
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family of stationary, second-order, principally scalar differential operators; in particular,
it holds for L; with beldp, where we possibly need to shrink the neighborhood Up of by.
(In the latter case, one in fact does not need to use the structural stability of the trapped
set, since one can check it directly for Kerr—de Sitter spacetimes, see [54, §3], building
on [147, §2] and [140, §6]. See the discussion at the end of §9.1 for further details.)
Observe that condition (4.7) only concerns principal symbols; thus, checking it
amounts to an algebraic computation, which is most easily done using the framework

of pseudodifferential inner products; see [72] and Remark 5.2.

THEOREM 4.4. (ESG—Essential spectral gap for the linearized gauged Einstein equa-
tion; precise version) Fiz apr>0. Then, there exist a neighborhood Ug of by and a sta-
tionary ps.d.o. Q such that (4.7) holds for Ly with beUp. Moreover, for any fized S>%,
there exist constants a>0, Cp<oo and C>0 such that, for all beUg, the estimate

s, < Clo I Ea(oYullyecr (4.3)
holds for all w for which the norms on both sides are finite, provided Imo>—a and
|Rec|>CL, as well as for Ino=—a. Here, Hi=H:(Y,S?Ty:Q) is the semiclassical
Sobolev space of distributions which are extendible at Y (see Appendiz A.3), defined
using the volume density induced by the metric gp,, and using a fived stationary positive
definite inner product on S?T*M".

Moreover, by reducing a>0 if necessary, one can arrange that all resonances o of
Ly, i.e. poles of the meromorphic family Ly, (o), which satisfy Tmo>—a, in fact
satisfy Im o >0.

Remark 4.5. The dependence of the decay rate o on the regularity s is very mild:
the inequality that needs to be satisfied is s>%+ Ba, with 8 being the larger value of
Bpo,+ defined in (3.27). In particular, if this holds for some s and « as in Theorem 4.4,
then it continuous to hold for all larger values of s as well. The size of a>0 is thus really

only restricted by the location of resonances in the lower half-plane.

It is crucial here that there exists a choice of §* which makes SCP hold and for which
at the same time ESG is valid as well; this turns out to be very easy to arrange. We will
prove this theorem in §9.

That Theorem 4.3 is a consequence of Theorem 4.4 follows from a representation
of solutions of the linear equation L;,r=0 in the t.-Fourier domain, and shifting the
contour in the inverse Fourier transform from a line Imo>>1 to Imo=—a, which is
justified by the estimate (4.8). The asymptotic expansion is then a consequence of the
residue theorem: the exponents o;€C are the poles of ﬁbo(a)_l, nje is one more than
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the order of the pole, and d; is the rank of the resonance; see §5.1.1 for definitions, and
the beginning of §5.2.2 for a sketch of the contour-shifting argument.

Under the assumptions of this theorem, the operators L; have only finitely many
resonances o, in the half-space Imo>—«, and no resonances ¢ have Inoc=—a. By
general perturbation arguments discussed in §5, the total rank of the resonances of Ly
in Im 0> —q« thus remains constant; see Proposition 5.11. The essential spectral gap of
Ly is, by definition, the supremum over all a>0 such that L; has only finitely many

resonances in the half-space Im o> —a.

1
2

radial point estimates at the event and cosmological horizons intersected with future

The regularity assumption in ESG, s>3, which we will justify in §9.2, is due to
infinity X (microlocally: near ORy), as we explain in §5.1. The power ()2 on the other
hand is due to the loss of one power of the semiclassical parameter in the estimate at the

semiclassical trapped set, which for Ly, can be identified with T'N{oc==F1}.

5. Asymptotic analysis of linear waves

In this section, we discuss the global regularity and asymptotic analysis for solutions
to initial value problems for linear wave equations as needed for our proofs of linear
and non-linear stability: thus, we show how to quantitatively control solutions (their
asymptotic behavior, the unstable, i.e. exponentially growing, modes and exponentially
decaying tails) using methods which are stable under perturbations. A crucial feature of
the linear analysis is that we allow a modification of the initial data and forcing terms by
elements of a (fixed) finite-dimensional space Z, as motivated in §1.1, and we show that
for suitable choices of the space Z, one can solve any given linear initial value problem for
perturbations of a fized operator on decaying function spaces if one modifies the initial
data and the forcing by a suitable element z€ Z.

The analysis necessary for showing linear stability is presented in §5.1. Due to
the stationary nature of the Kerr—de Sitter metrics g, defined in §3.2, the linear wave
equations we need to study have smooth coefficients and are stationary, i.e. they commute
with t,-translations; thus, we are in the setting of [140] (addressing initial value problems
explicitly however), and one can perform the analysis on the Mellin-transformed (in
T=e"'; equivalently, Fourier-transformed in —t,) side. Perturbative arguments then
yield the continuous dependence of the global linear solution operators on the wave
operator one is inverting; these arguments will turn out to be rather straightforward in
the settings of interest, since one only needs to consider a finite-dimensional family of
operators, parameterized by beldp.

The proof of non-linear stability requires additional work. In §5.2, we thus study the
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linear wave-type operators which appear naturally in the iteration scheme we will employ
in §11 to solve the gauged Einstein equation: these operators have a stationary part which
depends only on the finite-dimensional parameter belfp, but they are perturbed by a
second-order principally scalar operator which has small and exponentially decaying but
non-smooth (yet high-regularity) coefficients. Such operators were discussed in great
detail in [71] and [76]; we need to extend these works slightly to incorporate initial data
problems, as well as the finite-dimensional modification space Z, which may also contain
non-smooth elements. The forcing terms we consider are of the same type as the non-
smooth perturbations, thus in §5.2 we find exponentially decaying solutions to initial
value problems with exponentially decaying forcing modified by elements of the space Z.
The motivation is that these are precisely the linear equations we need to analyze in
order to solve non-linear equations in §11—that is, solving a non-linear equation for a
quantity which is exponentially decaying requires a study of stationary linear equations
perturbed by operators which have coefficients and forcing terms of the same form.

We reiterate that the proof of linear stability of slowly rotating Kerr—de Sitter space-
times only relies on the material in §5.1. Thus, the reader interested in the latter can
skip §5.2, which is only needed for the non-linear analysis. Moreover, we point out that
the technical details in the proof of non-linear stability in §11, to the extent that they are
related to the material of the present section, on a conceptual level only rely on the ideas
presented in §5.1 for the smooth, stationary linear theory; the non-smooth extension of
this theory, while necessary to justify our non-linear iteration scheme, is primarily of

technical nature, but does not introduce substantially new ideas.

5.1. Smooth stationary wave equations

Let Ex — X be a complex vector bundle of finite rank, and define the vector bundle F=
% Ex — M, where mx: M — X is the projection mx (7, z)=x onto the boundary at future
infinity. Then dilations in 7 by c€R* induce isomorphisms E(; ;)= FE(cr ). Equivalently,
one can consider the restriction E°— M*° of the bundle E to M°, and then translations
in t, induce bundle isomorphisms of E°. In particular, there is a well-defined notion of
stationary sections of E— M, which can also be thought of as pull-backs of sections of
Ex— X along mx. We call E—M a stationary vector bundle.

The easiest example is the trivial bundle EFx =X xC, suited for the study of scalar
waves. The main examples of interest for the purposes of the present paper are the
cotangent bundle E°=T*M"° and the bundle of symmetric 2-tensors E°=S2T*M°; in
these cases, Ex =T%M° (using X 2{t,=0}, for example) and Ex=S?T%M"° (or rather
Ex=PT%M and Ex=S5%"T%M), and E="T*M and E=S2"T*M, respectively. How-
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ever, notice that the natural inner products on the bundles in these examples are not
(positive or negative) definite, and hence they are largely irrelevant for the purposes of
quantitative analysis. In fact, one of the central guiding principles of the linear analy-
sis throughout this paper is that positive definite fiber inner products only need to be
chosen carefully at certain places—at radial points at the horizons and at the trapping,
discussed below—and there the correct choices can be read off directly from properties
of the linear operator, specifically the behavior of its subprincipal part.

Returning to the general setup, let LeDiH%(M ; E)) be a stationary, principally scalar
operator acting on sections of E; that is, L commutes with dilations in 7. (Equivalently,
but less naturally from the point of view of non-stationary problems discussed in §5.2,
one can view LeDiff>(M*; E°), and L commutes with translations in t,.) We start by
assuming that

(1) the principal symbol of L is
ob2(L)(Q) = [¢|&, @1, ¢e T M, (5.1)

for some Kerr—de Sitter parameters bellp; here Id denotes the identity operator on
7*E—PT* M\ o, with 7: ®T* M\ 0o— M being the projection. (Although this suffices for
our applications, one can allow more general metrics; see, in particular, [76, §1].)
Denote by 4 the defining function (3.25) of fiber infinity in P7* M near the (general-
ized) radial set R, 1 at the horizon r=m; 4, defined in (3.24), and recall the definition
(3.28) of the dynamical quantities 5 + and By 1 0. We define the positive function

BeC™(IRy), Blor, . =B+ >0. (5.2)

Moreover, fix a positive definite inner product on E near r=ry 4, and write the subprin-

cipal symbol of L as

50011 (;(L—L*)) = —Bp+0P+ (5.3)

at ORj} ., with s== specifying the future (“+’) and past (‘—’) half of the radial set. This
defines 3. €C>®(dRy; End(n*E)), with m:PT*M—M; and fB: is pointwise self-adjoint

with respect to the chosen inner product. We define

Bi= inf BreR (5.4)

to be the smallest eigenvalue of all B (p), pEOR,. We further assume the following;:

(2) denote by o the dual variable of 7 at X, so o=01,1(7D,) (this is independent
of choices at X). Then for all ar>0, there exists a ps.d.o. Q€U (M; E), defined mi-
crolocally near the trapped set ' (given explicitly for Schwarzschild-de Sitter metrics in
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(3.30)), and elliptic near I" with microlocal parametrix @~, such that
1
:l:|0|_10b,1 (Q’L(QLQ_(QLQ)*)> <arld (55)

on I'*=TN{+o0<0}.

The scalar wave operator [, is the simplest example; one has Bi:O, and the left-
hand side of (5.5) is equal to zero, so indeed any ar>0 works. For the tensor wave
operator on 1-forms and symmetric 2-tensors, one can still arrange (5.5) for any ap>0
by [72, Theorem 4.8], and the calculations in §9.2 will imply that one can choose a fiber
inner product such that B =0.

Remark 5.1. All of our arguments in §5 go through with only minor modifications

if we merely assume that (5.5) holds for some fized constant
ar < %Vmina (56)

with v, the minimal expansion rate of the Hamilton flow of Gy, at I'; see the discussion
following (4.7). When we turn to non-smooth perturbations of L in §5.2, assuming that
ar>0 is any fixed small number will simplify the bookkeeping of regularity, which is the
main reason for us to make this stronger assumption; in our applications, it is always
satisfied.

Remark 5.2. The quantities in (5.3)—(5.5) are symbolic. A convenient way of cal-
culating them involves pseudodifferential inner products, introduced in [72] and partially
extending the scope of the partial connection for real-principal-type systems defined by
Dencker [47]: first, one defines the subprincipal operator in a local trivialization of E and

using local coordinates on M by
Ssub(L> = —iHGb ®Id “+0sub (L)

(Here, we trivialize the half-density bundle PQ'/2(M) using |dgy|'/? in order to define

the subprincipal symbol.) This in fact gives a well-defined operator
Seun (L) € Diff}, (PT* M\ 0; 7 E),

which is homogeneous of degree 1 with respect to dilations in the fibers of PT*M\o. A
pseudodifferential inner product (or ¥-inner product) is then defined in terms of a positive
definite inner product k on the vector bundle 7* E—T*M\ o which is homogeneous of
degree zero in the fibers of PT*M\o0; equivalently, an inner product on 7§E—PS*M,
where mg:PS*M —M. Thus, k can vary from point to point in phase space. Now,
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fixing a positive definite inner product ky on E— M, there exists an elliptic symbol g
SP (PT*M\o,7* End(E)) intertwining the two inner products, i.e. k(e, f)=ko(ge, ¢f)

hom

for e, fen* End(E), and for the quantization Q€ VY (M; E) with parametrix @~ we have

701 (55 (QEQ ~(QEQY™) ) =45 (Sun(D) =S (£)) ™

where the superscripts denote the inner product used to define the adjoints, and we in
addition use the symplectic volume density to define the adjoint of Sg,p(L); see [72,
Proposition 3.12]. Both sides are self-adjoint with respect to kg. Therefore, the problem

of obtaining (5.5) is reduced to finding an inner product k such that the eigenvalues of
—1 1 *k
i|0| %(Ssub(L)*Ssub(L) )

are bounded from above by ar. (In our applications, the choice of k will be clear from
an inspection of the form of Ss,n(L).)

An a-priori different, dynamically more natural, statement is that the exponen-
tial map W*E(Iyg)—)F*Eexp(t*HGb)(LE) defined naturally from 4Sgy, (L) has norm growing
slower than any exponential as t,—oc. This statement is indeed an immediate conse-
quence of our bound. In the context of scalar equations, the converse follows by averaging

along the flow; in the present context it appears to be a bit more subtle.

Remark 5.3. One could define s in (5.3) for a conjugated version of L as in (2),
thereby possibly increasing the value of B , but this increase in generality is unnecessary
for our applications: the optimal choice for the pseudodifferential inner product near the

radial sets will turn out to be constant in the fibers of *T* M\ o.

Since L is stationary, we can analyze it by considering its Mellin-transformed normal

operator family L(o), which is an entire family (depending on o€C) of operators in
Diff*(X; Ex ), defined by

L(o)yu=1""Lt"u, uweC>(X;Ex).

The natural function spaces on which I:(a) acts are semiclassical Sobolev spaces; see Ap-
pendix A.2. In order to measure the size of sections of F, we equip F with any stationary
positive definite inner product; all such choices lead to equivalent norms since X is com-
pact. We state the estimates for L(o) using spaces of extendible (and later supported)
distributions; we refer the reader to [81, Appendix B] and the end of Appendix A.2 for
definitions. We then recall the following result.
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THEOREM 5.4. Let CeR, and fix s>50:%+sup(BC’)fB. Let Y*~L:=H*"1(Y; Ey)
and X5:={ucH*(Y;Ey):L(c)ucY* '}. (Note that the principal symbol of L(c) is
independent of o.) Then,

L(o):X°* =YY Imo>-C,

s a holomorphic family of Fredholm operators. Moreover, there are constants C,Cy,a>0
such that the high-energy estimate

||UHE?0>71(Y;EY) < CHL(O‘)UHH(S;){I(Y;EYy Imo > —a, |Reo|>Cy, (5.7)
holds for any fized s>%+a sup B—B. In particular, f/(a) is invertible there. Moreover,
changing a>0 by an arbitrarily small amount if necessary, one can arrange that (5.7)

holds for all o with Imo=—a« as well.
Lastly, for any fixred Cy>0, the estimate

||u||,756>_1<y;Ey)<C<g>*1Hﬁ(g)unﬁail(yﬂy), Imo >Cy, |[Rea|>Cy, (5.8)

holds.

Proof. The proof is contained in the references [75, §2] (which uses Cauchy hyper-
surfaces beyond the horizons instead of the complex absorption used in [140]), [76, §4.4]
(for the trapping analysis for bundle-valued operators under condition (5.5)) and [72,
§2] (for the verification of that condition for tensor-valued equations on slowly rotating
Kerr—de Sitter spacetimes).

In brief, the theorem combines the statements of [140, Theorem 2.17] and the ex-
tension of [140, Theorem 7.5] to the case of semiclassical mild local trapping; see [140,
Definition 2.16]. In fact, the first statement does not rely on the structure of the trapped
set. The quantitative high-energy bounds, on the other hand, do use the normally hy-
perbolic nature of the trapped set: condition (5.5) gives a bound on the skew-adjoint
part of L, or rather its conjugated version QLQ~, at the trapped set, and likewise for
the Mellin-transformed problem, and then Dyatlov’s result [56] (see also [76, §4.4] and
the remark after [56, Theorem 1]) proves the semiclassical mild trapping, giving (5.7)
in a half-plane extending to a strip beyond the real line, as well as (5.8) in the upper
half-plane. O

Remark 5.5. A slightly more natural way of writing the estimates in this theorem

L and z=ho.

is by means of the semiclassical rescaling Ly ,:=h?L(h~'z), where h={(c)~
Replacing L(o) by Ly, . necessitates a factor of A2 on the right-hand side of (5.7), which

ultimately comes from the main result of [56], and a factor of A~! on the right-hand side
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of (5.8). Relating the estimate (5.7) (resp. (5.8)) to weighted b-Sobolev spaces via the
Mellin transform (see (A.11)) shows that the power of (o)° (resp. (¢)!) on the right-hand
side corresponds to a loss of 2 (resp. 1) derivatives for the operator L~! relative to elliptic

estimates which would gain two full derivatives.

Recall from Appendix A.2 the definition of b-Sobolev spaces H;'®(Q; E) of distribu-
tions which are extendible at the boundary hypersurfaces of 2. Elements of H]‘;’a (B E)
for s€Ny are precisely those elements of e™***L? |

equal to e~ times an L? function) which remain in this space upon applying up to s

(consisting of distributions which are

derivatives in the (t.,x) variables. Let us then define the space of data (Cauchy data

and forcing) for initial value problems.

Definition 5.6. For s,a€R, the space of data with reqularity s and decay rate « is
D**(Q; E):=H, (G E)H T (Zo; Exy ) @ H® (X0; B, ),

with the norm [[(£, uo, ur) || pee = | £l 77+l | 7o+ 7

We can now discuss the global behavior of the solution of the initial value problem
(Ly,v0)u=(f,u0,u1) € D>*(4 E), (5.9)

where s>s9= % +asup f— B so that we have the Fredholm property of f/((f) as well as the

high-energy estimate (5.7). Written in a more conventional manner, this is equivalent to

{Lu—f, in Q,

(uls,, O uls,) = (ug,u1)  at Xo.

It is convenient to rephrase this as a forcing problem: we can solve (5.9) until ¢, =3 using
the standard local well-posedness theory (see also §5.2.1); denote the local solution by
u' € H**1({0<t,<3}; E). Then, with y€C>(R) being a cutoff, y=0 for t,<1 and y=1
for t.>2, we write u=(1—x)u'+v; solving (5.9) is then equivalent to solving the forward
problem

Lv=¢:=xf+[L,x|u' € H * (L E)"~ (5.10)

for v, with v=0 near Xy. Here, ‘o’ indicates vanishing in ¢, <0 (i.e. supported distributions

3 b

at Yo, in particular meaning vanishing Cauchy data), while ‘=’ indicates extendibility
beyond the artificial spacelike hypersurfaces dY x [0, 00), beyond the horizons; see also
Appendix A.2. By global energy estimates (see [75, Lemma 2.4]), the problem (5.10) has
a solution veH§+1’TO(Q; E)*~ for some large negative rg. In order to analyze it (see also

[140, Lemma 3.5]), we Mellin transform (see (A.3) for the definition) equation (5.10) in

T=e"t obtaining

(o) =L(0) "' ()
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in Imo>—ry. The right-hand side is finite-meromorphic in the half-space Imo>—a.
Defining = to be the finite set of poles (resonances) of L(c)~! in this half-space. A
contour-shifting argument as in the proof of [75, Theorem 2.21], which generalizes [140,

Proposition 3.5], then implies

= Z ixresc—o (TL(C)T1p(O)) +', v € HY™(Q; E)™, (5.11)

4SS

where the regularity of v’ is guaranteed by (5.7); see also §A.3. The terms in this finite
asymptotic expansion (often also called resonance expansion) are (generalized) modes;
they have the form
i etk
k=0
for some a; €C™(Y; Ey). We will discuss these in more detail in §5.1.1.
One can easily read off the asymptotic behavior of the solution of the original prob-

lem (5.9) directly. Namely, let us view
fe Hy*(Q; B) C Hy*([0,1],; H(Y; Ey)) (5.12)

as a forcing term which is a supported distribution at g; that is, we regard f as a
distribution with merely L? regularity in ¢, which can then be viewed as a supported
distribution at Xy. Similarly, denoting by ul€Ht (% E°) the solution of Lu'=0,
Yo(u')=(ug,u1), we can view u' € H2 ((0,1],; H*t'(Y; Ey)) as the solution of the for-
ward problem Lu'=[L, HJu'=:f' with H=H(t.) the Heaviside function; now [L, H]
is a first-order differential operator whose coefficients are at most once differentiated
d-distributions supported at X, so f! only depends on the Cauchy data (ug,u;), and

fre H3/270((0,1]; H(Y; Ey)). (5.13)
By a slight abuse of notation, we define the operator [L, H] acting on Cauchy data by
(L, H)(ugp,u1) := f*. (5.14)

Thus, if u solves (5.9), then w (interpreted as the supported distribution Hu) solves
the forcing problem Lu=f+f! (with u vanishing identically in ¢,<0). Solving this
using the Mellin transform as above yields the asymptotic expansion for u, given by the
same sum as in (5.11) with f+4 f ! in place of ¢; however, a priori the regularity of the

—3/2—

remainder term v’ is only H . Since no non-zero linear combination of terms in

the asymptotic expansion lies in this space (due to the weight «), we conclude that the
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asymptotic expansions of u thus obtained and of v in (5.11) in fact agree, and we thus
again obtain the H'® regularity of u’ near 7=0. In summary, then, the solution u of
(5.9) has the form
u(r) =Y ixresc—o (T L) (F(Q+F(Q))+u, ' € HY* (X E). (5.15)
oEE
(Since f is a supported distribution in ¢, by (5.12), the Mellin transform of f here is
the same as the Fourier transform in ¢, of f(t.,z), extended by 0 to ¢.<0.) This repre-
sentation suggests the strategy of how to modify f or the initial data (which determine
f1) in order to ensure that the solution u of (5.9) is exponentially decaying: one needs
to ensure that ﬁ(()’l applied to the Mellin transform of f+ f' plus the modification is

regular at (€=. We describe this in detail in the next section.

5.1.1. Spaces of resonant states and dual states

As a consequence of Theorem 5.4, the family ﬁ(a)_l is a meromorphic family of operators
on C*(Y; BEy) for c€C. We denote the set of resonances of L by

Res(L)={oeC:L(¢)™" has a pole at ( =c}. (5.16)

For o €Res(L), let us denote by

Res(L,0) = {7" r= Z etk () for some n €Ny, Lr=0, r, €C®(Y; Ey)}
k=0

(5.17)
the space of resonant states at o, i.e. the space of all (generalized) mode solutions of
Lr=0 with frequency o in t,. For a set ZCC containing finitely many resonances of L,
we put

Res(L,E) := @ Res(L, o).
o€=
Given gp€Res(L) and reRes(L,0¢), define f:=L(xr), where x€C>(2°) is a cut-
off, x=x(t«), x=0 near ¥y and x=1 for large t,; then feC®(Q°; E°), and the forward
solution of Lu=f is of course u=xr. Hence, every element of Res(L,oq) is realized
as the (1-term) asymptotic expansion of a forward solution of L with compactly sup-
ported smooth forcing. On the Mellin-transformed side, we have i(c)=L(c) "' f(0), and
the asymptotic part of u with frequency og, as a function of (t.,x)€Q°, is equal to
ireSy—o, (677 L(0) 1 f(0)). Since all poles of L(c)~! have finite order, this shows that

we can equivalently define
Res(L,0) = {res¢c—q ("< L(C)"1p(¢)) : p(C) is a polynomial in ¢

(5.18)
with values in C*(Y; Ey)}.
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Taking the mapping properties of f/(O’) on Sobolev spaces into account, we can more
generally allow p here to take values in H*~(Y; Ey) for any fixed s> % —inf(8Imo) -5

Fixing a stationary inner product on the bundle EF—which for the present purpose
only needs to be non-degenerate, but not necessarily positive definite—we can define the
adjoints L* and L(0)*=L*(5). For c€Res(L), the space of dual resonant states is then

Res*(L,0) = {7‘ = Z et thp (@) L*r =0, rye Z'(Y; Ey)} (5.19)
k=0

For a finite set ZCC, we put Res*(L,Z)=

also have

= Res*(L,0). Analogously to (5.18), we

[ASIE)

Res*(L,0) = {rescza(e_“*ql?*(C)_lp(()) :p(¢) is a polynomial in ¢

. (5.20)
with values in 2'(Y; Ey)}.

By the below threshold regularity radial point estimate [140, Proposition 2.4], and taking
the contribution from the skew-adjoint part of L—defined using the inner product used in
(5.3)—into account as in [75, footnote 5], one finds that the restriction of a dual resonant
state €Res* (L, o) to any t,=const. slice has regularity H1/2+inf(BIma)+8-0(y B ),
the norm of ¢(t,) in this space is bounded by e(=™7+0t a5 ¢ 00,

We now prove a criterion which gives a necessary and sufficient condition on a forcing
term f for the solution u of Lu=f to not have contributions in its (formal) asymptotic

expansion coming from a given finite set of resonances.

PROPOSITION 5.7. Let E={o1,...,on}CRes(L) be a finite set of resonances, let
R*=Res"(L,Z), and fir r>max{—Imo;:1<j<N}. Suppose s>%+sup(ﬁr)—ﬁ. Define
the continuous linear map

A Hy > ([0,1],; HSH(Y; By)) — L(R*,C),
f — <fv ' >a
mapping f to a C-antilinear functional on R*. Then \(f)=0 if and only if ﬁ(cr)flf(a)
s holomorphic in a neighborhood of =.

In particular, this gives a criterion for fe€C®(Q°; E°); we allow more general f to
include the types of terms that arose in (5.12) and (5.13).

Proof. Given f, we note that L(c)~1f(c) is holomorphic near every o; if and only
if this holds for the pairing (f(0),(L(c)*)~v) for every ve H5(Y; Ey). Using the
definition of f(o)= ;7 ¢'"* f(t.) dL., this is equivalent to the holomorphicity of

(f, e % L*(5)"1o) (5.21)
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near o; (where the pairing is the L? pairing on the spacetime region ©°), or in other words
the vanishing of the principal part of (5.21) at o;. Now, for a fixed veH *(Y; Ey), we

have, for o near o;,

nj
e LM o) lu=) (6-55) Fug+o'(9), (5.22)
k=1

with ujkEe_(Im 7i)t- H1=5(Y'; By) (using 1—3<%+inf(ﬁ Im aj)+/3), and v’ holomorphic
near o; with values in H;>~"([0,1],; H.™*(Y; Ey)); here, n;>0, and ujn, 70 in case
n;>1. Therefore, the holomorphicity of (5.21) at ¢; is equivalent to the holomorphicity
of

j

> (o=0) 7 (fruge),

k=1
at o, which is equivalent to the condition (f, u;;)=0 for all j=1,..., N, k=1,...,n;. This

latter condition, for fixed 7, is in turn equivalent to
<f, C.C.T€Sg—g, ((f—oj)kfle*i‘_’t*l?“(ﬁ)*lv > =0,

with ‘c.c.” denoting complex conjugation, for all k=1,...,n;. In view of (5.22), this

equality automatically holds for k>n;; hence we arrive at the equivalent condition

<f, C.C.T€Sg—g, e=iot- [*(5)~Lu(o) > =0

for all polynomials v(¢) in ¢ with values in H*S(Y;Ey). Comparing this with (5.20)

shows that the latter condition is equivalent to A(f)=0, as claimed. O

Following the discussion around (5.12), under the hypotheses of this proposition, we

can define more generally the map
)\IVP:Dsil’O‘(Q;E) —)E(R*,C) (523)

by
Arve (f, uo, u1) = A(H f+[L, H](uo, u1))

with H=H (t.); recall here the notation [L, H] from (5.14). Note here that we can define
Arve on the larger space DS~ 1 due to the regularity properties of dual resonant states;
the only reason for assuming D*“ for the data in the global analysis of the initial value
problem is the loss in the high-energy estimates (5.7), which are of course irrelevant when

one is merely studying resonances in relatively compact subsets of C.
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COROLLARY 5.8. Suppose a>0 is as in Theorem 5.4, and let 5>%+asupﬂ—@.
Let Z be the set of all resonances of L with Imo>—«, and let R*=Res*(L,Z). Suppose
ZCD**(Q; E) is a finite-dimensional linear subspace. In terms of the map (5.23), define
the map Az: Z— L(R*,C) by restriction: Az:=Avp|z.

If Az is surjective, then for all (f,ug,u1)€D*>*(Q; E) there exists an element z€ Z

such that the solution of the initial value problem

(L7’Yo)u: (f7 ’LLO7U1)+Z

has an ezponentially decaying solution ue H, *(£2).
If moreover Az is bijective, this z is unique, and the linear map (f,ug,u1)—>z is

continuous.

Proof. In view of Proposition 5.7 and formula (5.15), the task is to find z€ Z such
that Az (2)=—Ave (f, uo, u1) EL(R*,C). If Az is surjective, this is certainly possible, and
in the case Az is bijective, the map (f, ug,u1)> 2 is given by the composition /\510>\1VP

of continuous linear maps, and hence is itself linear and continuous. O

In other words, we can solve initial value problems for L in exponentially decaying
spaces if we are allowed to modify the forcing or the initial data by elements of a fixed

finite-dimensional space.

Remark 5.9. We can rephrase this also as follows: define the spaces Y=D*%(Q; E)
and X={ueH, (% E):(L,v)ueY}; then (L,v): X—Y is injective and has closed
range with codimension equal to dim R*. From this perspective, the space Z in Corol-
lary 5.8 merely provides a complement of (L, ~y)(X) within Y if Az is bijective, and in
the more general case of surjectivity (L, v9)(X)+Z=)Y. Thus, adding the space Z is akin
to setting up a Grushin problem for (L,~g); see [151, Appendix D].

We end this section by recalling the definition of further quantities associated with

resonances.

Definition 5.10. The order of a resonance o €Res(L) is defined to be the order of
the pole of the meromorphic function L(¢)~! at (=o:

ord¢—q L)t = min{/ € Ny : (C—0)*L(¢) is holomorphic near o}
We define the rank of c€Res(L) as
rank;—, L(¢)™* = dim Res(L, o).

By convention, ord, L(¢)~'=0 and rank, L(¢)~'=0 for o¢Res(L).
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Expanding the exponential in (5.18) into its Taylor series around (=0, one easily
sees using Smith factorization (see [64], [63, §4.3] and also [70, Appendix A]) that one

can equivalently define the rank as

ord, L(¢)™!

ranke—, i(()l—dim{Q(o— Z 4(C—0) 77

j=1

L(¢)q(¢) is holomorphic near o} (5.24)

- Ly 7{ i) 10 E(C) dC,

T o

where fa denotes the contour integral over a small circle around o, oriented counter-

clockwise.

5.1.2. Perturbation theory

We now make the linear operator depend on a finite-dimensional parameter we W CRVNw |
with W an open neighborhood of some fixed wo€RN". We then assume that for every
weW | we are given a stationary, principally scalar operator L., eDiff%(M ; E) depending
continuously on w, and L,,, =L satisfies the assumptions (1)—(2) of §5.1. For simplicity,
we make the additional assumption that the principal symbol is

o2 (L) () = [C[2, ., 14, (5.25)

where b(w) €Up depends continuously on weW; this will be satisfied in our applications.

Simple examples are W=Up, wo=by, and L, =0, for weldp is the tensor wave
operator on any tensor bundle over M. Linearizations of the gauged Einstein equation
will be the objects of interest for the linear stability problem; see §4 and §10.

Returning to the general setup, note that the supremum and infimum of the radial
point quantity 3, as well as the real number 3, defined in (5.2)—(5.4), depend continuously
on wj; furthermore, if (5.5) (and (5.6), if one were working in the more general setting) are
satisfied for L=L,,, for some fixed elliptic operator () and positive definite inner product
on FE, then it holds for L=L,, as well (with vy, denoting the minimal expansion rate
for the Hamilton flow of L., at the trapped set of L,,), provided w is near wp; in the
more general setting, this follows from the structural stability of the trapped set (see
[79] and [55, §5.2]), but under the assumption (5.25), this follows more simply by a
direct computation of the location of the trapped set and the minimal expansion rate;
see [54, §3.2]. Thus, the assumptions in §5.1 hold uniformly for L,, with w near wp, and
consequently Theorem 5.4 holds as well, with the constants C, C7, Cy and « uniform in
weW , shrinking W if necessary.
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The estimate on ﬁw(a)*1 for Imo>Cs, with Cy>0 sufficiently large, mentioned
in the proof of Theorem 5.4 also holds uniformly in wj; alternatively, the global energy
estimates for L,, on growing function spaces Hg’_c2 (Q; E) (increasing Cy slightly if
necessary) hold uniformly in w. Either way, it remains to study the dependence of
Ly(0) on weW for o in the precompact set {o:—a<Imo<Cso+1,|Rec|<C;+1}CC,
where L, (¢)~! has only finitely many poles for any fixed weW, by Theorem 5.4. This
was first discussed in [140, §2.7] and [70, Appendix A]; we prove a slight extension.

PrOPOSITION 5.11. Let V.CC be a non-empty precompact open set such that
Res(Lyy, )NOV =2,

and fix 30>%—inf(,ev(5 Im 0)—3. Then, the following conditions hold:

(1) The set I:={(w,0)eW XV :Ly(0)~" exists} is open.

(2) The map I3(w,0)— Ly (0) ' € Loyeax(H*™1, H®) (the space of bounded linear
operators, equipped with the weak operator topology) is continuous for all s> sy, and also
as a map into Lop(H*™1T¢ H57¢) (i.e. equipped with the norm topology) for s>so and
all e>0. Here, H=H?(Y; Ey).

(3) The set Res(Lq, )NV depends continuously on w in the Hausdorff distance sense,
and the total rank

D:= Z ranke—y Loy (€)™}
o€Res(Ly,)NV
18 constant for w near wq.

(4) The total space of resonant states Res(L.,, V)CC™>®(Q°; E°) depends continuously
on w in the sense that there exists a continuous map W xCP —C>(Q°; E°) such that
Res(Ly,, V) is the image of {w}xCP.

(5) Likewise, fizing a smooth inner product on Ey, the total space of dual states

Res*(Ly, V)CHL *0(Q°; E°) depends continuously on w.

loc

Proof. The main input of the proof is the fact that we have the estimates

l[ull 7 <C(||[A:w(0')1i”H31+||u|H50)a (5.26)
[oll -2 SC([Lw(o) vllg-+lvl7-~),

with s>s9p and N >s—1 arbitrary but fixed, uniformly for weW and o€V, and the
invertibility of L., (c) at some point o€V. The statements (1) and (2) then follow
from a simple functional analysis argument; see [140, §2.7]. We remark that the first
part of statement (2) is false if one uses instead the operator norm topology, since the
characteristic set of L, (o) varies with w; see also [71, footnote 33].
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In order to prove the remaining statements (3)—(5), it suffices to consider the case

that V' is a small disc V={o0:|o0—0¢|<e} around a resonance og€Res(L,, ), with
Res(Ly, )NV =2 and Res(Ly,)NV ={0o}.
Now Ly, (00) has index zero as an operator Ly, (00): X5 —Yi-t, where
X5 ={ueH*: Ly(oo)ue H '} and Y '=H"1

its kernel is a subspace of C*°(Y; Ey ), say with basis {uy, ..., u, }, and the range

yl =Tranyg -Z/wo (0’0) C HS_17
being closed and of codimension n, has a complement Yo CC®(Y; Ey) with {f1,..., fn}

as a basis. Now, let
n

Ru:zZ(u,uk>fk,

k=1
where the pairing is the L?-pairing on Y, using any fixed positive definite inner product

on Fy. Then the family of operators

P,(0):=Ly(o)+R: X;

w

-1
— Vi

is invertible at w=wq, 0 =0¢; moreover, P, (o) also satisfies the estimates (5.26) (with a
different constant C'), since the contribution of R: H~>°— H can be absorbed into the
error term. Therefore, parts (1) and (2) apply to the family P, (o) as well; shrinking >0
and the parameter space W if necessary, we may thus assume that P, (o): X5 —YV571 is
invertible on W x V' (note that for u€ X, we have P, (o)ucY: ! indeed), with continuous

inverse family in the sense of (2). Writing
L(0)=Qu(0)Py(0), Qu(o)=Id—RP,(0c) " H* ' — H* ",

the invertibility of L, (o) is thus equivalent to that of Q. (¢); but in the decomposition
H*~1'=),3Y,, we have

Qo= o).

0 Quz(o)

where

Qu1(0)=—RPy(0) [y, €L(V2,)1) and  Quz2(0) =1d—RPy(0) "'y, € L(J2).

Therefore, the invertibility of Q., (o) is in turn equivalent to that of the operator Qy, 2(0)
(which depends continuously on weW and holomorphically on o €V) acting on the fized,
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finite-dimensional space V5. For fixed w, the contour integral expression (5.24) yields
rank, L, (¢) ' =rank, Q. 2(¢)~'. Therefore, claim (3) follows from

> rmke, (07 = g - Qual) QualO

o 2m o
o€Res(L, )NV

the latter expression being integer-valued and continuous in w.
For establishing (4), pick polynomials p;(¢), ..., pp({) with values in C*°(Y; Ey ) such

that the sections

6;(0) == ]g L0 (O dCECT (Y1 By)

span Res(Ly,,00). For sufficiently small we W, IA/w(C)’1 exists for (€0V, and hence the

contour integral

b(w) = fg Lu(O Q) dC e C (Y Ey)

is well defined. By (2), ¢;(w) depends continuously on w in the topology of C*°(Y'; Ey );
therefore {¢1(w),...,¢p(w)}CC=(Y; Ey) is D-dimensional for small w. On the other
hand, we have ¢;(w)€Res(Ly, V) for all j, and Res(L,,, V') is D-dimensional as well, so
we conclude that Res(Ly,, V)=span{¢;(w),...,¢p(w)}. The statement now follows for
the map W xCP 3 (w, (c1,...,cp)) =Y cjb;(w).

The proof of the corresponding statement (5) for dual states proceeds in the same

manner. O

Part (5) of this proposition implies that Corollary 5.8 holds uniformly for all L,
with Z fixed; we state a more general version, allowing the space Z of modifications
to depend on weW as well. In our applications, the space Z will naturally be a sum
of finite-dimensional spaces Z;, each parameterized by vectors in some CNi; however,
the sum of the Z; may not be direct, and its dimension may be different for different
values of weW. A robust description of Z therefore rather amounts to parameterizing
its elements by @ C™s, with the parametrization possibly not being one-to-one. This

motivates the assumption in the following result.

COROLLARY 5.12. Under the assumptions stated at the beginning of this section,
and under the assumptions and using the notation of Corollary 5.8, let V' be a small
open neighborhood of the set E of resonances o with Imo>—a. Suppose Nz €Ny, and

suppose we are giwen a continuous map

2 W xCNz — D%(Q; E)
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which is linear in the second argument; we will write 2 =z(w,c). Define the map(®)

Aw:CN2 — L(Res* (L, V), C),

CH——r )\IVP (Z;)

Then, the bijectivity (resp. surjectivity) of A, implies the bijectivity (resp. surjectivity)
of Ay for weW near wyg.
Furthermore, assuming Ay, s surjective, there exists a continuous map
W x D**(Q; E) — CN=,

(w, (f,u0,u1)) —> ¢, (5.27)

linear in the second argument, such that the initial value problem

(LU”’)/())’LL: (f7 u07u1)+zgj

has an exponentially decaying solution ueﬁﬁ’“(ﬁ), and this solution u depends continu-
ously on (w, f,ug,ur) as well. If N\, is bijective, then ¢ and u are unique given weW
and the data (f,ug,u1).

Proof. We use Proposition 5.11 (5) and the parametrization of the family of spaces
Res*(Ly, V) by means of a continuous map with domain W x CP, linear in the second ar-
gument; then A\, is represented by a complex D x Nz matrix which depends continuously
on weW. The lower semicontinuity of the rank proves the first part.

For the second part, we pick a D-dimensional subspace C CCM2 such that A, |c
(and hence A, |¢) is bijective. Then we can define a map (5.27) with the stated properties
by (Aw|c) e Arve (f, ug, u1), composed with the inclusion C'—CN=. O

5.2. Non-smooth exponentially decaying perturbations

We now turn to the linear analysis of wave-type operators with non-smooth coefficients;
thus, we will allow more general perturbations than those considered in §5.1.2. We
aim to prove an analogue of Corollary 5.12, together with tame estimates for the map
taking the Cauchy data and forcing term into the solution and the finite-dimensional
modification (encoded in the map z above); these will enable us to appeal to the Nash—
Moser iteration scheme when solving the Einstein vacuum equations in §11. Recall here

that a tame estimate is schematically of the form

llulls < Cs(flls+a+11lls+all fllso)s

(5) Thus, Aw, (€)=Xz(zf,,) in the notation of Corollary 5.8 if Z=z(wo, CN=).
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where |- ||s are e.g. Sobolev norms, ¢ denotes the coefficients of the linear operator L,
Lu=f and ||{||s, is assumed to have an a-priori bound, while the constant Cy is uniform
for such bounded ¢ (thus, the estimate holds uniformly for suitable perturbations of L);
further, deR is the loss of derivatives, s> s, and s is some a-priori regularity. The point
is that the right-hand side contains high-regularity norms || - ||s+4 only in the first power.
A very simple example is if L is division by a non-smooth function >0 on a closed
n-dimensional manifold; in this case, the tame estimate is a version of Moser estimates
for products of H*-functions, and one can take d=0 and s¢> %n; see e.g. [135, §13.3] and
Lemma 5.17 below. In fact, since all our estimates are proved by (microlocal) energy
methods, it is rather clear that the tame bounds all come from such Moser estimates;
therefore, if one is content with having a tame estimate without explicit control on the
loss d and the minimal regularity sg, one can skip a number of arguments below. (See
also the discussion in [76, §4.1].) For the sake of completeness, and in order to show the
sufficiency of the regularity of the initial data assumed for Einstein’s field equations in
Theorem 1.4, we do prove explicit bounds; however, we will be rather generous with the
number of derivatives in order to minimize the amount of bookkeeping required.
Concretely then, extending the scope of the smooth coefficient perturbation theory,

we now consider a continuous family of second-order differential operators
Lus=Ly+Lyg. (5.28)

Here, L, is as in §5.1.2, i.e. L, has scalar principal symbol Gy,), depending on the

parameter

weW ={peRNW : |p—wy| <e}, (5.29)

and L=L,,, satisfies the conditions of §5.1. On the other hand, the parameter w lies in

a neighborhood
BEW* ={i€ HY* (% E): |[il| oo < e} C HY* (9 B) (5.30)

of zero, where s>14. For @GWS, we assume that

Ly.s € HX*(Q)DIfff (O E) (5.31)
is an operator with real-valued scalar principal symbol which is hyperbolic with respect
to the level sets of t,; we also assume that the coefficients of INJw@ are exponentially
decaying with the rate @>0 defined in Theorem 5.4. (Indeed, in local coordinates (¢, )
and a local trivialization of Ey, the condition (5.31) precisely means that L,, g has
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coefficients lying in the space H;'®.) We assume that L, o=0, and we require that L., z

depends continuously on (w,w)€eW x W in a tame fashion, that is, for s>14,

1L s, — Luwa, 2 | 1 pierz < Cos(Jwr —wa| + | @1~ | 7o) (5.32)

for a constant Cs<oo depending only on s, where the norm on the left is the sum of the
H*(Q; E) norms of the coefficients of L,, g in a fixed finite covering of Q by stationary
local coordinate charts. For s=14, iw@ is thus a bounded family in Hé4’“Diff2b(Q; E).

Remark 5.13. Our assumptions are motivated by our application to the linear oper-
ators one needs to invert in order to solve the Einstein vacuum equations in §11; in this
case, the parameter space W is a neighborhood Up C B of Schwarzschild—de Sitter pa-
rameters by as before, together with additional finite-dimensional parameters related to
modifications of the gauge, and W consists of the non-stationary, exponentially decay-
ing part of the Lorentzian metric at some finite step in the non-linear iteration scheme,
while L,, i is the wave operator associated with the metric g,,+w, which therefore has
coefficients with regularity s—2; thus, when we appeal to results of the present section

in the application in §11, there will a shift of 2 in the norm on w.

For brevity, we omit the function spaces from the notation of norms and only keep the
reqularity and weight parameters; from the context it will always be clear what function
space is meant.

In this section, we shall prove the following result.

THEOREM b5.14. Assume /3’2—1 in (5.4). Suppose we are given a continuous map
2 WxW*xCN2 — D**(Q; E)
which is linear in the last argument; we shall often write z;7ﬁzz(w,@, c). With
E=Res(Ly,,0)N{Imo > —a},

suppose moreover that the map

CN2 — L(Res* (L, 0,2),C),
( (Luwg,0,Z),C) (5.33)
> Ave(Z0.0)5

is surjective, with A\rvp defined in (5.23). Then, if £>0 in (5.29)—(5.30) is small enough,
there exists a continuous map
S: W x W x D(Q; E) — CN2 @ HE(Q; E),

(5.34)
(’LU, @7 (f7 Uo, ul)) — (07 u)a
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linear in (f,uo,u1), such that the function w is a solution of
(Luw,@,Y0)u= (f,u0,u1)+25, 5 (5.35)
Furthermore, the map S satisfies the tame estimates

el < CII(f, uo, u1) 13,0, (5.36)
[ulls,o < Cs(l[(f; w0, ur)ll 43,0+ (4[|l s4,0)[[(f; o, ur)[13,0) (5.37)

for s210. In fact, the map S is defined for any @GEW™ and (f,uo,u1) for which the
norms on the right-hand sides of (5.36)—(5.37) are finite, and produces a solution (c,u)
of (5.35) satisfying the tame estimates.

If the map (5.33) is bijective, then the map S with these properties is unique.

Remark 5.15. We make the assumption on 3 for the sake of simplicity of presen-
tation; it is satisfied in our application, as we show in §9.2. For more general /3’, put
k=max(—1— B, 0); then, the same results hold true if we increase the regularity param-
eters throughout the statement of this theorem by k; more precisely, the number 14
in (5.30) is replaced by 14+k, and all Sobolev regularities in the estimates (5.36)—(5.37)

are increased by k.

The assumption on the map (5.33) is precisely the surjectivity assumption we made
in Corollary 5.12, and in a less general form in Corollary 5.8; we stress that this is
an assumption only on Ly, o and z(wo,0,-), yet it guarantees the solvability of linear
wave-type operators which are merely close to L, o on decaying function spaces after
finite-dimensional modifications.

The continuity of the solution map S is not needed in order to prove the existence of
global solutions to Einstein’s field equations later on, only the uniformity of the estimates
(5.36)—(5.37) matters. However, it can be used to prove the smooth dependence of these
global solutions on the initial data; see Theorem 11.2.

5.2.1. Local Cauchy theory

Since we explicitly consider initial value problems, with forcing terms which are ex-
tendible distributions at ¥, rather than only forward problems with supported forcing
terms as in [140], [75], [76], we need to get the regularity analysis started using energy
estimates near 3y; once this is done, the usual microlocal propagation of singularities on
the spacetime M can be used to propagate this, as in the cited papers. See §5.2.2 for
details.
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Let us fix T'<oo. We define the Banach space of data in a finite slab
Qr:=Qn{0<t. <T}

by
D*(Qp; E)=H*(Qp; E)OH ™ (Z0; Exy, ) @ H* (Z0; B, ),

equipped with its natural norm; since T'<oo, this space has no index for a weight in t,.

Then, we have the following result.

PropPOSITION 5.16. For @EW‘X’, the initial value problem

Lw wlth = in 2 y
{ wu=f e (5.38)
Yo(u) = (uo,u1)  on o,
with data (f,ug,u1)€D>®(Qr; E) has a unique solution
u=Sr(w,w, (f,uo,u1)) € HOO(QT§ E)
satisfying the tame estimate
[ulls41 SCUCS, o, ua)lls + A+ |wlls,a) 1(f, w0, ur)l4) (5.39)

for s>=4; the constant C depends only on s. In fact, for @GEW™ and (f,uo,u1) for
which the right-hand side is finite, there exists a unique solution u€H**1(Qr; E), and
the estimate holds.

Moreover, the solution map St is continuous as a map
Sp: WX W x D™ (Qp; E) — H®(Qp; E). (5.40)

We first recall basic tame estimates on Sobolev spaces, which we state on R™ for
simplicity; analogous results hold on closed manifolds and for supported or extendible

Sobolev spaces on manifolds with corners.

LEMMA 5.17. (See [76, Corollary 3.2 and Proposition 3.4])
(1) Let so>3n, s=0. For u,veC(R"), we have

[uv]|s < Cllullmax(so,s) 1]l (5.41)
[uvlls < C([[ullso lolls +lulls o]l )- (5.42)

(2) Let s,s0>4n+1 and let K€UCR", with U open. Suppose that u,weC(R™),
suppwCK and |u|=1 on U. Then,

w
1%, < Clluo) ol +Q+ el el (5.43)
(3) Let A*=(D)*. Then, for So>%n+1, 5>1 and u,veC(R™),

ITA®, ulollo < Cl[ullso [[0lls—1+[lulls [1v]lso—1)- (5.44)
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Each estimate continues to hold for u,v,we H~°°(R™) assuming only that the norms
on its right-hand side are finite, with the additional assumption that |u|>1 on U for
(5.43).

Proof. The estimates (5.41)-(5.43) are special cases of the cited statements. The

commutator estimate (5.44) is contained in the proof of [76, Proposition 3.4].(°) O

Proof of Proposition 5.16. The vector bundle E is irrelevant for our arguments, and
hence we drop it from the notation.

The last statement is an immediate consequence of the previous parts of the proposi-
tion. Indeed, for w; €W and @-eWsH, and for (f;,u;0,u;j1)€D*(Q7), the solutions
w; =St (w;, w;, (f;,u;0,uj1))€HF2(Qr) satisfy the equation

Lwl,uN)l (U’l _U/Q) = fl _f2 - (Lwl,’LTll _Lw27’u~12)u2'

Then, the estimate (5.39) with 4 replaced by s, together with the estimates (5.32) and
(5.41), gives

llur —ualls41 < C(A+[|wi]s,0) (| f1— falls + (w1 —wa2 |+ |01 —w2||s,0) |uz|s+2)-

This implies the continuity of Sr, as desired.

In order to prove the existence of solutions of (5.38) and the tame estimate (5.39),
we follow the arguments presented in [135, §§16.1-16.3] and keep track of the dependence
of the estimates on the coefficients of the operator. First, we will prove the existence
of a solution u€C°([0, T], H*+*1(Y))NC ([0, T], H*(Y)) for f€C°([0,T], H*(Y)), together
with a tame estimate; it suffices to do this for small 7" independent of the parameters
and the data, since one can then iterate the solution to obtain the result for any finite 7T'.

We let 20=t,, 2!, 22 and 23 be coordinates on X. We write
Ly, =" D2—a*D; Dy —b DoD;+ D, +d, (5.45)

where the coefficients depend on w and @, are uniformly bounded in H* and, in the
space H*, they depend continuously on weW and w cws. Moreover, @%0£0, since this
is true for L, 0, by the construction of the Kerr—de Sitter metrics; see §3.5. (This is
simply the statement that Xy is non-characteristic.) When solving (5.38), we can thus
divide both sides by @°°; by Lemma 5.17, we have

‘ f

(6) There is a typo in that reference: the correct estimate reads

=55 || < CsU s+l 1£1s0)
S

[As, wlvllo < Cuw (lullu lvllsr—1 +lulls llvll)-
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00

for s>s¢p>3. Similar estimates hold for the coefficients of L,, z/a We thus merely

need to establish the solvability of the initial value problem for an operator
L:=D}~a’*D;Dy,~a" DyD;—a"D,~a,
0< <3, 1<, k<3, (a?%); 1 symmetric, with coefficients in H*, and prove a tame estimate

[ullcomr+iner e < CUICS, w0, ua) s+ (1+lall ) [[(f, wo, ur)4) (5.46)

for the solution of
ZU:f, 70(“) = (u07u1)7 (547)

where the constant C=C/(s) does not depend on the coefficients of L, in the sense that the
same constant works if one perturbs the coefficients of L in the (weak!) space H?; here,
a=(a"",a*,a) is the collection of coefficients of L. (Of course, there is a high-regularity
norm ||al|s in (5.46)!)

In a neighborhood of any given point on Y, we can perform a smooth coordinate
change, replacing z7 by ¢/ (z*) and letting y°=2°, so that 0,0 is timelike. By redefining
our coordinates, we may thus assume that this is already the case for the x* coordinates,
in which case the matrix (a/*); ; is positive definite. (Note that the same, fixed, coordi-
nate change accomplishes this for perturbations, in the sense of the previous paragraph,

of L.) The equation (5.47) is equivalent to a system of equations for u and Uy =Du:
Dou=1ug, Doug= ajiju;~C +biju0+a0u0+ajuj +au, Douj = Djug.

Writing this in matrix form for (u,uo, ..., us) and multiplying from the left by the sym-

metric, positive block matrix

0 0
1 0 )
0

(akj)j,k:1,2,3

A° =

o O =

we obtain the symmetrizable hyperbolic system

3
Aoaov:ZAj(x“)ajv—i—g, v(0) =h, (5.48)

j=1

where the coefficients of the symmetric matrices A% and A7 are in H® and uniformly
bounded in H*, while g€ H*, and h€ H* on 2°=0. We now solve this system and obtain
a tame estimate for the solution v. Following [135, §16.1], we first do this assuming that

z', 22 and 2® are global coordinates on the 3-torus T3.
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Defining the mollifier J.=¢(eD) for p€C°(R?), identically 1 near 0, we consider

the mollified equation
A20gv. = J. AP0 Jeve+Jeg,  v:(0) = J:h, (5.49)

where A%:=J.A% This is an ODE for the H*-valued function v, and we will prove
uniform tame bounds for v, as e—0. To this end, define A*=(D)*® for s€R; then, using

the L? pairing (-, ), we write

o (A ANz, Afv.) = (0o AY) Asv., A*v.) +2Re([AY, A*)0pve, Ave.)

_ (5.50)
+2Re(A*J. A8, Tz, Av)+2 Re(A% J.g, Av.)

In the bounds stated below, we write x<y if x<Csy for a constant Cy only depending
on s and the H* bounds on the coefficients A*. The first term is then bounded by
(80 A2)A%vc||o ||ve]|s, which by (5.41) is bounded by ||vc||?, using the boundedness of A2
in H*. In order to estimate the second term, we first note that (5.43) gives

1860 ls—1 < | A200ve [l s—1 + (| A200ve |5 (1+[| AL s—1)
for s—1>s0>3, which using (5.49) and setting A=(A4°, ..., A%) gives
100vells—1 S D 147 oo l0ells+ 147 -1 el o1+ glls—1

(A7 [sg l[velso+1+19ll50—1) L+ A% 5-1)
Slvells+llglls—1+ [ Alls—2 (lve lso+1+1gllso-1)-

This plugs into the estimate of the second term in (5.50), which by (5.44) (using so> 3
and s>1) is bounded by

(||60U6||571+||A2||8 [ 90ve [l so ) | ve | s
Sl 2+ lglz_+ Azl NZ, 1+ llgllZ,)-

The third term of (5.50) is

2Re([A%, J A Je|0ve, APu)— ((8jAj)JEASv5, JeAv.)

< (||'U5||S+||AHS||1)5||50+1) H715||5+H7)s||3

for sp>32 and s>1; and the fourth term finally is bounded by ||g||2+||v.||2. Combining

these four estimates gives

00 (AN v, A%ve) S flvell 3+ IlglZ+H AN (e I3, +llgll5,—1)
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for s>s9 and so>Z. If we apply this for s=sg, the positive definiteness of A° and
2

Gronwall’s lemma yield a uniform bound on |ve|ls, by ||g]ls,+|7]s,- Hence,
00 (AZN Ve, A*ve)s < v+ gl2+ I ANZNlgllZ, +IRI1Z,),

which implies that v. is uniformly bounded in C°([0,T; H*)NC([0,T); H*~') and satis-

fies the tame estimate

lvellcorrsncrmra-1 S lglleorrs + 1Al =+ [ Alls (lgllco o+l 70 ).

Simplifying the strongest assumptions on s and sg in the argument yielding this estimate,
we can take s>sp:=4 here. A standard weak limit argument then proves the existence
of a solution v of (5.48) (see [135, Theorem 1.2 and Proposition 1.4 in §16.1]) satisfying
the same estimate. One can moreover prove a finite speed of propagation result as in
[134, §5.6], and the argument there works in the present setting as well under our present
regularity assumptions, since it relies only on energy estimates; thus, the local solutions
of (5.47) can be patched together to give a solution in a small slab 0<¢, <7, and a simple
iterative argument allows us to remove the smallness assumption on 7.

Returning to the wave equation (5.47), we have now established the existence of a

solution u satisfying the tame estimate (5.46). A fortiori, we have
ue HY([0,T], H*7(Y))

for v=0,1 together with the tame estimate (5.46), and interpolation inequalities yield
this for all v€[0,1]. Now, writing s=|s|+~, k€Z, y€[0,1), one can use f€H*(Qr) and
the equation Lu=f€H?®(Q7), written in the form (5.45), to deduce that

we HE ([0, 7], HHF7(Y))

for k=0,1, ..., |s]+1 inductively; to see that the norm of w in this space satisfies a tame
estimate with the same right-hand side as (5.46), one uses Lemma 5.17. We conclude
that

we HO([0,T), HSPL (V) nH ([0, T), H*(Y)) = H*T1 (Qr)

satisfies the tame estimate (5.46), finishing the proof. O

5.2.2. Global regularity and asymptotic expansions

We now assume that the assumptions of Theorem 5.14 are satisfied. In order to explain
the main difficulty in the proof of this theorem, we briefly recall from [71, §7.2] and
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[76, §5.1] (see also [140, §3] for a version of this in the smooth category) the argument
which establishes partial asymptotic expansions for exponentially decaying perturbations
of stationary operators, like L,, 5. We discuss the forward forcing problem and ignore
issues of regularity for simplicity: thus, given a forcing term feH,~"® vanishing near ¥,
the forward solution u satisfies ue H ™", with rg large, negative, and independent of f,
and with 7o<—Imo for all c€Res(L,,).(") Then, we rewrite the equation for u as

Lyu=f— Ly guc H™, (5.51)

Using the Mellin transform, we can then shift the contour in the inverse Mellin transform

! ioT 1 %\
27r/1m0__TOT Ly(0) N (f—Lygu) (o) do

u(t,z) =
from Im o =—ry to Im o =—r1, with r1 €(rg, ro+«] chosen so that no resonance of L,, has
imaginary part equal to —ry; for instance, r;=ry+(1—c)a works for sufficiently small

¢>0. If L,, has no resonances in the strip

S1:={ceC:—r;<Imo<—rp},

oo, ,

i.e. if Ly, ()" is regular in S, then we obtain u€H™™ s see (A.11) for the properties of
the Mellin transform on b-Sobolev spaces. This improves the weight from r to r1; we can
then run the same argument again. If however L,, does have resonances in S7, we obtain
a partial asymptotic expansion ug of u corresponding to these, and a remainder term
weH,™, so u=ug+a. If the partial expansion is trivial, i.e. ug=0, then u=a€H >"",
and we can repeat the argument as before. Generically, however, the partial expansion is
non-trivial, i.e. ug#£0; in this case, attempting to repeat this argument, equation (5.51)
now reads

Lyu= f_Lw,iT;UO _Lw,ﬁ;ﬂ-

The issue is that iw,@uo is merely an element of Hgo’r°+e+a (with >0 depending on the
imaginary part of the resonances of L,, in S7), but in general with no (partial) asymptotic
expansion, since the coefficients of Ewﬂj}, lying in H™'®, have no asymptotic expansion
either. Thus, we cannot establish an asymptotic expansion of v with an exponentially

decaying remainder term in H;~'® in this case.

Remark 5.18. If the coefficients of iw,@ did have a partial asymptotic expansion,

we could subtract off the corresponding terms of Ew’@uo and continue the argument,

(") We recall the statement in Proposition 5.19 (1) below. Solvability in an exponentially weighted
L2-space follows by means of energy estimates; the conormality relies on microlocal propagation esti-
mates.
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deducing an expansion of u up to an error term with weight given by the sum of the
weight of ug and the weight of the error term, i.e. the remainder of the partial expansion,
of Ew,@. In the present setting, the lack of an expansion for Ew,w@ means that we cannot

proceed in this manner.

In particular, the solutions of the Cauchy problem
(Luw, @5 Y0) Uiy i5 = Zy i (5.52)

cannot be expected to have asymptotic expansions up to exponentially decaying remain-
ders, and therefore we cannot cancel all growing asymptotics of u at once by matching
them with the asymptotics of some ug, 5, as we did in the proof of Proposition 5.7.
Instead, motivated by the above argument, we proceed in steps; the point is that can-
celing asymptotics within an interval of size <« can be accomplished directly using the
framework of Proposition 5.7.

Preparing the proof of Theorem 5.14, let us choose a weight 7o <0 with —rg>Imo
for all c€Res(Ly,); with a>0 given in Theorem 5.4, fix an integer N> (—ro+a«)/a+1
and weights

rn=a>ry_120>ry_os>...>1, O<rj+1—rj<a, (553)

such that for all resonances o€Res(Ly,), one has Imo#—r;, 0<j<N. By Proposi-
tion 5.11 and in view of the existence of a uniform essential spectral gap for the operators
L,,, weW  as discussed at the beginning of §5.1.2, we may assume that these conditions
are also satisfied for L,,, weW.

We recall the regularity theory for L,, 5 from [76, §5.1], which we extend to initial
value problems using Proposition 5.16. For simplicity, we assume that a>0 is so small

that, say,
1+asup(f)—p<3 (5.54)

to simplify the regularity arithmetic in the sequel; this condition ensures that the thresh-
old regularity at the radial sets for all operators L,, 5 is bounded from above by the
small absolute constant 3. This can certainly be arranged for 32—1; in the case that
B <—1, all our arguments below go through if we increase the regularity assumptions and
thresholds by the amount —1—3. Since in our applications the assumption 32—1 will

always be satisfied, we leave this more general case to the reader.

PROPOSITION 5.19. Let s>9. Consider the initial value problem

Ly gu=f, ~o(u)=(ug,u1).
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where WEW® and (f,ug,u1) €D~ reR.
(1) (See [76, Lemma 5.2].) Suppose that r<rg, with ro as above. Then, there exists

a unique solution ueﬁ,‘j”(ﬁ; E) of the initial value problem, and u satisfies

[ull gz < CUIS5 w0, ua) | pomror + (At [@]|)[[(f, w0, ) [ p3.r)- (5.55)

(2) (See [76, Corollary 5.4].) Suppose that r<rn_a, and let uc H>"(9; E). Then,
in fact, u€ H'"(Q; E), and u satisfies the tame estimate

ull e < Clull gor +1(f5 w0, w)l[ porr + (At [@l[ ) |(F, wos wr) | p5.r)-

(3) (See [76, Theor‘em 5.6].) Suppose that r<rx_o1;, j=1,2, and let uc H,"" (Q; E).
Then, in fact, ueﬁg_zj’r(Q; E), and u satisfies the tame estimate

[ull g2 SC(ull gzr +1(f; w05 wa) [ psror + (L[l ) (IS, w05 wr) || 3. )-

In all three cases, C' is a uniform constant only depending on s.

Note that, for we W§7 the coefficients of the operator L,, i have H % regularity, hence
L., satisfies the assumption [76, equation (5.1)]. The regularity assumptions here are

stronger than what is actually needed, but they will simplify the arithmetic below.

Proof. The estimates do not explicitly include a low-regularity norm of the coeffi-
cients of L, g, due to the uniform boundedness assumption (5.30) of @ in the norm of
wo (cf. the norm on v in the line below [76, equation (5.3)]).

Using Proposition 5.16, we first find a local solution u’'€ H*(27; E); we can then
rewrite the Cauchy problem for u as a forcing problem, like in (5.10), for which [76,
Lemma 5.2] produces the solution, together with the stated tame estimate. The only
slightly subtle point here is the radial point estimate, which however does apply at this
weight and regularity level due to assumption (5.54); see, in particular, the proof of [76,
Corollary 5.4].

For part (2), we proceed similarly, noting that we have H*® regularity for w near
the Cauchy surface ¥y by Proposition 5.16, and b-microlocal estimates yield the global
regularity as in [76]. Part (3) follows by first using part (2) with r=ry_2, which gives
u€H,"V*(; E), and then using the contour-shifting argument explained above, to-
gether with Lemma 5.17 (1), for obtaining b-regularity of I:w,g,u: since we are assum-
ng ueﬁg’T(Q;E), the partial asymptotic expansion of u corresponding to resonances
o with Imo>max(—r,—ry_1) must be trivial; since the high-energy estimate (5.7)
of L, loses two powers of o (see Remark 5.5), the contour-shifting argument gives
ueﬁ,‘j_Q’min(r’m’l)(Q;E). If »>rn_1, we repeat this argument once more, losing two
additional derivatives.
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In fact, the reference only gives these results in case the elliptic ps.d.o. Q€ ¥ (M; E)
in assumption (2) of §5.1, concerning the subprincipal operator at the trapped set, is equal
to the identity, or more generally a smooth section of End(E)— M, which is equivalent
to choosing a different inner product in (5.5). For general @, we merely need to check
that the proof of b-estimates at the normally hyperbolic trapping on growing function
spaces presented in [76, §4.3] goes through with @ present. This in turn is a consequence
of the observation that the form of L,, 5 implies, for we WS,

QLy3Q =Lya+L, L' €Diff] +HDifff + H 'l + 00 =2,

with @~ a parametrix of Q; see [76, §3] for the definition of the space of operators
\I'g;OHg_z. Indeed, this follows from the regularity of the symbols appearing in the
partial expansion of the symbol of a composition of two operators, see [71, Theorem 3.12
(2)]; or more directly by analyzing a partial expansion of the commutator of @ with
a section of E with (high) b-Sobolev regularity, the commutators of @ with smooth
differential operators being understood using the smooth b-calculus. Since the remainder
term \IJIO);OHg_2 is one order less regular relative to the leading order term than what is
assumed in [76, §5.1], we use the regularity assumption $>9 here. In fact, much less

would suffice, but we are assuming H'* regularity of w already anyway. O

Define the spaces of dual states in each strip
T :{UECZ—Tk <Imo< —kal}

by
Ry, :=Res™ (L, Ii,).

We have R;;kCHi/ZHHf(a tmo)FH=1/27r1 (). F)=* | the inf taken over 0 €T, and the
radial set OR of Ly, (see the discussion at the beginning of §5.1.2); this makes use of
the discussion following (5.20). We reduce however the regularity by % to give ourselves
some room to ensure the validity of the inclusion for small weW. A fortiori, in view of
(5.54), we have

RE, CHY 2T (s B)

Set
k

pi=dimR},, Dyi=Y»_Dj, Dy:=0, D:=Dy; (5.56)

j=1

these are constants independent of w. See Figure 5.1. Note that

D =dimRes(Ly, {Imo>—a}) < Nz,
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Figure 5.1. Illustration of two strips Z CC, with the associated spaces of dual resonant states
R, and their dimensions Dj . Crosses schematically indicate resonances.

with Nz the number of parameters in the modification map z, due to the surjectivity
assumption (5.33).

For c€C™2, we recall the notation ug, & from (5.52). For weW and @eW™, and
for k=0, ..., N, we then define

Cu,ak={ce CcN= Zuz,@ € Hyl,zlisk’rk (% E)},

with s, given below. Thus, C,, 4.1 is the space of all c€CN= for which the asymptotic ex-
pansion of the solution ug, ; of the corresponding initial value problem does not contain
any terms corresponding to resonances in Imo>—r. By Proposition 5.19 (3), the reg-
ularity which we can obtain for ug, ; under the assumption that it decays exponentially

at rate rp is 14— s, as stated, with

0, ifk<N-2,
sp=14 2, ifk=N-1, (5.57)
4, ifk=N.

Clearly, Cy g:k CCyw gy for k=L. For c€Cy g:x—1, We have
Lot 5 € Hy? ™™™ (Q B) € Hy™ (9 B),

and hence the map

)\w,ﬁ;kzcw,ﬁ;kfl —)‘C(RTU;](‘,’C)? (5 58)

¢ Ave (25, 5 — (L, 70) (U5, )
is well defined and linear; recall here the map Aryp from (5.23). The argument of Aryp
in this definition is the analogue of (5.51) for f=27 - and u=ug, 5, now also taking the

initial data into account.
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—TE-1 Ow,'zf;;kfl
x Il
x ' Aw Tk =
Cw,zﬂ;k ~ [’( w;ka(c)
2]

X
—Tk / Cuw,:k

Figure 5.2. Illustration of the spaces Cy, 4, and C{U &:% in Lemma 5.20; the crosses indicate
resonances, the total rank of which in the displayed strip is equal to D;C.

LEMMA 5.20. The spaces C., g1 have the following properties:
(1) We have Cy 5.0=CN2, and inductively

Cuw, ik = {€ € Cuayk—1 : Aw,ayk(c) =0}

for E>1.

(2) The space Cy 4.k CCu.w:k—1 has codimension Dj,.

(3) Cuw.w.6. CCN2 depends continuously on (w,w)EW x W, in the sense that it has
a basis with each basis vector depending continuously on (w,ﬁ)eWxWM.

(4) There exist spaces

. span{c =1t cDr y > P (5.59)

w, sk = w0 Cwd
with each cfu +E€CN= depending continuously on (w,ﬁ)EWXWM, so that
Cw,aik—1= Cuw,ak ®Chy gk (5.60)

By property (1), Ay, w induces a map on the quotient Cy g:k—1/Cuw w:k, and hence in-
duces a map
Pwaie): CPF 2 Cl o — L(RY,,, C) = CPk

w;k

on the fized vector space (CD;C, where for the second isomorphism, we use Proposition 5.11

to find a parametrization of R, which depends continuously on weW . Then, the map
W x W s (0, @) — [Ay ] € CPR* Pk

is continuous. See Figure 5.2.
(5) The map [Aw,w:k] is invertible for all k=1,...,N.
(6) If ]\/YZZD7 then Cw,qD;NZO-
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Proof. (1) follows from the above discussion, and (6) follows from (2) and (5.56).

We first prove (2)-(5) in the special case (w, @)= (wp,0), 50 Ly, 0=0. In this case,
Awo,0:k is well defined on the full space CNz for all k=1, ..., N; we denote the extended
map by Ax. Then, we have Cw070;k:mj<k ker A;. If we let

N
R*:= @ R{., =Res™ (L, {Imo > —a}),

then the map CN2>crs Apyp (28 Zio, 0)EL(R*,C), which we are assuming surjective, is
equal to (A1,..., An); its kernel equals Cy, 0.5 by definition. Therefore, each restriction
Ak
morphism Cly 0:6—1/Clug.0:k HE(RS;,C, C). We can then declare a set {Cue

is onto, hence its kernel Cy, 0;x has codimension D' and A\ induces an iso-
ch 1+1

Cuug,05k—1

LA wo,O}
of vectors in Cy,, 0.5—1, whose equivalence classes in C\ 0.5—1/ Owo,O k glve a basis of the

quotient, to be a basis of C}, ;. Lastly, we pick a basis {ch 05 Cug. Nz 1 of Cup.0n-
For general (w,w), we can now establish (2)—(5) by induction on k. We will use

subscripts to refer to claims (2)—(5) for any fized k. We introduce the notation

D/
{wllu;kﬂ ) wwﬁc} - R:u,k

for a basis of R} ,, with each wfu; » depending continuously on weW in the topology of
H 2 B)

Let us now assume that claim ( )m holds for m<k—1, for some 1<k<N, and that
the set {c! Nz 1 with each ¢,
chosen in the first part of the proof, is a basis of CVZ, with continuous dependence on
(w, W)W x W as in (3), so that (4),, and (5),, hold for m<k—1, and so that moreover

~ equal to the element of CV= for (w,w)=(wy,0)

w,wr " ww w,w

Clw,ir;m=span{c,, m+1, ey CNZ } for m<k—1. (Note that, for k=1, these assumptions are
satisfied for the choice cfu &= wo 0s =1, ..., Nz.) We will show how to update the cfu @
{=Dy+1,...,Nz, so as to arrange (2);;(5);C to hold

Dy _1+1
w, W [ ww

To this end, put C/, .., =span{c } We contend that the restriction

)\w,@;k: Cu; Jwsk _)‘C( w; k’@)

is injective, and hence (by dimension counting) an isomorphism; this implies (2); and
(5)k. Injectivity holds by construction for (w,w)=(wy,0); the contention therefore fol-
lows once we prove the continuity of the map

— ct Cfu w j
W x W14 = (w, ’LU) — <wa’w (Lw Wy 70)( w ) wzu,k>

’w 7w

for {=Dy_1+1,..., Dy, and j=1,..., D} ; we, in fact, establish this for {=Dj_;+1, ..., Nz.
(Note that for such ¢, j, this map is indeed well-defined.) To show the latter, it suffices
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. Cfuyru; ~ Tirld -
to prove the continuous dependence of U, 5 on (w,w)eW xW* in the topology of
Hg’rk‘l (Q; E). This, in turn, follows by an argument similar to the one used in the proof

of the continuity part of Proposition 5.16: let (wp,@p)EWx/WM, p=1,2, and write
¢ ¢ — e H*T U1 (1 B). Then, we have

Cp:pr,ﬁp’ szzwp,ﬁp and up—uwp Wy

(L, iy > 7v0) (w1 —u2) = 21— 22— (L, @, — Liwy i, 0) (u2).

Now, 21— 25 is small in D**(Q; E) for (wy,w;) close to (wg, ws), while the last term is
small in D12=sk=175-1(Q; E); by claims (2) and (3) in Proposition 5.19, this implies that
u1 —ug is small in H&‘?_QS"”’I’W’I (€ E)CHS’T’“’I(Q; E), as desired. Thus, statement (4)
is well defined now, and we just proved that it holds.

We also obtain (3); indeed, the projection map

Tw,w;k+ Cw;i);/cfl > ker )\w,'w;k: = Cw,iﬂ;k:a
-1
Cc >C_()\w,13;k|C{U m;k) ()\w,@;k(c))a
is surjecti d is the identi o Th
jective, and Ty, 0:x 1S the identity map on spaun{cw‘))0 3 o5 Copg 0} us,

{ﬂ-wwk( ) K Dk+1 NZ}

provides a basis of C, 4., which depends continuously on (w, w) €W x Wi, By an abuse

of notation, we may replace cw & DY T k( ) for {=Dy+1,..., Nz. Then,
Cuw,a:k= span{cD’“H7 - CB@}.
Therefore, we have arranged (2);—(5)x, and the proof is complete. O

We now have all ingredients for establishing the main result of this section.

Proof of Theorem 5.14. We fix the basis {cﬁ}@: 1<4< D} of CN= constructed in the
above lemma. Let (w,@)eWxWM and let (f,uo,u1)€D(Q; E). For ceCNz, we
denote by uCGH&Zl’T“(Q;E) the solution of the Cauchy problem (5.35). We first find
ccCN= for which uceﬁéo’o‘(ﬂ; E) is exponentially decaying; by part (6) of the previous
lemma, this c is unique if the map (5.33) is bijective. In order to do so, we will inductively
choose ¢ €C}, 5., such that, for ck::Z;?:l c;, we have u°* 6[?&475’“’”‘(9; E). Suppose
we have already chosen ¢!, m<k—1 (with 1<k<N), with this property. Then, writing

2 1fzw 'z ', the element cj is determined by the equation

AIVP((f,uo,u1)+2k—1—(iw,aﬁo)uc’“’l+ZZJ'“, — (L, s 70) s ) 0€ L(R;,.;,C).
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* 1, C) uses the inductive assumption

w;k?

uCk—1 € {75110 B This equation, rewritten as
b ) q bl

The fact that Aryp does map the argument into £(

)\w,'&?;k(c;c) = _AIVP((fa Ug, u1)+zk71_(i’w,7ﬁv P)/O)quil) € ‘C( *w;kv @)7

has a unique solution cj, GZ{U’ &k DY part (5) of the previous lemma, finishing the induc-
tive step and thus the construction of c:=cy.

Since we are assuming that w is uniformly bounded in W“, an inspection of the
argument implies that the norm of ¢ in CV2 is bounded by ||(f,uo,u1)||p1s.«, proving
the estimate (5.36), and the solution u=u® of the Cauchy problem (5.35) satisfies the

estimate
ull10.0 SIS, o, ur) 13,0
To obtain a tame estimate for higher Sobolev norms of u, we use Proposition 5.19 (3),
which gives
[ulls,o SN(fs w0 un)ls 43,0+ A+ W] sa) [|(F; 10, ur) 13,0
for s>10, proving (5.37).
Lastly, we prove the continuity of the solution map S, defined in (5.34); this follows

by the usual argument, noting that, for d;=(f;,u;0,u;1), (wj,ﬁj)EWme, (cj,u;)=

S(wj,wj,d;) and zj:zzjjj@j for j=1,2, we have

uy —ug = S(wy, Wi, di —da+21 — 20— (L, i, — Luwg 5, 0) (u2)),

which implies the continuity in view of our estimates on S(wy,ws,-). This finishes the
proof of Theorem 5.14. O

6. Computation of the explicit form of geometric operators

In the following four sections of the paper, we will only consider natural linear operators
related to the fixed Schwarzschild-de Sitter metric gp,; hence, we drop the subscript bg

from now on, so

9= 0Gby, MOEM°,07 Tizrbg,iv
R=Re,, L=Lyy, Bro=DBro,+,0, Br=Prox

where we recall the radial point quantities (3.27).
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6.1. Warped product metrics

We start by considering a general metric
g=q¢*dt>*~h, q=q(z), h=h(z,dr)
on a manifold M=R; x X, of arbitrary dimension >2. It is natural to define
eo:=q 10, and e’:=qdt.
Setting 2:=log g, we compute, for vEC*®(M,TX) and weC>®(M,T*X),
Ve, e’ =—dQ, Vew=ecow—w(V'Q)e’, V,e’=0, V,w=V'w, (6.2)

where V" denotes the Levi-Civita connection of the metric h, so in particular V€ is
the gradient of 2 with respect to h. We define decompositions of the bundles 7% M
and S?T*M adapted to the form of the metric, separating the normal (‘N’) and the

tangential (“I”) components: we let
T*M=Wn®Wr and S*T*M=Vyn®VNr®Vrr, (6.3)

where
Wy ={("), Wr=T*X,
Vnn = (%), Vnr={2ew:weWr}, Vipr=S2T*X,
where we write {én=£-n= % ((@n+n®E) for the symmetrized product. We trivialize Wy =2
M xR via the section €%, Vyny=M xR via €%, and we moreover identify Vyr =Wy by
means of Wr3w+—2e?weEVr. One then easily computes the form of the operators dg

(divergence), ; (symmetric gradient, formal adjoint of d,), and Ggy; see (2.4).

LEMMA 6.1. In the bundle splittings (6.3), we have

€0 —VhQ _
0= 3qdxq™"  Feo 5 ( —e0 o’ 0 )
’ i 0 25* T\ (dx9) —e —q Yongq )’
h
and
% 0 %trh
Go=| 0 1 0

ih 0 1—3htr,

Since we need it for computations of gauge modifications, we also note that

— —2¢7 2647 —ept
269Gg:( €o q %0nq eo trp, )

q 2dxq? —2eq —2¢ 1 0pq—dx try,
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6.2. Spatial warped product metrics

Next, we specialize to the case X'=1I,x.S, where ICR is an open interval, S is an -

dimensional Riemannian manifold, 1% €Ny, and the spatial metric & is of the form
h=q 2dr*+r*¢, q=q(r),

where ¢§=g¢(y,dy) is a Riemannian metric on S. All operators with a slash are those

induced by ¢ and its Levi-Civita connection Y. We write
e1:=q0, and el:=¢ ldr.
Then, for veC>(X,TS) and weC>(X,T*S), we compute
Vglel =0, Vglw —ew—qrtw, Viel= rqivg, Vhw =Y ,w—qr lww)e!, (6.5)

where we extend ¢ to a bilinear form on TX by declaring g(v,e;)=0 for all veTX. If
we let
T*X =Wrn®Wrpp and  S?°T*X =Voyn®Venr®Vierr, (6.6)

where
Wrn =(e'), Wppr=T*S,

Vrnn = (etel), Vpyr={2e'w:weWrr}, Vppr=S2T*S,

As before, we trivialize Wy (resp. Vory) via eb (resp. elel), and identify Wrr =Vt
via w—2etw. (If dim S=0, then Wrpr, Vryr and Vppr are trivial, i.e. have rank zero.)

Then one easily checks the following.

LEMMA 6.2. In the bundle splittings (6.6), we have

i=(5). = (ot o),

with § here being the co-differential C*° (X, T*X)—C>(X), and hence
/
dx2= <((]) )’ V'Q=(¢ 0)€eHom(T*X,R).
Moreover,

h=| 0 |, tr,=(1 0 r2tf)€Hom(S*T*X,R),
r

and
€1 0

oy, 1 srieir™2 |, 5h:< (6.7)

>
Il
|

2

—r eyt r28 r_?’qt/f)'
rqg g

0 —r eyt 2§
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Putting the two decompositions (6.3) and (6.6) together, we have

T*M=WndWrny&Wrr,
SPT*M=Vyn® (VNrn ©VNrr)® (Veny © Vet ©Verr),
where we wrote
Vr =VNrNn®VNTT,

by means of the identification VyrZWr=Wprny@®&Wrr, i.e. Vyry and Vypr are the
preimages of Wy and Wy, respectively, under this isomorphism. Thus, we trivialize
0,0
e

Wi via € and Wy via el, further Viyy via e%e® and Vi via 2e%¢!, as well as Vryn

via elel, and identify

TS =3 Vnpr, TS —Venr,  S2T*S=Virr.

w»—>260w, wt—)?elw,

6.3. Specialization to the Schwarzschild—de Sitter metric

Now, we specialize to the Schwarzschild-de Sitter metric, for which S=S? is equipped

with the round metric, and

r 3 - ,U,
where p=pyp, was defined in (3.4). We compute the subprincipal operator

Ssub(0y) = —iVE M

at the trapped set I' defined in (3.30), where 7: T* M — M is the projection and V™ 7" M
is the pull-back connection induced by the Levi-Civita connection on M; see [72, §3.3
and §4] for details. We can compute the form of this in the (partial) trivialization (6.8)
of the bundle T* M using (3.32), (6.2) and (6.5), with the coordinates on T*M given by

—odt+&dr+n, neT*S?, (6.9)

as in (3.29); so we have 01(2¢’eg)=—2ir~'o at r=rp, and hence

Hypz 0 0
Ssub(Hg) = —Qu_lo'Dt—l—ir_Q 0 Hyp2 0
iy T*S?
0 0 Avaks
Hia? (6.10)
0 —2r g 0
+1 —27"710' 0 —2q7’73ln
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at I', where mg2: M —S? is the projection map (¢, r, w)—w, and vz T"S s the pull-back
connection on ﬂggT*SZ induced by the Levi-Civita connection on S?. For the details of
this calculation, we refer the reader to [72, Proposition 4.7].(®)

In order to compute regularity thresholds at the radial set R, we will also need to
compute the subprincipal operator of [, acting on symmetric 2-tensors, at R; up to a
factor of —¢, this is given by V’TH*GSZT*MQ. We first calculate the form of V’;;GT*MD at R.

To simplify our calculations, we use the change of coordinates

to:=t—F, F =+p"!

1

near r=r4, so 0;=0;, and dto=q 'e"Fq le!; this change of coordinates amounts to

taking c¢p, +=0 in (3.6); see also the related discussion in §3.4. Furthermore, writing
covectors as
—odty+Edr+n, neT*S? (6.11)

the dual metric function is G=F20¢—ué?—r=2|n2. Hence, at the conormal bundle of
the horizon at r=r,, given in coordinates by

£i:{<t07riaw;07€’0)ez}? (612)

the Hamilton vector field is Hg=+2£0;, +1'§20¢ —2u&0,. Here we kept only those terms
which are not the product of a smooth function vanishing at £, with a vector field

tangent to L. Now, 0y, =0:=geo; using (6.2), (6.5) and Lemma 6.2, we find
VQJT*MU (ue®) = (equ)e® —q'ue?,
Vi, M (ueh) = (cou)e! —q'ue,
Ve, T M (w) = eou,

where weC>®(T*M°,7*T*S?) in the last line; therefore, in the static splitting (6.8) of
T*M°, we have

at —%M/ 0
VgtoT M = - %M/ 8t 0
0 0 O

Since the partial frame used to define the splitting (6.8) ceases to be smooth at r=r.,

we use, near r=ry, the smooth splitting

U:be dto—Fﬂ,TN dr+ﬂTT (613)

(®) Our o differs from the o in [72] by a sign.
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for smooth sections u of the bundle 7* T M° —T*M° near r=r, with uy and ury being

smooth functions on T*M° near 7., and @y a smooth section of 7*T*S%2—=T*M°. We

have
U=UN 60+uTN 61+uTT,
with
uN un gt 0 0
urN :%—[(1] urn | » (54_[}] =|lF¢! ¢ 0
urT urr 0 01
Therefore, the matrix of Vg:OT*M " in the splitting (6.13) at £ (where in particular z=0)
is given by
o —3u 0 Oy £ 51/ 0 0
VEIM =~ o, o |e=| 0 aFiw 0 |. (6.14)
0 0 Ot 0 0 O,
We therefore have
-1 0 0
Vil ™M = £260,, ¥250. %0 —2p€0, 22506 | 0 1 0 (6.15)
0 0 0

at L., where we use the surface gravities

Ay = :F%NI(Ti) >0
of the horizons, s, =45 " with . as in (6.1). Note that the order-zero terms of V3 7"’
do not contribute at L., due to the extra factor of u; the O,-derivative is needed to
calculate the skew-adjoint part of V’IT;GT*MD in §9.1.

The smooth splitting of sections u of 7*S?T*M°—T*M° induced by (6.13) is, anal-
ogously to (6.8),

U=UNN dtg-i—QﬂNTN dto dr+2dtg inrr+UrNN d7”2+2 dr upNnT+urTT, (616)
where Uy, Unyry and Urypy are functions on T*M°, uyprr and urnT are sections of
7 T*S2 - T*M°, and @ppr is a section of 7*S?T*S2—T*M°. The change of frame from
this partial frame to the partial frame used in (6.8) is given by %4_[,1] lifted to symmetric

2-tensors, i.e. by

UNN UNN g2 0 0 0 0 0
UNTN UNTN Fq¢? o1 0 0 0 0
untT | 2 | UnTT @) 0 0 ¢' 0 0 0f
- Cg:t ~ 1) + — —92 2 5
UTNN UTNN q T2 0 g 0 0
UTNT UrNT 0 0 T¢' 0 ¢q O
urTtrt ﬂTTT 0 0 0 0 0 1
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changing the frame in the other direction uses the inverse matrix

2 0 O 0 0 0
411 O 0 0 0
S e I T (6.17)
q +2q 0 q 0 O
0 0 +¢' 0 ¢t O
0 0 o 0 0 1

Computing the second symmetric tensor power of the operator (6.15) in the splitting
(6.16), we find

2.0 0 0 0 0
00 0 000
ccre e 0 0 -1 00 0
VST M = 1960, F250. 20 — 2060, +22.€ 0 0 0 200 (6.18)
00 0 010
0 0 00 0

at £, and thus at Ry as a b-differential operator, writing 0y, =—700;, for the boundary

defining function ro=e~% of M.

7. Mode stability for the Einstein equation (UEMS)

In this section, we prove Theorem 4.1.(°) We recall the mode stability results on
Schwarzschild—de Sitter space from previous physics works by Ishibashi, Kodama and
Seto [93], [92], [86]. These are not stated in the form we need them, but it is easy to put
them into the required form.

These works rely on a decomposition of tensors into scalar and vector parts, as
discussed in [93]; we restrict our discussion here to the case of interest in the present
paper, namely we work in three spatial dimensions, so the spherical metric is the round
metric on S?, corresponding to taking n=2 in [92]. (For higher-dimensional spheres
there would be a tensor part as well.) In brief, if h is a (generalized) mode solution
of the linearized Einstein equation (4.3), we shall expand h into spherical harmonics;

since h is a symmetric 2-tensor, this can be accomplished by means of the formulas (7.2)

(°) In the follow-up work [73], the first author gives a detailed self-contained proof of UEMS for
the Einstein—-Maxwell system, linearized around a spherically symmetric Reissner—Nordstrom—de Sitter
spacetime. A fortiori, this gives UEMS for Schwarzschild—de Sitter spacetimes, Theorem 4.1, as the
special case when both the black hole charge and the electromagnetic perturbation vanish.
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and (7.5) (for scalar perturbations), and (7.4) (for vector perturbations) below. Now,
the Schwarzschild—de Sitter metric is rotationally invariant, hence so is the linearized
Einstein equation; therefore, each spherical harmonic component by itself solves the
linearized Einstein equation. The calculations in the rest of the section analyze each of
these components and show that each is a sum of a pure gauge term and a linearized
Kerr—de Sitter metric.

Let us describe this in more detail. First, one considers a decomposition of tensors
into aspherical (dr,dt), mixed and spherical parts. Then scalar perturbations arise from
non-constant scalar eigenfunctions of the (negative) spherical Laplacian A on S2,

(A+EHS=0, k>0, (7.1)

via considering dS as well as §*dS and Sg, namely
~ o2r 9 1 " 1
h:fS—?(f@)st)—i—Qr H.S¢+Hr ﬁﬁ d+§g S, (7.2)

where f is valued in aspherical 2-tensors, f in aspherical 1-forms, and Hj; and Hp are
functions, all independent of the spherical variables; see [92, equation (2-4)], or [93, §3]
in a more general setting.
On the other hand, vector perturbations arise from eigen-1-forms of the (negative)
tensor Laplacian A,
(A+E*V =0, fV=0, (7.3)

via considering §*V, namely
2 2 *
h=2r(f@,V)=7r*Hrf"V, (7.4)

where f is an aspherical 1-form and Hp is a function, all independent of the spherical
variables; see [92, §5.2] or [93, equation (29)].

Together with the rotationally invariant (k=0) scalar case, when there is only
h=fS+2r’H. Sy, S=1, (7.5)

(7.2) and (7.4) give a Hilbert basis of the L? space of 2-tensors on Schwarzschild—de Sitter
space. Indeed, this decomposition is a consequence of the well-known scalar-vector-tensor
decomposition on S2?, after tensoring the latter with the L? space in the non-spherical
variables (t.,7). We briefly recall the decomposition on S?: aspherical 2-tensors are
captured by fS in (7.2) and (7.5); next, the Helmholtz decomposition of 1-forms on S2,
together with the fact that (A+k?) preserves the divergence-free condition in (7.3), show
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that the f®.dS and f®,V terms in (7.2) and (7.4) capture all symmetric products of
aspherical 1-forms with spherical 1-forms. Spherical pure trace tensors are described by
HpS¢ in (7.2) and (7.5). Lastly, the space of traceless tensors on S§? can be decomposed
into an orthogonal sum of the space of traceless and divergence-free tensors, and the
space of tensors of the form (6*+%g¢3’)W (the operator here is the adjoint of § acting
on tracefree symmetric 2-tensors), with W a 1-form on S%2. Now on S?, there are no
non-trivial traceless and divergence-free 2-tensors (see for example [69, §III] for a proof),
and the Helmholtz decomposition for W then yields the last terms in (7.2) and (7.4),
respectively.

One also considers possible gauge changes. In the scalar case, these correspond to

1-forms

E=TS+rL (S, (7.6)

where T is an aspherical 1-form, L is a function, both independent of the spherical

variables, and S is as in (7.1); see [93, equation (47)]. In the vector case, they are
£=rLV,

where L is a function, independent of the spherical variables, with V as in (7.3); see [93,
equation (31)].
It is convenient to also introduce the angular momentum variable, which is related
to k by
E*=1(1+1), €Ny,

in the scalar case, and
E*=1(1+1)—1, [€N,,

in the vector case.

7.1. Perturbations with [>2

There are special cases corresponding to [=0,1 in the scalar case and /=1 in the vector
case, which we discuss below, so we first consider {>>2. Then [92] and [86] show that
certain gauge-invariant quantities constructed in [93] necessarily vanish for any (tempo-
ral, i.e. with fixed frequency o in ¢) mode solution of the linearized ungauged Einstein
equation (linearized at Schwarzschild—de Sitter) with Im >0 (in our notation). In the
scalar case, for h as in (7.2), introducing

>3
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these quantities are

1

F:HL+2

gas™™?

HT—s—%G(dr, X), f=f+26 X (7.7)

where

gas=¢q* dt*—q % dr?

is the aspherical part of the metric; see [92, equations (2-7a)—(2-8)] or [93, equations (57)—
(59)]. By (6.7), we have 8}, X=6:X—rG(X,dr)g. Now, if F=0 and f=0, then h can
be written as

* T2
h=46; <—2XS+21€2HT¢ZS>,

where we use Lemma 6.2 to compute 4 (r2dS)=r24*dS; therefore, the mode h is a pure
gauge mode.

In the vector case, with h given by (7.4), the gauge invariant quantity is
F:f+%dHT, (7.8)
see [92, equation (5-10)] or [93, equation (33)], and if it vanishes, then

h= —%5;(T2HTV)7
so again the mode is a pure gauge mode.

We remark that both in the scalar and the vector cases, the gauge 1-form is also a
temporal mode 1-form, with the same frequency o as h.

Note that one in fact has a more precise result here: the gauge 1-forms are well
behaved even on the extension of the spacetime across the horizons. This is due to the
fact that the vanishing of the gauge invariant quantities, constructed from a scalar or
vector perturbation satisfying the linearized Einstein equation, follows by reducing to a
‘master equation’ satisfied by a ‘master variable’ ®. For the precise definition of @, we
refer the reader to [92, §3] (and [92, §4] for the discussion of stationary perturbations, i.e.
o=0); here, we merely remark that ® is a suitable linear combination (with r-dependent
coefficients) of components of F' and f in the scalar case, and F' is the vector case. This
master equation is a (time-harmonic, i.e. stationary) Schrédinger equation with a positive

potential: the corresponding Schrédinger operator is of the form
(uDy)?+Vs; (7.9)

see [92, equation (3:-5)]. A simple coordinate change z=x(r) transforms this into the
Schrédinger operator D2+Vs, x€R, on the real line with Vg(z) exponentially decaying
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as |x|—00;(1?) thus, this operator is essentially self-adjoint. The vanishing of the master
variable for mode solutions then follows from the following facts:

e the non-negativity of the spectrum of this Schrédinger operator: this fact excludes
Im o >0;

e the absence of embedded eigenvalues and, more generally, of real non-zero reso-
nance: this is proved via a boundary pairing formula (see [112, §2.3 and §2.5] for the case
of embedded eigenvalues) and a unique continuation at infinity for Schrédinger operators
on the real line with exponentially decaying potentials;(1!)

e the absence of a zero-eigenvalue and, more generally, of a zero-resonance, due to
the positivity of the potential.

Moreover, the Schrédinger operator (7.9) is well-behaved even on the extended space;
the resonances of the extended problem (corresponding to these modes) correspond to
resonances of the asymptotically hyperbolic problem described by this Schrodinger op-
erator; see, for instance, [78, Lemma 2.1] and [140, footnote 58]. Thus, the vanishing of
® at first in the exterior of the event and cosmological horizons in fact guarantees its
vanishing globally (across the horizons); then the gauge invariant quantities are recon-
structed from this and thus vanish; and finally the above arguments then show that the
metric perturbations under consideration are all pure gauge modes. This completes the

proof of UEMS for modes, if [>>2; see Lemma 7.1 for the case of generalized modes.

7.2. Spherically symmetric perturbations

Next, the case [=0 exists only in the scalar case, and it corresponds to spherical symme-
try. In this case, we do not need to assume the metric perturbation h to be a generalized
mode; we shall show that any spherically symmetric perturbation arises by an infinites-
imal change of the black hole mass.

The extension of Birkhoff’s theorem on the classification of solutions of Einstein’s
equations with spherical symmetry—namely, the fact that the only such solutions are
Schwarzschild spacetimes—to positive cosmological constants was done in a particularly
simple manner by Schleich and Witt [126]. One needs to check that their arguments work
already at the linear level—a priori there may be solutions of the linearized equation that
do not correspond to solutions of the non-linear equation—but this is straightforward,

as we show in the remainder of this section.

(1%) Roughly, at =0, the Schrédinger operator is essentially (uD,)?+Vs, which with z=—log u
equals D2+Vs, with Vs=0O(u)=0(e~%) exponentially decaying.

(1) See also the arguments around [78, equations (3.29) and (3.32)] for a discussion in the context
of asymptotically hyperbolic spaces—the present problem can be regarded as living on 1-dimensional
hyperbolic space, given as the interval (r_,r4), with the metric u=2 dr?, whose Laplacian is (uD;)? as
in (7.9)
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The proof in [126] proceeds by writing the Lorentzian metric, with the negative of

our sign convention, in the form
g=F du*+2X du®,dv+Y? g, (7.10)

with F', X and Y independent of the spherical variables, which one may always do by
a diffeomorphism; on the linearized level, one can similarly bring a metric perturbation
into this form by adding a ¢ term. Note in particular that the Schwarzschild-de Sitter
metric is locally in r, but globally otherwise, in this form for an appropriate choice of ¢,
(in terms of the definition (3.6) of t., with ¢, +=0) with u=t,, v=r, and then X==1,
Y =v, F:%Av2+2M/v—1. Notice that, by spherical symmetry, a priori g is of the form

g=fdi*+2X du®, do+Z di*+Y? ¢,

with coefficients independent of the spherical variables, i.e. g simply has an additional
Z di? term; in our near-Schwarzschild-de Sitter regime one may even assume (for con-
venience only) that Z is small; then, the coordinate change is v=0, u=U (@, ¥), and con-
versely v=v, &zﬁ(u, v), which gives the dv? component f(@vﬁ)2+2)~(8v(7+2, which is
casily solvable for 9,U whether f vanishes (since X is near 1) or not (since Z is assumed
small, so the discriminant of the quadratic equation is positive). Note that, if §U de-
notes the linearized change in U (relative to U =u, corresponding to the trivial coordinate
change v=v, t=u needed in the case of the Schwarzschild—de Sitter metric with Z =0)
and 87 denotes the linearized change in A (relative to 220), then, at )~(:1, we get the
equation 20,6U+8Z =0 for the linearized gauge change; this in particular preserves the
property of being a u-mode.

The gauge term for the linearized equation around Schwarzschild—de Sitter can be

*
Jgo,+”’

metric in the above form (7.10), thus with v=r, u=t, with an appropriate choice of t,,

seen even more clearly by considering § where go 1, is the Schwarzschild-de Sitter

corresponding to taking ¢, +=0 in (3.6). See Figure 7.1.
Then, acting on aspherical 1-forms (the only ones for [=0; see (7.6)), written in the
basis du and dr, and with output written in the basis du®du, 2du®sdr, dr@dr, ¢, and

moreover writing p=y(r) for the du? component of Schwarzschild-de Sitter, we compute

Outgn  —gu
§* _ %ar %811_%/“/
go,+ 0 a’r‘ ’
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Figure 7.1. Level sets of u for which (u,v=r) gives coordinates near the event horizon, away
from the cosmological horizon, in which the Schwarzschild—de Sitter metric takes the form
(7.10). Analogous coordinates can be chosen near the cosmological horizon, away from the
even horizon.

and thus, with tangent vectors written in terms of the basis 9, Oy,
110y Out+351/
Lo, 410, 1o,
Oy 0
0 T

*
590,i90’i =

where the second go + on the left is the isomorphism from the tangent to the cotangent
bundle. This shows that, given an /=0 symmetric 2-tensor, its dr? component, say Z dr2,
can be removed by subtracting (5;& . go,+ applied to an appropriate multiple f9, of dy;

one simply solves Z=48, f. Notice that this gauge change preserves mode expansions.
Einstein’s equations(?) Ric(g) —Ag=0 for the metric (7.10) are stated in [126, equa-

tions (6)—(9)]; for us the important ones are
—0,X0,Y +X0%*Y =0, (7.11)
X%?+Y0,F0,Y +F(8,Y)*~2X08,Y0,Y —2XY8,0,Y = —AX?Y? (7.12)
X0,F8,Y +2X Fd,0,Y —2Fd,X0,Y 13)
7.13
~X0,F0,Y +2X0,X0,Y —2X?02Y =0.

(Equation (7.11) is the dv? component of the Einstein equation, equation (7.12) is the
spherical part, simplified using (7.11), and lastly('®) (7.13) is the du? component, sim-
plified by plugging in the expression for A from (7.12).)

Now, the linearized version of (7.11), linearized around Schwarzschild—de Sitter, so

X =1, Y=v, with dotted variables denoting the linearization, is

—9, X +9%Y =0, (7.14)

(12) Recall that the sign conventions in [126], which we are using presently, are the opposite of what
we use in the rest of the paper.

(13) There seem to be two typos in [126, equation (9)]: a missing factor F in the second term,
and the differentiations in the fifth term are with respect to u rather than v. This does not affect the
argument in [126] however, since this equation is only used once one has arranged Y=v and X==1,
hence 0, X =90, X=0 and 9,,0,Y =0.
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SO

Xf&,}./zf(u),

with £ independent of v. With this in mind, it is convenient to further arrange that in g
one has Y=wv, as one always may do by a diffeomorphism, and thus infinitesimally at
Schwarzschild—de Sitter by a dg , term. Indeed, we are assuming that Y is near v by
virtue of considering deformations of Schwarzschild—de Sitter, so Y can be used as a co-
ordinate in place of v, and thus the inverse function theorem is applicable at least locally.
Thus v=V (u,Y) and the form of the metric (with no dv? term) is preserved. Arranging
this directly on the linearized level can in fact be done globally (except in 7, since our
Schwarzschild-de Sitter metric is only local in r): one can remove the Y component (ap-
pearing as a coefficient of ¢ in the linearized metric) by subtracting 5;0yigo7i(2r_1Y8T),
which preserves mode expansions. Having arranged Y =0, we conclude that X =¢ (u).

In fact, we can use this additional information to further simplify the metric by a
simple change of variables to fix the coefficient of du®sdv as 2. Indeed, the du®sdv
term is 2X du®sdv=2¢(u) du®sdv, so changing u appropriately, namely by doing a
change of variables a=U (u) with U’ =¢, arranges this. In the linearized version, we note
that solving 9, f=2X with f independent of r, and subtracting 5;o,i90,i(f 0y,) from the
symmetric 2-tensor removes its du®sdr component as well. Note that this uses strongly
that X:E(u): this is what ensures that the 9, derivative in d7  , go,+ does not give a dr?
component. Again, notice that this gauge change keeps the u-modes unchanged except
the 0-mode, in which case a linear in u term is generated.

But now, with X =0 and Y =0, the linearization of (7.12) is

00, F+F =0. (7.15)
This says 0, (vF)=0, and hence
F=M(u)v™.
Finally, (7.13) becomes
0. F =0, (7.16)

and thus M(u)=M is independent of w. Comparing with (3.4), this is exactly the
infinitesimal Schwarzschild—de Sitter deformation corresponding to changing the mass.
Thus, one concludes that locally in r, but globally in ¢., the only solution, without
fizing a frequency o in t,, i.e. not working on the Fourier-transformed (in ¢.) picture, is
linearized Schwarzschild-de Sitter—which is a zero-mode—up to gauge terms, which are
mode gauge terms, with possibly linear growth in ¢,, as described above.
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Now, this argument applies separately in two regions of the form r_ —j<r<ry and
r1<r<ry—+90, with r. asin (6.1), where r_ <ry <ro<r,. Thus, in the overlap r <r<rs,

we can write the linearized solution as
g= 5291 +g0,- = 5292 +90,+

where §o + are the linearized Schwarzschild-de Sitter solutions in the two regions, and
where we are using the global Schwarzschild—de Sitter metric g, so the 6. differ, from the
ones constructed above by pull-back, by the diffeomorphism that puts g into the form
considered above, with vanishing dr? term; notice that this again preserves the u-mode
expansions. This, in particular, implies that the gy .+ have the same mass parameter
M, thus they are equal, that is, go,.+=go. Then one concludes that 5;(9,—9+):0, ie.
0_—0, is the 1-form corresponding to a local Killing vector field which is spherically
symmetric. This is necessarily a constant multiple of 0;=0;, =0,,, and is thus globally
defined. Adding this multiple of the 1-form g(d;) to 8, to get §', we then have §_ =6’
in the overlap, and thus the 1-form 6, equal to 6_ and Gﬂr in the domains of definition of

these two 1-forms, is a well-defined global 1-form. This proves the [=0 case of UEMS.

7.3. Scalar perturbations with [=1

In the scalar [=1 case, one proceeds differently. Namely in this case the quantities (7.7)

discussed for [>2 are not gauge-invariant anymore as 6*¢ZS:—Sg for S asin (7.1), i.e.

<k125*¢l+;g)8 =0

(recalling k2=I(I+1)=2), so the Hy component in (7.2) is no longer defined; one simply
puts Hp:=0. Moreover, they do not solve the full set of equations from [>2 a priori, but
it is shown in [92] that the additional equations can be regarded as gauge conditions. The
extra gauge equations one gets are linear wave equations, thus solvable, with remaining
gauge freedom given by the corresponding initial data, and thus these extra gauge equa-
tions can be assumed to hold. In fact, since we are working in 241 spatial dimensions,

the extra gauge equation is exactly the scalar wave equation, see [92, equation (B-3)],

L L 1.
mp (r) Er_25gASr2dAs (r) :_EET’ (7.17)

where L is the coefficient of the gauge 1-form 7L dS (i.e. the special case T=0 of the

expression (7.6)),(**) and where Er is the (non-existing) component of the linearized

(%) The notation here is that of [93, equation (47)], not the slightly different one used in [92,
Appendix B].
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Einstein tensor that would correspond to Hy in (7.2) if 1>2 were the case;(!°) here it is
directly defined in terms of F and f from (7.7) as

2
%E’T =—tr f ;
see [92, equation (A-1d)]. Now, for fixed temporal frequency o one still has an ODE
system, [92, equation (2-24)], which has a 2-dimensional space of solutions as a linear ODE
in the exterior of the black hole/cosmological horizon, without imposing any conditions
at the horizons. On the other hand, for fixed temporal frequency, again without imposing
any conditions at the horizon, the ODE corresponding to the gauge wave equation (7.17)
also has a 2-dimensional space of solutions L. Now the map from L to changes in the
scalar quantities (X,Y, Z) of [92, equation (2:24)] can be thought of, via lowering an
index by the metric and multiplying by k (recall k>=2), as the map

» ~ L. (L L k? -
L— —25;Asr2dAS (7") +2rG (d?“, d(r>>gAs+ 7LgAS, (7.18)
with ™ denoting the Fourier transform in —t. (Here, we regard (X,Y, Z), with Z defined
in terms of Z by [92, equation (2-23)], as the components of the aspherical tensor f—
2Fgas; see [92, equation (2-20)].) We thus need that, on the 2-dimensional space of

time-harmonic solutions of the aspherical [J i.e. on the space of L satisfying

gAS»

L
(0,40, + 0% %r?) () =0, (7.19)
r
this map is injective. This is straightforward to check: on the kernel of the Fourier-
transformed version of the map (7.17) (with right-hand side E7=0), the trace of the first
term in (7.18) vanishes, so the pure trace component of the map (7.18), with L=L/r, is
2gas times
L r¢®0,L+ %kQE
Assuming L is in the kernel of this map and solves (7.19), we can rewrite d.L in terms
of L itself and obtain
Orr (—;k2i> +0%q % L =0;

expanding the derivative and substituting again, we get (using k%=2)

oM. Ar?
e

(- +1+0%?) L= < +02r2)[~120.

(%) In this case, the linearized Einstein tensor can be decomposed in the same manner as the
linearized metric perturbation, i.e. in the present context as (7.2). For [=1 however, as discussed above,
the coefficient of Hp, or Ep for the linearized Einstein tensor, vanishes.
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For any value of 0 €C, the factor here does not vanish for all but at most three values of
7, so we obtain L=0, hence ﬁ:O, as desired.

Since such a gauge change by L still gives a solution of the ODE system satisfied by
(X,Y, Z), we conclude that all solutions of the ODE system are given by a gauge change
from the zero solution; see the related discussion in [93, Appendix E]. Thus, one may
assume that the no-longer gauge invariant quantities constructed in fact vanish. In this
case, with(19)

r
= —
X=1f.

these quantities take the form
1 L
F:HL+;G(dr,X), f=f+20,,.X,

and the vanishing of F and f (which as we said can be assumed up to gauge terms)
implies

51(—2XS) :fS—2£f®s¢lS+2r2HLSg:h,

as desired. Note that, as the ODE analysis in [92] is done in the exterior of the black
hole/cosmological horizon, this is not quite yet the statement we want: we want to
express the metric perturbation as a Lie derivative also beyond the horizons. The only
potential problem is that the gauge transformation L above could be non-smooth at the
horizons. But note that the mode (which we set out to show is pure gauge) is smooth at
the horizons, and the result of adding to it the pure gauge solution according to (7.18)
is identically zero between the horizons. However, by direct substitution, one can check
that the non-smooth asymptotics which could a priori be present for the solution of
(7.17) are not annihilated by the map (7.18), and therefore L cannot have non-smooth
asymptotics, as desired. This establishes UEMS in this case for mode solutions; for the

case of generalized modes; see Lemma 7.1 below.

7.4. Vector perturbations with [=1

We now consider the [=1 vector case, i.e. k=1 in (7.3). One can again proceed as in the
scalar [=1 case; now the Hr component in (7.4) does not exist, since for k=1, we have
#*V =0, i.e. V is the 1-form corresponding to a Killing vector field on S2. If one sets

Hp=0 in the formula (7.8), one gets the non-gauge invariant quantity F=f. However,

(16) This is the 1-form denoted X, in [92, equation (2-8)], not the scalar quantity X from the
previous paragraph.
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rdas(f/r) becomes a gauge-invariant quantity in this case; see [93, equation (34)]. The

linearized Einstein equation, with gag the aspherical part of the metric, then becomes

T_B(SQAS’I“S (TdAS (f)) =0,

see [93, equation (37)], which gives (as das(f/r) is a top-degree, i.e. degree-2, aspherical
form) that

rdas (f) =Cr 3 (%gpsl) (7.20)

for a constant C, where x4, is the Hodge-star operator. (Note that this does not require
the actual solution to be a mode solution, just like in the /=0 case there was no such
requirement in our argument!) In particular, this gauge-invariant quantity is static, and
in fact is the image of an infinitesimal Kerr—de Sitter solution: indeed, recall from (7.4)
that the actual solution is h=2rf®,V, which for a rotation vector field V on S? gives
an infinitesimal Kerr—de Sitter solution rotating around the same axis as V if we take

- (22
3 72

(which indeed satisfies (7.20) with C=6M.); this follows from differentiating the metric
(3.12) in the parameter a at a=0.

Therefore, subtracting the corresponding infinitesimal Kerr—de Sitter solution, we
may assume that rdas(f/r)=0. Now, 0%(r?*y)V)=r?das)®,V; thus we want to have
2r f=r2dag1), i.e. dash=f/2r. But this can be arranged as das(f/7)=0 and the coho-
mology of the (¢,7) region is trivial; indeed, it is easy to write down such a 1 explicitly,
simply integrating f/r. Notice that this gives, if f had an expansion in powers of t,,
one higher power in terms of ¢,. This establishes UEMS, and completes the proof of
Theorem 4.1.

7.5. Generalized modes

We finally bridge the gap between the modes considered in Theorem 4.1 (1), which do

not contain powers of ¢,, and the modes appearing in the expansion (4.6).
LEMMA 7.1. Let 0€C, Imo>0, 0#£0, and let

k
h(te,z) = e " tlh(x (7.21)

j=0
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with h; €C=(Y, STy, be a generalized mode solution of Dg, (Ric+A)(h)=0. Then,
there exists a 1-form weC>(Q°, S2T*Q°) such that h:(s;bow. In fact, w is a generalized

mode as well,
k

w(ty,x) = Z et i w;(x),

§=0
with the same k, and with w;€C*(Y, S?TH°).

Proof. For k=0 and [=0 scalar or [=1 vector perturbations, this was already shown
above. In the remaining cases, we have already shown this result for k=0. Let us now
assume that the lemma holds for k—1>0 in place of k, and let h, of the form (7.21),
be a solution of Dy, (Ric+A)(h)=0. Since g, is a stationary metric, the operator
Dy, (Ric+A) has t.-independent coefficients; therefore Dy, (Ric+A)(h)=0 implies that

0=tFDy, (Ric+A)(e™"7"hy)+0O(eM™ =gk,

hence Dy, (Ric+A)(e™*7*hy)=0, and UEMS gives hy, =0g,,w With w(t., x)=e "t (x),
where woeC>®(Y,T5Q°). Let now h’zh—é’;bo (t*w). Then, we have

k—1
h = Z e "7t (x),
3=0
i.e. the leading term of h involving t* is eliminated, and moreover Dy, (Ric+A)(h')=0;
by the inductive hypothesis, h’zégbo w', with w’ being a generalized mode only including

powers of t, up to t*~1 and we conclude that
h=4dg,, (tFwtw’),

as claimed. O

8. Stable constraint propagation (SCP)

In this section, we still drop the subscript by as in (6.1), and work only with the fized
Schwarzschild—de Sitter metric g=gp, .

We now aim to modify J; by suitable stationary order-zero terms, producing the
operator 5*, S0 as to move the resonances of 59Gg5* into the lower half-plane, thus estab-
lishing SCP. (Note that the principal symbol of 07, 01(0;)(¢)=i(®s(-), is independent
of the metric; we will later on use the same modification §*, irrespective of the met-
rics we will be dealing with when solving linearized or non-linear gauged Einstein-type

equations.)



NON-LINEAR STABILITY OF KERR—DE SITTER 107

Using the stationary structure of the spacetime, two natural modifications of d;
that leave the principal symbol unchanged are the conjugated version e~ 7*+d§*e?** and

the conformally weighted version 6% where 7 is a real parameter. The general form

—2vtx g’
of a linear combination of these two for which the principal symbol is i(®s(-) takes the

form

S = Sgutm dt.-u—"y2(ive,u)g, 1,72 €R. (8.1)
We will prove the following result.

THEOREM 8.1. Let t, be the timelike function on Schwarzschild—de Sitter space
(M, gp,) constructed in Lemma 3.1, and define 6 by (8.1). Then, there exist parameters
Y1,72>0 and a constant a>0 such that all resonances o of the constraint propagation

operator ﬁgP:%gGgg* satisfy Im o< —av.

Rather than excluding the presence of resonances in Im o> —a by direct means, for
example integration by parts and boundary pairings as in [78], we will take 1, vo~h"1,
with the semiclassical parameter h>0 small, and study hgﬁgp as a semiclassical b-
differential operator on the spacetime domain €). In principle, a direct computation in
the spirit of §7 would show this directly and provide concrete values of 71 and 79 for
which the conclusion holds; we proceed in a more systematic (and less computational)
manner, at the marginal cost of not obtaining such concrete bounds. In the simpler
setting of de Sitter space, however, we can exactly compute the values of «; and 7, for
which SCP holds; see §C.3.

In §8.1, we discuss the semiclassical reformulation in some detail, preparing the
high-frequency analysis of §8.2 and the low-frequency analysis of §8.3. For simplicity,
we use standard energy estimates beyond the horizons, proved in §8.4, to cap off the
global estimates; we will obtain the latter in §8.5, and use them to finish the proof of
Theorem 8.1.

We give a brief overview of the proof of Theorem 8.1. A good model operator to think
about (in place of the more complicated operator of interest, h2ﬁgp, which is discussed in
§8.1) is the scalar operator P,=h?*0,—iLy, where g is a Schwarzschild-de Sitter metric
and —tLp=—Nivs, du is a first-order semiclassical differential operator.

e For (semiclassical) microlocal propagation estimates (away from artificial bound-
aries beyond the horizons), we need to determine the semiclassical characteristic set.
Lemma 8.5 shows that this is the union of the zero section and the intersection of fiber
infinity with the light cone.

e §8.2 deals with fiber infinity. The analysis there is similar to that of [140]; the oper-
ator —iLy has a favorable sign and can thus be treated as a complex absorbing operator.
(While Lj is lower order in the sense of differential orders, it is a principal term in the
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semiclassical sense, i.e. it does affect the overall principal symbol at finite semiclassical
frequencies.) Concretely, Proposition 8.9 gives real-principal-type propagation of singu-
larities, Proposition 8.11 provides the radial point estimate, and Proposition 8.12 gives
the estimate at the trapped set. Because of the extra damping —iLy, these estimates
(in particular the one at the trapping) work in all weighted b-Sobolev spaces, including
those with very fast exponential decay. This is different from the operator h?0J,, where
estimates only work on spaces with exponential decay rate o<a, with >0 being the
size of the essential spectral gap.

e 8.3 deals with the zero section of the b-cotangent bundle. Here, we use the
operator P, to deduce propagation estimates: Ly, is its real part, and ih*0, becomes
the complex absorption. The Hamiltonian flow of the principal symbol of Ly is the
symplectic lift of the gradient flow of t,. There is a critical set for this flow at the zero
section intersected with the boundary at future infinity, located at r=r.={/3M./A (see
Lemma 3.1), and thus between the two horizons. All Hamiltonian trajectories either
tend to this critical set or escape to t,=0 in the backward direction. This is used
to set up the propagation of singularities: by Proposition 8.19, one can reduce to a
neighborhood of the critical set; in this neighborhood then, we use a radial-point-type
estimate, Proposition 8.21. The latter is the only part of the proof which restricts the
amount of exponential decay to g<«, where a>0 is explicitly given in Remark 8.22.

e Beyond the horizons, we use standard energy estimates, proved in §8.4, which
allow us to propagate our estimates all the way up to the artificial hypersurfaces located
there.

e In §8.5, we show how to combine the results of the preceding sections to obtain
global semiclassical estimates on P}, on spaces of exponentially decaying functions. This
implies the invertibility of P on such spaces when one fixes 7>0 to be small enough;
thus, Py has no resonances in Imo>—a.

The actual operator is a tensorial operator acting on 1-forms. A considerable tech-
nical complication in §8.3 is then that the principal symbol of Ly, defined below, is not

a scalar matrix.

Remark 8.2. Using definition (8.1), the form of ESP is the same as [66, equa-
tion (13)]. (See also the paper by Pretorius [117] for impressive numerical results ob-
tained using such techniques.) Thus, Theorem 8.1 rigorously proves that (8.1) leads to
constraint damping, justifying in the setting of Schwarzschild—de Sitter spacetimes and
its (asymptotically) stationary perturbations the heuristic analysis of [66, §III]. More-
over, we point out the connection of the discussion of §* vs. 4, around (1.8) to numerical
investigations of Einstein’s equations: introducing the modification 6* removes the oth-
erwise very sensitive dependence of the solution of the gauged Einstein equation (1.8) on
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the constraint equations being satisfied.

8.1. Semiclassical reformulation

With 6* defined in (8.1), we now let >0 and take
71=7 and 72=3ey. (8.2)
The constraint propagation operator is thus

OSF = 264Gy 67 +7(—ive, dut(dt.)gu+ Oyt )u—e d(ive.u)). (8.3)

1

We view hi=~~" as a semiclassical parameter; then,

. 2 CP
Pp = h2CS (8.4)

is a semiclassical b-differential operator. Occasionally, we will indicate the parameter e
by writing P . We will show that Theorem 8.1 follows from purely symbolic microlocal
arguments; the energy estimates we use for propagation in the r-direction beyond the
horizons are rather crude, and also symbolic (albeit for differential operators) in char-
acter. (We will sketch an alternative, completely microlocal symbolic argument using
complex absorption in Remark 8.29.) The relevant operator algebra is the semiclassical
b-algebra, which is described in Appendix A.3.

In order to analyze PneDiHa »(M), we first calculate the form of the second term in
(8.3). We now work with the coordinate t, of Lemma 3.1, which simplifies computations

significantly: the metric g and the dual metric G take the form

g=pdt?—2vdt, dr—c? d?"277‘2g,

(8.5)
G=72 83* —20 0, 0r— 1t 83 —r2¢,
where c=c¢;, in the notation of Lemma 3.1, and
v=F\1-c2u, =£(r—r.) >0, (8.6)

with r.={/3M. /A given in Lemma 3.1. See Figure 8.1.
We will also make use of the boundary defining function 7=e~% of M.

Using the identities
Vi 4c2u=1 and 2w/ +c% =0,

one can then compute the connection coefficients and verify the following result.
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Figure 8.1. The graph of the function v defined in (8.6).

LEMMA 8.3. For weC>®(M°,T*S?) and veC>®(M°,TS?), we have

Vo, dt.=—3vp/ dt,—3Pp dr, Vo, dr=—3pp' dt.+3vp/ dr, Vo, w=0 w,
Vo, dt.= 7%02;/ dt,+c*v' dr, Vo, dr= %l/// dt,—uvv/' dr, Vo, w = Arw—r 1w

)

Vodte=rviyg, V,dr=rui,g, V,w= Yow—r~tw(v) dr.
Splitting the bundle
T*M° = (dt,)® (dr)®T*S? (8.7)
and using Vt,=c?0;, —v0,, we then make the following calculations.
LEMMA 8.4. In the bundle decomposition (8.7), we have
1/8T —Vat* 0

—in*d: C2ar —02875* 0
Ad —vd  —c%0;, +v0,

Further,
—c20y, +v0, vO;, +ud, —r—2§ V42r~ty @2 0
(dt,)5, = 0 0 0o |+ 0 o o],
0 0 0 0 0 0
and
CQat —1/5}* 0
d(ive, (-))=| 20, —vd.—V 0
A4 —vd 0

Lastly, we have
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The part of Py, corresponding to the second term in (8.3) is given by

—iLpu = —ivy, hdu+(dt. ) Rdgu+h(Ogts)u—e hd(ive, w)

—(14+e)c?0s, +2v0,  evdy, +uo, —r=24
=h (1—e)c?0, —c20;, +ev0, 0
(1—e)c?d (e—=1)vd —c%0,, +v0,
2 +4r~ 1y wW42r 0
+h 0 (1+e)v/ +2r v 0
0 0 v+2r— 1y

Thus, LhEDiff%”h(M ;PT*M); the first term here is semiclassically principal, the second
one subprincipal, due to the extra factor of 4. We will sometimes indicate the parameter

e by writing L. ;. We denote the principal symbol of L. j by
le=0n1(Len).
We decompose Ly in the coordinates (t.,r,w) as
Ly = My, hDy + M, hD, + M, +ihS, (8.8)

with M,, capturing the 4 and § components, and S the subprincipal term (not con-
taining differentiations); the bundle endomorphisms M; , M, and S of "T*M have real
coefficients.
Since
Pr=0g%—iLy and OF} :=h*05" =h?6,G,40;

(see (2.13)), we see directly that Py, is not principally scalar, due to the non-scalar nature
of Ly; of course, the principal part in the sense of differentiable order is scalar and equal

to G'Id, where G is the dual metric function.

LEMMA 8.5. For e<1 sufficiently close to 1, the semiclassical principal symbol of
Pe. is elliptic in PT* M\ (oU(XNPS*M)), where S=G~1(0)CPT*M is the characteristic
set, and PS*M is the boundary of PT*M at fiber infinity.

Proof. At a point (€PS*M, the ellipticity of Py is equivalent to G({)#0, proving
that Elly, ,(Pp)NPS* M =PS*M\X.

Next, working away from fiber infinity, we note that abﬁ(Dg’%)zG is real, while
ob,1(iLy) has purely imaginary eigenvalues; this follows from (8.10) below for e=1, and
either by direct computation or from Lemma 8.13 below for 0<e<1. We thus only need
to show that o1, 5(Lp) is elliptic on the part of the light cone XN (PT*M\o) away from
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fiber infinity and the zero section. Moreover /., as a smooth section of 7* End(®T* M)
over PT*M (with 7:PT*M— M), is homogeneous of degree 1 in the fibers of PT*M;
since ¥NPS*M is precompact (the non-compactness only being due to the boundaries
r=ry +3e) being excluded in the definition of M), the set of e for which £, is elliptic on
YN (PT*M\o) is therefore open. Thus, it suffices to prove the lemma for e=1. Writing
b-covectors as

(=—odt,+&dr+n, neT*S?, (8.9)
we have
—2(c?o+v€) vo—pé —r=2i,
b= 0 —(o+ve€) 0 . (8.10)
0 0 —(c2o+v€)

But —(c?o+v€)=G(dt,, (), which, by the timelike nature of dt., is non-zero for
¢cexn(®T*M\o). O
The last part of the proof has the following consequence.

COROLLARY 8.6. For e close to 1, the symbol oy (L) is elliptic in the causal
double cone {(€PT*M\0:G(¢)>0}.

Schematically, the principal symbol of P; 5 is

2Vt * *

0 0 Vi,

viewing Vt, as a linear function on the fibers of ®T* M. Since in a conical neighborhood
of the two components X% of the light cone (see (3.21)) we have +Vt, >0, the imaginary
part has the required sign for real-principal-type propagation of regularity along the
(rescaled) null-geodesic flow generated by Hg in the forward (resp. backward) direction
within £TNPS*M (resp. ¥~ NPS*M); see §8.2 for details.

Near the zero section, one would like to think of L; 5 as a coupled system of first-
order ordinary differential operators, transporting energy along the orbits of the vector
field Vt,. See Figure 8.2.

Remark 8.7. We explain the structure of L. 5 in a bit more detail. We first note that
one can check that the conclusion of Lemma 8.5 in fact holds for all e>0, but fails for
e=0. Indeed, for e=0, one can easily compute the eigenvalues of £,(¢), (€PT*M\ o as in
(8.9), to be —(c?o+£v) with 2-dimensional eigenspace,(17) and c2o+&v=4+/E2+c2r—2n|2

(17) This is independent of e and can be computed explicitly: for 770 and £#0, the eigenspace is
Nt @ (v|n|? dt.+c?|n|? dr—r2€n); if n#0 and £=0, it is n- @ (v dt.+c? dr); and, if n=0, it is nt=T*S2.
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Figure 8.2. The flow of the vector field Vi, including at the boundary at infinity.

with 1-dimensional eigenspaces, respectively; the vanishing of any one of the latter two
eigenvalues implies G=0. Thus, for e=0, Lj can roughly be thought of as transporting
energy in phase space along the flow of Vt, for a corank-2 part of Ly, and along the
flows of two other vector fields, whose projections to M are null, on two rank-1 parts.
As soon as 0<e<1, however, the projections to M of these two vector fields become
future timelike, as we will discuss in Lemma 8.15 and Remark 8.14 below, and £, is still
diagonalizable, due to Lemma 8.13 below; for e=1, on the other hand, all three vector
fields coincide (up to positive scalars), with projection to M equal to a positive multiple
of Vt,, but ¢; is no longer diagonalizable, as it is nilpotent with non-trivial Jordan block
structure when evaluated on (dt,)*\oCPT*M\o.

In summary, ellipticity considerations force us to use e>0, while the structure of L. 5
is simplest for e=1, with the technical caveat of non-diagonalizability, which disappears

for e<1; this is the reason for us to work with e<1 close to 1.

8.2. High-frequency analysis

We now analyze Py near fiber infinity OPT*M. By Lemma 8.5, we only need to study
the propagation of regularity within 0X=G~1(0)NPS* M along the flow of the rescaled
Hamilton vector field

He =0Hg € Vo (PS*M),

see (3.26); here ¢ is a boundary defining function of fiber infinity bS* M cPT*M. Note
that H¢ is equal to the Hamilton vector field of the real part of oy, (Pr).

Let £=01, (L1 1), so the eigenvalues of £4¢ are positive near 9X*. In order to prove
the propagation of regularity (i.e. of estimates) in the future direction, as explained after
the proof of Lemma 8.5, we need to choose a positive definite inner product on 7*PT™* M
(with m: 0% —M being the projection), so that +£35(¢+¢*) is positive at (and hence
near) OX* in the sense of self-adjoint endomorphisms; see also [72, Proposition 3.12]. We
phrase this in a more direct way in Lemma 8.8 below. For real-principal-type propagation
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estimates, we only need to arrange this locally in 9%, but we can in fact arrange it globally,

which will make the estimates at radial points and at the trapped set straightforward.

LEMMA 8.8. Fiz the positive definite inner product
gr=dt}+dr’+g (8.11)

on PT* M, used to define adjoints below. Then, there exists a pseudodifferential operator
QE\Ilgﬁ(M;bT*M) which is elliptic near 9%, with microlocal inverse QQ~, so that

i@Ub,h(zli(QPe,hQ—(Qpe,hQ)*)> >0 (8.12)

holds near OX* for all e close to 1.

Proof. Since Dgl;b has a real scalar principal symbol, it does not contribute to (8.12);
thus, we need to arrange (8.12) for —iL, j, in place of P, . Moreover, if (8.12) holds for
e=1 for some choice of @), then one can take the same @) for e close to 1 by compactness
considerations. Explicitly, then, we may diagonalize the symbol of L j, given in (8.10),
near OX* by conjugating it by an endomorphism-valued order-zero symbol ¢; quantizing
q gives an operator @ with the desired properties. Concretely, near 0%, we may take
o=|c?o+vE|71, and then

1 Fo(vo—pg) =+or i,
q=10 1 0
0 0 1

The proof is complete. O
This immediately gives the propagation of regularity/estimates.

PROPOSITION 8.9. Let Bl,Bg,SE\Pg,h(M;bT*M) be operators with wave front set
disjoint from 0¥~ (resp. OX%), as well as from the zero section oCPT*M. Suppose that
all backward (resp. forward) null-bicharacteristics of Hg from WFy, (B2)NPS*M reach
Elly 5 (Bi) in finite time while remaining in Ell, 1(S), and with S elliptic on WFy, ,(Bs).
Then for all s,0€R and N €R, there exists hig>0 such that one has

1Bl e SIBvull e + 0 1 SPrull oo +h™ Jull oo, 0<h<ho, (8.13)

b,h "~

in the strong sense that if the norms on the right are finite, then so is the norm on
the left, and the estimate holds. The same holds if one replaces Py by its adjoint Pj
(with respect to any non-degenerate fiber inner product) and interchanges ‘backward’ and

‘forward’. See Figure 8.3.
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Figure 8.3. Propagation of regularity in the future direction within 8X%: we can propagate

microlocal control from Elly, ;(B1) to Ell, 5(B2). In X7, the arrows are reversed, correspond-

ing to propagation in the backwards direction along Hg (which is still the future direction

in 0%).

This propagates Hsjg—control of u in the forward (resp. backwards) direction along
the Hg-flow in 0%+ (resp. 9%7).

Proof. First of all, with @ as in Lemma 8.8, we can write

QPru=QPrQ (Qu)+Ru

with WFy, ,(R)NWFy ;,(S)=2; from this, one easily sees that it suffices to prove the
proposition for

Phi=QPQ (8.14)

in place of Py. This then follows from a standard positive commutator argument, con-

sidering that

ih ™ ((Au, APju) — (APhu, Au)) = (ih =[P}, A2 u, u) — ((ih) (P}, — (Ph)*) A%u, u)
(8.15)

for a suitable principally scalar commutant A:A*GT*Z’"\IJET;/Q (M;PT*M) with wave
front set contained in a small neighborhood of %%, quantizing a non-negative symbol a
whose Hg-derivative has a sign on Elly, 5(Bs), with an error term with the opposite sign
on Elly, 1(B1). For example, in the case of 0¥+, the term coming from the commutator
can be written oy, 5(ih [P}, A%])=Hga*=—b3+b7, while by the previous lemma, the
skew-adjoint part gives a contribution (in fact of order A=!, rather than 1, due to the
strict positivity in (8.12)) with the same sign as the term —b3; thus, this contribution
can be dropped from the estimate.

More concretely, quantizing by and by, one can evaluate the right-hand side of (8.15);
the a-priori control term || Bjul| He (resp. conclusion term ||Baull Hi;g) in the estimate
(8.13) arises from the quantization of b? (resp. b3). The left-hand of (8.15) is estimated
by ||Au||*+h~2||AP}ul|, and the first term can be absorbed into the | Boul frse if one
chooses a carefully. We refer the reader to [80, §2] and [140, §2.5] for a more detailed

discussion and further references. O
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Figure 8.4. Propagation of singularities near a component 9R L of the radial set within 93F:
we can propagate microlocal control from Elly, 5(B1) to Ell, 5(Bz2), in particular into the
boundary, along the forward direction of the Hg-flow. In %7, we can propagate into the
boundary as well by propagating backwards along the Hg-flow.

Remark 8.10. Using the strict positivity of the contribution of the skew-adjoint part
in (8.15), the estimate (8.13) can be improved, to wit

HBQU”HS,Q <h1/2||Blu||H15):g+HSPhUHHﬁ}LyQ+ﬁNHuHH;g,Q, O0<h< ho. (816)

b,h ™

Indeed, the right-hand side of (8.15) controls h~1||Aul|? (rather than merely ||Baul|?),
due to the presence of the second term, provided one has a-priori control of || Byul|?; the
left-hand side on the other hand can be estimated by eh™!||Aul|?+C.h~t|| AP} ul|?, the
first term of which can be absorbed, giving (8.16). The same improvement can be made
in the statements of Propositions 8.11 and 8.12 below.

Likewise, we have microlocal estimates for the propagation near the radial set OR.

PRrROPOSITION 8.11. Suppose the wave front sets of Bi, Ba, Se\I/g’h(M;bT*M) are
contained in a small neighborhood of OXT (resp. 0¥ 7), with By elliptic at ORYL, resp.
OR: (see §3.4), and so that all backward (resp. forward) null-bicharacteristics from
WEFY, ,(B2)NPS*M either tend to ORL (resp. ORL), or enter Elly 5(B1) in finite time,
while remaining in Ell, (S); assume further that S is elliptic on WF}, ,(Bs). Then, for
all s,0€R and N €R, there exists hig>0 such that the estimate (8.13) holds for 0<h<hyg.
See Figure 8.4.

The same estimate holds if one replaces Py, by its adjoint and interchanges ‘backward’

and ‘forward’.

Proof. This follows again from a positive commutator argument; see [75, Propo-
sition 2.1]. We may replace Py by P; defined in (8.14). Using the non-negativity of
(ih) =Y (P}, —(P},)*) near LT, we get an estimate under a threshold condition on the reg-
ularity s relative to the weight o of the form s—ﬁg—%>0, with S=01; but the strict
positivity of (ih)~* (P}, —(P})*) gives an extra contribution of size ™!, so the main term
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Figure 8.5. Propagation of singularities near the trapped set OT'": we can propagate microlo-
cal control from Elly, ;(B1) to Elly, ;(B2), and hence from the forward trapped set 81"f+w into
the trapped set OI'" (and from there into the backward trapped set 8F§W), along the forward
direction of the Hg-flow. For the corresponding propagation result in OI'", the subscripts
‘bw’ and ‘fw’ are interchanged.

in the positive commutator argument is (up to an overall sign) >s— BQ—%—}—(Sh_l for
some (small) §>0, which is >£6 for small h. This explains why the radial point estimate
does not require any above-threshold assumptions which appear in the estimate given in

the reference. O
Finally, at the trapping, we have the following result.

PROPOSITION 8.12. There exist operators Bl,Bg,SE\Dgﬁ(M;bT*M), with By and
S elliptic near O (resp. L") and WFy, ,(B1)NOTE =@ (resp. WFy, ,(B1)NoT;, =2),
where FgWCbT)*(M is the backward trapped set (with respect to the Hg flow) in X and
Ff’WCbT)*(M is the forward trapped set in X7, so that, for all s,0€R and N€R, there
exists ho>0 such that the estimate (8.13) holds for 0<h<hy. See Figure 8.5.

The same estimate holds if one replaces Pp by its adjoint, now with WF]’O’B(Bl)ﬂ
or{,=a (resp. WFy, ,(B1)NIT,, =), where T{, CPT*M is the forward trapped set in
¥t and FgWEbT*M the backward trapped set in ¥~ .

Proof. This follows from a straightforward adaption of the proof of the last part of
[74, Theorem 3.2]; again, the strict positivity of (ih)~' (P}, —(P;)*), and the fact that it
has size h~! rather than O(1) (which is the size of the main term of the commutator

27 whose Hg-derivative has a

argument, where the main term of the commutant is 7~
sign near I'*), shifts the threshold weight (r=0 in the reference) to C for any fixed C'>0,
provided />0 is sufficiently small. This is the reason for the trapping estimate holding

for all weighted spaces, unlike in the reference. O
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Combining these propagation results with elliptic regularity in ®S* M\ 0% and using
the global structure of the null-geodesic flow (see [140, §6] or [77, §2]), we can thus control
u microlocally near fiber infinity bS?}M over any open set U &), provided we have a-
priori control of u at 0% near the Cauchy surface ¥y and the two spacelike hypersurfaces
[0,1] x9Y. (That is, U is disjoint from ¥4 and [0, 1], x9Y".)

8.3. Low frequency analysis

We next study the operator Pp microlocally near the zero section oCPT*M. Since
Ub,h(ljgl;;) vanishes quadratically at the zero section, the propagation of semiclassical
regularity for solutions of Pru=f there is driven by Lj. Let us consider the situation on
the symbolic level in a model case first: namely, if L is i ! times a future timelike vector
field, then the principal symbol of the scalar operator (0, —iL) is given by ¢+iG, with
¢{=0(L). Propagation in the forward direction along H, requires a sign condition on G

which is not met here. The key is to rewrite
(+iG =1+iC* —i(C1* -G) (8.17)

for a constant C'; by the timelike nature of ¢L, we have £>0 in the future causal cone {(€
P M:G(¢)=0,G(¢, dt,)>0}, and therefore, for large C, we have o2(C0*—G)(¢) 20, (€
bT;M . (In fact, for large C, the left-hand side is a sum of squares, with positive definite
Hessian at (=0.) Then, we can factor out 14+iC¥¢ from (8.17), giving £{—i(C¢?>—G) up
to terms which vanish cubically at the zero section. Algebraically more simply, we can
multiply o2(L+i0,) by (1—iC¥), obtaining

(1—iCl)({+iG) = ({+CUG) —i(C1* -G, (8.18)

for which we have propagation of singularities in the zero section along the flow of L.
The key lemma allowing us to make this work in a conceptually straightforward

manner for the operator at hand, Py, is the following.

LEMMA 8.13. Denoting by gr the inner product (8.11), the principal symbol

le=0br(Ler)

s symmetric with respect to the inner product

2 —v 0
—v 2 1/2—1—L 0
be :gR(Be ) )7 Be: 1—
1
0 0
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As before, we shall often drop the subscript ‘e’ from the notation, thus simply writing
B=B..

Proof. First of all, B is symmetric and positive definite with respect to gr for e€
(0,1). Next, and also to prepare subsequent arguments, we simply compute the precise

form of BLy. Namely, in the decomposition (8.8), we find
BLy =M, hD;y + M, hD,+M,~+ihS, (8.19)

where ]\th*:BMt*, J\Z[T:BMT, Mw:BMw and S=BS. Concretely,

(1+e)ct —(1+e)c?v 0
1
_ 2 2
M, = —(1+e)c’v (14e)v +i€ 0 ’
2
0 0
(1—e)r?
—(1+e)cv —1+(1+e)r? 0
2e—1
M, = —1+(1+e)v? —C_QV( 16_6 —|—(1—|—e)1/2> 0
v
0 -7
0 (I1—e)r?
and
0 0 —24
My=ibr™2 0 0 v
A4 —vd 0
The lemma is now obvious. O

We occasionally indicate ‘e’ explicitly as a subscript for the operators appearing in
(8.19).

Remark 8.14. While we choose a slightly different route below, the conceptually
cleanest and most precise way to proceed would be to use second microlocalization at the
zero section in semiclassical b-phase space bT* M. For 0<e< 1, one can smoothly diago-
nalize £, on the front face ff of the blow-up [WM ; o] near the 2-microlocal characteristic
set of L. (which due to the homogeneity of ¢, is equivalent to the smooth diagonaliz-
ability of £, in a conic neighborhood of the characteristic set of L, 5 in T M\ 0). Indeed,
the pointwise diagonalizability follows directly from Lemma 8.13; the condition 0<e<1
then ensures that in P7* M\ o, the eigenvalue —(c?o+v€) of £, discussed in Remark 8.7
is always different from the two remaining eigenvalues (which must then themselves be
distinct, as their average is equal to —(c?o+v€) by trace considerations), and the smooth
diagonalizability follows easily. Moreover, for e>0, one has G <0 in the second microlocal
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characteristic set of Ly; this is just the statement that /. is elliptic in the causal double
cone, away from the zero section. Therefore, one has 2-microlocal propagation of regular-
ity in the future direction along ff, giving semiclassical Lagrangian regularity for solutions
of PrueC™; the propagation into the boundary X at future infinity uses a 2-microlocal
radial point estimate at the critical points of the 2-microlocal null-bicharacteristics of
Ly, which places a restriction on the weight of the function space at X. Finally, to deal
with the Lagrangian error, one would use a direct microlocal energy estimate, which we

explain below, near the zero section.

Following the observation in Lemma 8.13, we obtain the following sharpening of
Corollary 8.6.

LEMMA 8.15. For e<1 close to 1, the first-order differential operator L. is future

timelike in the sense that oy, 1,(Le,r)(C) is positive definite with respect to the inner product
be for all C€PT* M\ o which are future causal, i.e. G(¢)=0, G(C,dt.)>0.

Proof. The eigenvalues of oy, 1,(L1,1)(¢) are positive for such ¢, and the claim follows

by continuity. O

For the rest of this section, symmetry and positivity will always be understood with

respect to be.

COROLLARY 8.16. There exists a constant C>0 such that C{>—G1d is positive
definite on T* M\ o; in other words, (C¢?—G1d)(¢) €End(PTF M) is positive definite for
CePTIM\o, ze M.

Proof. Note that ¢2>0, and indeed by Lemma 8.15 and using a continuity and
compactness argument, there exists §>0 such that £.(¢)?>d>0 holds for all ¢ with
I¢lyn=1 and G({)>—4, while on the other hand G(¢)<d~! for all ¢ with |¢|,,=1. But
then Cl.(¢)?—G(¢)Id=min(CJ—6~1, §) is bounded away from zero for sufficiently large
C>0. 0

The principally symmetric nature of L. will give rise to a (microlocal) energy

estimate with respect to the inner product

(u0) :/be(u,v) dgl.
Denoting formal adjoints with respect to this inner product by a superscript ‘b’ (suppress-
ing the dependence on e here), so Q**=B~1Q*B for an operator Q) on Cé’o(M;bT*M),
where Q* is the adjoint with respect to gr. From mow on, all adjoints are taken with
respect to the fiber inner product b. The energy estimate is then based on the commutator

%((Au, ALpu)—(ALpu, Au)) = <;[Lh7 A?u, u>+<i1h(Lh—L’£)A2u, u>
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with a principally scalar commutant A=A*€W,, ,(M;PT*M), microlocalized near oC
bT*M, which we construct below. Roughly, near the critical set {7=0,r=r.} of the
vector field Vi,, we will take A= (t,)1)1(r), composed with pseudodifferential cutoffs
localizing near the zero section; the contribution of the main term, which is the commu-

tator, then has a sign according to the following lemma.

LEMMA 8.17. For e€(0,1), we have M, .>0. Moreover, given 6,>0, there exists
0>0 such that £M, >61d in £(r—r.) =0, for all ee(1-4,1).

This, together with Lemma 8.15, is consistent with the idea of Lj being roughly
differentiation along Vt,. Indeed, Vt*(dt*)202>07 and

+(Vt)(dr)=Fv>0 for £(r—r.)>0.

Proof. We obtain equivalent statements by replacing M;, . and M, . by M t..e and
M r.e, respectively, and proving the corresponding estimates in the sense of symmetric
operators with respect to gg.

The first claim then follows immediately from the observation that the (3,3) entry
of M,. (acting on T*S?) is positive, and the 2x2 minor of M,, has positive trace and
determinant for e€(0,1). For the second claim, we must show that —VJ\NL,e>0 in v#0.
The (3,3) entry of —vM,. . is scalar multiplication by r~22/(1—e)>0, and for the 2x2
minor of —vM re, one easily checks that its trace is positive for ee(%, 1)7 while its

1
V2 <+61/2—1>.
1—e

Given 4, >0, v? has a positive lower bound on |r—7.|>4,, and thus this determinant is
positive for e€(1—-4,1) if 6>0 is sufficiently small. O

determinant is

The skew-adjoint part of Ly is

Oim s (L= 1) = 5(B 70, BM]+5+57). (8:20)

2ih
which is an element of C*°(M;End(PT*M)) and pointwise self-adjoint with respect to
the fiber inner product b. Again, we shall display the parameter e as a subscript of ¢/
whenever necessary. Near the critical set of Vi,, it will be crucial that ¢ is negative
definite in order to show propagation into oy C@M on decaying function spaces (see
below for details).

LEMMA 8.18. There exist 0,,0>0 such that, for all e€(1—46,1), we have ¢, <—01d
in the neighborhood |r—r.| <4, of the critical point of Vit..
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Proof. A simple calculation shows that ¢, depends smoothly on e in a full neighbor-

hood of e=1, and at e=1 one computes

2/ +8r 22— ) 0
D= lig}ﬁ’ezi 0 3V +dr~ 1y 0
0 0 v +6r—ty

Since v=0 and v’ <0 at r=r,, this shows that all eigenvalues of ¢}, and hence of ¢, for e

near 1, are indeed negative in a neighborhood of r=r,. O

Choose 4, according to Lemma 8.18, and then take 6 >0 to be equal to the smaller
value among the ones provided by Lemmas 8.17, with %(L in place of d,., and Lemma 8.18;

then, rescaling d,., we have, for e€(1-9, 1),
0. <—=61d for [r—r.| <166, and =£M,,.>dId for £(r—r.)>84,. (8.21)

Let us fix such an e and the corresponding inner product b=b.. We also pick C'>0
according to Corollary 8.16 and define an elliptic (near the zero section) multiple of Py,

in analogy to (8.18), by
Pr = (1—iCL})iPr= (Lp+Jn)—iQp, (8.22)

where
Jp=CRe(L;0) —Im(DS),

(8.23)
Qn=CLjLy—Re(05}5)—CIm(L;O5%);

here we use the inner product b to compute adjoints, as well as symmetric (Re) and skew-
symmetric (Im) parts. Note that J; and @ are semiclassical b-differential operators,
and Jp=J;, Qn=Q%. Denoting by O(¢*) a symbol vanishing at least to order k at the

zero section, their full symbols satisfy

o (Jn) = O((*)+hO(1),

(8.24)
o (Qn) = (CL =G 1d)+hO()+h*O(1).

We now prove the propagation of regularity (with estimates) away from the critical

set.

PROPOSITION 8.19. Suppose that r.+149,.<ri<ro<r,+3enr (see (6.1) and (3.9)
for the definitions of v, and ep;). Moreover, fix 0<To<Ti. Let VCPT*M be a fived
neighborhood of the zero section oCPT*M, in particular V is disjoint from PS*M. Let
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Figure 8.6. Propagation near the zero section away from the critical set of Vt.: control on
the elliptic set of By propagates to the elliptic set of Ba.

By, Bs, Se Uy, 1 (M; bT* M) be operators such that By is elliptic near the zero section over
the set
([0, 71)r X (re+108,, re+148,), U (70, 1) » X (re+108,, 72),) X S?,

while WFY, ,(B2) CVN{7€[0,70), re(ry,r2)}, and S is elliptic in VN{r€[0,71), re(re+
100,,72)}. Then for all p€R and N€ER, the estimate

1B2ull 0.0 S Buull go.e + 1~ HISPrul oo + 1™ ull ro.e (825)

holds for sufficiently small h>0. See Figure 8.6.
The same holds if instead rv_ —3ep; <ri<ro<r.—140,, now with By elliptic near the

zero section over
([0,70)r X (re —146,, 7. —108,)U(T0, 71 )7 X (71, 7 —105,),.) X S?,
and S elliptic in VN{T€[0,71),r€(ri,r.—106,)}.

Remark 8.20. Continuing Remark 8.14, there is a cleaner and more precise 2-
microlocal statement. Namely, 2-microlocal regularity propagates along the Hamilton

vector fields of the eigenvalues of /.

Proof of Proposition 8.19. Since we are working near the zero section, the differen-
tiability order is irrelevant. Furthermore, by Lemma 8.5, we may localize as close to the
zero section as we wish, and by conjugating microlocally near oCPT*M by the elliptic
operator 1—3C' L}, it suffices to prove the estimate (8.25) for Py, in place of Pj,. We then

consider the scalar commutant

a(z,¢) = e xo(ta)x1(r)x«(¢),
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X1

- - : >

re+106, re+146, ro

Figure 8.7. Graph of the function x1, with the negative derivative between r.+144, and r2
giving positivity in the positive commutator argument, and the region r. 4100, <r<r.+ 140,
being the a priori control region.

with z=(t.,r,w)€M and (€PTM, where we suppress a factor of Id, the identity map
on (w*bT*M)(Z@, m:PT*M — M being the projection. Here, writing ¢, ;=—log ;, we
take xo with xo=0 for t*gt*71+%(t*70—t*,1) and xo=1 for t*>t*,l+%(t*,0—t*,1), while

X1 (r) =1 (r)a(F " (ra—=r)),  o(x)=H(z)e /",
and ¥ =0 for r<r.+114, and ¥y =1 for r>r.+13d,; see Figure 8.7. Moreover,

X+ (€) = Xx,0(F «C),

with x.,0€C°(PT*M) identically 1 for [(|<3 and identically 0 for |¢|>1. Further, we
assume that \/Xo, /X1 and /X« are smooth; finally, F,F >0 are large, to be chosen
later.

Let ¢ and j denote the principal symbols of Ly and Jy, respectively. Then, Hyt,.=M;,
and Hyr=M,. Therefore, we compute

Hya= e (X1 My xox++(0X0+X0) Mi. X1 X+ (Hex)Xox1)- (8.26)
Using ¥4 =121, we further have
X1 =P1ha—F (ro—r) "X,

with the second term being the main term, and the first term supported in the a-priori

control region in 7. On the other hand,

Hja= e (X} (Hjr)xox«+(oxo+X0) (Hjte) x1 x4 (HjX+)X0X1)-

Now, in view of the cubic vanishing of j at (=0 by (8.24), the first two terms in the
parenthesis—which are stationary (t.-independent) smooth functions—vanish quadrati-
cally there; for large F ., we will thus be able to absorb them into the main term x} M, in
(8.26) up to a-priori controlled terms. Concretely, given a constant M>0 (used to absorb

further error terms) chosen below, we can write

Hyyja=—(by)*~Ma+eg+e, (8.27)
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where

by = €22 XoxaXx (F (ra—r) (M, + Hjr) — o( My + H;t.) —M1d)"/?,
eo =€ xox1(HetjX+),
e1 = e X (1vaxo(My+ Hr)+xox1 (My, + Hjt.)).

Here, the term in parentheses in the definition of o} is a strictly positive self-adjoint
endomorphism on supp a, provided F , and F are large, and we take b} to be the unique
positive definite square root, which is smooth; the term e; is supported in the region
where we assume a-priori control, corresponding to the elliptic set of B;, and eq is
supported in the elliptic set of Pj.

Let A=A*€ Wy, (M;PT*M), By=(Bb)* €Wy, 1 (M;°T*M), Eo, E1 €Wy, y(M;°T* M)
denote quantizations of a, b}, eg, e1, respectively, with operator wave front set contained
in the respective supports of the symbols, and Schwartz kernels supported in fixed small
neighborhoods of the projection of the wave front set to the base. We then evaluate the
L?=H{ pairing (using the fiber inner product b)

I:=h""Im(APu, Au)+h~* Re(AQpu, Au)

A G

- <2271[Lh+Jh’ A%u, u> +{0' A%u, u),

recalling (8.20). Using the description (8.27) on the symbolic level and integrating by
parts, there exists E3€ Wy, ,(M;°T*M) with WFy, ,(E3) CWFY, ;(A), so that the right-

hand side is equal to
I = (Egu, Au)+(E1u, Au) —M|| Au||* — || B Au||* + h{ Ezu, Au)+ (' A%u, u).
We estimate

|{Eou, Au)| < C"h=2 | SPgul| 0.0 +h?|| Aul|* + b ||u]

2
Hyp
using the ellipticity of Pj, on WF{)’h(EO); further, for >0 arbitrary,

[{Bru, Au)| < Cy || Brul Fo.o +nl| Aul +CnaY u) 30,0,
b,k b,h
by virtue of the ellipticity of B; on WF{)ﬁ(El); in both cases, the constants C) and
Cn depend implicitly also on the parameters M, F and F .. Fixing A€Wy, n(M;>T* M),
elliptic in a small neighborhood of WFy, ,(4) (for F.=1, say), we further have
BB, Au)| <l Aul[>+ Cy[B 2.+ COrh [l

0,0+
Hb,h
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We can furthermore estimate

(€' A%, w)| < (€' Au, Au) |+ [(Au, [A, C]u)|
< (C" )| Aul® +CyllRAul30. +Ox BN [[ull;

0,0+
Hy'p,

Lastly, we may estimate ||ByAul|?><Ch||ByAu||?+CnhAN|ul|

and therefore obtain

2 .. by elliptic regularity,
Hb,'h

1< O SPhullyo s+l Brulle.~Chll BoAul?
b,h b,h R (8.29)
—(M—C’—3n—h2)||AuH2+20nHhAuHiIS,g+CNhN||u||iIg,g.
We henceforth fix M>C".
Turning to the left-hand side of (8.28), we bound the first term by
R Im (AP u, Au) > —n|| Aul|* = C,h 2 || APl
To treat the first term of (8.28), we write
ht Re(AQpu, Au) =Re(hi A, Qnlu, Au)+h~ (QnAu, Au) (8.30)

and bound the first term on the right by writing it as

hRe(h A, i~ [A, QnlJu, u) > —Ch|| Aul —OnhENul|

2 2
HYR HYR

For the second term in the right-hand side of (8.30), on the other hand, we recall the form
(8.24) of the full symbol of Q. We begin by estimating the contribution of the lower-
order terms: any A20O(1) term gives a contribution which is bounded by Cah| Aul)?, i.e.
has an additional factor of A relative to the term M||Au||? in (8.29), and is thus small for
small i>0. The contribution of an AO(() term is small for F >0 (i.e. strong localization
near the zero section).(!®) Indeed, if AV, with V €V, (M), is a semiclassical b-vector field

(so ob,r(AV)=0(()), then we have
IV Aull <IZV Aul+ v A ful

for 2€ Wy, (M; PT* M) being a quantization of x40 (5F *¢) Id; but the supremum of the
principal symbol of ZV is then bounded by a constant times F ;1. By [151, Theorem 5.1],

(18) A fixed bound would be sufficient for present, real-principal-type, purposes, but the smallness
will be essential at the critical set in the proof of Proposition 8.21 below.
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the operator norm on L? of a semiclassical operator is given by the L norm of its symbol,

up to O(h'/?) errors, and hence we obtain
IV Aull < (CF 4 Cr Y2 Aul+ o 1l

Fixing F ., we get the desired bound for the contribution of AO(() to the second term in
the right-hand side of (8.30),

KRV Au, Au)| < 207 F 71| Aul|2 +Cn AN |Jul|

2
Hyg’
for A>0 sufficiently small.

In order to treat the main term of Qp, define Q€C™(M;End(*T*M @ T*M)) as

the pointwise self-adjoint section with quadratic form
(Q(C@w),¢®v) =ClUQvls—G(Qlvf;, ¢ vePTiM and z€ M,

then Qz=Ah?V*QV modulo lower-order terms, i.e. semiclassical b-differential operators
with full symbols of the form hRO(()+h?O(1). By Corollary 8.16, the classical b-
differential operator Q' :=V*QV is an elliptic element of \I!%(M;bT*M) and formally
self-adjoint with respect to the fiber inner product b. Therefore, we can construct its

square root using the symbol calculus, giving RG\IJ})(M ;PT* M) such that
Q' —R*'R=R €V, >(M;"T*M).
But then the boundedness of R’ on Hg:g gives
(WY QV Au, Au) > —C'h|| Aul|*. (8.31)
We conclude that the left-hand side of (8.28) satisfies the bound
I>—Cyh2||SPhul® — (n+Coh+2C"F 71 +C'h)|| Aul?

—C|IW2 Aul[ 0., — Ok [[ul]

0,0 0,0
Hb,ﬁ Hb.fl

(8.32)

for h>0 sufficiently small. Note that the constant in front of ||Aul|? can be made arbi-
trarily small by choosing >0 small, F . large and then 72>0 small.

Combining this estimate with (8.29), we can absorb the ||Au||? term from (8.32) into
the corresponding term in (8.29), and then drop it as it has the same sign as the main term
| B2Aul|?. We thus obtain the desired estimate (8.25), but with an additional control
term ||i'/2Au|? on the right-hand side; this term however can be removed iteratively
by applying the estimate to this control term itself, which weakens the required control
by h'/? at each step, until after finitely many iterations we reach the desired power
of AN, O
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Figure 8.8. Propagation near the zero section in the vicinity of the critical set of Vt,: control
on the elliptic set of B propagates to the elliptic set of Ba.

Not using the flexibility in choosing F ., and simply using the semiclassical sharp
Garding inequality to estimate Qp in (8.30), we could take the support of y. in the
above proof to be fixed (e.g. by choosing F .=1): the positivity of oy, 1(Qr) would give a
lower bound —C’||Aul|? in (8.31) with some constant C’, which could be absorbed in the
term in (8.29) involving ||Au||?, by taking M>0 large. On the other hand, our argument
presented above in particular shows that, using the structure of Qp, the constant C’ can
be made arbitrarily small, which is crucial in the more delicate radial-point-type estimate
near the critical set.

PROPOSITION 8.21. Fiz 0<79<T7i, and let VCPT*M be a fized neighborhood of
oCPT*M. Then, there exists >0 such that the following statement holds: let By, By, S€

\I/bﬁ(M;bT*M) be operators such that By is elliptic near the zero section over the set
(70, 71)7 X (re—166,., 7. +166,.),. x S, while

WF{)ﬁ(Bg) cVN{rel0,m),r €[re—150,,r.+155,]},

and S is elliptic in
VN{rel0,71),r € (re.—164,,r.+164,)}.

Then, for all o<, the estimate
1Baull os < 1Byl o+ 1Pl g+ [l o
holds. See Figure 8.8.

The decisive gain here is that by taking Bs to be elliptic near the zero section
over [0, 70]7 X (re—156,, 7.+156,.) xS?, we can propagate estimates on decaying function
spaces e~ L2 into the boundary X at future infinity, as well as to the region |r—r.|€
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(106,, 146,.) from where we can use Proposition 8.19 to propagate estimates outwards,

i.e. in the radial direction across the event and the cosmological horizons.

Proof of Proposition 8.21. By microlocal elliptic regularity, we may again prove the

estimate for P}, in place of Py. We consider the commutant

a(z,¢) =2 xo(te)x1(r) X (C),

with the cutoffs xo (identically 1 for ¢, > — log 79, and 0 for ¢, <—log 71 ) and . (localizing
F «~close to the zero section) similar to the ones used in the proof of the previous propo-
sition; furthermore, the radial cutoff is x1=1 for |r—r.|<90,, x1=0 for |r—r.|>154,,
and v} >0 for all 7;. Moreover, we require that /x1 and \/M are smooth, and

X1 M, < —c16  for £(r—r.) = 86,. (8.33)

We again have the commutator calculation (8.28), but since we can only get a limited
amount positivity near r=r, from the weight in ¢, the sign of ¢ on supp a, guaranteed

in (8.21), plays a key role. For m>0 sufficiently small, it allows us to write
Hypja+la=—(by)?—(by)*—mateg+er,
where
by = e/ Xoxixa (— — o( My, + Hjt,) —m1d)'/2,
by = e? /2 Xoxa (=X (M + Hjr)) V2,
eo = €2 xox1(HeyjX+),
e1 = e xoxax« (M, +Hjt.).

Now, for o<, with a>0 sufficiently small, and all small m>0, the square root defining b}
exists on supp(xox1X«) within the space of positive definite self-adjoint endomorphisms
of PT*M due to ¢'<—§1d, provided F, is sufficiently large so that the contribution of
H; is small. Let us fix such m>0 and a>0. Observe that, similarly, 05 is well defined
and smooth; in fact, it is an elliptic symbol whenever x}#0, but this does not provide
any further control beyond what b} gives. The error term eg is controlled by elliptic
regularity for P;, and the term e; is the a-priori control term.

We can now quantize these symbols and follow the proof of Proposition 8.19 mutatis
mutandis. Note that the constant C’ in (8.29) does not appear anymore in the present
context, since it came from ¢, which, however, we incorporated into the symbolic calcu-
lation above; thus, the quantity in the parenthesis multiplying || Au|? in (8.29) can be
made positive (>3m, say), and the prefactor of ||Aul/? in (8.32) can be made arbitrarily
small, by choosing >0 small, F,>0 large and then 2>0 small. This completes the
proof. [
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Remark 8.22. An inspection of the proof shows that, for any fixed

/
a<inf{g:spec(—€’1—th*71) CR, at r:rc} — ‘VQ((;C)l’

one can take e<1 so close to 1 that the above microlocal propagation estimates hold.

8.4. Energy estimates near spacelike surfaces

We continue dropping the subscript ‘e’ and using the positive definite fiber metric b
on PT*M. In order to ‘cap off’ global estimates for Py, we will use standard energy
estimates near the Cauchy surface ¥, as well as near the two connected components of
[0,1]- x Y (which are spacelike hypersurfaces, located beyond the horizons). Since we
need semiclassical estimates for the principally non-real operator Py, this does not quite
parallel the analysis of [140, §3.3],(1?) if one extended it to estimates on b-Sobolev spaces
as in [75, §2.1]; moreover, we need to take the non-scalar nature of the ‘damping’ term
Ly into account.

The key to proving energy estimates in the principally scalar setting is the coercivity
of the energy-momentum tensor when evaluated on two future timelike vector fields, one
of which is a suitably chosen ‘multiplier’, the other often coming from boundary unit
normals; see [134, §2.7] and [41, Appendix D]. Since I:lg’l;—iLﬁ is not principally scalar
in the semiclassical sense, due to the presence of Ly, which however is future timelike as
explained in Lemma 8.15 and should thus be considered a (strong) non-scalar damping
term, it is natural to use

L= 0" hD,,+ihS

(so LF=¢(dx*)€End(T*M?)) as a non-scalar multiplier. For the resulting bundle-valued

‘energy-momentum tensor’, we have the following positivity property.

LEMMA 8.23. Given a future timelike covector weT;M°, ze M*, define
T = (GF*0¥ + GV H = G* 0% Yw,, € End(T; M*). (8.34)

Then, the following statements hold:
(1) For all (€T} M \o, we have T""(,,(, >0, that is, there exists a constant C7>0
such that

(T™ ¢uGov,v) 2 CrlCI2 vls, ¢ veTrM".

(19) The assumption in the reference that |Im | is bounded renders the skew-adjoint part of the
operator in [140, Proposition 3.8] semiclassically subprincipal.
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(2) Write w=dz" near z, with 2°=0 at z, and denote by z', ..., 23 local coordinates
on {2°=0} near z with G(dz°,dz*)=0, i=1,2,3.(2°) Then, with indices i and j running
from 1 to 3, we have

(T%v0, vo) + (T vo, Gjv) +({T™ v, vo) + (T (v, Gjv) = Cr(Jvol§+IC 7, 017),

vo,vE€TIM*, ¢'=((, ..., ¢5) ER?,

(8.35)

for some constant Cr>0, where we identify ¢’ with dzl €T M".

Proof. Choosing local coordinates z* as in (2), we may assume that {dz*} is an
orthonormal frame at z; thus, w,.=68,., G°=1, G¥=—1 and G**=0 for u#v. Moreover,
by picking a basis of T M° which is orthonormal with respect to ¢° (which is positive
definite by the timelike nature of w and Ly), we may assume that /°=Id and

d 2o
0 Id 00
TH) =
T=1e o . o
/0 0 Id

The future timelike nature of Ly is then equivalent to ¢/ <Id for all (],...,¢}€R with
|C’|§udzzzj(§;)2<1. Given vg, v, (1, ¢, and ¢}, we then compute the left-hand side of
(8.35) to be

[0 +1¢ [2uer [0 +2(vo, £ Cjv) = [vo+£ CGol* +1¢ [2er [0 = £ GGl

The sum of the last two terms is equal to (T"v,v) for T’:Zj((;)2 Idf(ejg.)? Now,

factoring out |¢’|2,., and letting £:=C;/1¢ |euct, which has ¢’ 2 4<1, we can factor

¢ |y T = (Id =0 &) (Id +£7¢5).

eucl J

Both factors on the right are positive definite, and they commute; thus, we can write
T'=R*R for
R=((ld &) (Id+¢))) 2,

the symmetric square root. Therefore,

w0l +[¢" 2t [0 +2{vo, £ Cfv) = [vo +£7 (v >+ ¢ | Ru?

(?%) Given any local coordinates z¢ on {20=0}, the coordinates

G(dz0,dz%)
G(dz9,dzY) ?

Z'L

have the desired property.
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r_—3em

Figure 8.9. Level sets of the function t.

is non-negative. Suppose it vanishes, then we first deduce that ¢’=0 or Rv=0; in the first
case, we find |vy|?>=0, and hence vo=0, while in the second case, the non-degeneracy of
R gives v=0, and it again follows that vo=0. Therefore, for (vg, (’®v)#£0, the left-hand
side of (8.35) is in fact strictly positive. The estimate (8.35) then follows by homogeneity.

This proves (2); part (1) is the special case in which vo=_yv. O

This of course continues to hold, mutatis mutandis, uniformly in t,, or more precisely
on the b-cotangent bundle. We leave the necessary (notational) modifications to the
reader.

For the sake of simplicity, we will first prove semiclassical energy estimates near X
in order to illustrate the necessary arguments, see Proposition 8.27 below; the energy
estimates of more central importance for our purposes concern estimates in semiclassical
weighted (in ¢.) b-Sobolev spaces, propagating control in the r-direction beyond the
horizons; see Proposition 8.28.

For convenience, we construct a suitable time function near .

LEMMA 8.24. Let ¢p=¢(r) be a smooth function of re(r_—3en,r4++3en), identi-
cally 0 for r_—Liey<r<ri+ien, with ¢(r)—o0 as r—ri+3en, and +¢'(r)=0 for
+(r—r.)>0. Define

ti=t,+o(r);

see Figure 8.9. Then dt is future timelike.

Proof. Using (8.5), we compute |dt|Z=c?—2v¢'—u(¢')%. Now, v¢’<0 by assump-
tion, while 1<0 on supp ¢', and hence |dt|g>c? everywhere. O

The main term of the energy estimate will have a sign up to low energy errors due

to the following result.

LEMMA 8.25. Let to€R, let S:={t=ty}, and fir KES. For the conormal w=dt
of S, define the End(T$M")-valued tensor TH by (8.34), and let Cr denote the con-
stant in (8.35). Then, for all n>0, there exists a constant C, such that, for all ue
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C*(S;TEM?) with suppuC K, we have

/S(vauu,vl,u)b>(CT—n)/S|Vu|§R®bdx—Cn/S\u|§ dz,

where dx is the hypersurface measure on S induced by the metric g.

Proof. We first consider a special case: let #°=t, and denote by z=(z!,...,23) local
coordinates on \S; further, choose a local trivialization of the bundle T¢M", identifying
the fibers with R*. Suppose then that b=b(x) and TH" are constant matrices, and
that V,u=0,u is componentwise differentiation; suppose moreover that G*” is diagonal
(with diagonal entries 1,—1,...,—1), and that dz is the Lebesgue measure in the local
coordinate system on S. For u with support in the local coordinate patch, we can then
use the Fourier transform on S, that is, 4(2°, &)= [ €™ u(2°, z) dz, and compute, with
1,7=1,2,3,

(2r)* / (TN u, V i)y da = / (T gu, Vou), dé+ / (T gu, €5y, dE
S S S
+ / (T84, Tou)y dé + / (T, €y de
S S
> Cr / (Foul2-+]€[? o de
S
_ 4 2
—CT(27T) / ‘Vu|gn®b diC,
S

proving the desired estimate in this case (in fact, with n=0 and C,,=0).

To prove the estimate in general for any fixed >0, we take a partition of unity {¢? }
on S, subordinate to coordinate patches, so that T#", b and dx vary by a small amount
over each supp ¢y, where the required smallness depends on the given 7, as will become

clear momentarily. Fixing points zx €supp ¢y, we then have

(qbiT“”Vuu, Vou) = <T‘“’(zk)VM(<Z)ku)7 Vu(¢ku)>
(T =T (21))V u(r00), Vi (1))
_’_<TU'V[VH7 (bk]uv vu(¢ku)>+<¢kTW/vuuv [VV7 ¢k]u>

The integral of the leading part of the first term, i.e. without the order-zero terms in the
local coordinate expressions of V,u, can then be estimated from below by Cr||V(dxu)|?

as above, while the second term yields a small multiple of ||V (¢xu)||? upon integration,
provided supp ¢y is sufficiently small (since then TH” —TH¥(z;) is small on supp ¢y ), and

all remaining terms involve at most one derivative of u, and hence, by Cauchy—Schwarz,

can be estimated by a small constant times ||, Vul||? or |V (¢xu)||? plus a large constant
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N )

Figure 8.10. Illustration of the energy estimate (8.36), with u vanishing in ¢. <0. The norm
of Ppu is taken on the union of the shaded regions, and we obtain control of u on the lightly
shaded region.

times |[Yxul|?, where we fix smooth functions 1, with 1,=1 on supp ¢, and so that

{supp .} is locally finite. Summing all these estimates, we obtain
/(T’“’Vﬂu,vuu)bdx
s
>Cr Y IV(osw)lIP=n Y (IV(orw) P+ llxVul*) = Cp > [[vwul?
k k k
> (Cr—20) | Vu|*~C; Jlul,

by another application of the Cauchy—Schwarz inequality, finishing the proof. O

We can now prove the following result.

PROPOSITION 8.26. Fix 0<to<t;. Then for ueCX(M°;T*M*) with support in
t. >0, we have the energy estimate

1l 113 (11 ((—oostol)) ST HIPRU 261 (= 00,ta]))5 (8.36)

see Figure 8.10.

This is a consequence of the following result.

PROPOSITION 8.27. Fiz 0<t,o<to<ti. Then, for all ueC®(M";T*M"), we have

the energy estimate

-1

||U‘|H;(rl((—oo,to])mtil([t*,o,oo))) Sh ”Phu”Lz(tfl((_oo’tl])m*il([O’OO))) (8.37)
Flull g2 -1 ((—oo,ta e (10,80 0

see Figure 8.11.

Indeed, after shifting ¢, and t by t. 0, the a priori control term in (8.37) vanishes

under the support assumption in Proposition 8.26.

Proof of Proposition 8.27. We prove (8.37) by means of a positive commutator ar-
gument, using the compactly supported commutant (or ‘multiplier’)

Vi=xLn, x=xu1(ts)x2(t),
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te=teo -- --

t.=0 -- --
Figure 8.11. Illustration of the energy estimate (8.37). The norm of Pju is taken on the union

of the shaded regions, and we obtain control of u on the lightly shaded region, assuming a-
priori control on the dark region.

where x1 is a non-negative function with x1(¢.)=0 for ¢,.<0 and x1(t.)=1 for t.>t. o,
while

x2(t) = Yo (F 1t —t)),

with vy (z)=e~*H(z). Write DFLED;I;L for brevity. Then, we consider
20~ Tm(Pru, Viu) = 257 Tm(Opu, Vau) — 207 || /X Laul*. (8.38)

In the first term on the right, we can integrate by parts, obtaining the operator
i * *
ﬁ( wXLr—LpxUn),

whose form we proceed to describe: first, recall that Oreh?Diff?, and hence Oy —0Ope
R2Diff!. Similarly, L} —LpehC>. We then note that, in local coordinates, we can rewrite
OrxLy— Ly xOp by expanding [y into its order-zero and order-1 terms, plus the scalar
principal terms which involve two derivatives; for the latter, we can then write (dropping

the order-zero term S in Ly and factoring out A7)

D,G" D, xt* D,,—D,,t"xD,G"*D,,
= D,,(X(G" D 0% —"(D,G"*))+G" t*(D, X)) D,

the point being that one can write this as V* AV, where the components A*” of A only
involve x and dx, but no second derivatives. The upshot is that we have

Z’ * *
E(thLn—thDh)
=RV (\ixXaT+XB)V A+ V* (x1 x5 Af +x Ab)
+12 (X1 X5 AT +X ALV + 12 (1 xh Az + X As)

FREV X X2 AV RV X xo AL+ 2 X2 ALV 4+ B2 X2 A,

(8.39)
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where T, A and B are sections of End(T*M°®T*M°), while A%, A% and A sections of
Hom(T*M°, Q> T*M°), A%, A%, Ay sections of Hom(®? T*M°, T*M°), and As, Az and
Ay sections of End(7T*M*). Crucially, then, we can compute T by a principal symbol
calculation. Namely, the principal symbol of (i/h)(0fxLr—L}x0r) is equal to that of

1 1

7
h[Dh, X)Ln— ﬁ[Lha X]Dh‘FﬁX[Dh» Ly).

The sum of those terms in the principal symbol which contain derivatives of xs is equal
to x1((Hgx2)l— (Hyx2)G), and we therefore find(?!)

TH = (dt),.(GF* " +GV* i —GH ™),
which is an ‘energy-momentum tensor’ of the form (8.34). Now,
Xo=—F (=) *x2 (8.40)

is a smooth function of t only; but when estimating, for 0t <t;, the integral

h? / (V*x1x64TVu,u) dz,
=t/

we are not quite in the setting of Lemma 8.25, due to the presence of x;. Note however
that x1|i=y is uniformly bounded in C* for ¢ €[0, t;], hence, arranging as we may that
VX1E€C™, we can commute ,/x1 past V, generating error terms in supp dx1, where we
have a-priori control (after integrating in t), given by the second term on the right-hand
side of (8.37). Due to (8.40), we can choose F >0 so large that the spacetime integral of
h%(V*xBVu,u), estimated simply by the Cauchy-Schwarz inequality, can be absorbed
by the main term V*x1x57V, while the lower-order terms in (8.39) can be estimated
directly by Cauchy—Schwarz, again estimating x2 by x4 for the terms involving x directly.
Since x5 <0, we conclude that, for any 7>0, we have, for all F >0 large enough,

7
ﬁ<(D}§XLh—LZXDh)U7U>
< —(Cr—n)[[(=x1x5) " 2hVu|?+Cph? || (—x1X5)  *ul? (8.41)
+Crllull

2
HE (1 ((—o0,t1 )Nt ([0,84,0]))

where we estimated the terms involving x} rather crudely, resulting in the last term on
the right, which is the a-priori control term in (8.37). We estimate the second term

using the a-priori control term and the fundamental theorem of calculus: in the present

(?!) This is the unique symmetric choice of T, i.e. for which THY =Tk,
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setting, this is conveniently done by considering a principally scalar operator W=W*¢
Diﬁ’,li(M% T*M°) with principal symbol equal to o1(hD;,), and computing the pairing
_ 1
20 Im(y/xu, X Wu) = 7 {Vodus u) = =(OdxeHxaxe)u, u),
where we used 9;,t=1 to differentiate y2; again using (8.40) and taking F >0 large, this
implies after applying the Cauchy—-Schwarz inequality that

R 1(=xax)2ull® < C Rl T ooy (0.0, gy FIVXDERVUI?). - (842)

Plugging this into the estimate (8.41), we see that we can drop the second term on the
right in (8.41), up to changing the constant Cr and increasing n by an arbitrarily small
but fixed amount, if we choose F >0 large, thus obtaining
{ * *
}TL<(DhXLh*LhXDh)U»U>
(8.43)

i L n1)2 2 2
S = (Cr=m)ll(=x1x2) “AVul"+Crllull gy 1 (oot ynes (10,6000

for any 1n>0.

On the other hand, using the fact that Ly, in local coordinates is equal to semiclassical
derivatives plus order-zero terms of size O(k), we can bound the left-hand side of (8.38)
by

20~ Im (Pru, Viw) > —nlly/X Lnul|* = Coh™2||y/xX Prul®

P
2 2 2 -2 2 (8'44)
= —Cnl[v/xhVu||* = Cyi” || /xull* = Cy ™|/ X Prull”.

Estimating the second term by using (8.42) again and absorbing the [|\/XAiVul|? term
into the main term of (8.43), we obtain the desired estimate (8.37) by combining (8.43)
and (8.44), noting that for the now fixed value F >0, —x} is bounded from below by a
positive constant in t=1((—o0, to]) Nt ([t«.0,00)). O

The arguments presented here extend directly to give a proof of energy estimates be-
yond the event (resp. cosmological horizons) propagating ‘outwards’, i.e. in the direction

of decreasing r (resp. increasing ).
PROPOSITION 8.28. Firx 19<1, ry <rg<ri<ro<rz<ry+3ep, and let p€R. Then,
for all weCS°(M°;T*M*), we have the energy estimate
Hu”Hé:ﬁ(T’l([T1J‘2])ﬁ7"1([0ﬂ’o]))
-1
SEPRull g o1 (rorahrr= oy Ul i g0 ooy (8:45)

Full 22 (r=1 (o, s e =1 (fr0.10))
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T+ To r1 T2 T3
7=0 T T T T T
| | | | |
| | | | |
| | | | |
| | | | |
I I | B | |
| | | | |
| | | | |
| | | | |
| | | | |
T=To ==~ — |-~~~ = T T T T
I 1 By I
T7=1 — — — — —

Figure 8.12. Illustration of the energy estimate (8.45) beyond the cosmological horizon r=r.
The norm of Pju is taken on r~1([rg,r3])N771([0,1]), and we obtain control of u on the
lightly shaded region, assuming a-priori control on the dark region.

beyond the cosmological horizon; see Figure 8.12.
Likewise, we have an estimate beyond the event horizon: if r_—3ep <ro<ri<ro<

rg<r_, then we have the estimate (8.45), replacing the second term on the right by

||u||Hé;g(rl ([r2,ms])NT=1([0,1]))"

Proof. In order to eliminate the weight o and work on unweighted spaces, one proves
these estimates for the conjugated operator 7¢Py7—¢. Then, for the proof of (8.45), one
uses the commutant xLp, x=X1X2X3, where now xi(7)=1 for 7<7y and x1(7)=0 for
7>1, while x2(r)=vo(F ~(r3—r)), with 9(x)=e~/*H(z) as before, and y3(r)=0 for
r<ro and xs(r)=1 for r>=r;. The regions supp(xix5) and supp(xjxs) are where we
assume a-priori control, corresponding to the second and third terms in (8.45), while
the future timelike nature of dr on supp x, combined with the b-version of Lemma 8.23,
gives the conclusion on u in r=1([ry,r2])N71([0, 79]) for F >0 large and fixed (used to
dominate x2 by a small constant times —x5), using the positive lower bound on —x4 in

this region. O

Using the propagation of singularities, Propositions 8.9 and 8.19, one can improve
these estimates to allow for arbitrary real regularity, as we will indicate in the next

section.

8.5. Global estimates

We now piece together the estimates obtained in the previous sections to establish an
a-priori estimate for w solving Pru=f on decaying b-Sobolev spaces on the domain 2
defined in (3.33).

To do so, fix a weight « as in Proposition 8.21. Suppose that u€C(Q; T M)
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vanishes to infinite order at Xg, and let f=Pru. For 6 €R small, let
Qs = [O, 1]7— X [’IL —enm—0, T++5M+6]r xS?c M

be a small modification of €2, so Qy=€, and s, Cs, if §1<d2. Let Q::QEM/2. Denote
by fECé’O(le; bTSi;M) an extension of f, vanishing for ¢, <0, and with

1711 0.2 @ye.— < 201 g0 gyen - (8.46)

We can then uniquely solve the forward problem

Pru=f

in Q. If « is any smooth compactly supported extension of u to €2, then Pr(a—u') is
supported in {r>r;+ep}U{r<r_—ep}, hence by the support properties of forward
solutions of Py, we find that @—u' has compact support, and moreover 4=u in .

Now, by the energy estimate near ¥y, Proposition 8.26, we have

1ull 1 25065 0,11y S Ch Ul L2zt 0.2

for fixed d € (O7 %5 M). But then we can use this information to propagate Hég regularity
of u: at fiber infinity, this uses Propositions 8.9, 8.11 and 8.12, while we can use Propo-
sition 8.21 to obtain an estimate on u near the critical set r=r,. of Vt,, and propagate
this control outwards in the direction of increasing r for r>r. and decreasing r for r<r.,
by means of Proposition 8.19. Away from the semiclassical characteristic set of Py, we

simply use elliptic regularity. We obtain an estimate

||U||Hé:g(g_5) Fllull g @snez (0,17 S c(ht 1l oo g2y +h”u”Hé:g‘(Q)) (8.47)

for small A>0. The error term in w here is measured on a larger set than the con-
clusion on the left-hand side, so we now use the energy estimate beyond the horizons,
Proposition 8.28, in order to bound

||u||HL1):§‘(Q) <C(ht ||f||Hg=a(§) + ||u||HL1):g(Q,5) + ‘|U||H;,(Qémt;1([o,1])))~

Plugging (8.47) into this estimate and choosing 0<h<hg small, we can thus absorb the
term hHuHHé,g(Q) from (8.47) into the left-hand side and, in view of (8.46), we obtain

the desired a-priori estimate

HU’HH&,’;(Q)"’ gCh_lH,Pﬁu”Hga(Q).,,, 0<h<h07 (848)
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which, by a simple approximation argument, continues to hold for all uGH&’“(Q)‘*’ for
which Pruc H)*(Q)*~.

Let us fix 0<h<hg and drop the subscript ‘A’. There are a number of ways in which
(8.48) can be used to rule out resonances of P in Imo>—a. One way is to notice that
the a-priori estimate (8.48) for P yields the solvability of the adjoint P* (the adjoint
taken with respect to the fiber inner product b) on growing function spaces by a stan-
dard application of the Hahn—Banach theorem (see, e.g. [82, Proof of Theorem 26.1.7]);
concretely, there is a bounded inverse

(P~ L H VT PTE M) T — HyY (P T M)~ (8.49)

for the backwards problem. Now, if o with Im o> —a were a resonance of P, then there
would exist a dual resonant state € 2'(Y; PTy M)* with P*(7991)=0, and in fact by the
radial point arithmetic (see the proof of Proposition 8.11), we have ¢ € L?(Y; PTy M)* if
our fixed A>0 is small enough. Letting x(z) denote a smooth cutoff, x=0 for <0 and
x=1 for x>1, we put

v = x(j—t)7T%% and g;:=P%v; = [P* x(j—)]T"7.

Then, v; is the unique backwards solution of P*v=g;, so v;=(P*)"'g;; however, g;—0
in Hy " (Q;PT*Q) " as j— o0, while ||’Uj||Hg,—oz converges to a non-zero number. This
contradicts the boundedness of (8.49), and establishes Theorem 8.1 after reducing a:>0
by an arbitrarily small positive amount.

Another, somewhat more direct way of proving Theorem 8.1 proceeds as follows:
using the same arguments as above for Py, but in reverse, one can prove an estimate for
Pi of the form

Hu||H}1):,;a(Q)7" <Ch_1||P§u||HE:;Q(Q)7=" 0<h< hO' (850)

This relies on versions of the propagation estimates proved in §8.2 and §8.3 in which the
direction of propagation is reversed; since the effect of passing from Ph:Dg’g—iLh to
Pr :(Dgg)*—i—iL; is a change of sign in the skew-adjoint part, the adjoint version of the
crucial Proposition 8.21 now requires that the weight satisfy 9> —a«. The estimate (8.50)
then gives the solvability of the forward problem for Py on the dual spaces, which are

spaces of decaying functions. Concretely, we obtain a forward solution operator
Pyt Hy B (Q;PTa M) — HY (3 PTa M), 0<h< hy.

(Using elliptic regularity and propagation estimates, one also has P, I:Hg_l’a%Hg’“
for >0, or in fact, for any fixed s€R provided A>0 is sufficiently small.) Since the
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forward problem for Py is uniquely solvable, the operator Pj cannot have resonances
with Im o> —a, since otherwise solutions of Pru=f for suitable (generic) feC2® would
have an asymptotic expansion with such a resonant state appearing with a non-zero
coefficient, contradicting the fact that the unique solution w lies in the space Hg’a.

This concludes the proof of Theorem 8.1.

Remark 8.29. The argument we presented above in some sense does more than what
is strictly necessary; after all we only want to rule out resonances of the normal operator
of ﬁgp in the closed upper half-plane, not study the solvability properties of ﬁ;}p’ though
the two are closely related. Thus, the ‘right’ framework would be to work fully on the
Mellin transform side, where one would have two large parameters, ¢ and Y=+, which
can be thought of as a joint parameter (o,7) lying in a region of CxR. (This is also
related to the notion of a ‘suspended algebra’ in the sense of Mazzeo and Melrose [105].)
In this case, one could use complex absorption around r=r_—ey; and r=r,+ey, as
was done in [140], without the need for the initial or final hypersurfaces for Cauchy
problems. Energy estimates still would play a minor role, as in [140, §3.3], to ensure that
in a neighborhood of the black hole exterior, the resonant states are independent of the
particular ‘capping’ used (complex absorption vs. Cauchy hypersurfaces). We remark
that if the final Cauchy surface is still used (rather than complex absorption), the proof
of the absence of resonances in the closed upper half-plane for the Mellin transformed

normal operator N (ﬁgp) can be obtained by taking u=e~*

*v in the above arguments,
where v is a function on Y=0NX, and only integrating in X (not in M) in the various
pairings, dropping any cutoffs or weights in ¢, (Im o plays the role of weights, contributing
to the skew-adjoint part of ]\Af(ﬁgp) in the arguments), with the b-Sobolev spaces thus
being replaced by large-parameter versions of standard Sobolev spaces. In any case, we
hope that not introducing further microlocal analysis machinery, but rather working on

Q directly, makes this section more accessible.

9. Spectral gap for the linearized gauged Einstein equation (ESG)

As in (6.1), we drop the subscript ‘by’ from the metric, since we will be only considering

the fixed Schwarzschild-de Sitter metric gy, .

9.1. Microlocal structure at the trapped set

We now analyze the high-frequency behavior of the linearized gauged Einstein operator,

modified so as to arrange SCP. Thus, we consider

L=Dy(Ric+A)+5"6,Gy = 1 (0y+2A+2%,+2(5* —57)5,Gy),
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where §* is the modified symmetric gradient (8.1), and %, the order-zero curvature term
(2.9). In order for L to satisfy polynomial high-energy bounds on (and in a strip below)
the real axis, we only need to check a condition on the subprincipal part of L at the
trapped set T'; see (3.30)—(3.31) for the definition. Concretely, it suffices to show that for
our choice of 6*, the skew-adjoint part of the subprincipal operator Sgub (L), evaluated at
a point (t,7,w;o,0,n) €T, with respect to a suitable inner product on 7*S2T* M°, has all
eigenvalues in the half-space {icA:Re A>0}, where we use the coordinates (3.29). (Note
that the skew-adjoint part of S, is a smooth section of 7* End(S2T* M°), homogeneous
of degree 1 in (o,7).) Namely, in this case, one can choose a stationary inner product on
7*S2T*M° such that the skew-adjoint part of |o|~*Ssun (L) (with respect to this inner
product) is bounded above on I'* =T'N{o <0} (which is a subset of the forward light
cone) by an arbitrarily small positive multiple of the identity, and bounded below on
I''=I'N{o>0} (which is a subset of the backward light cone) by an arbitrarily small
negative multiple of the identity; see also (5.5). This gives the desired high-energy
estimates by combining Dyatlov’s result [56] with the framework of pseudodifferential

inner products [72], as explained in §4.3 and §5.1.

The calculation of the subprincipal symbol of the wave operator [, on symmetric 2-
tensors in the partial trivialization (6.8) is straightforward using [72, Proposition 4.1]; this
states that the subprincipal operator is equal to the covariant derivative —iV}r;GSZT*M ,
defined using the pull-back connection on 7*S?T*M°. Since the latter is simply the
restriction of the product connection V™ 1" M @V™ T"M" o 7*S2T*M° we conclude

that

Ssub(Dg)(wle) = Ssub(Dél))wl “wa +wy ’Ssub(Dél))'U@

for wy,we €C®(T*M*, 7*T*M"); Dgl) on the right denotes the wave operator on 1-forms,
whose subprincipal symbol at the trapped set we computed in (6.10). We can now calcu-
late the order-zero part S(g) of Ssun(dg) in the bundle splitting (6.8); indeed, Sgun(0y)
in this splitting has a canonical first-order part, induced by the canonical first-order part
of Ssub(Dél)) which is the first line in (6.10), i.e. the first-order part involves precisely
t-derivatives (which uses the stationary nature of the spacetime metric and the relevant
vector bundles) and covariant derivatives on S?. Thus, S(2) is equal to the second sym-

metric tensor power of the order-zero part of Ssub(Dgl)), i.e. of the final term in (6.10),
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SO
0 4r~ 1o 0 0 0 0
—2r7lg 0 —2qr‘3in —2r7lg 0 0
. 0 2qr—1n 0 0 —r~lo 0
S(g):’é _1 _3. ’ (91)
0 —4r~ o 0 0 —4qr~ iy, 0
0 0 —2r~loc  2qr ' 0 —2qr‘3in
0 0 0 0 4gr—'n 0

where we recall that g=q(r)=(1—2M./r— %Ar2)1/2 from §6.3.
In order to calculate the spectrum of the order-zero term of Sg,p(2L) at T efficiently,
we split
T*s* = <q0_177> @nl’ (9'2)

and also use the induced splitting
S2T*S? = (g0~ 'n)*)@2q0 'n-nt @Syt (9.3)
of S?T*S?. Thus, recalling that e’ =g dt and el =¢~! dr, we refine (6.8) to the splitting
S2T* M° = (%) @ (2¢e!) @ ((2e%qo 1) 2% -nt)
ale'e)o((2e g0 n)@2e! ) (9-4)
®(((qo~ ) @2q0 - @ SP ).

Now, in the decomposition (9.2) and using |n|?=¢ 2r%0? at I, one sees that n: R—T*S?
and i,: T*S*—R are given by

which gives

g lo 0
n=| 0 i¢lo |:T*S*— S*T*S?,
0 0

and

~1,.2
. q o 0 0 2% Q2 *Q2
iy, = :ST*S — TS
K ( 0 g 'r?o 0)

in the splittings (9.2) and (9.3). Furthermore, we write
2
g=mnnn+r2g= o |, (9.5)
Tﬁ2gL
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where r=2¢ is defined as the orthogonal projection of ¢ to S?;*. Consequently,
th=(r?> 0 r2try, ):S*°T*S* > R. (9.6)

Since dim S?=2, we can pick 1 €ntCT*S? such that g1 =1-¢; trivializing S0t via -1
therefore amounts to dropping g1 and trg, in (9.5)-(9.6). We can be more explicit:
on S?, we have the Hodge star operator x: TS?—T'S?, which induces x: T*S? —T*S?, and

we can then let 1=|n|~1(xn).
In terms of (9.4), we therefore find

0 -4 0 0 0 0 0 0 0O
-2 0 -2 0 -20 0 0 0O
0 2 0 0 0 -20 0 00O
0o 06 0 06 0 0 -20 00
S il 0 -40 0 0 —-40 0 00
0 0 -20 2 0 0 -2 00
0 0 0 =20 0 0 0 =20
0O 0 0 00O 4 0 0 00
0 6 0 06 0 0 2 0 00O
0 0 0 06 0 0 0 0 00O

Proceeding with the computation of Sy, (2L), we next compute the form of the
operator 5*—(5;, with 6* as in (8.1). We write t,=t—F(r), then dt,=q '’ —qF’e' and
Vt.=q leg+qF'er, so we have

5 1

0 u=3dyutv1(q" O u—qF'etu) —ya (¢ tug+qF ur)g.

In the decomposition (6.3), we find

1 0
(5*—6227161_1 0 %
0 0
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Using (6.4), this gives
2(6* —67)3,Gg

—ep —2¢7 261,42 —eg trp,
=nq! g7 %dxq? —eo —q '0pg—Ldx try,
0 0 0
0 0 0
—ngF' | —ieleg  —elq20nq? —3eteqtry
elqg 2drq? —2eleg —et(2¢716pq+dy try) (9.7)

—eo —2¢2%6nq> —eqtry
¢t 0 0 0
heo 2hq~20n,q°  hegtry,

beyq 2dxq®  —2ic,e0  —ie, (27 Ong+dy try)
—Y2qF" 0 0 0 )
—hie,q %dxq* 2hie,e0  hie, (27 0nq+dx try)

so the contribution of this term to the subprincipal operator of 2L at I' in the full splitting
(6.8) is given by its principal symbol, which we evaluate with the help of Lemma 6.2:

S:=01(2(6"—67)5,Gy)

gl 0 2%, ¢lo 0 g r 2otk
0 ¢ o 0 0 T_Qin 0
g in 0 gl —in 0 r3(iy—3nth)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
3¢ o 0 =2, 3¢ 'o 0 $q 2otk
. 0 0 0 0 0 0
—mal 2o 0 0 2l 0
%77 0 g o —%77 0 r‘z(in—%nt/f)
0 0 0 0 0 0
g o 0 27‘722}, g o 0 ¢ Y20tk
0 0 0 0 0
o 0 0 0 0 0 0
T —q o 0 —27’721}, —q 1o 0 —q 'r 2otk
0 0 0 0 0 0
g 'rPog 0 —2¢i, —q 'rPog 0 —q logtt
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0 2% 00 22, 0

0 0 00 0 o0
o 0 00 0 o
TR 0 e 0 0 —2r%, 0
0 0 00 0 o0

0 —2¢%¢ 0 0 —2gi, 0

In terms of (9.4) then, and defining 7} =g~ >rv;, v/ =v;7F’, for j=1,2, one finds that S

equals ir~1o times
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c oo~ o
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O O O O O O o o o o
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)
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O O O O O k= O O O O
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O O O O O O O = O N
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OO OO 0O 0 0 OO0 0 0 o0 © 0 oo o o o NO B

I
[N}
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o O o O

o O O O
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I
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o

O o0 o o0 oo oo o
|
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o
I
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SO O O O O O o o o o
SO O O O O O o o o o

+75 +75

= O = O O = O O O
N O N O O N O OO
= O = O O = O O O
O O O O O O o o o
_ O = O O = O O O
O O O O O o o o o
_ O = O O = O O O
O O O O O O o o o o
N O N O O N OO O
N O N O O N OO O
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By direct computation,(??) one verifies that the characteristic polynomial of S =S5(2) +5
is given by
(ir~to) "0 det(ir toA—8) = NS (A—7])2(A=27]) (A —27%)

(?2) This is not a complicated computation. Writing the basis vectors as f;, j=1, ..., 10, (fa, fz, fo)
and (f1, f2, f3, f5, [, f3, fro) decouple. For the former space, the matrix (ir~1o)~1S is lower triangular
in the basis f4, f7, fa— fo, with diagonal entries, thus eigenvalues, 71,0, 0. For the second space, the ma-
trix is lower triangular in the basis f1, f2, f5,2f1—f3, f5 — f10, fo— f6, f1 — f3+ fs, with diagonal entries
294,74,274,0,0,0,0.
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2 2

independently of F’(rp), so the eigenvalues of S are 0, iv1q 20, 2iy1q 20 and 2ivy2q 20.
For ~1,7v2>0—which is the case of interest due to our choice (8.2)—this implies that
the size of the essential spectral gap of L is positive and, more precisely, the operator L
satisfies high-energy estimates (5.7) in a half-space Im o> —2« for some a>0, and (5.8)
in any fixed half-space Imo>¢>0. (The high-energy estimates on the real line that our
arguments give are lossy as well, since the eigenvalues are merely non-negative, up to the
factor io, rather than strictly positive.)

To see this, we proceed as in the discussion following [72, Proposition 4.7]: first, in
the (non-microlocal!) bundle splitting (6.8), the operator Ssu,(2L) is equal to S minus i
times a diagonal matrix with Vg, on the diagonal, where V is the pull-back connection
on the respective vector bundles in (6.8); so, by (3.32), Vg, is equal to —2u~1¢d; (which
commutes with any t-independent operator) minus =2V H 2 the latter now being the
pull-back connection on the respective tensor bundles (i.e. zeroth, first or second tensor
powers of 7%, T*S?). We now note that in fact even in the ‘microlocal” splitting (9.4),

\Y% H,» is diagonal; indeed, we have the following result.

LEMMA 9.1. Let m=mg2. Away from the zero section oCT*S2, consider the splitting
T T*S*=E®F, E,,=), F,,=n".

Then, V}%T‘;SQ 1s diagonal in this splitting, i.e. it preserves the space of sections of E as
n

well as the space of sections of F'.

This holds for any Riemannian manifold (S, ¢), if one replaces |n|? by the dual metric

function of g

Proof. Fix a point p on S?, introduce geodesic normal coordinates y' and y? van-
ishing at p, and denote the dual variables on the fibers of T*S? by 1, and 75. Then,
H,12=2¢"1;0,; at p, and therefore

* Q2 -
V;IMTFS (s dy*) = 24 ik Vo, dy* =0

at p, proving the claim for E. On the other hand, the fact that the Levi-Civita connection
V on S? is a metric connection implies easily that for sections ¢ and 1 of m*T*S%2—T*S?,

we have

Hoja (G(0,9)) = (V5T 6,0)+ (0, Vi 7.5,

where by a slight abuse of notation we denote by ¢ the fiber inner product on 7*T*S?

induced by the pull-back via . Specializing to the section ¢p=n, we find that ¢ L n implies

VﬂHja;S2¢l777 which proves the claim for F'. The proof is complete. O
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Now, the matrix Sp:=(ir"10) 715 has constant coefficients, and hence we can choose
a matrix QERX10 50 that QSy@ ! is in ‘Jordan block’ form with small off-diagonal
entries, i.e. so that it is upper triangular, with the eigenvalues of Sy on the diagonal, with
the entries immediately above the diagonal either equal to zero or equal to any small and
fixed £>0, and all other entries zero; see also [72, §3.4]. Via (9.4), @ is the matrix of a
bundle endomorphism of 7*S?T*M° where the splitting (9.4) is valid, so in particular
near the trapped set I'. By construction, if we equip 7*S?T*M° with the inner product
which is given by the identity matrix in the splitting (9.4), trivializing n* by means of
the section (%n)o~! (which is homogeneous of degree zero), then the symmetric part of
QSoQ~ ! relative to this (recall that we factored out an i relative to S) is > —e.

Now @, having constant coefficients, commutes with the operator which, in the
splitting (9.4), is diagonal with diagonal entries V H, 25 this implies that the skew-adjoint
part of QSsu,(L)Q ! is > —¢e. As discussed in Remark 5.2, this guarantees that L does
satisfy a high-energy estimate in a strip below the real axis. We conclude that L has
only finitely many resonances in this half-space, and solutions of Lu=0 have asymptotic
expansions into resonant states, up to an exponentially decaying remainder term.

The perturbative results of §5.1.2 apply and show that perturbations of L, depending
on a finite number of real parameters, with principal symbols given by the dual metric
function of a Kerr—de Sitter metric satisfy the same high-energy estimates in a slightly
smaller half-space, say Imo>— %oz, with uniform constants; this uses the fact the trapping
is normally hyperbolic with smooth (forward/backward) trapped set in a uniform manner
for the Kerr—de Sitter family, as explained in [76, §4.4]. More generally, due to the r-
normally hyperbolic (for every r) nature of the trapping, sufficiently small perturbations
of the operator L, depending on a finite number of real parameters, within the class of

principally scalar stationary second order operators with smooth coefficients satisfy the
3
2
references given in §5.1.2. We may assume, by changing « slightly if necessary, that L

same high-energy estimates (with uniform constants) in a half-space Im o> —2«; see the

has no resonances with imaginary part equal to —a. By Proposition 5.11, the same then
holds for small perturbations of L.
This takes care of the part of the high-energy estimate for L(o) in (4.8) at the

semiclassical trapped set.

9.2. Threshold regularity at the radial set

The regularity requirement s>% in ESG is dictated by the threshold regularity at the

radial sets. Thus, we need to compute

Seun(2L) = —iVESTM 4 51(2(8*~62)0,G,),
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at L., where m: T*M°— M* is the projection. We computed the first term in (6.18), so
we only need to calculate the principal symbol of 2(5*75;)6gGg at L1 in the splitting
(6.16). We calculated the form of this operator in (9.7) in the splitting (6.3). Now, O,
in the coordinates (¢,7,w) is equal to 8, Fu =19y, in the coordinates (tg,r,w). Therefore,
since at £, the principal symbols of 9;,, d and § vanish, we can do our current calculation
in two steps: first, we expand (9.7) into the more refined splitting (6.8), and then discard
all eg-derivatives as well as differential operators on S?, while substituting o (e;)=1iqé
for e1, thus obtaining

02000 0 00000 0
100210 —Lr 2tk 01000 0
00001 0 00000 0

7 —1 F’

"l o0000 0 MES 001 0 2
00000 0 00001 0
00000 0 00000 0

0 2 0000 1 00 1 0—r 2
0 0 0000 0 00 0 0 0
0 0 0000 0 00 0 0 0

—i —iyauF’

0 o 0000 | T 1 0o —1 0 r 2%
0 0 0000 0 00 0 0 0
0 —2r?¢ 0000 —r2§ 00 —r?¢g 0 gtk

We split SQT*82=<T2g>@gl (so gl:kert/f), and use the corresponding splitting of

T S*T*S?; thus,
ng:(;), k= (2 0), gvf=(§ ﬁ)-

Second, we write uF’==+(14pcy) as in (3.6), conjugate the above matrix by ( f))’l (see
(6.17)) and set u=0, which, after a brief calculation, gives, in the bundle decomposition
(6.16) refined by the above splitting of 7*S?T*S?,

2 0 0 00 0 O 0 0000 O O
Fe: 0 0 00 1 0 +2c. 0000 F2 0
001 00 0 O 0 0000 O O
FiEl 0 0 0 00 —2c: 0 |Fing 0 0000 0 O],
0 0 Fc: 00 0 0 0 0000 O O
00 000 0 0 —2¢: 0000 2 0
00 0 00O 0 O 0 0000 O O
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where we factored out the ‘F’ sign similarly to (6.18); all singular terms cancel (as they

should). This is thus equal to 1(2(0*—6;)d,Gy) at L4, and we conclude that

Seub (2L) = £26 Dy F232.£2 D —2uE D,

2v1—4x. O 0 0 0 0
F(y1—2y2)ce 0 0 0 0 £(y1—2v) 0

0 0 71—2x. O 0 0 0 (9.8)
Fi€ 0 0 0 42, 0 —2vicx O
0 0 Fmcs 0 25y 0 0
—2v5c4 0 0 0 0 279 0
0 0 0 0 0 0 0

at Lo. The first three terms are formally self-adjoint ‘at L.’ with respect to any ¢g-
invariant inner product on 7*S?7* M* which is homogeneous of degree zero with respect
to dilations in the fibers of T*M° (i.e. their skew-adjoint part, which is a function,
vanishes at £.), while the eigenvalues of the last term—which is £ times a matrix which

is constant along £.—are equal to Fi¢ times(*?)

2v1—4dsxs, 0, -2, 4y, 23y, 27, O. (9.9)

In particular, they are all non-negative when v >23, and ~2>0. Thus, we can find a
stationary, homogeneous of degree zero, positive definite inner product on 7*S2T*M*
with respect to which (F&)71(1/2i)(Ssub(2L) — Ssub(2L)*) is positive semidefinite.

Let us first focus on the halves of the conormal bundles £I=L,.NY" which lie in
the future light cone, so the signs in (9.8), indicating the horizon r. we are working at,
correspond to the subscript of £1. (These sets were defined in §3.4 already.) In L, we
have +££>0, and the quantity (. (see (5.3)) is defined in terms of the quantity B4 ¢ (see
(6.1)) by

17 5 (Saub(2L) — Suu(21)) = B o

SO Bi is a (constant in t.) self-adjoint endomorphism of the restriction of the bundle

T*S2T*M* to T{”‘T:Ti}M‘); hence, Bi is bounded from below by zero.

At L =L.N%", where F£>0, we then have

€1 5 (S (21)~ S (2)°) = B o

(?3) This is a simple calculation: writing the basis ‘vectors’ as f;, j=1, ..., 7 (where really f3 and f5
are two copies of the same basis of a fiber of T*S2, and f7 is a basis of a fiber of gi—which is irrelevant
here since all entries of the matrix in (9.8) are scalar), the spaces (f3, f5) and (f7) decouple, giving the
eigenvalues 234+ +71,63c+ and 434, respectively, and then, restricted to (f1, f2, f4, fe), the matrix is
lower triangular in the basis f1, fs, fo, f4, with diagonal entries 277,42+ +2v2, 454, 83r4 .
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with the same Bi, the overall sign switch being completely analogous to the one in (3.28).

The criterion for the propagation of microlocal H, " -regularity from M° into R is
then the inequality s—2—B8.7>0 (see [75, Proposition 2.1], or Theorem 5.4 in a directly
related context), where we dropped inf Bi: B >0 from the left-hand side. For weights
r>—a, this condition holds if $>%, provided a>0 is small enough; the largest possible
weight « for the radial point propagation estimate is inf 82 (s+3) —0, hence gets larger
as s increases.

This proves Theorem 4.4 for §* defined in (8.1), in fact for any choice of parameters
Y1,7220.

10. Linear stability of the Kerr—de Sitter family

We now use UEMS, SCP and ESG to establish the linear stability of slowly rotating Kerr—
de Sitter black holes. The proof of the linear stability of the linearized Kerr—de Sitter
family around Schwarzschild—de Sitter space with parameters by is straightforward; we
remind the reader that the linearized initial value problem was discussed in §2.2. The

form of the linearized gauged Einstein equation we consider uses the operator
Lyr:= Dy, (Ric+A)—5*(D,, Y (r)), (10.1)

with the gauge 1-form Y defined in (3.35); recall the definition of 6* from (4.5).

THEOREM 10.1. Fiz s>3, and let a>0 be small. (See Remark 4.5.) Let (h{,k})e
HsTH(X0; S2T*S0) @ H® (0; S?°T*X0) be solutions of the linearized constraint equations,
linearized around the initial data (hy,, ks, ) of Schwarzschild—de Sitter space (€, g, ), and

consider the initial value problem

{Lbor:O in Q°, (10.2)

Yo (T) = D(hbo,kbo)ibo(hé)a k(l)) on Yo,
with iy defined in §3.6. Then, there exist b’ €Ty B and a 1-form weC>(Q°,T*Q°) such
that

=gy, (V) +05, wtT, (10.3)

with 7€ HY* (Q; S2PTHM). In particular, for s>2, this implies the L bound
()] e

Recall here that the map taking the initial data (hg, k() of the linearized Einstein
equation to Cauchy data puts the initial data into the linearized wave map gauge, giving
initial data for the linearized gauged Einstein equation; see Corollary 3.11.
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Proof. Since the initial data (h{, k() satisfy the linearized constraint equations,
the solution r of the initial value problem also solves the linearized Einstein equation
Dy, (Ric+A)(r)=0. Now, ESG implies that r has an asymptotic expansion (4.6), and

all resonances o; in the expansion satisfy Im o; >0; but then, Lemma 7.1 shows that the

3
Gvg?

since such a part by itself is annihilated by D, (Ric+A), due to the stationary nature
of the operator Dy, (Ric+A), as used in the proof of Lemma 7.1. On the other hand,
the part of the asymptotic expansion of r coming from resonances at zero is covered by

part of the expansion of r coming from a non-zero resonance o; lies in the range of §

Theorem 4.1 (2), which states that this part is equal to g, (b") for some b'€Ty, B, plus
an element in the range of 5;(). This proves the theorem. O

This proof, which only uses UEMS and ESG, has a major shortcoming: it is not
robust; changing the metric g5, around which we linearize to any nearby Kerr-de Sitter
metric gy, b7#by, makes the argument collapse immediately, since it is then no longer clear
why the parts of the asymptotic expansion corresponding to non-decaying resonances
should be pure gauge modes, and why the zero resonance should behave as in part (2)
of UEMS; recall here that we are only assuming UEMS for Schwarzschild—de Sitter
parameters bg. If we had proved UEMS for slowly rotating Kerr—de Sitter spacetimes
as well, the proof of Theorem 10.1 would extend directly, giving the linear stability of
slowly rotating Kerr—de Sitter black holes. We choose a different, much more robust,
conceptually cleaner and computationally much simpler path, which will lead to the
proof of non-linear stability later.

The additional input that has not been used above, which however allows for a
robust proof, is the existence of a stable constraint propagation equation (SCP). Using
the notation of Theorem 10.1 and its proof, SCP ensures that all non-decaying modes
in the asymptotic expansion of r, apart from those coming from the linearized Kerr—

*
Govg?

the Cauchy data of r satisfy the linearized constraint equations.
Let us fix a cutoff function x as in (3.36). Then, combining SCP with UEMS yields

the following result, which is a concrete instance of the general results proved in §5.1.

de Sitter family, are pure gauge modes, i.e. lie in the range of §, regardless of whether

ProOPOSITION 10.2. For b/ €Ty, B, let wg(; (t') denote the solution of the Cauchy prob-

lem

L)

{ Dy, Y(8, wk (1)) = =Dy, Ylgh, (b)) in O,
Y0(wp, (b)) = (0,0) on o,

with o defined in (3.34); recall from (2.18)—(2.20) that this is a wave equation. Define

(Ghy) T () 1= ghy (V) 485, wp (),
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which thus solves the linearized gauged Finstein equation Lbo((ggo)T(b')):O. Fiz s>1,

and let a>0 be sufficiently small. Then, there ezists a finite-dimensional linear subspace
OCCI(, T*Q)

such that the following holds: for any (f,ug,u1)€DS*(Q;PTEM), there exist unique
b €Ty, B and 0€O such that the solution of the forward problem

ngf:f*g*H*Lbo(X(Qéo)T(b/)), Yo(7) = (uo, u1),

satisfies F€ HY®(Q; S2PT M), and the map (f,ug,u1)— (V,0) is linear and continuous.

Therefore, the equation Ly,r=f, vo(r)=(uo, u1), has an exponentially decaying so-
lution if we modify the right-hand side by an element in the finite-dimensional space
6 O+ Ly, (x(g,) ¥ (Tp, B)) CC2(€2°, S*T*€°); in other words, this space is a complement

[

to the range of (Lp,,70) acting on symmetric 2-tensors in Hﬁo ** i.e. which have decay

at least like et~

Remark 10.3. The pure gauge modification 0y, w% (V') of gy, (b') is necessary in view
of the fact that the specific form of the Kerr—de Sitter family of metrics given in §3.2
did not take any gauge considerations into account; hence, ggo(b’ ), while lying in the

kernel of Dy, (Ric+A), will in general not satisfy the linearized gauge condition, so
Dg,, Y(gp, (b)) #0.

Proof. Let 01=0 and 0;#0, j=2,..., N1, denote the resonances of L;, with non-
negative imaginary part. For j>2, fix a basis {71,...,7ja, } of Res(Ly,,0;). Then SCP
and UEMS, in the sharper form given by Lemma 7.1, imply (as explained in §4.2) the
existence of w;€C>(Q°,T*Q°) such that rje=0g, wje. We define

010 1= Dy, T(5;,. (),

Gog
the point being that Lg, (5;b0 (ijg)):g*ﬂjg, and then put
@750 = span{ejg :j: 2, ceey NL7£: 1, ooy dJ}

We recall here that SCP implies that Dy, T(rj¢)=Dyg, T(d;, w;¢)=0, and hence the 6,
are indeed compactly supported in €°.

At the zero resonance, we first recall that w, (b') has an asymptotic expansion,
up to an exponentially decaying remainder: indeed, ngo :—2ng0To6;b0 differs from
Ug,, by a term of order zero, i.e. a sub-subprincipal term, by our definition of T (see

also the discussion after (2.20)), and hence the main theorem from [72] applies. Thus,
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(ggo)T(b’ ) has an asymptotic expansion, up to an exponentially decaying remainder as
well, hence its part (gl’)o)T(b’ )@ coming from the zero resonance is well defined, and
(g,’,O)T(b’)(O) €Res(Lp,, 0). Define the linear subspace

K :={(gh,)* ()@ :/ € Ty, B} C Res(Ly,,0),

which has dimension do<4. (One can in fact show that dg=4, see Remark 3.8, but
this is irrelevant here.) Using Theorem 4.1 (2), we infer the existence of a complement
of K within Res(Ls,,0), which has a basis of the form {5;b0wg:1<€<d1}, where dy =
dim Res(Lyp,,0)—dp, and we then define

00 :=—Dy, T(05, (xwr)), Oo:= span{f,:1<£<d;}

and

0 := 0 B0 4.

By construction, (ggo)T(b’)—(ggo)T(b’)(o) is a pure gauge 2-tensor annihilated by Ly,,
and hence a linear combination of 5;0 wje and 5350 wy, up to an exponentially decaying

remainder. Therefore, if we define the space
Z = Ly (x(gp,) ¥ (Thy B)) +6*O© C C(Q°; S2T*Q°)— D> (Q; S2PTEM),

the proposition follows from the bijective form of Corollary 5.8. Indeed, the bijectivity
of the map Az in the statement of that corollary follows from dimension counting: on
the one hand, Az is surjective by construction, as all non-decaying asymptotics can be
eliminated by adding a solution of Ly,=z for some z€Z. On the other hand, also by
construction, the dimension of Z is at most as large as the space of resonant states of

Ly, which are not exponentially decaying; this proves the injectivity of Az. O

The linear stability around gp, in the initial value formulation (10.2) can now be
reproved as follows: there exist b’ €Ty, B and €O as in the proposition such that the
solution of the Cauchy problem

Ly =L, (x(g3,) ¥ (t')) =570,

with Cauchy data for 7 as in (10.2), is exponentially decaying; rewriting this using the
definition of L, shows that

r1 1=X(9£0)T(b/)+f7

which has the same Cauchy data, solves

Dy, (Ric+A)(r1)—0%(Dg, Y(r1)—0)=0. (10.4)
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In order to relate this to (10.2), rewrite r; as
= (géo)T(bl)ﬂLfl,

where Flzf—(l—x)(g,’)o)r(b’) differs from 7 only near ¥; then, writing 6 in terms of
the 1-forms wj, and w, from the proof of Proposition 10.2, recovers the solution r of the
unmodified equation (10.2) in the form (10.3).

Finally, since the gauge condition ngOT(rl)fG:O and the linearized constraints
are satisfied at Xy by construction of the problem (10.2), as 6 is supported away from
Yo, the constraint propagation equation implies that the gauge condition holds globally,
and therefore Dy, (Ric+A)(r1)=0 is indeed the solution of the equations of linearized
gravity with the given initial data. This again proves linear stability. In this argument,
0 is the change of gauge which ensures that the solution r; of the initial value problem
for (10.4) is equal to a gauged linearized Kerr—de Sitter solution.

This argument eliminates the disadvantages of our earlier proof and allows the linear
stability of g, with b near by to be proved by a perturbative argument. First, regard-
ing the choice of gauge, we note that g=g, satisfies (Ric+A)(g)—0*(Y(g)—T(gs))=0,
which suggests the gauge condition Y(g)—7Y(gp)=0; the linearization of this equation
in g is precisely Lyr=0, with L; as in (10.1), and the linearized gauge condition at X
then reads Dy, Y (r)=0. Returning to the perturbative argument, then, and defining cor-
rectly gauged linearized Kerr—de Sitter metrics (gj) ¥ (V') for b€Up in a fashion similar to
Proposition 10.2 (see also Lemma 10.4 below), we will show that the finite-dimensional
vector space Ly (x(g;) " (TyB))+8*©CC®(Q°, S2°T*Q°)—with © being the same space as
the one constructed in Proposition 10.2—can be arranged to depend continuously (even
smoothly) on b. Then, Corollary 5.12 applies, and therefore the above proof immediately
carries over to show the linear stability of the Kerr—de Sitter family linearized around gy,
belp. More precisely, in order to invoke Corollary 5.12, one needs to parameterize the

space Ly(x(gy)" (TyB))+06*O; this can be accomplished by choosing an isomorphism
»:RVe — 0, No=dim®,
which gives the parameterization R*Ne 5 (b, )Ly (x(g;)  (v')) +6*9(c).
We proceed to establish the continuity claims involved in this argument.
LEMMA 10.4. ForbeUp and V' €T,B, let wy (b') be the solution of the wave equation

{ngT((S;bW?f(b’)) —Dy, Y(gy (V1)) in 2,

VO(W})T(b/)) = (07 O) on Yo, (105)

and define
(95) " (V') := gy (V') +0, w0y (V). (10.6)
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Then the map

Up xR No _y 020(0°; §27+(r)
(b,b',¢) — Lo (x(g5)* (")) +5"0(c),

18 continuous.

Proposition 10.2 then applies also for Kerr—de Sitter parameters b near by, i.e. we

can replace by by b throughout its statement.

Proof. The only non-trivial part of this lemma is the continuous dependence of
Ly(x(g;)* (v')). However, note that

Ly (x(g5) " (v')) = [Ly, x)(g) ™ (8),

by construction of (g;)* (b'), and the lemma follows from the continuous dependence of the
solution of (10.5) on the initial data and the coefficients of the operator Y =—2Dg, Tod;,
in a fized finite time interval; see Proposition 5.16 for such a result in a more general,

non-smooth coefficient, setting. O

The linear stability result around a slowly rotating Kerr—de Sitter metric can be for-
mulated completely analogously to Theorem 10.1, but it is important to keep in mind that
we obtain this by robust perturbative methods, relying on the version of Proposition 10.2
for slowly rotating Kerr—de Sitter spaces discussed above, and using the arguments pre-
sented around (10.4) (which by replaced by b). Thus:

THEOREM 10.5. Fiz s>3, and let a>0 be small. (See Remark 4.5.) Let (h{, k)€
HTH(30; S2T*S0) @ H® (0; S?T*X0) be solutions of the linearized constraint equations,
linearized around the initial data (hy, kp) of a slowly rotating Kerr—de Sitter space (2, ),

and consider the initial value problem
{ Lyr=0 in Q°,
VO(T):D(hmkb)ib(havk()) on Yo,

with iy, defined in §3.6. Then, there exist b/ €Ty B and a 1-form weC>®(Q°, T*Q°) such
that

r= g,’,(b')—|—5;bu)—|—f7

with 7€ HY*(Q; S2 PTG M). In particular, for s>2, this implies the L bound
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More precisely, there exist 0€C®(Q2°;T*Q°), lying in the fized finite-dimensional
space ©, and 7€ H“ (% S2PTE M) such that r=x(g})* (b')+7' solves

Dy, (Ric+A)(r) =0

(attaining the given initial data) in the gauge D,y Y(r)—0=0. The norms of V', 6 and

7 are bounded by the norm of the initial data.

As explained in §1.2 and Remark 11.3 below, one can in principle obtain a more
precise asymptotic expansion of r; since no rigorous results on shallow resonances for

linearized gravity are known, we do not state such results here.

Remark 10.6. It is natural to ask whether the space © in Proposition 10.2 is in fact
trivial for the chosen hyperbolic version (or a further modification) of the (linearized)
Einstein equation; that is, whether in a suitable formulation of the gauged Einstein
equation, linearized around Schwarzschild—de Sitter, the only non-decaying resonances
are precisely given by the linearized Kerr—de Sitter family. (By a simple dimension
counting and perturbation argument, this would continue to hold for slowly rotating
Kerr—de Sitter spaces, too.) If this were the case, one could easily prove linear and
non-linear stability without any of the ingredients from §4 and §5, but only using the
techniques of [76].

On the static model of de Sitter space, the answer to this question is negative if one
restricts to modifications of the gauge and the Einstein equation which are ‘natural’ with
respect to the conformal structure of global de Sitter space, see Remark C.3.

An additional obstacle is the incompatibility of the gauge with the given form of
the Kerr—de Sitter family, which necessitates the introduction of the correction terms
wy (b') above. While we cannot exclude the possibility that there is some formulation
of Einstein’s equations and the Kerr—de Sitter family, so that the answer to the above
question is positive, this would presumably be rather delicate to arrange, and would very
likely be difficult to generalize to other settings.

On a related note, we point out that there is no need for the wave operator D}b:
—2Dg,Tod,, to satisfy the analogue of SCP, i.e. to not have any resonances in the closed
upper half-plane. (Note that the &5, 1.e. Lie derivative, part of this operator is fixed, so
this only depends on the choice of gauge T.) This is closely related to the resonances
of Ly, since the non-decaying resonances of L, other than the ones coming from the
Kerr—de Sitter family, are pure gauge resonances by SCP and UEMS, and thus they are

resonances of D;b

We show that, a fortiori, Theorem 10.5 implies the mode stability for the linearized
ungauged Einstein equation around slowly rotating Kerr—de Sitter black holes, albeit in
a slightly weaker form.
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THEOREM 10.7. Let beUp be the parameters of a slowly rotating Kerr—de Sitter
black hole with parameters close to bg.

(1) Let 0€C, Imo >0, 00, and let r(t.,z)=e""try(z), with roeC=(Y, S*T3:Q°),
be a mode solution of the linearized Einstein equation Dg, (Ric+A)(r)=0. Then, there
exists a 1-form weC®>(Q°, S2T*Q°) such that r=0y w.

(2) Let keNy, and let

k
r(te,o)=Y thri(z), r;€C®(Y,S°Ty), j=0,...k,
j=0

be a generalized mode solution of Dg, (Ric+A)r=0. Then, there exist b'€TyB and we
C® (0, S*T*Q°) such that r=gy(b')+0;, w.

The proof will produce a generalized mode w; however, for 070, w may not be a
mode solution as in Theorem 4.1 (1), and in the context of Lemma 7.1 may not be a
generalized mode solution with the same power of ¢, in its expansion, while, for o=0,
the proof may produce a generalized mode w which is more complicated than the one

produced by our arguments in §7.

Proof. We reduce this to the linear stability result for the linearized gauged Einstein
equation, i.e. the precise form stated at the end of Theorem 10.5. This may seem unnat-
ural at first, but is a very robust way of obtaining the mode stability result we are after
right now; see Remark 10.8.

In both cases considered in the statement of the theorem, given a (generalized) mode
solution 7, we solve the equation ), w= Dy, T (r) with arbitrary initial data for w. Then,
w and thus 47, w have an asymptotic expansion up to an exponentially decaying remainder
term as explained in the proof of Proposition 10.2, so, upon replacing r by the part of
the asymptotic expansion of r+47, w which has frequency o in ¢,, we may assume that r
is a generalized mode solution of both Dy, (Ric+A)(r)=0 and L,r=0.

We now put f:=L,(xr)€C®(Q°,S?T*Q°). By the version of Proposition 10.2 for
slowly rotating Kerr—de Sitter black holes which we established above (see the discussion
following the statement of Lemma 10.4), we can find €T, B and #€© such that the

forward solution 7 of
Li(xgy ¥ (b)) +7) = f+5%0 (10.7)

satisfies 7=0 (e~ ).

In order to solve away the second term on the right-hand side, we make the ansatz
Lb(é’;bw)zg*ﬂ and demand that w vanish near Yy. This equation is equivalent to
6*(Dyg, Y(3%, @)+6)=0, and hence is solved by solving the forward problem for 30 w=6.
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We can now rewrite (10.7) as
Ly(xgh" (b)+7—xr—03,@) =0.

Since the argument of L; vanishes near X, it must vanish identically in Q°. In its
asymptotic expansion (up to exponentially decaying remainder terms), we can then take
the part corresponding to the frequency o in t,; upon doing so, 7 drops out, and we can
take x=1 to conclude (using the definition (10.6) of g,¥ (¥’)) that r is indeed a linearized
Kerr—de Sitter metric g;(b’) (only present if c=0) plus a Lie derivative of gy. O

Remark 10.8. As alluded to in the discussion of the proof of Theorem 10.1, assuming
merely UEMS does not provide any evidence for mode stability to hold for the linearized
Einstein equation around Kerr—de Sitter metrics g, with non-zero angular momentum.
The reason is that Dg, (Ric+A) by itself is a very ill-behaved partial differential operator.
Making it hyperbolic by adding a linearized gauge term, i.e. considering the operator
Ly, defined using any order-zero stationary modification 6* of 5;b0, already gives a
much more well-behaved operator: for a large class of choices of §*, Ly, will have a
positive essential spectral gap and satisfy high-energy estimates in the closed upper half-
plane, i.e. ESG is valid, and thus the set of frequencies of those non-decaying modes
for the linearized (around gp,) Einstein equation for which UEMS and Lemma 7.1 give
non-trivial information is reduced from the entire half-space {Im o >0} to the finite set
Spo =Res(Lp, )N{Im o >0}; furthermore, since the set S, depends continuously on b, only
frequencies lying in a neighborhood of S, can possibly be the frequencies of potential non-
decaying non pure gauge modes of Dy, (Ric+A). The final ingredient, SCP, then allows
us to completely control the non-decaying modes of L, modulo pure gauge modes, which
allowed us to finish the proof of linear stability of g, using rather simple perturbation
arguments.

Thus, the proof of Theorem 10.1, while very natural for the purpose of proving
the linear stability of gp,, uses only a rather small amount of the structure of (M, gs,)

available.

11. Non-linear stability of the Kerr—de Sitter family

In §11.2, we will discuss the final ingredient of the non-linear stability argument—the
‘dynamic’ change (in the sense that we update it at each step of our iteration scheme)
of the asymptotic gauge condition—and conclude the proof of non-linear stability. In
§11.3 then, we discuss the construction of suitable initial data for Einstein’s equations.
We begin however by recalling the version of the Nash—Moser inverse function theorem

which we will use later.
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11.1. Nash—Moser iteration

We shall employ the Nash—Moser inverse function theorem given by Saint Raymond [124];
we use his version because of its simplicity and immediate applicability, despite it being,
according to the author, “probably the worst that can be found in the literature [...] with
respect to the number of derivatives that are used”. We refer to the introduction of that

paper for references to more sophisticated versions, and to [68] for a detailed introduction.

THEOREM 11.1. (Main theorem of [124]) Let (B?®,|-|s) and (B®,||-||s) be Banach
spaces for s=0 with BSCB!, and indeed |v|¢<|v|s for s>t, likewise for B* and
|- 1l«. Put B®=(,B®, and similarly B>®=(\,B*. Assume that there are smoothing
operators (Sp)g=1: B®— B> satisfying, for every v€ B*, 0>1 and s,t>0,

|Sgv|s < Cst0° vy, if s>t,
|v—ng\s§Cs,t957t\v|t, if s<t.

Let ¢: B¥ —B> be a C? map, and assume that there exist ug€ B>, dEN, §>0 and
constants C1, Co and (Cs)s>a such that, for any u,v, weB>,

lo(u)lls < Cs(1+|ulsa) for all s>d,
lu—uolza <d = [¢'(w)vll2a < Cilv|3a, (11.1)
16" (u) (v, w)||24 < C2|v]3alwlsa-
Moreover, assume that, for every u€B> with |u—uglsq<d, there exists an operator
Y(u): B®— B> satisfying
¢ (u)p(u)h=h

and the tame estimate
[h(u)h]s < Cs(||hl|s+at|ulstallhl[24), s>d, (11.2)

for all heB>. Then, if ||¢(uo)|2q is sufficiently small depending on &, |ug|p and
(Cs)s<p, where D=16d>+43d+24, there exists u€ B> such that ¢(u)=0.

For our main theorem, we will take B®=D*(Q; 52 bTéM), capturing initial data
and inhomogeneous forcing terms, while

B =RY @ H*(Q; S? T M)

will also take a finite number of additional parameters into account, corresponding to
the final black hole parameters and gauge modifications. As in [76], we then define
the smoothing operators Sy to be the identity on RY; the construction of Sy acting
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I7S,0

on extendible b-Sobolev spaces H,™ on the other hand is straightforward. Since the
presence of the vector bundle S2 T M is inconsequential for this discussion, we drop it
from the notation. Locally near any point on Q\ (([0, 1], x9Y)UX) then, i.e. away from
the artificial boundaries of €, the space H;"® can be identified either with H*(R*) (if we
are away from the boundary at infinity Y) or with H>*(R%), which in turn is isomorphic
to H*(R™) after dividing by 7 and using a logarithmic change of coordinates; on the
latter space, suitable smoothing operators were constructed in the appendix of [124]:
using the Fourier transform on R”, they take the form

Sou(€) = x(07€)a(é),

where x€C°(RE) is identically 1 near 0. In the neighborhood of a point pe {r=0}NJY’,
we similarly have an identification of H;"® with H*(R%), and we can then use bounded
extension operators H*(R*)— H*(R*), apply smoothing operators on the latter space,
restrict back to R% and use the local identification to get an element of ﬁg’a near p. Near
a point in (0,1),x9Y or Xo\0Xo, where H"® can be identified with H*(R%) again, a
similar construction works. Lastly, near points in the corner 0%y of Q, we can identify
H»* with H*((0,00) % (0, 00) x R?), which embeds into H*(R*), thus we can again use
extension and restriction operators as before. Patching together these local constructions
via a partition of unity on Q gives a smoothing operator Sp on H;'® with the desired

properties.

11.2. Proof of non-linear stability

The precise form of the linear stability statement proved in §10 is not quite what we
need for the proof of non-linear stability. Concretely, in order to realize the linearized
Kerr—de Sitter metric g,(b’') as a zero-resonant state of the linearized gauged Einstein
operator Ly, we needed to add to it a pure gauge term 5;bw;r (') which in general has a
non-trivial asymptotic part at ¢.-frequency zero, since this is the case for the right-hand
side in (10.5)—indeed, since our construction of the metrics g, only ensures the smooth
dependence on b, but does not guarantee any gauge condition, the term Dy, Y(g; (b)) is

in general non-zero and stationary, i.e. has t.-frequency zero. (In fact, without a precise

T
9o’

be arranged to both depend smoothly on (b, ') €T B and not be exponentially growing.)

analysis of the resonances of the operator family (Y | it is not even clear if w) (b') can

Since the term 6;bwg (b'), while pure gauge and therefore harmless for linear stability
considerations, cannot be discarded in a non-linear iteration scheme, we need to treat
it differently. The idea is very simple: since this is a gauge term, we take care of it by
changing the gauge; the point is that changing the final black hole parameters from b
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to b+b’ is incompatible with the gauge Y(g9)—"(gy) (with gagy4, being the current
approximation of the non-linear solution), but it is compatible with an updated gauge
Y(9)— T (gp+s); updating the gauge in this manner will (almost) exactly account for the
term 5;bwg(b’).

To motivate the precise formulation, we follow the strategy outlined in §1.1: using

the notation of §3.6, let us consider the non-linear differential operator
Py(b,0,§) = (Ric+A)(gho,5+3) =" (Y (gbo,0+3) =L (gb0,6) —6),

with beldp, 6 a modification in some finite-dimensional space which we will determine,
and g exponentially decaying. (We reserve the letter ‘P’ for the actual non-linear operator
used in the proof of non-linear stability below.) Note that the linearization of Py in § is

given by the second-order differential operator
Lb)g’r = (DgPQ(b, 9, . ))(’I") = ngo,b_;_g(RiC—‘rA)(?") —S* (ngo)b_;,_g’r(T)), (113)
while a change in the asymptotic Kerr—de Sitter parameter b is infinitesimally given by

(DyPo(+,0,3)) (') = Dy, ,+5(Ric+A)(xgy(t))—0"(Dg,, ,+5T (xgh(?)))
+6%(Dg,, , Y (xgh (1))

= Ly,5(x94(6)+0"(Dgy, , T (x95(2))) (11.4)
where we use (see (3.37))
d
T ot | = xgp(b)-

s=0
Let us now reconsider the solvability result for L;, described in Proposition 10.2,
and use the specific structure of (g;, )* (') =g, (V) +05,, wy, (V') to arrive at a modification
of the range which displays the change of the asymptotic gauge advertised above more

clearly: namely, instead of Ly, (x(g;,)* (b)) as in Proposition 10.2, we use

Ly (x9h, (0') 05, (xwps (8)))

as the modification, which is still compactly supported, and thus can be used equally
well to eliminate the asymptotic part (g; )*(b') of linear waves. To see the benefit of

this, we calculate

Ly (Xgb, (V') 46, (xwp, (1))
= Livy (x4, (b)) =0 (Dg,, T (85, (xewpy (V))))
= Liry (X84, (1) =07 ([Dgy, Y05, s X]wp, (b)) 45" (xDgy, T (g3, (1))
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= Liyy (xghy (1)) +0" (Dg,, T (x55, (b)) =605 (¥), (11.5)
where we introduce the notation
0, (V') =Dy, Y05, Xlwp, (") +[Dgy, T, X1 (g5, (0")). (11.6)

The interpretation of the terms in (11.5) is clear: the first gives rise to linearized Kerr—
de Sitter asymptotics, corresponding to the first term in (11.4), the second corrects
the gauge accordingly, corresponding to the second term in (11.4) (note that gy, =
gy for b=bg), and the final term patches up the gauge change in the transition region
supp dx; notice that 6, (V') is compactly supported in t.. We moreover point out that
the sum of the first two terms on the right-hand side vanishes for large ¢, due to the
fact that Dy, (Ric+A)(gy,(b))=0; exponential decay will be the appropriate and stable
description, when we discuss perturbations.

In order to put the non-linear stability problem into the framework developed in

§5.2, we define the space
G* ={g € Hy* (257 PTaM) : |3l oo <}, (11.7)

with >0 sufficiently small for all our subsequent arguments—which rely mostly on the
results of §5.2—to apply; moreover, we choose a trivialization Ty, BB xR*. Then, we

define the continuous map
2V U X G RY — HY (0 82 P T M),

~ (11.8)
(0,3,0") — L 5(xg5(b')) +0" (Dy, , L(xg5 (b)),

for s>14, which is just the linearization of Py in b as in (11.4); the range of 2T consists
of modifications which take care of changes of the asymptotic gauge. (The map 27 is
certainly linear in &', as b'+>g; (b') is linear.) Furthermore, we parameterize the space of
compactly supported gauge modifications necessitated by these asymptotic gauge changes
by

RY — € (3 PTG M),

Ve 0., (11.9)

with 6, defined in (11.6). (We could make this map depend on b and §, which may be
more natural, though it makes no difference, since our setup is stable under perturba-
tions.)

We are now prepared to prove the main result of this paper: the non-linear stability
of slowly rotating Kerr—de Sitter spacetimes.
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THEOREM 11.2. Let h, keC>®(Xg; S?T*Xq) be initial data satisfying the constraint
equations (2.2), and suppose that (h, k) is close to the Schwarzschild—-de Sitter initial data
(Mg, kby) (see (3.38)) in the topology of H?*'(Xo; S*T*Xo)®H?*(Zo; S2T*Yg). Then,
there exist Kerr—de Sitter black hole parameters be B, a compactly supported gauge mod-
ification 0, lying in a fized finite-dimensional space ©CCX(Q°;T*Q°), and a section
GEH Y (Q; S2PTE M) such that the 2-tensor g=gy, »+§ is a solution of the Einstein
vacuum equations

Ric(g)+Ag=0,

attaining the given initial data (h, k) at o, in the gauge T(g)—Y (gp,,6) —0=0 (see (3.35)
for the definition of T). More precisely, we obtain (b,0,§), and thus g=gp, p+9, as the

solution of

{ Ric(g)+Ag—6"(Y(9) =T (gop)—0) =0 in O, (11.10)
70(9) = ibo (ha k) on 207
where iy, was defined in Proposition 3.10.
Moreover, the map
C™®(Xo; S*T*%0)* — Up x © x HO*(Q; S2 PTG M), (AL1)

(h, k) — (b,0, 9),

is a smooth map of Fréchet spaces (in fact, a smooth tame map of tame Fréchet spaces)
for (h, k) in a neighborhood of (hy,,ks,) in the topology of H?*'®H?.

Here, recall that a>0 is a small fixed number, only depending on the spacetime
(M, gp,) we are perturbing. Furthermore, we use any fixed Riemannian fiber metric on
S2T*%, for instance the one induced by hy,, to define the H* norm of the initial data.

Proof. Once we have solved (11.10), the fact that g solves Einstein’s equations in the
stated gauge follows from the general discussion in §2.1. We briefly recall the argument in
the present setting: by definition of 4, we have YT (g)|s, =0 (note that Y (gs,») =0 near ¥
for all beUp), hence T (g)—0=0 at ¥y due to supp N3y =4, and the constraint equations
for (h, k) imply that Ly, (Y(g)—0)=0 at ¢ as well once we have solved (11.10); but then
applying d,G, to (11.10) implies the linear wave equation ﬁgp(T(g)—T(gbO,b)—Q):Q
and hence Y(g)—Y(gp,.5) —0=0 in Q° and therefore indeed Ric(g)+Ag=0.

In order to solve (11.10), let © denote the finite-dimensional space constructed in
Proposition 10.2, and fix an isomorphism J: RNe —g—>®, where Ng:=dim ©. We parame-
terize the modification space for the linear equations we will encounter by

2:Up x GPFEx RNy o (Q; 2P T M)t~ Cs DS(Q; 2 PTE M), i
(0,3, (b, b, €)= 27 (b, 3, 1) +8" (O (b)) +9(c)),
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using the maps (11.8) and (11.9). Tensors in the range of z¥ will be subsumed in changes
of the asymptotic gauge condition. The non-linear differential operator we will consider

is thus
P(b, by, ¢,7) := (RictA)(goo.6+7) = 0" (Y (gbo.6+5) — Y (gbo.6) — by (b)) —9(c)),

with (b, b, ¢, §)€Up x RIFTNe x G, and the non-linear equation we shall solve is

d)(babllﬁcvg) = (P(b’ bllvchg)a 70(.&)_(ibo(h7k)_70(gbo))):0'

To relate this to the abstract Nash—Moser result, Theorem 11.1, we define the Banach

spaces
B =R xRN0 5 F9(Q; S2PTHM)  and  B* = D(Q; S2 YT M);

we will look for a solution near ug:=(bg,0,0,0), for which ¢(ug)=(0,v0(gs,)— b, (h, k))
is small in a Sobolev norm which we shall determine momentarily.
The typical linearized equation we need to study in the Nash—Moser iteration is of
the form
Do c,5)0(, b, €, 7) =d = (f,r0,71) € B*; (11.13)

with L 5, the linearization of P in § around (b,b},c,§) (thus L; 5 does not depend on

by and c), given by the expression (11.3), this is equivalent to
Lbyg(f>:f_z(b7ga (bla lllac/))a 70(f>:(T0,T1)-

Now, the map z satisfies the (surjective) assumptions of Theorem 5.14, in particular (5.33)
with by taking the place of wy; surjectivity holds because of the 9 term in the definition
(11.12) of the map z, taking care of pure gauge modes, and the terms involving &' and
by which take care of the linearized Kerr—de Sitter family in view of the computation

(11.5). Thus, we do obtain a solution
P(b,by, ¢, §)(f,r0,m1):= (¥, b, ¢/, 7) € B>
of (11.13) together with the estimates
'1+107[+ [ Slldlls and 7]l < Cs(lldlls+3+ (1413l s+6)[1dll13),

for s>10; this regularity requirement is the reason we need 2-10=20 derivatives; see
below. Two remarks are worth making: first, the norm on g comes from the fact that



166 P. HINTZ AND A. VASY

for QEHE%’O‘, the non-smooth coefficients of the linearization of ¢ lie in H§+4’a, corre-
sponding to the norm on w in (5.33); see also Remark 5.13. Second, the assumption on
the skew-adjoint part of the linear operator at the radial set, ,3271, in the statement of
Theorem 5.14 does hold; indeed, we showed B}O in §9.2.

Thus, we obtain (11.2) with d=10. One easily verifies that for this choice of d, the
estimates (11.1) hold as well. (In fact, d=4 would suffice for the latter, see [76, Proof
of Theorem 5.10].) Theorem 11.1 now says that we can solve ¢(b, b}, ¢, §)=0 provided
llibg (hy k) —Y0(gbo ) || 2120 is small (here, 20=2d), proving the existence of a solution of
(11.10) as claimed; the space © in the statement of the theorem is equal to the sum of
the ranges ©=0, (R*)+dJ(RNe).

The smoothness of the solution map (11.11) (in fact with tame estimates), or indeed
of

(h, k) — (b, b, ¢, 9),

follows from a general argument using the joint continuous dependence of the solution
map for the linearized problem on the coefficients and the data, together with the fact
that ¢ itself is a smooth tame map; see, e.g., [68, §111.1.7] for details.

The proof of non-linear stability is complete. O

Remark 11.3. We explain in what sense one can see ringdown for the non-linear
solution, at least in principle (since no rigorous results on shallow resonances for the
linearized gauged Einstein equation are known): assume for the sake of argument that
there is exactly one further resonance o in the strip —as <Im o < —a <0, where we assume
to have high-energy estimates (5.7) still, with 1-dimensional resonant space spanned by
a resonant state ; we assume that o is purely imaginary and ¢ is real. The asymptotic
expansion of the solution of the first linear equation that one solves in the Nash—Moser
iteration then schematically is of the form g; (b')+¢eg(1), where € is the size of the initial
data, and gqy=ce+ge1), with c€R and )€ Hy~** of size 1 (in L>, say). Proceeding
in the iteration scheme, we simply view cp+g)€Hp ™, so the non-linear solution will
be g=gbo.b+£9(1) +E2g(2), With g2y €Hp™ of size 1. At the timescale t,=C~"log(e ™),

for C'>0 large only depending on «, as and o, the three components of g are thus of size

f\)gf(lma)/CJrl7 az/C+1 a/C+27

lew] legyl ~e and  |e%g(o)| ~e

so the term ¢ coming from the refined partial expansion dominates by a factor e =9 for
some small §>0; in this sense, one can see the ringdown, embodied by ¢ here, even in the
non-linear solution. It would be very interesting to understand the asymptotic behavior
of the non-linear solution more precisely, possibly obtaining a partial expansion using

shallow resonances.
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11.3. Construction of initial data

We briefly discuss three approaches to the construction of initial data sets in the context of
Kerr—de Sitter spacetimes. First, Cortier [29] described a gluing construction producing
data sets with exact Kerr—de Sitter ends, following work by Chrusciel-Pollack [28] in the
time-symmetric (i.e. with vanishing second fundamental form) Schwarzschild-de Sitter
case. Such localized gluing methods for the constraint equations were first introduced
by Corvino [30] for time-symmetric data; this restriction was subsequently removed by
Corvino—Schoen [31], and Chrusciel-Delay generalized their analysis in [26].

Second, by definition, one obtains initial data sets by selecting a spacelike hypersur-
face in a spacetime satisfying Einstein’s equations. The point is that one may construct
such spacetimes by solving the characteristic initial value problem for Einstein’s equa-
tions, the well-posedness of which was first proved by Rendall [119]; the solution was later
shown to exist in a full neighborhood of the ingoing and outgoing null cones by Luk [100].
For the characteristic problem, the constraint equations simplify dramatically, becoming
simple transport equations rather than a non-linear coupled system of PDE (of elliptic
type), see [100, §2.3]. In the case of interest for Theorem 11.2, and adopting the notation
of [100], we can fix a 2-sphere Sp o at t=tp and r=ry within Schwarzschild-de Sitter space
(M, g, ), with to chosen so that X lies entirely in the timelike future of Sy, and with
Thy,— <T0<Thy,+, SO r=rg lies in the black hole exterior. We then consider the outgoing
(resp. ingoing) future null cones Hy (resp. Hy), which are swept out by the null-geodesics
with initial velocities outgoing, increasing r (resp. ingoing, decreasing r) future null vec-
tors orthogonal to Sp,9. Then, fixing the data of a Riemannian metric y4p5, a 1-form
¢a and functions tr x and tr x on Sp o, the constraint equations [100, equations (8)—(11)]
can be solved, at least locally near Sy, by solving suitable transport equations. If the
data are equal to those induced by the metric gs,, the constraint equations of course do
have a semi-global solution (namely the one induced by g3, ), i.e. a solution defined on a
portion XY of HyUH, extending past the horizons. See Figure 11.1.

Thus, if one merely slightly perturbs the data, one still obtains a semi-global solution;
one can then solve the characteristic initial value problem in a fized neighborhood D of
%) which contains a fixed spacelike hypersurface ¥_;. If the characteristic data are close
to those induced by gy, , the induced data on ¥_; are close to those induced by gp,. Given
such data on ¥ _1, one can then either use a straightforward modification of Theorem 11.2,
using Y. as the Cauchy hypersurface; alternatively, as depicted in Figure 11.1, one can
solve the (non-characteristic) initial value problem with data on X_; in a domain which
contains Xy (provided the characteristic data were close to those induced by gs,), and
the data on g are close to (hp,,kb,). (Theorem 11.2 then applies directly.) These
constructions can be performed for any desired level of regularity; recall here that Luk’s
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So,0

Figure 11.1. Penrose diagram illustrating the construction of initial data for Theorem 11.2
from characteristic initial data.

Figure 11.2. The totally geodesic hypersurface 3, compact with C* boundary, within the
maximal analytic extension of a Schwarzschild—de Sitter spacetime.

result produces an H® solution for H*T! characteristic data for s>4.

We finally discuss a third approach, producing a sizeable set of solutions of the
constraint equations directly, i.e. without using the above rather subtle tools. We will
use a (slightly modified) conformal method, going back to Lichnerowicz [97] and York
[148]; we refer the reader to the survey paper [8] for further references. Our objective
here is merely to construct initial data in the simplest manner possible. Thus, consider a
compact hypersurface ¥, with smooth boundary, in the maximal analytic extension of a
Schwarzschild—de Sitter spacetime with parameters by, given by ¢=0 in static coordinates,
which extends a bit past the bifurcation spheres of the future/past event horizon and the
future/past cosmological horizon; see Figure 11.2. Since X is totally geodesic, the metric
g, induces time-symmetric data (hg,0) on . We shall construct initial data sets on X,
which by a Cauchy stability argument as in the previous paragraph give rise to initial

data sets on Xg.

PROPOSITION 11.4. Let s>so>3. Then, there exist e=e(so)>0 and C=C(s)>0
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such that the following holds: for all constants HER and traceless, divergence-free (with
respect to ho) symmetric 2-tensors Q€ H*(3; S2T*X) with |H|+| Q| g0 <e, there exists
e HT2(X) with the property that

h=¢*hg and k=¢ 2Q+Hh, with o:=1+1,

solve the constraint equations (2.2) (with n=3), and ||¢|| ge+2 <C(|H|+| Q| &-)-

Proof. For general Riemannian metrics h and symmetric 2-tensors k=Q+ Hh, with

@ tracefree, the constraint equations (2.2) with n=3 read
Ry—|QI}+6H?+2A=0, 6,Q+2dH =0.

Now, given HER and @ as in the statement of the proposition, define h=¢*hy and
Q:(p_gé, for ¢ to be determined. Then, we have 5hQ:<p_66h0@:0:—2 dH, so the

second constraint is always verified, while the first becomes
P(p;Q, H) := Ap+ Rp—1|Q1%0 ™+ (3H + )" =0,

where A>0 and R are the Laplacian and the scalar curvature of hg, respectively, and
norms are taken with respect to hg. This equation holds for @:0, H=0 and ¢=1.

Let us now extend ¥ to a closed 3-manifold ¥ without boundary, and extend hg
arbitrarily to a Riemannian metric on f); we denote the extension by hg still. Extending
P by the same formula, we then have P(l;O,O):%RJr%A::fGC'OO(ZT:), with the dot
indicating infinite order of vanishing at OXCX. Let us also extend é to a symmetric
2-tensor on i; we require neither the traceless nor the divergence-free condition to hold
for the thus extended @ away from Y. Applying the finite-codimension solvability idea

in the present, elliptic, context, we now aim to solve the equation
PO+¢;Q,H)=f+z (11.14)

for ¢, where z€C>(Z¢) lies in a suitable fixed finite-dimensional space. Note that having
solved (11.14), we obtain a solution of the constraint equations in ¥ as in the statement
of the proposition; what happens in ¢ is irrelevant! In order to solve (11.14), we rewrite
the equation as

Ly+q(v)—z=d, (11.15)

where

1 ~ - ~
d:§|Q\27%H2, L=L+I|QP+¥H? L=A+LR+3A,

and q(¢)=v¢2qo(¢)), with go: H*—H?® continuous for all s>so>32: indeed, go(1)) is a
rational function of ¢, with coefficients involving (powers of) H and Q; thus, g depends
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on H and @, though we drop this from the notation. The key observation is then we
can use a unique continuation principle to determine a suitable space of z. Indeed,
choosing a basis of the L2-orthocomplement ran(L)*=span{uvy, ..., vy } CC®(), unique
continuation implies that {vy,...,uy} is linearly independent as a subset of C*°(Z\X),
and we can therefore pick {z1, ..., 2y } €C%(£¢) such that the matrix ((v;, 2j))i j=1... N~ i
non-degenerate; letting Z:=span{zy, ..., 2y }, this says that

L' H @z — H,
(wv Z) — L¢_Za

is an isomorphism for all s€R. Similarly defining I~/(1/), 2)=L"Y—z, peHT2 2€Z, for
$>s0, it follows that L': H®T2@ Z— H* is invertible if |H| and ||Q||g+o are sufficiently

small. But then, a contraction mapping argument using the map

HoT2gz 5 H5o2gZ,
(¥, 2)— (L) (d—q(v))

starting with (¢, 2)=(0,0), produces a solution of (11.15). A simple inductive argument
using elliptic regularity for L gives € H12 if @eHs, §2=50. O

Appendix A. b-geometry and b-analysis
A.1. b-geometry and b-differential operators

In this appendix we recall the basics of b-geometry and b-analysis. As a general reference,
we refer the reader to [110]. Geometrically, b-analysis originates from the study of
the Laplacian on manifolds with cylindrical ends (and this is the context of [110]), but
in fact analytically it arose in earlier work of Melrose on boundary problems for the
wave equation, using b-, or totally characteristic, pseudodifferential operators to capture
boundary regularity [109]. Recall that a (product) cylindrical metric on My =R;x X is

one of the form gy=dt?>+hg, hg a Riemannian metric on X. In terms of the coordinate
t

T=e"*, which we consider for ¢>0 large (so 7 is near 0 and positive), thus d{:—dt, the
cylindrical metric is of the form
dr?
9o =—5+ho.
T

One then considers the compactification M of M., by adding 7=0 (similarly, at the
end t——o0, one would work with 7=e~/*). Thus, locally, in the region where 7 is
small, the new manifold M has a product structure [0,¢), x X. One advantage of this

compactification is that working on compact spaces automatically ensures uniformity of
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many objects, such as estimates, though of course the latter can alternatively be encoded
‘by hand’. Smoothness of a function on [0,¢), x X implies a Taylor series expansion at

{0} x X in powers of 7, i.e. e7".

For instance, a metric of the form g:adTL;Jrh, where
h is a smooth symmetric 2-cotensor and a a smooth function on M with h|,—o=ho and
alr=—0=1, approaches go exponentially fast in ¢.

In general then, we consider an n-dimensional manifold M with boundary X, and
denote by V(M) the space of b-vector fields, which consists of all vector fields on M
which are tangent to X. In local coordinates (7,x)€([0,00)x R"~! near the boundary,

elements of V(M) are linear combinations, with C*° (M) coefficients, of
T8T7 81:1 VRS 8-7«'71,—1 *

(In terms of t=—1log 7 as above, these are thus vector fields which are asymptotic to
stationary vector fields at an exponential rate, and indeed they have an expansion in e=*.)
Correspondingly, elements of V},(M) are sections of a natural vector bundle over M, the
b-tangent bundle ®T M, the fibers of T'M being spanned by 70,0y, , .., Oz, _,, with 70,
being a non-trivial b-vector field up to and including 7=0 (even though it degenerates
as an ordinary vector field). The dual bundle, the b-cotangent bundle, is denoted PT* M.
In local coordinates (7, ) near the boundary as above, the fibers of PT* M are spanned
by %, dxy,...,dxn_1. A b-metric g on M is then simply a non-degenerate section of the

second symmetric tensor power of PT*M, i.e. of the form

n—1

dr? = dr dr
9= goo(T, x)?—i—zl 90i (T, ) (T ®dmi+da:i®7_> + 4,21 93 (T, x)dx; @dx;,
i= i,j=

9ij=9;i, with smooth coefficients gi¢ such that the matrix (gkf)Z,Zio is invertible. In
terms of the coordinate t=—log T€R, thus dT—T:fdt, the b-metric g therefore approaches
a stationary (t-independent in the local coordinate system) metric exponentially fast, as
7=e~t. A b-metric can have arbitrary signature, which corresponds to the signature of
the matrix (gkg)zgio; positive definite metrics (i.e. of signature (n,0)) are Riemannian,
while those of signature (1,n—1) (or (n—1,1)) are Lorentzian.

All natural tensorial constructions work equally well in the b-setting, such as the
form bundles PAP M =AP PT* M and the symmetric tensor bundles S? bT*M:®f b M
in particular, a b-metric is a smooth section of S2PT*M. Another important bundle is
the b-density bundle PQM, sections of which are smooth multiples of \d{ Adzy ... NdXp_1]

in local coordinates; any b-metric of any signature gives rise to such a density via

_ dr
|dg| = | det(gkg)zﬁzio 1/2 7/\dac1 o ANdx, 1.
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b g M

ST M

oM

ox

Figure A.1. The radially compactified cotangent bundle bT*M near @M The horizontal
axis is the base M, with its boundary X on the right; the vertical axis is the typical fiber of
bT* M over a point. The cosphere bundle P$* M, viewed as the boundary at fiber infinity of
bT*M, is also shown, as well as the zero section oy; CPT*M and the zero section over the
boundary ox CPT% M.

In particular, this gives rise to a positive definite inner product on C°(M°), or indeed
C°(M), the space of functions in C2°(M) which vanish at X with all derivatives (i.e. to
infinite order). The completion of C2°(M) in this inner product is L2 (M)=L?(M;|dg]).

The b-conormal bundle PN*Y of a boundary submanifold Y C X of M is the sub-
bundle of PT5 M whose fiber over p€Y is the annihilator of vector fields on M tangent
to Y and X. In local coordinates (7,z’,z"), where Y is defined by /=0 in X, these
vector fields are smooth linear combinations of 70;, 8309/, x;a$;7 70, , whose span in
bT, M is that of 79, and 895;/7 and thus the fiber of the b-conormal bundle is spanned by
the d:zc;, i.e. has the same dimension as the codimension of ¥ in X (and not that in M,
corresponding to % not annihilating 79.).

We define the b-cosphere bundle ®S* M to be the quotient of PT*M\o by the R*-
action; here o is the zero section. Likewise, we define the spherical b-conormal bundle
of a boundary submanifold Y C X as the quotient of PN*Y\ o by the R*-action; it is a
submanifold of PS*M. A better way to view PS*M is as the boundary at fiber infinity
of the fiber-radial compactification PT*M of PT* M, where the fibers bT;‘M are replaced

by their radial compactification
PTsM = (PTr MU([0,00), xS™ 1))/ ~, (A1)
where the equivalence relation ~ identifies (z,w), >0, with 2~ 'w €Ty M, upon choosing
polar coordinates on P13y M =R™; see also [140, §2]. The b-cosphere bundle *S* M cPT*M
still contains the boundary of the compactification of the ‘old’ boundary PT%M; see
Figure A.1.
Next, the algebra Diff,(M) of b-differential operators generated by W, (M) consists

of operators of the form

P= > aa(r2)(rD,)' DS,

lal+j<m
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with a, €C*° (M), writing D=(1/i)0 as usual. (With t=—1log 7 as above, the coefficients
of P are thus constant, up to exponentially decaying remainders as t—o0.) Writing

elements of PT*M as

dr
o 7+Z ¢ dz;, (A.2)
J
we have the principal symbol

Ob,m(P)= Z ao (1, 2)07 €2,

lo+5=m

which is a homogeneous degree-m function in ®T* M \o. (The subscripts on the notation
ob,m of the principal symbol distinguish it from the dual variable ¢.) Principal symbols
are multiplicative, i.e. op ymtm/ (PoP')=0b,m(P)on,m/ (P’), and one has a connection be-

tween operator commutators and Poisson brackets, to wit

Ob,m+m/—1 (7'[7)’ Pl]) = pr/a p= Ub,m(P)a p/ =0b,m/’ (P/)a

where H, is the extension of the Hamilton vector field from T*M°\o to "T* M\ o, which
is thus a homogeneous degree-(m—1) vector field on ®T* M\ o tangent to the boundary

PT% M. In local coordinates (,z) on M near X, with b-dual coordinates (o,¢) as in
(A.2), this has the form

H,= (Oop)(10-)— (Tafp)aa"‘Z((aﬁjp)azj - (a:rjp)aéj)§

J

see [11, equation (3.20)], where a somewhat different notation is used, given by [11,
equation (3.19)].

We are also interested in b-differential operators acting on sections of vector bun-
dles on M. If E and F are vector bundles over M of rank Ng and Np, respectively,
then, in coordinate charts over which E and F' are trivialized, such operators Pe&
Diffy" (M; E, F), so P:C*(M; E)—C>(M;F), are simply Npx Ng matrices of (scalar)
b-differential operators P;; €Diff;'(M). An example is the b-version of the exterior dif-
ferential Pd: Co°(M;PAP M) —C>(M; P AP+ M), PdeDiff}, (M;PAP M, P AP+ M), given for
p=0 by

b dr
du= (10,u) 7+j§::1(azju) dx;,

and extended to the higher-degree differential forms in the usual manner, so

bd(uda;, A Ndxy) = (Pdu)Adx;, A Ndxg,
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and (note that dr/r=dlogT)
d d
bd(u T/\d:cil/\.../\d:z:ip_1> = (bdu)/\—T/\dmil/\.../\dxip_l.
T T

Thus, Pd=d is the usual exterior differential away from X =0M if one uses the natural
identification of PT'M with TM away from X, likewise for the associated bundles.

If £ and F are real vector bundles, and hr and hp are inner products of any
signature (i.e. bilinear symmetric non-degenerate maps to the reals) on the fibers of
E and F, respectively, and v is a non-degenerate b-density (e.g. the density |dg| of a
b-metric), then PeDiff{"(M; E, F) has an adjoint P*€Diff})'(M; F, E) characterized by

(Pu,v)p = (u, P*v)g, ueC>(M;E)veC>®(M;F),

where
<u1,uQ)E:/hE(u1,uQ)u, Uy, U GCOO(M;E),

and similarly for F'. We maintain the same notation for the complexified bundles to which
hg and hp extend as sesquilinear fiber inner products. In particular, any non-degenerate
b-metric g induces inner products (of various signature!) on PAM and SP°T*M; an
example of an adjoint is bd*:éeDiff%)(M; PAPTLM PAPM). Other important geometric

operators include the covariant derivative with respect to a b-metric g,
V e Diff} (M; 8P °T* M,*T* M @ SP *T* M),
the symmetric gradient
&7 € Diffy (M; T* M, % *T* M),
and the divergence
5, € Diff} (M, S>>T* M, >T* M),
besides bundle endomorphisms such as the Ricci curvature of a fixed b-metric g,
Ric(g) € Diff) (M; >T* M, >T* M).

For most analytic purposes the bundles are irrelevant, and thus we suppress them in the
notation below.

While elements of Diff}, (M) commute to leading order in the symbolic sense, they do
not commute in the sense of the order of decay of their coefficients. (This is in contrast
to the scattering algebra; see [111].) The normal operator captures the leading-order
part of PeDiffy" (M) in the latter sense, namely

NP)= Y aa(0,2)(rD.) DS

Jtlalsm
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One can define N(P) invariantly as an operator on the model space M:=[0,00), x X by
fixing a boundary defining function of M; see [140, §3]. Identifying a collar neighborhood
of XCM with a neighborhood of {0} x X in M;, we then have P—N(P)erDifty" (M)
(near OM). Since N(P) is dilation-invariant (equivalently, translation-invariant in t=
—log 7), it is naturally studied via the Mellin transform in 7 (equivalently, Fourier trans-

form in —t), which leads to the (Mellin transformed) normal operator family

N(P)(0)=P(o) = Z a6 (0, )07 D,

J+lal<m

which is a holomorphic family of operators P (o) €Diff™(X). Here the Mellin transform
is the map
~ > —10 dr
M:ur—iifo,-) = T%(T, ) —, (A.3)
0

T

with inverse transform

1
./\/l_lzv»—m'}(r,-):—/ T%(0, ) do,
27 R4rcv

with a chosen in the region of holomorphy of v. Note that for u which are supported
near 7=0 and are polynomially bounded as 7—0, with values in a space such as C,
C>®(X), L*(X) or C°°(X), the Mellin transform Mu is holomorphic in Imo>C', C>0
sufficiently large, with values in the same space. The Mellin transform is described in
detail in [110, §5], but the reader should keep in mind that it is a renormalized Fourier
transform, corresponding to the exponential change of variables 7=e~* mentioned above,
so results for it are equivalent to related results for the Fourier transform. The L?-based
result, Plancherel’s theorem, states that if v is a smooth non-degenerate density on X

and 7. denotes restriction to the line Im o=¢, then

r_qoM:TOL? (Xx[O,oo); |dTT|u> — LA(R; L*(X;v)) (A.4)

is an isomorphism. We are interested in functions u supported near 7=0, in which case,

with 7., .,) denoting restriction to the strip ¢; <Imo <cz, for N>0,

T o—arNoM:T(14+7) "N L2 (Xx[(),oo); |d:|l/> — A, (A.5)

where A is the set of functions

v:Rx1(—a, —a+N) — L*(X;v),

or—v(o),
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which are holomorphic in ¢ and such that
sup HU('+2T7')||L2(R;L2(X;V)) < 005
—a<r<—a+N
see [110, Lemma 5.18]. Note that, in accordance with (A.4), v in (A.5) extends continu-
ously to the boundary values, r=—a and r=—a— N, with values in the same space as for

holomorphy. Moreover, for functions supported in, say, 7<1, one can take N arbitrary.

A.2. b-pseudodifferential operators and b-Sobolev spaces

Passing from Diff, (M) to the algebra of b-pseudodifferential operators ¥y, (M) amounts
to allowing symbols to be more general functions than polynomials; apart from symbols
being smooth functions on PT* M, rather than on T*M if M was boundaryless, this is
entirely analogous to the way one passes from differential to pseudodifferential operators,
with the technical details being a bit more involved. One can have a rather accurate
picture of b-pseudodifferential operators, however, by considering the following: for ae
C>®(PT*M), we say a€S™(PT*M) if a satisfies

|(’9§(’9?a(z7 O)| < Cop(¢)™ 1P for all multi-indices o and (A.6)
in any coordinate chart, where z are coordinates in the base and { coordinates in the fiber;
more precisely, in local coordinates (7, ) near X, we take (=(0,&) as above. We define

the quantization Op(a) of a, acting on smooth functions u supported in a coordinate
chart, by

_ —n i(r—7")o+i(z—2')¢ T—1'
Op(a)u(r,z) = (27) e ¢
T

(A7)
xa(r,z,76,&)u(r’,2") dr’ dz’ d dE,

where the 7/-integral is over [0, 00), and p€C° ((f%, %)) is identically 1 near 0. The cutoff
¢ ensures that these operators lie in the ‘small b-calculus’ of Melrose, in particular that
such quantizations act on weighted b-Sobolev spaces, defined below; see also the explicit
description of the Schwartz kernels below using blow-ups. For general u, we define Op(a)u
using a partition of unity. We write Op(a) € U (M); every element of U*(M) is of the
form Op(a) for some a€ S™(PT* M) modulo the set ¥, > (M) of smoothing operators. We
say that a is a symbol of Op(a). The equivalence class of a in S™(PT*M)/S™~1(PT* M)
is invariantly defined on PT*M and is called the principal symbol of Op(a).

A different way of looking at ¥y, (M) is in terms of Hérmander’s uniform algebra,
namely pseudodifferential operators on R" arising as, say, left quantizations of symbols

ac ST (R2; R?) satisfying estimates

10208a(2, 2)| < Cap(2)™ 1P for all multi-indices o and f. (A.8)



NON-LINEAR STABILITY OF KERR—DE SITTER 177

To see the connection, consider local coordinates (7, ) on M near M as above, and write
Z=(t,z) with t=—log 7, with the region of interest being a cylindrical set (C,00)sx 2,
corresponding to (0,e~¢); x€,. Then, the uniform estimates (A.8) are equivalent to

estimates (pulling back @ via the map (7, z)=(—logT,x))

(70, )20 02 8 w*alr, x, 0,€)| < Cagl(, €))7

(A.9)
for all multi-indices o= (g, &) and 8= (5o, 8'),

and the quantization map becomes

Op(@)u(r, 2)
:(27r)_"/eilog(T/T,)”H(I_'”/)&z/)*d(T,x,—U, u(r',2') ()"t dr’ dx' do dE,

Letting 6=7""'0, this reduces to an oscillatory integral of the form (A.7), taking into
account that in 7/7/€(C~1,C), C>0, the function log(7/7’) in the phase is equivalent to
(t—71")/7. (Notice that, in terms of t and ', the cutoff ¢ in (A.7) is a compactly supported
function of t—t, identically 1 near zero.) With z=(7,z), (=(0, ), these estimates (A.9)
would be exactly the estimates (A.6), if (70,)*° were replaced by 92°. Thus, (A.9) gives
rise to the space of b-ps.d.o’s conormal to the boundary, i.e. in terms of b-differential
operators, the coefficients are allowed to be merely conormal to X=0M, rather than
smooth up to it. As in the setting of classical (one-step polyhomogeneous) symbols,
for distributions smoothness up to the boundary is equivalent to conormality (symbolic
estimates in the symbol case) plus an asymptotic expansion; thus, apart from the fact
that we need to be careful in discussing supports, the b-ps.d.o. algebra is essentially
locally a subalgebra of Hérmander’s uniform algebra. Most properties of b-ps.d.o’s are
true even in this larger, ‘conormal coefficients’ class, and indeed this perspective is very
important when the coefficients are generalized to have merely finite Sobolev regularity
as was done in [71] and [76]; indeed, the ‘only’ significant difference concerns the normal
operator, which does not make sense in the conormal setting. We also refer to [141,
Chapter 6] for a full discussion, including an introduction of localizers, far from diagonal

terms, etc.
If AeU" (M) and BV (M), then AB, BA€ W[ "™2(M), while

[A, Bl e Uyt (M),

and its principal symbol is

1 1
;Hab = ;{aa b},

with H, as above.
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We also recall the notion of b-Sobolev spaces: fixing a volume b-density v on M,

which locally is a positive multiple of

d
—sz,
-

we define, for s€Ny,
H{(M)={ue L*(M,v):Vy..Vjue L*(M,v),V; e Vo,(M),1<i<j < s},

which one can extend to s€R by duality and interpolation. Weighted b-Sobolev spaces
are denoted
HY(M)=1"H3(M), (A.10)

i.e. its elements are of the form 7%u with ue H(M). Any b-pseudodifferential opera-
tor PeW*(M) defines a bounded linear map P: H,'“(M)—H;~ "™ (M) for all s,acR.
Correspondingly, there is a notion of wave front set WFg’a(u)CbS*M for a distribution
ueH ™" (M)=,cp Hy“ (M), defined analogously to the wave front set of distribu-
tions on R™ or closed manifolds: a point wePS*M is not in WF;*(u) if and only if
there exists P W) (M), elliptic at @ (i.e. with principal symbol non-vanishing on the ray
corresponding to w), such that Pue H,*(M). Notice, however, that we do need to have
a-priori control on the weight « (we are assuming ue Hy °>*(M)), which again reflects
the lack of commutativity of Wy,(M) to leading order in the sense of decay of coefficients
at OM.

The Mellin transform is also well behaved on the b-Sobolev spaces H{(X x [0, 00)),
and indeed gives a direct way of defining non-integer order Sobolev spaces. For s>0
(cf. [110, equation (5.41)]),

d
r_qoM:THY <X>< [0, 00); |T1/>

T

(A11)
— {ve LA(R; H*(X;v)) : (1+]|0]?)*/?v € L*(R; L*(X; v))}

is an isomorphism, with the analogue of (A.5) also holding. Note that the right-hand
side of (A.11) is equivalent to

(o])*v € LA(R; Hjj,py -1 (X;v)), (A.12)

where the space on the right-hand side is the standard semiclassical Sobolev space and
(|o]y=(1+]c]?)*/?; indeed, for s>0 integer, both are equivalent to the statement that,
for all 8 with |B|<s, (|o|)*~1#IDPve L(R; L?(X;v)). Here, by equivalence we mean not

only the membership in a set, but also that of the standard norms, such as

1/2
(S [ Gop ool o)

18]<s V1
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corresponding to these spaces. Note that, by dualization, (A.12) characterizes the Mellin
transform of H'® for all seR.

The basic microlocal results, such as elliptic regularity, propagation of singularities
and radial point estimates, have versions in the b-setting; these are purely symbolic (i.e.
do not involve normal operators), and thus by themselves are insufficient for a Fredholm
analysis, since the latter requires estimates with relatively compact errors. It is usually
convenient to state these results in terms of wave front set containments, but by the closed
graph theorem such statements are automatically equivalent to microlocalized Sobolev
estimates, and are indeed often proved by such.

Let us first discuss microlocal elliptic regularity for a classical operator P W' (M).
We recall that P elliptic at wePS* M if o,(P) is invertible at wo; here, one renormalizes
the principal symbol by using any non-degenerate homogeneous degree-m section of

PT*M, so that the restriction to PS* M, considered as fiber infinity, makes sense.

PROPOSITION A.1. Suppose ueHgl’a for some §', o, and wg WFy "™ (Pu). Then,
wg WF“(u). Quantitatively, the estimate

1B2ull g e < C(IB1Pul| grg=m.e +[[ull or.a)

is valid for By, Bo€ W) (M), with By elliptic on WF{(Bs) and P elliptic on WFy,(Bs).

Next, to describe propagation of singularities for a classical operator PeWU (M)
with real principal symbol p (scalar if P is acting on vector bundles), we recall that the
characteristic set Char(P) is the complement of its elliptic set (the set of points where

P is elliptic). Then, we have the following.

PROPOSITION A.2. Let uGH{:,’O‘ for some §',a. Then WEP® (u)\WF; ™ h%(Pu)
is the union of mazimally extended (null) bicharacteristics, i.e. integral curves of H)
inside the characteristic set Char(P) of P inside Char(P)\WF; "1 (Pu).

This statement is vacuous at points w, where H,, is radial, i.e. tangent to the dilation
orbits in the fibers of PT* M\ 0. Elsewhere, it again amounts to an estimate, which now
is of the form

[Bul g < C([Brull g +[1SPull gre-mea+[ull for.a), (A.13)

which is valid whenever By, By, S€ U (M) with S elliptic on WF},(Bz), and every bichar-
acteristic from WF},(Bz) reaching the elliptic set of By, say in the backward direction
along H,,, while remaining in the elliptic set in S; this estimate gives propagation in the
forward direction along H.
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The estimate (A.13) remains valid, for propagation in the forward direction, if p is
no longer real, but Im p<0, and in the backward direction if Im p>0. Such an operator is
called complex absorbing. Notice that one has a better, elliptic, estimate where Im p>0;
the point is that the propagation of singularities estimate works at the boundary of this
region.

Radial points of H, come in many flavors, depending on the linearization of H,. In
the present context, at the b-conormal bundle of the boundary of the event or cosmologi-
cal horizon at infinity, the important type is saddle points, or more precisely submanifolds
L of normally saddle points, introduced in [75, §2.1.1] in the b-setting. (See [11] for a
source/sink case, which is relevant to the wave equation on Minkowski-type spaces.) More
precisely, the saddle point is of the following type: within the characteristic set of P, one
of the stable/unstable manifolds lies in PS% M, and the other, call it £, is transversal
to PS% M; the full assumptions are stated in [75, §2.1.1]; see also the discussion of the
dynamics in §3.4. In fact, one should really consider at least the infinitesimal behavior
of the linearization towards the interior of the cotangent bundle as well, i.e. work on
b \f , with PS* M its boundary at fiber infinity; then, with L a submanifold of ®S% M
still, we are interested in the setting in which the statement about stable/unstable man-
ifolds still holds in PT*M. Then, there is a critical regularity, 5:%(m71)+ Ba, where

« is the Sobolev weight order as above, and [ arises from the subprincipal symbol of

P at L; in the case of event horizons, it is the reciprocal surface gravity. (If P#£P*,
there is a correction term to the critical regularity; see §5.1.) Namely, the theorem ([75,
Proposition 2.1]) states the following facts:

e for s> %(m— 1)+ Ba, one can propagate estimates from a punctured neighborhood
of LNPS% M in L to X;

o if s< %(m—1)+ Ba, the opposite direction of propagation is possible.

Remark A.3. This is the redshift effect in the direction of propagation into the
boundary, since one has then a source/sink within the boundary; that is, in the direction
in which the estimates are propagated, the linearization at L infinitesimally shifts the
frequency (where one is in the fibers of PT*M) away from fiber infinity, i.e. to lower
frequencies. Dually, this gives a blue shift effect when one propagates the estimates out

of the boundary.

When the H,-flow has an appropriate global structure, e.g. when one has complex
absorption in some regions, and the H,-flow starts from and ends in these, potentially

after ‘going through’ radial saddle points, see [75, §2.1], one gets global estimates

[ull g < CUIPull gg—mss.e el or.a) (A.14)



NON-LINEAR STABILITY OF KERR—DE SITTER 181

with s’ <s, provided of course the threshold conditions are satisfied when radial points
are present (depending on the direction of propagation). One also has dual estimates for
P*, propagating in the opposite direction.

Due to the lack of gain in «, these estimates do not directly give rise to a Fredholm
theory, even if M is compact, since the inclusion map HS’D‘HHS/’O‘ is not compact even
if s>s’. This can be done via the analysis of the (Mellin transformed) normal operator
N(P)(6)=P(c). Namely, when P(c) has no poles in the region —Im o €[r, 7], and when
large |Reo| estimates hold for ﬁ, which is automatic when P has the global structure

allowing for the global estimates (A.14), then one can obtain estimates like
[ull g S CUN PYull gg=msr +ufl o),
which, when applied to the error term of (A.14) via the use of cutoff functions, gives
||uHHb < C(||PUHH§—m+1,r+||U||H§/m/)7

with s>s’, r>7', and dual estimates for P*, which does give rise to a Fredholm problem
for P.

We are also interested in domains in M, more precisely ‘product’ or ‘p’ submanifolds
with corners 2 in M. Thus, €2 is given by inequalities of the form t; >0, j=1,2...,m, such
that at any point p the differentials of those of the t;, as well as of the boundary defining
function 7 of M, which vanish at p, must be linearly independent (as vectors in T,y M).
For instance, if m=2, and p€ X =0M with t; (p)#0, t2(p) =0, then d7(p) and dtz(p) must
be linearly independent. The main example of interest is the domain 2 defined in §3.5
(see Figure 3.4), in which case we can take t; =[], (r—(rp,,+ £enm)) and to=1—7.

On a manifold with corners, such as €2, one can consider supported and extendible
distributions; see [81, Appendix B.2] for the smooth boundary setting, with simple
changes needed only for the corners setting, which is discussed e.g. in [138, §3]. Here we
consider €2 as a domain in M, and thus its boundary face X N2 is regarded as having a
different character from the H;NQ, H j:’cj_l(())7 i.e. the support/extendibility consider-
ations do not arise at X—all distributions are regarded as acting on a subspace of C*>
functions on {2 vanishing at X to infinite order, i.e. they are automatically extendible dis-
tributions at X. On the other hand, at the H; we consider both extendible distributions,
acting on C*° functions vanishing to infinite order at H;, and supported distributions,
which act on all C* functions (as far as conditions at H; are concerned). For example,
the space of supported distributions at H; extendible at Hs (and at X, as we always
tacitly assume) is the dual space of the subspace of C*°(Q) consisting of functions van-
ishing to infinite order at Ho and X (but not necessarily at Hy). An equivalent way
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of characterizing this space of distributions is that they are restrictions of elements of
the dual C=°°(M) of C°(M) with support in t; >0 to C> functions on  which vanish
to infinite order at X and Hs; thus, in the terminology of [81], they are restrictions of
elements of C~°°(M) with support in t; >0 to Q\(HUX).

The main interest is in spaces induced by the Sobolev spaces H;'"(M). Notice that
the Sobolev norm is of completely different nature at X than at the H;, namely the
derivatives are based on complete, rather than incomplete, vector fields: V(M) is being
restricted to 2, so one obtains vector fields tangent to X but not to the H;. As for

supported and extendible distributions corresponding to H,'" (M), we have, for instance,
(@),

with the first superscript on the right denoting whether supported (e) or extendible
(—) distributions are discussed at Hp, and the second the analogous property at Ho;
thus, H," ()"~ consists of restrictions of elements of H;'" (M) with support in t; >0 to
Q\(H3UX). Then, elements of C>°(§2) with the analogous vanishing conditions, so in
the example vanishing to infinite order at H; and X, are dense in H,"(Q)"; further
the dual of H;"(Q)*~ is H,, *~"(Q) > with respect to the L? (sesquilinear) pairing. For

distributions extendible (resp. supported) at all boundary hypersurface, we shall write
HN(Q)=HY"(Q) 7 and HP'(Q)=HY' (). (A.15)

The main use of these spaces for the wave equation is that, due to energy estimates,
one can obtain a Fredholm theory using these spaces, with the supported distributions
corresponding to vanishing Cauchy data (from where one propagates estimates in the
complex absorption setting discussed above), while extendible distributions correspond
to no control of Cauchy data (corresponding to the final spacelike hypersurfaces, i.e.
with future timelike outward-pointing normal vector, to which one propagates estimates);
note that dualization reverses these, i.e. one starts propagating for P* from the spacelike
hypersurfaces towards which one propagated for P. We refer to [75, §2.1] for further
details.

A.3. Semiclassical analysis

In one part of the paper, namely the proof of SCP, we work with semiclassical b-
pseudodifferential operators. First recall that the uniform semiclassical operator algebra,
U (R™), is given by

An=Opy(a),
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where
Opy (a)u(z) = (27h) " / G2 g (3. 5 By u(Z) d3 dF
R xR"™
for
ueSMR") and ae€C™([0,1)x; SL(RE;RE)).

Its classical subalgebra, ¥y (R™), corresponds to ac€C>([0,1)p; ST

oo,cl
m
Soo,cl

(R™;R™)), where
denotes the space of symbols which are classical (one-step polyhomogeneous)
in the fibers. The semiclassical principal symbol of such an operator is o, (A)=
alp=o €S (T*R™); the ‘standard’ principal symbol is still the equivalence class of a
in C>([0,1); SZ/S2~1), or an element of C*([0,1)n; SZ 1om

There are natural extensions to manifolds without boundary X, for which the behavior

) in the classical setting.

of the symbols at infinity in RY is irrelevant since, as one transfers the operators to
manifolds, one uses coordinate charts only whose compact subsets play a role. On the
other hand, the ‘conormal coefficient’ semiclassical b-pseudodifferential algebra can be
defined via the identifications discussed above, namely locally using, with z=(¢, z), the
quantization

Ah = Oph (a)a

where
Opy(a)u(z) = (2rh) ™™ / etC=E) NGt Va (3,2, h)F) dZ dF’
R? xR™

for
ueSR") and a€C™([0,1)n; SZ(RE;RE));

with q~5 compactly supported, identically 1 near zero, requiring an expansion of a in powers

of T=e~t

as t—00. The Schwartz kernel of such an operator vanishes to infinite order
at h=0 away from the diagonal (in the uniform sense that t—¢’' is bounded away from
zero), thus working in a manifold setting is in fact almost the same as working locally.
The fully intrinsic version of this operator algebra can be obtained using Melrose’s
approach via blow-ups, as in [110]. First, recall that the standard b-double space M? is

constructed by taking M2=M x M, and blowing up the corner (OM)? in it:
M} =[M?; (OM)?].

The diagonal then lifts to a product submanifold of this resolved space, and the b-ps.d.o’s
on this space are simply distributions conormal to the diagonal which vanish to infinite
order at the lift of the left and right boundaries OM x M and M x9M. Indeed, (A.7) is
an explicit way of writing such a parametrization of conormal distributions via oscillatory

integrals taking into account that in 7/7/€(C~1,C), C>0, regarding (7/7,7) as valid
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coordinates on the blown-up space, log(7/7') in the phase is equivalent to (7—7')/7,
which together with z;—2’ defines the lifted diagonal (or b-diagonal) diagy,. In the
semiclassical setting, one considers M?x [0,1), blows up (OM)?x[0,1), first to obtain
a family (parametrized by k) of double spaces, [M?x[0,1); (OM)?x[0,1)]=M2 x[0,1).
Then the b-diagonal at =0 is a p-submanifold, and one blows this up to obtain the
semiclassical b-double space,

Mg, =[Mg x[0,1)5; diagy, x{0}].

Elements of \I/th(M ) are then given by Schwartz kernels which are conormal, of or-
der m, to the diagonal, smooth up to the front faces of the last two blow-ups (b- and
semiclassical), and vanishing to infinite order at the lifts of the three original faces: left
(i.e. OM x M x[0,1)), right (M xdM x[0,1)) and semiclassical (M? x{0}). This is com-
pletely analogous to the construction of the semiclassical 0-double space in [107], but in
that paper much more delicate semiclassical Fourier integral operators had to be con-
sidered. The algebraic properties of \Ilg?ﬁ(M ) can be derived directly, but they are even
more transparent from the above discussion on R™.

The b-ps.d.o. results such as elliptic estimates, propagation of singularities, etc.,
have semiclassical b-analogues. First, the semiclassical b-Sobolev norms are defined (up
to equivalence of norms on compact manifolds) for seN, upe Hy'*, he(0,1), by

lanl| oo ary = D 1AV oo (V) (7 ) |32,

R

where the finite sum is over all collections of up to s (including zero) vector fields Viev,
% being a finite subset of Vy (M), such that at each point p in M, elements of % span
prM . In local coordinates near a point p€dM, this is equivalent to the squared norm
n—1
lr=ulZs + 7= (hrD,) ulZa + 3 7= (hDs, ) 2.
j=1
which one can again extend to s€R by duality and interpolation.
One then has a notion of semiclassical b-wave front set WFE% (u), defined for families
u=(up)pe(0,1) which are bounded by CEY in Hgl,’{x for some s’; a, N and C. (One says

that u is polynomially bounded in H{:,;Lf‘.) This is then a subset of

A(PT*M x[0,1)) =PS* M x [0, 1)UPT* M x {0},

where the corner PS* M x {0}=0"T*M x {0} is part of both sets on the right, and is
defined by w¢ WF '} (u) if there exists A€W , (M), elliptic at @, such that || Aul|gse =
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O(h™), i.e. bounded by CnyhY for all N. Then, for instance, elliptic regularity is the
statement that if P€ W, (M) is elliptic at @, then, for u polynomially bounded in HE/,LL&,

wé WFf)}Lm’a(Pu) = w¢ WF)(u).
This corresponds to an estimate (by the uniform boundedness principle)
N
1Baul g < CUBPUll gy mee 17 [l or.a),

which is valid whenever By, Bo€ W9 (M), with By elliptic on WF,(Bs) and P elliptic on
WF{ (Bs). There are analogues of propagation of singularities and radial point estimates.

Thus, under global conditions on the H,-flow, as above, one has estimates
lellmgy < COHIPull s+ ] o),

with s’ <s; the A~ corresponds to the loss of one derivative in the norm of Pu relative to
the elliptic estimate due to the propagation of singularities estimate. Notice that these
estimates give small remainders due to the factor AV, which can thus be absorbed into
the left-hand side for & sufficiently small. Therefore, one can obtain invertibility results
for P="Py, for sufficiently small & directly, without having to analyze the normal operator.

Appendix B. A general quasilinear existence theorem

Combining the results of §5 with the Nash—Moser inverse function theorem described in
§11.1, we now prove that one can solve rather general quasilinear wave equations with
small data globally upon modifying the forcing or the initial data in a suitable finite-
dimensional space, provided the linearization of the non-linear operator at zero fits into
the framework of §5.1. The purpose is to present a simple result that is powerful enough
for interesting applications: we will be able to use it directly to prove the non-linear
stability of the static model of de Sitter space, see Theorem C.4. (Subsuming the black
hole stability proof in §11.2 into the general theorem below would complicate the setup
only slightly.)

Thus, the simplest way (albeit not the most natural one geometrically) to describe
our requirements for a non-linear differential operator P, acting on sections of a stationary
vector bundle E— M of rank & (see §5.1), is to use coordinates (t., z)=:(zo, ..., x3), where
r=(x1, T2, 3) is a local coordinate system on X in which E is trivialized with fibers C¥;

we then require that for some fired belp,(**) we have

P(u)=(g"" +¢"" (x,u, Du)) D, Dyu+q" (x,u, Du) D, u+q(z, u, Du)u

(?%) The restriction to small angular momenta here is only due to the fact that we did not define
the Kerr—de Sitter family for larger angular momenta in §3.2.
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for u with small C' norm, where the ¢"V:R3xC* xC3* -R are smooth and such that
¢ (x,0,0)=0, and gq,¢": R3xCFxC3* -C*** are smooth, valued in endomorphisms
of E. For example, the non-linear operator ur— (Ric+A)(gy+u)—0*(T(gs+u)—"T(gs))
is of this form.

The main feature of such operators is that the linearization L, (r):=D,P(r) is a
principally scalar wave operator, and if ﬂEHEH’a(M; E), a>0, s>2, is exponentially
decaying, then DyP is stationary up to an operator in Hé’aDifob(M; E).

We furthermore assume that the linearization Lo=DgP satisfies the assumptions
(1)-(2); for simplicity, we assume $>—1 in (5.4) as in Theorem 5.14. Due to The-
orem 5.4, there exists a>0 such that the operator Ly has only finitely many reso-
nances in a half-space Im o >—a« and satisfies high-energy estimates in this half-space;
by shrinking >0 if necessary, we may assume L has no resonances with —a<Im o <0.
(The latter assumption is unnecessary; we only make it for convenience.) Denote by
R=Res(Lg, {Imo>—a}) the finite-dimensional space of resonant states corresponding
to the non-decaying resonances of Ly. We introduce a space of modifications of forcing
terms removing the asymptotic behavior of elements of R when solving linear initial value
problems for Lg: fix a basis {¢1,...,én} of R, and a cutoff x, identically 0 near ¥y and
identically 1 for large t,; then, adopting the notation of Theorem 5.14, we define

2:CN — HZY(Q; E)~C D>(Q; B),

Cc= (Cl, ceny CN) — ZLO(Xde)j)'
J

By construction, the assumptions of Theorem 5.14 are satisfied if we take W={0}, cor-
responding to the fact that we eliminate all non-decaying asymptotic behavior, thus the
stationary parts of the linearized operators L,, u€ H,~"", we need to consider are fixed,
i.e. do not depend on any parameters.

The general Nash—Moser iteration scheme, Theorem 11.1, then implies the following
theorem.

THEOREM B.1. Suppose P satisfies the above assumptions. Then, there exist con-
stants €>0 and C such that the following holds: for data d=(f,ug,u1)€D>**(Q; E)
(recall Definition 5.6) with ||d||20,o <€, there exist c€CYN and ue Hy”*(Q; E) solving the

quasilinear wave equation

{P(u)=f+z(c) in Q°,
Yo(u) = (ug,u1) in 3o,

and |C| §C’Hd||13,a.
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One also obtains an estimate for Hﬁ’a norms of u, as follows from the proof of
Theorem 11.1 given in [124].

Furthermore, one can show that the map Z: D>(2; E)>dr+ccC" has surjective
differential, as follows from the construction of the map z and its relation to the linear
operator Lo (see [68, §III] for details), and then Zy:=Z"1(0)CD>(Q; E) is, locally
near zero, an N-codimensional smooth Fréchet submanifold. Therefore, we can solve
the quasilinear initial value problem P(u)=f, vo(u)=(ug,u1), exactly for (f,ug,u1)€ Zp;
that is, we have global existence (and automatically uniqueness) in a space of decaying

solutions for an N -codimensional submanifold of the space of data.

Appendix C. Non-linear stability of the static model of de Sitter space

In this section, we prove the non-linear stability of the static model of de Sitter space
using the methods outlined in §1.1. We recall that the stability of global de Sitter space
in 3+1 dimensions was proved by Friedrich [61] (with generalizations due to Anderson
[3] and Ringstrém [121]), which is thus a much stronger result, because it shows stability
on a larger spacetime; the point is thus only to illustrate the main ideas of the paper in
a simpler context which however is very illuminating.

We recall that Graham—Lee [65] proved the existence of Poincaré-Einstein metrics
on the ball, with prescribed conformal class of the metric induced on the conformal
boundary, close to the hyperbolic metric. Growing indicial roots in the elliptic setting
do not present a problem as they do in the hyperbolic setting; one solves an analogue
of a boundary value problem (see, in particular, [65, Theorem 3.10]) in which these
are excluded from the considerations (somewhat analogously to scattering constructions
from infinity in the hyperbolic setting). Our computations in the DeTurck gauge below
parallel those of [65]; the difference in the signature affects the calculations only in a
minor way.

Here, we will introduce de Sitter space simply by using a local coordinate expression
for its metric; we refer to [71, §8.1] for a detailed discussion of de Sitter space and the
static model. We work in n+1 dimensions, use Greek letters for indices between 0 and n,
and Latin letters for indices between 1 and n. Locally near a point of the future conformal

boundary of (global) de Sitter space M, the de Sitter metric go takes the form
902772.60) gOZdT2_Zdwz‘27

in a suitable coordinate system 720, w, ..., w, €R, where 7=0 defines the future confor-
mal boundary X of M within the coordinate patch; see Figure C.1. Thus, g is a 0-metric in
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Figure C.1. A neighborhood of a point ¢ on the conformal boundary of de Sitter space; also
indicated (shaded) is the static model at ¢, which near g is the interior of the backward light
cone from g with respect to g (and thus g).

the sense of Mazzeo—Melrose [106], albeit with Lorentzian rather than Riemannian signa-
ture; more general Lorentzian manifolds, with a similar structure at infinity as de Sitter
space, were introduced and studied by Vasy [139], and we will make use of the results of
that paper freely.

It is natural to work with the frames

dw
e, =710, and et:=—=XL
I I -

of the O-tangent bundle °TM and the 0-cotangent bundle °T*M, respectively. From now

on, indices refer to these frames, rather than the coordinate frame. Thus, for instance,

for a 1-form w, we write w,=w(e,), so w=w,e*, and raising the index gives wl=wy

and w'=—w;, i.e. Go(w, —)=wte, if Gy denotes the dual metric. Similarly to (6.3), we

consider natural splittings of the vector bundles
T*M=Wx@®&Wr and S?°T*M=Vyn®VNr®Vrr,

where

Wy =(e), Wr={(e),
~N={(e") T (e") B 1)
Vin =(e%"), Vnr=(2e""), Vrr={(e'e’),

and we recall the notation §n:§®sn:%(£®n+n®§). It will be useful to further split up
Vrr into its tracefree (‘0’) and pure trace (‘p’) parts,

Vor =Vrro®Vrry,  Vrro={aje'e’ :a;' =0}, Vrr,=(h), (C.2)

where we defined h=), e’e’ to be the restriction of —g to 7=const. hypersurfaces. For

a section u of Vrr, we note that try u=— try u.

C.1. Computation of the explicit form of geometric operators

One computes the connection coefficients

Ve’ =0, Voe'=0, Vie’=e;, Viel =67e%
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this easily gives R0 =(90)ux(90) v —(90)v2(90) use, 50 Ric(go)ua+7(g0)va=0. Further-
more, the operator %, defined in (2.9) is equal to Zg, (1) =try, (r)go— (n+1)r, which in
the splitting (C.1) is equal to the (block) matrix

-n 0 —tI‘h
Hgo=1 0 —(n+1) 0
—h 0 htrp, —(n+1)

We next compute the wave operator on sections of the subbundles in (C.1) using the
formula

—tr V2T = =VoVoT+nVoT+»  V,V.T,

valid for every tensor T' of any rank; thus, for an NN tensor,
Ogo (uee?) = (—eg +neo+z e —|—2n> ue’e’ +4(e;u)ele’ +-2ue’e’,
while for a TN tensor,

Oy, (Qukeoek) =4 Z(eiui)eoeo—i—Z (—e%—i—neo—i—z e? +n+3) upelek +4(eiuj)eiej,

i i

and for a T tensor,
O, (wjne’ P ZZu”eoeo—&—élZ eilij)e Oed 4 (—e%—l—neo—i-z e?+2)ujkejek
i

Let us reformulate these expressions in a more geometric manner: if u is a function
on X, we have Y, (e;u)e’=dxu. Furthermore, for a tangential 1-form upe®, we calculate
its codifferential with respect to the metric h to be &y, (uper)=— >k €kUr; note that this
is equal to —dy, (ure®). On symmetric 2-tensors, the divergence

(0o (W e?€”))x = =06V ptisex

acts via
§h(uijeiej) = — Z(ejuij)ei,
J
which equals —d,, (u;je’e?). On the other hand, the adjoint of §j, acting on symmetric 2-
tensors (relative to the inner products induced by h) is (e;ju;)e’e! =6y (upe)=—5; (ure”).
Therefore, the wave operator (g, on symmetric 2-tensors, in the decomposition (C.1)

and the trivializations described there, is given by
2n  —40p 2tr,

DQO:(—e%-Fneo-FZe?)-F 2dx n+3 =20 |- (C.3)
@ 2h 46} 2
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We furthermore compute

0 0 + 5 ¢
8 = Ldy Ll(eg+1 and 9§ :<—eo " —on rh),
go 2dx 3(cot1) 9 0 —eo+(n+1) —dy
h oF
and, recalling (2.4),
% 0 % tI‘h
Gop=| 0 1 0
th 0 1-3htr,
C.2. Unmodified DeTurck gauge
Let us now consider the hyperbolic formulation
Ric(g)+ng—0;T(9) =0, Y(g9) =995 ',G90, (C.4)

of the Einstein equation. The linearized operator L around g=gg is given by

2Lr =2(Dy, (Ric+n) 408y 04,Gg) = Oy, +2n+2%y,

.2 2 ’

=—€ —l—neﬁ-Z e;+| 2dx n+1 -2,

i 0 467 2htry,
in the splitting (C.1); see [65, equation (2.4)].
We note the exact commutation relation

T_2Ah 0 0
[L,A]=0, A= 0 7—_2Ah,(1) 0 )
0 0 T_2Ah’(2)

where the number in the subscript indicates the degree of the tensors the correspond-
ing Laplace operator acts on. Indeed, 772Ap=3"; Dﬁ}j, with the same formula holding
componentwise for Ay 1y and Ay, (9) (trivializing the respective bundles via the frame
{e1,...,en} of TX), clearly commutes with all summands of L separately. (In fact, com-
mutation up to leading order in 7 suffices for present purposes.) Since AEDiﬁ’%, the
arguments of [139, §4] apply to show that the asymptotic behavior of solutions of Lu=0
is dictated by the indicial roots of L, and in fact the general form of all possible asymp-
totics can be deduced by purely formal calculations, which we proceed to discuss. In fact,

we are only interested in indicial roots ¢ with Im ¢ >0; roots with Im o <0 correspond
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to exponentially decaying (in — log 7) asymptotic behavior, hence we do not study them
further here.

The formal calculations use the properties of the indicial operator I(L,o); recall
here that for a second-order O-differential operator such as L, the 2-tensor 7% LT,
with 7€C>(X; S? °T¥M) only depending on the spatial variables w;, is equal to a qua-
dratic polynomial in ¢, valued in endomorphisms of $% 9T'M, applied to r, plus terms in
7C>®(M; S29TM), i.e. which vanish at the boundary. Thus, computing I(L, o) amounts
to replacing ey by ioc and dropping spatial derivatives (due to 70; acting on smooth

functions gives a vanishing factor 7), to wit

2n 0 0
I(2L,0)=c’+inc+| 0 n+l 0
0 0 2htr,

The indicial roots are those o0 €C for which I(L, o) is not invertible; they are the indicial
roots for the regular-singular ODE obtained from L by dropping spatial derivatives.
(For the related b-problem which we discuss in §C.5, an indicial root o gives rise to
resonances at 0 —iNy.) Using the refined splitting (C.2), we note that 2h tr;, =0 on Vo,
while 2h tr,=2n on Vrr,. Thus, the indicial roots of L are

oNN = %i(fn:t \/n2+8n),
orn =i, orn=—i(n+1),
orpo=0, Oppo=—in,

+  _ +
Or1p —=ONN>

corresponding to I(L,o¥) having kernel V, for x€ {NN,TN,TT0,TTp}. This is com-
pletely analogous to the result of [65, Lemma 2.9] in Riemannian signature; the differences
of the expressions come from Graham and Lee using a different rescaling of the vector
bundle S? 9T*M. These indicial roots correspond to the fact that one can prescribe the
coefficient af (0) of 719 at 7=0 freely as a section of ker I(L,0f)=V., and there exists
a unique solution on Lr=0 attaining this desired asymptotic behavior; conversely, any
solution of Lr=0 has an asymptotic expansion » Fios a%, with af€C>(M;S?°T*M)

and with a£(0) being a section of V. (There may be terms |log 7|* present as well.)

To proceed, we note that the indicial operators of g, and d; are

0 0

—to+n 0 try . .
I(5go,a)z< 0 Ciotnad 0) and  I(6,,,0)= 2 (zo(’)+1)

=
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For brevity, we write

o =0y =3i(—n+Vn’+8n). (C.6)

Concretely then, for instance,

T =T+ 0 (C.7)

solves Lr;=O(7%7+11) i.e. ry solves the linearized gauged Einstein equation up to terms
decaying one order better; and in fact 71 is a pure gauge solution (up to faster decaying

terms) in the sense that

. 1 ,
71 :5;[) {T”* <0)] +O(TW++1).

However, ro=7'"+h, say, which also solves Lro=0 up to less growing error terms, is not
in the range of §% acting on 7'7+ times smooth sections of °T*M. Taking the linear
stability of de Sitter space for granted, r» cannot appear as the asymptotic behavior of a
gravitational wave on de Sitter space; put differently, the asymptotic behavior 79 is ruled
out by the linearized constraint equations.

As explained in §1.1, this argument, ruling out non-pure gauge growing asymptotics,
is insufficient for the purpose of understanding the non-linear stability problem, where
one is given initial data satisfying the non-linear constraint equations; we are therefore
led to consider modifications of (C.5) for which all non-decaying modes are pure gauge
modes. The way to arrange this is to study (modifications of) the constraint propagation

equation, to which we turn next.

C.3. Stable constraint propagation

We recall that for the Einstein equation (C.4) in the unmodified wave map/DeTurck

gauge, the constraint propagation operator is

CP *
[OCP =26,,Gyy

90~go0"

Again, we can compute the asymptotic behavior of solutions of Dgopu:o (and thus

resonances of DSOP on the static patch) by finding indicial roots; we calculate

Py o2 +ino+2n 0
I(Dgo’ ) ( 0 (a—i)(O'—H'(”"'l))),
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and therefore find that (S has the indicial roots o v and o7y, so in particular solutions
of DSOP’LL:O are generically exponentially growing (in — log 7).

As in §8, we therefore consider modifications of d; ; concretely, we consider
S*uzzég‘ou—vl e utyouogo, 1,72 €R, (C.8)
for a 1-form wu; this is the expression analogous to (8.1) in the current setting. Defining
OSF =264, Gy, 0%,

this gives an extra (first-order) term 234, G, (6* —4d;,) relative to DSOP. Using

0 1 0
F o =-n|0 L|+w] 0 o0
0 O —h 0
and
— 2 —20 — 2)t
20, Gy, = (70" F ), (©9)
dX 2(—60+7L+1) —25h—dxt1"h

one computes
~ pt O
@t = ("0,
% 0 p2

where

pr=0+i(n+y1+(n—1)y)o—2n(y - 1),
p2=0+i(n+y1)o—(n+1)(11—1).

Therefore, if n++; >0, n4+v1+(n—1)y2>0 and 71 >1, the roots of p; and py have negative
imaginary parts, giving SCP. For the sake of comparison with Theorem 8.1, if we take
== and 72:%% i.e. taking e=1 in (8.2), we obtain SCP for de Sitter space (in any
dimension) for all y>1, or h<1 for h=y"! in the notation of (8.4).

C.4. Asymptotics for the linearized gauged Einstein equation

For simplicity, we now fix y1=2 and =1 and the resulting operator &* in (C.8); for
these values, we do have SCP. We then consider the modified gauged Einstein equation
(Ric+n)(g)—6*Y(9)=0; we denote the linearized operator again by L and calculate,
using (C.9),

€eo —26y, (eg—2) try,
2L:—€3+7L60+Z 622—5- dx 2eg—n—1 dx try,
i h(eg—2n) 45;+2h5h heg try,
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Since we have arranged SCP, a mode stability statement parallel to UEMS in the de Sitter
setting would now imply that all non-decaying modes of L are pure gauge solutions. (This
is the main difference to the black hole setting, in which one also has modes with frequency
zero corresponding to the Kerr—de Sitter family. Perturbations of de Sitter space, on the
other hand, decay exponentially fast to de Sitter space, up to diffeomorphisms.) We
prove this directly. Using the bundle splitting (C.1) and further splitting Vi according
to (C.2), we have

io 0 0 (ic—2)n
I(?L,J):02+in0+ 0 2io=n=10 0
0 0 0 0
10—2n 0 0 ino

First, we note that I(2L,0) preserves sections of the bundle Vpry and equals scalar
multiplication by 02 +i(n+2)o—(n+1), which has roots —i and —i(n+1), both of which
lie in the lower half-plane.

Next, on Vpro, the operator I(2L, o) is scalar multiplication by o(o+in), whose
only root in the closed upper half-plane is 0=0; this corresponds to Lr=0O(7) for any
section reC>*(M, Vpro).

Lastly, on V@ Vrrp, one finds

I(2L,0) = (0?+i(2n+1)c—2n)

S
S

which vanishes only for c=—i and c=—2in which are both in the lower half-plane; on
the other hand,

10 10
I2L,0) | 0 |=(c*+inoc+2n)| 0
h h

(Note that, for Im >0, the two vectors above are linearly independent, and hence span
Vrro®Vrrp.) Corresponding to the unique zero of the quadratic polynomial appearing

here with non-negative imaginary part =0, (see (C.6)), we have, for any feC>(X),

i0+f 0
2L 7o+ 0 = rio++l (ioy+n) Zj Ow, fel | +O(ri7+12),
hf 0

Since o, —i is not an indicial root of L, we can solve away the 77++1

proceed to do; note that, for all n>2, one has 2<—n++vn?+8n<4, thus Imo, €(1,2),

error term, as we
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and we ultimately find

2L 7_1'0'4r 0 _‘_%Tizur-'rl Z] aWj feJ :0(1) (Clo)
hf 0

Note that the leading part is equal to frq, with r1 given in (C.7); this was shown to be
a pure gauge solution up to lower-order terms. In order to proceed, we now restrict to
a static patch, where we can explicitly exhibit these non-decaying modes as pure gauge

modes.

C.5. Restriction to a static patch

We fix a static patch of de Sitter space by choosing a point g€X as the origin of our
coordinate system (7, w1, ..., wy,), and homogeneously blowing up ¢; coordinates on the
static patch are then
W;
T, Ty = —),
T

with the front face given by 7=0. Correspondingly, our frame takes the form

60:7—8‘1’_ E mja:cju 62‘:81;1.7
J

and the coframe
o dr i dr
e =—, e'=drit+r;—.
T T

We work on a neighborhood §2 of the causal past of ¢; concretely, let us take
Q={0<r<1,2x5<1+m}
J
for any fixed ), >0, so (2 is a domain with corners within

M .= {O<T<OO,Z.T?<1+3EM}.

J

Suppose now that r€C>(M) is a smooth function on global de Sitter space M. Then,
the pull-back 7 of r to Q is

F(r, @) =r(ras) =r(0)+7 Z 2i0,,7(0)+0O(72); (C.11)

continuing the Taylor expansion further, one finds that 7 is (asymptotically as 7—0) a

sum of terms of the form 77 times a homogeneous polynomial of degree j in the ;. Thus,
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one can deduce the resonance expansion in the static patch from the calculations in §C.4
by taking r to be a homogeneous polynomial in the coordinates w; of degree <1 (since
higher-order terms will give o(1) contributions, the imaginary part of all resonances being
<2) and reading off the terms in the resulting asymptotic expansions in 7. Indeed, every
resonant state on static de Sitter space arises as a term in the asymptotic expansion
of the solution of a wave equation with smooth forcing, compactly supported and with
support disjoint from X; and conversely, solutions of such equations on static de Sitter
spaces admit an expansion into resonances up to terms of any fixed, prescribed rate of
decay 7¢, C€R; but the asymptotic behavior of waves on static de Sitter space, which
are in this way equivalent to knowledge of resonances and resonant states, can simply be
read off by restriction from the asymptotics on global de Sitter space.
We thus obtain the following result.

ProrosiTioN C.1. For the operator LeDiﬂ%(Q; S2PTE M), the following is a com-
plete list of the resonances o of L which satisfy Ima>%(—n+\/n2—|—8n)—2, and the
corresponding resonant states:

(1) o=0.=3i(—n+vn>+8n): resonance of order 1 and rank 1; basis of resonant
states

i0'+
Ti0'+ 0
h
(2) o=0,—1i: resonance of order 1 and rank n; basis of resonant states
—O'Jer‘j

TN o+ 1)ed |, j=1,0m.

1o xh
(3) o=0: resonance of order 1 and rank in(n+1)—1; basis of resonant states

0

0 ) Zaiizoa

a;jete’

Proof. We prove the result for c=0, and o, —i: setting f=1 in (C.10) yields the
resonant state at o, while setting f=io,w;, j=1,...,n, yields the resonant states at
o.—1 due to (C.11). O

We can now complete the proof that all non-decaying resonant states are pure gauge

solutions.
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ProrosiTiON C.2. All the resonant states corresponding to resonances in Imo >0,
viewed as mode solutions of L on the spacetime, lie in the range of 0, acting on 1-forms

on the spacetime.

Proof. At o, we compute, in the splittings (C.1),

1 Z.O—+
(5;0 710+ (O> = 7o+ 0
h
More generally, we may compute
f iof 0
* __io _ io o4 +1 1 j
0y T +(O>—T + 0 |+7+ §Zj8wjfeﬂ ;

hf 0

and one can solve away the second term, with the result

* ,rio'+ f i,ricur 1< 0 > —
5go [ <O>+i0'+ ’ Zj 8w]_f€j 1 =o(1).

Putting f=1 gives the resonant state at o, thus proving the result for the resonance

o4, while putting f=io,w;, j=1,...,n, we find

2
1042 T
x i 1 +Lj i 1 . i
(ngTZU++ ( ej ):TZU++ (7,0'++1)€j )
io x;h

proving the result for the resonance o, —i. Finally, for =0, we observe

0 0 0
* * —1
590(2 x>5 <z w) o]
i QijTi i Qij Wi ij
a;je e
finishing the proof. O

Remark C.3. For any choice of parameters v, and ~s, the space of resonances at
zero is always non-trivial, and contains the resonant states given in Proposition C.1 (3).
There are further modifications one can consider, for instance using a conformally rescaled

background metric g°=773go and considering the gauge T(g)—"Y(go), with
T(9)=9(g")""0,Gy9°,

but this does not affect the previous statement regarding the zero resonance. Thus, if we

are restricting ourselves to modifications of Einstein’s equations which are well behaved

from the perspective of global de Sitter space, there seems to be no way to eliminate

all non-decaying resonances! Choosing 71, 72 and 73 appropriately, one can remove all

non-decaying resonances apart from zero, but this is quite delicate.
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Denote by No:=n+1+in(n+1)—1 (so No=9 for n=3) the total dimension of the
space of non-decaying resonant states; then, paralleling the proof of Proposition 10.2, we

let © be the Ng-dimensional space of 1-forms 6 of the form

0 = _DQUT(6;O (XW)) = 590G 6* (XW),

90~ g0

where x(7) is a fixed cutoff, identically 1 near 7=0 and identically 0 for 7> %, say, and
w is one of the 1-forms used in the proof of Proposition C.2 exhibiting the non-decaying

modes as pure gauge modes. Thus, we have
L(5;, (xw)) = 6"6;
furthermore, 6 is compactly supported in (0, 1),, due to
0=04,Ggo L(8%,w) = —05F (Dyy Y (57, w))

and SCP, which gives Dy, Y (0, w)=0 as d, w is a non-decaying mode. One can of course
also check directly that the resonant states described in Proposition C.1 are annihilated
by d4,Ggy; for the zero resonant states, this is straightforward to check, while for the
resonant states at o, and o4 —1, this follows from the fact that d,,Gy, applied to the

expression in square brackets in (C.10) gives a result of order 7:°+*2, The upshot is that
©CCI(r;T*)

can be used as the fixed, Ng-dimensional space of gauge modifications, using which we
can prove the non-linear stability of the static model. That is, modifying the forcing
terms of the linearized equations which we need to solve in the course of a non-linear
iteration scheme by 6*0 for suitable H€© (which are found at each step by the linear
solution operators), we can solve the linear equations—and thus the non-linear gauged

Einstein equation—in spaces of exponentially decaying 2-tensors.

THEOREM C.4. Let Yg=QN{r=1} be the Cauchy surface of Q. Let
h,k€C>®(Xo; S*T*X0)

be initial data satisfying the constraint equations (2.2), and suppose (h,k) is close to the

data induced by the static de Sitter metric go in the topology of
H? (S0; S?°T*S0) @ H* (Zo; S*T* ).
Then, there exist a compactly supported gauge modification 6€0© and a section

G€HX(Q; S2PTHM),
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with a>0 small and fixed, such that g=go+g solves the Einstein equation
Ric(g)+ng =0,

attaining the given initial data at Xo in the gauge Y(g)—0=0 (see (C.4) for the definition

of Y). More precisely, g solves the initial value problem

{ Ric(g)+ng—6*(T(g)—0)=0 in Q°,
Yo(g) =io(h, k) on Yo,

where iy constructs correctly gauged (relative to Y(g)=0) Cauchy data from the given

initial data (h, k), analogously to Proposition 3.10.

Proof. Given what we have arranged above, this follows directly from Theorem B.1
if we take z: RN =20 (2 (Q°; T*Q°) to be the map > —5*6. O

The number of derivatives here is rather excessive: in fact, due to the lack of trap-
ping, one does not lose derivatives beyond the usual loss of one derivative for hyperbolic
equations; thus, one can prove this theorem using a Newton-type iteration method as
in [71, §8]. But, since we state this result in order to present a simple analogue of
Theorem 11.2, we refrain from optimizing it.

While the above arguments prove the stability of the static model of de Sitter
space, there is absolutely mo direct implication for the initial value problem near a
Schwarzschild—de Sitter spacetime: the limit M.—0 in which Schwarzschild-de Sitter

space becomes de Sitter space is very singular.
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