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The Global Structure of Traveling Waves in
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We obtain existence of traveling wave solutions for a class of spatially discrete
systems, namely, lattice differential equations. Uniqueness of the wave speed ¢,
and uniqueness of the solution with ¢ #0, are also shown. More generally, the
global structure of the set of all traveling wave solutions is shown to be a
smooth manifold where ¢ #0. Convergence results for solutions are obtained at
the singular perturbation limit ¢ - 0.
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1. INTRODUCTION

We are interested in lattice differential equations, namely, infinite systems
of ordinary differential equations indexed by points on a spatial lattice,
such as the D-dimensional integer lattice Z®. Our focus in this paper is the
global structure of the set of traveling wave solutions for such systems. This
entails results on existence and uniqueness, and on continuous (or smooth)
dependence of traveling waves and their speeds on parameters, as well as
some delicate convergence results in the singular perturbation case ¢ — 0 of
the wave speed tending to zero. We believe such results generally to be
crucial in the analysis and understanding of many problems, such as those
involving non-planar waves (with wave speed and direction varying
throughout the lattice), and also problems in which the characteristics of
the system, such as the coupling parameters, vary from point to point in
the lattice.
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Lattice differential equations arise in a wide variety of models of
systems in which the spatial structure has a discrete character. Models
occur, for example, in chemical reaction theory [39, 55], in image pro-
cessing and pattern recognition [27-29, 42, 77, 86], in material science
[13, 30, 48], and in biology [ 10, 11, 36, 37, 49, 50, 53, 87-89]. Much is
already known about chains of coupled oscillators, such as can arise in
biology or electronics (Josephson junctions); see, for example, Refs. 5, 6,
36, 37, 39, 52-54, 68, 70-72, 90-92 and additional references in these
papers. See also the papers [61, 65, 66], and [67]. For papers on the
closely related subject of coupled-map lattices, see, for example, Refs. 1, 2,
26, and 83.

One source of inspiration for us is the above-referenced works of
L. Chua and M. Hasler and their co-workers on image processing. They
consider the equations of a so-called Cellular Neural Network (CNN),
which are related in spirit to systems such as (1.9) below. Their work
combines both numerical simulations and experimental results. We are also
strongly motivated by the numerical simulations of lattice differential equa-
tions by Cahn et al. [14], in which moving interfaces between spatial
patterns are clearly visible. The present work can be thought of. in part, as
an attempt to provide a theoretical framework for these experimental and
numerical results. We mention several general surveys [21, 25, 62, 64], in
which some of the results here are outlined. Other recent developments in
lattice differential equations are found, for example, in Refs. 15 and 22-24.

Traveling waves have been extensively studied for partial differential
equations. The reaction diffusion equation

u, = Au— f(u), u=u(t,{), {eRP (1.1)

was proposed in 1937 by Sir Ronald Fisher [43] to describe the spread of
an advantageous gene population in an infinite region. Rigorous results
were obtained for this equation by Kolmogoroff et ¢/ [S1] in the same
year. The scalar variable u is constrained to a bounded interval, which we
normalize to [ — 1, 1]. The conditions f(—1) = f(1) =0 which are imposed
ensure that this constraint is maintained for solutions. Traveling waves are
solutions of the form u(s,{)=x(v-{—ct) with x: R— R, and where the
given vector ve R? with |v| =1 denotes the direction of motion of the
wave. Here ¢ eR is the unknown wave speed to be determined as part of
the solution. Setting £=v-{—ct leads to the second-order ordinary dif-
ferential equation

—ex'(E)=x"(Q) - f(x(&)),  £eR (1.2)
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for which one typically imposes boundary conditions at + x, for example,

lim x(&)=—1, lim x(&)=1 (1.3)

§— —x {—=

if one seeks a wave which joins the two equilibrium states w= +1. Note
that Eq. (1.2) 1s independent of r.

Aronson and Weinberger [7] distinguished three cases of interest
based on the form of the nonlinearity f: R - R, namely,

Heterozygote intermediate: flu)>0, —l<u<l

(u)<0, —-1<
Heterozygote superior: {‘/(H) H=dq Y

f)>0, g<u<l |
for some ¢e(—1,1)

{f(u) >0, —-l<u< c/])

Het te inferior:
eterozygote inferior <0, g<u<l |

for some q¢ge(—1,1)

[A nondegeneracy condition, that f’(u)#0 at certain points where
flu) =0, is also assumed. We note here that our normalizations above dif-
fer slightly from those of Ref. 7, but this is mostly a matter of notation. ]
In the heterozygote intermediate case they established the existence of
¢* >0 such that there exists for every ¢ =c¢*, but not for any ¢ <c¢*, a
monotone solution to Eq. (1.2) with (1.3). For the heterozygote superior
case they established a similar result, except that the first condition in (1.3)
is replaced by lim,_, __ x({)=g¢ (in fact this case easily reduces to the
heterozygote intermediate case by a simple change of variables taking the
interval ¢ <u <1 to the interval ( — 1 <u < 1). Finally, for the heterozygote
inferior case they proved under the additional assumption

J.l flu)du>0
1

that there exists a canonically defined ¢* >0 such that (1.2), (1.3), has a
monotone solution for ¢ = ¢*. They showed, further, in all these cases, that
¢* was the asymptotic speed of propagation of a broad class of disturban-
ces from u=1.

From a dynamical systems point of view, the boundary conditions
(1.3) in the heterozygote intermediate case correspond, when ¢ >0, to
finding a heteroclinic trajectory joining a saddle (at u= —1) to a stable
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node or stable spiral (at u=1). In this case it is not unexpected that there
exists an interval of values ¢ = ¢* for which there is a monotone connec-
tion. The same is true for the connection from u=¢ to u=1 in the
heterozygote superior case. On the other hand, the conditions (1.3) in the
heterozygote inferior case correspond to joining two saddles, at u= +1,
and here one expects this to occur only for isolated values ¢ = c¢*. An added
difficulty in the heterozygote inferior case is the presence of the third equi-
librium u =¢ between the two ¥ = +1 which are being joined. In fact, in
the present paper, which deals with an infinite-dimensional analog of the
heterozygote inferior case, overcoming the difficulties presented by the
third equilibrium is a significant task.

Weinberger [87, 88], developed an abstract and very general
framework for studying a large class of problems primarily of heterozygote
intermediate and superior type. His setting was rich enough to include both
partial differential equations as well as higher-dimensional lattice differen-
tial equations such as (1.5) below, and both continuous- and discrete-time
problems, and his results included precise statements on the existence of
direction-dependent traveling waves and the asymptotic shape of propaga-
tion of initial disturbances. See also the papers {58, 59], in this spirit.
Other results on the propagation of initial disturbances for various equa-
tions of heterozygote intermediate type are given in Refs. 4, 33, 76, 82, 84,
and 85. One finds further results on traveling waves for problems of
heterozygote intermediate type in Refs. 8, 32, 44, 74, 75, and 95.

The classic work of Fife and McLeod [40], on the other hand, is con-
cerned with the heterozygote inferior case of Eq. (1.1) in dimension D= 1.
It too contains precise results on the propagation of initial disturbances.

Our interest in this paper is with the lattice differential equation
analog of the heterozygote inferior case. This is also called the bistable case
in view of the fact that for the associated ordinary differential equation
u= — f(u) both the equilibria u= +1 are stable, the equilibrium u=gq
being unstable. Perhaps the simplest such nonlinearity is the cubic polyno-
mial

flu)=(u—q)u*—1), -l<g<l (1.4)

To illustrate the problems of interest here, consider the infinite system of
ordinary differential equations

di,j=a(ui+l,j+ui—l,j+ Ui j+1 +“1,j-1_4ui,j) _f(ui, j)’ (i, j)eZ2
(1.5)

on the lattice Z2 Here « is a real parameter (the coupling parameter)
multiplying a discrete Laplacian, with typically a bistable nonlinearity such
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as (1.4). Let e R be given, and consider solutions of the system (1.5) of
the form

u; ;(1)=x(icos 0 + jsin 6 — ct) (1.6)

for some unknown function x: R - R, and some unknown real number c.
A solution of the form (1.6) of the system (1.5) is called a traveling wave
solution of (1.5). The wave speed ¢, as before to be determined as part
of the solution, can be either zero or nonzero. The parameter ¢, which
is given, represents the direction of motion of the wave, and so v=
(cos 0, sin 0) € R? in the above notation. The so-called detuning parameter
¢, in the nonlinearity (1.4), is also given. We again seek a wave satisfying
(1.3), that is, joining the equilibria u= +1.

For the one-dimensional case [equivalently, with # =0 in (1.6)], the
existence of a traveling wave solution (1.6) satisfying (1.3), to a class of
equations of heterozygote inferior type including (1.5), was shown by
Zinner [94] and by Hankerson and Zinner [47] (see also Ref. 93). Their
methods, however, rely on nonconstructive fixed-point theorems. By con-
trast, we employ a continuation (homotopy) method and obtain precise
information on uniqueness and dependence of solutions on parameters.
Specifically, a general Fredholm alternative [63] for linearized traveling
wave equations places a large class of such problems within the framework
of classical bifurcation theory. We then construct a homotopy between the
given system, such as (1.5), and a model system for which the result is
known. This approach was taken by the author with Chow and Diekmann
[18] and with Chow and Lin [20] for a classes of integral and delay dif-
ferential equations, and more recently by others including Ermentrout and
McLeod [38] and Bated er al. [9]. The very recent paper by Carpio et al.
[16] also uses a homotopy approach for a special case (linear symmetric
couplings) of the problem we consider here. While some of their proofs are
simpler than ours, their method does not extend to the general class of
nonlinearities considered here.

Traveling waves have been studied for other nonlocal evolution equa-
tions of bistable type [9, 17, 31, 41], for spatially varying systems [3],
and in the context of numerical discretizations [12], although generally
the nonlocal character of the systems is spatially distributed (modeled by
a smooth convolution) rather than by point masses located on a lattice.
The lattice structure in our treatment leads to additional difficulties and
subtleties. These manifest themselves as real parts of eigenvalues clustering
at zero, Re A, — 0, for the linearized traveling wave equation around an
equilibrium for the wave speed ¢ =0. The resulting lack of uniform hyper-
bolicity necessitates great care in obtaining the required asymptotic
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estimates on the solutions, and also in proving convergence of the solutions
in the singular perturbation limit ¢ - 0.

Issues connected with the commensurability of the wave motion with
the lattice (that is, whether the direction of wave motion has rational or
irrational slope with respect to the lattice) can also arise. Some of the more
subtle issues in this connection are more fully explored in Ref. 15.

Upon substitution of (1.6) into (1.5), we obtain

—ex'(E) = a(x(& +cos 0) + x(& —cos 0) + x(& +sin 0)
+ x(& —sin 6) —4x($)) — f(x(£)) (1.7)

which if ¢#0 is a functional differential equation of mixed type, where
“mixed” refers to the fact that the equation involves both forward and
backward translates of the argument of the solution x. In contrast to the
case of the partial differential equation above, Eq. (1.7) depends on the
direction parameter 0, reflecting the anisotropy of the lattice. Except for
early work of Rustichini [79, 80], not much of a general nature is known
about such mixed functional differential equations.

The limit ¢ — 0 in Eq. (1.7) results in a singular perturbation problem.
Indeed, when ¢=0 Eq. (1.7) is in fact a difference equation, not a differen-
tial equation. In this case, the solution need only be defined for ¢ in the set
Z =R given by

Z={icosO+ jsin0|(i, j)eZ*}

The set & is either a discrete subset, or a countable dense subset of R,
depending on whether the quantity tan € is rational or irrational. More-
over, if tan @ is rational, then Eq. (1.7) with ¢ =0 is equivalent to a map-
ping of finite (but possibly high) dimension. For example, if # =0, then by
denoting x, = x(n), this system can be written as

xn+l:2xn—xn—l+a—l.f(xn) (18)

a map of the plane. When tan 6 is irrational, however, with ¢ =0, no such
reduction of (1.7) to a finite-dimensional map seems possible, and indeed,
in this case Eq. (1.7) seems most challenging.

More general lattice systems can be considered, for example,

N
lii‘]-= Z “k(ui+ak,j+bk_“i,j)_f(ui,j)s (i, j)EZZ (1.9)
k=2

where a,, b, € Z are given integers, and a,e€R are given coupling coef-
ficients, for 2 <k < N (beginning the sum at k =2 leads to more consistent
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notation below). In the system (1.9) the strengths of the couplings therefore
depend on the relative placements of the two lattice points (i, j) e Z? and
(i+a, j+b,) e Z? With the Ansatz (1.6), Eq. (1.9) leads to the system

N

—ex'(§)= Y a(x(E+r) —x(E) — f(x(&))
k=2 (1.10)
re=2a, cos 0+ b, sin 6, 2<k<N

which we may write in the general form
—ex'(&) = F(x(E+r ), X(E+7r3)0s (E+1x) (1.11)

with the convention that r, =0 and with ¢ the wave speed as before. In fact,
Eq. (1.11) arises from many systems besides (1.9), for example from those
with nonlinear couplings between lattice sites. Other lattices, such as the
hexagonal lattice in the plane, the crystallographic lattices lattices in R?,
and the integer lattice Z” < R? in arbitrary dimensions, can be considered,
and again one arrives at an equation of the form (1.11).

In this paper we shall develop some general theory and tools to
analyze a broad class of functional differential equations of mixed type,
including many of the form (1.11). In our treatment, we employ a
parameter p in the nonlinearity F, as we are concerned with how solutions
vary. In addition, p functions as a homotopy parameter in our existence
proof.

Let us outline several principal results we prove for (1.11). We shall
always take r, =0, while r;#0 for j# 1. Under the basic assumption that
the nonlinearity F(u,, u,,..., uy) is increasing in the “shifted” variables,

a—F>0. 2<j<N
Ou,

[which for (1.9) means that each o, is positive], and that @(x)=
F(x, x,..., x) is such that — @ is an N-shaped function, such as the cubic f
in (1.4), or generally of heterozygote inferior type, we have the following
for Eq. (1.11) with the boundary conditions (1.3).

« Existence of ceR and of a monotone solution x= P(&) (Theo-
rem 2.1).

¢ Uniqueness of ¢ among the class of monotone solutions (Theo-
rem 2.1 and Proposition 6.5).

« Uniqueness of the solution P(&) when ¢ 0 (Theorem 2.1).
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o Continuous dependence of ¢ on system parameters (such as ¢ in
(1.4)), and smooth dependence of ¢ and P(&) on parameters when
¢ #0 (Theorem 2.1 and Proposition 6.4).

¢ A convergence result for P(¢) for the case of the singular perturba-
tion limit ¢ — 0 (Theorem 2.3).

» Monotone increasing dependence of ¢ on the detuning parameter ¢
for a class of systems including (1.10), with (1.4), with strict
monotonicity when ¢ # 0 (Proposition 2.4).

« Sufficient conditions (so-called coercivity at +1) for ¢>0 and for
¢<0. In particular, for (1.10), with (1.4), we have ¢>0 for ¢
sufficiently near +1 if

N
ooy <0 (1.12)
k=2

while ¢ <0 for ¢ near —1 if the opposite inequality in (1.12) holds
{Theorem 2.6).

¢ An asymptotic description of P(¢) as & —» + o0, both for ¢#0 and
¢ =0, including the difficult case of shifts r; which are not rationally
related {Theorem 2.2).

One also expects that generically the following will hold.

« Nonuniqueness of the solution P(£) when ¢=0.

o The existence of a nontrivial interval
q_<q<q, (1.13)

of the detuning parameter ¢ in which ¢=0 identically (so-called
propagation failure).

In fact, the last two properties can easily be established in great generality.
For =0 (or more generally for rational values of tan #), Eq. (1.11) with
¢ =0 reduces to a finite-dimensional map such as (1.8). As with (1.8) and
the nonlinearity (1.4), the unstable manifolds of the two equilibria + 1
have the same dimension, and generically the stable and unstable manifolds
W+s(1) and W*(—1) intersect transversely. Such an intersection is stable
under perturbations of the nonlinearity, resulting thereby in propagation
failure, and quite generally there are an even number of distinct orbits pass-
ing monotonically from —1 to + 1, yielding nonuniqueness of the solution.
In fact, the range (1.13) of propagation failure in Eq. (1.7) with (1.4)
satisfies ¢, — + 1 as a — 0, as was shown by MacKay and Sepulchre [60]
using an implicit function technique.



Global Structure of Traveling Waves 57

For early work on propagation failure see Keener [49, 50], and for its
appearance in both theory and applications, see for example Refs. 9, 55, 60,
and 72. Recently, with Cahn and Van Vleck [15], we have completed a
study both of the existence and uniqueness of traveling waves, and as well
propagation failure, for the system (1.5) with the idealized nonlinearity

u+1, u<gq

1.14
u—1, u>gq ( )

f(u)={

The function fin (1.14) is a cartoon of the cubic polynomial (1.4}, and the
piecewise linear nature of (1.14) allows for very explicit calculations to be
made. In particular, a detailed study of the relation between the direction
parameter 6 and the onset of propagation failure was made in Ref. 15. Let
us also mention the extensive numerical calculations of traveling wave solu-
tions of Elmer and Van Vleck [34], [35], in this direction.

Much of our analysis concerns the linear equation

N
—cx'(&)= ) A& x(E+1) (1.15)
j=1
for ¢ #0, and the related linear operator A given by

N
(Ax)(&) = —ex' (&) — ), A;(&) x(&+7))
j=1

J

In particular, Eq. (1.15) arises as the linearization of (1.11) around specific
solutions. For the system (1.15) with bounded coefficients 4; we have the
following results.

e The Fredholm alternative, namely that A is a Fredholm operator
from W7 to L?, with a characterization of the range of 4 in terms
of the adjoint operator, provided that (1.15) is asymptotically hyper-
bolic (Theorem A of Ref. 63).

« Construction of the Green’s function for A in the case of a constant
coefficient hyperbolic system (Theorem 4.1 of Ref. 63).

o The one-dimensionality of the kernel of A and the cokernel of 4 (the
complement of the range) in the case of a scalar Eq. (1.15), when the
shifted coefficients are uniformly positive

inf 4,(6)>0, 2<j<N

{eR



58 Mailiet-Paret

and when the kernel of 4 contains a nonnegative element, that is,
when Eq. (1.15) has a nontrivial bounded nonnegative solution
(Theorem 4.1 of the present paper).

The results of Theorem A of Ref. 63 are related, at least in spirit, to
the theory of exponential dichotomies (see, for example, Refs. 45, 73, 81,
and the references therein), and they allow one to analyze heteroclinic solu-
tions of the nonlinear Eq. (1.11) using a Lyapunov-Schmidt approach.
In fact, under monotonicity conditions on the function F as above, with
Theorem 4.1, such an approach will be used to construct a global continua-
tion which is the basis of our proof of existence of traveling waves.

While the above-mentioned Lyapunov-Schmidt approach for studying
heteroclinic orbits sometimes has the name Mel'nikov associated with it, it
is in fact quite distinct from, and technically simpler than, the so-called
Mel'nikov method [69]. The latter seeks to detect heteroclinic orbits by
directly measuring the separation between the stable and unstable
manifolds of two equilibria. By contrast, our Lyapunov-Schmidt approach
examines candidates x: R — R for heteroclinic solutions of (1.11), using the
function

h(&) = ex'(E) + F(x( +r1)s X(E 4 72)ss X( +1y))

as a measure of the degree to which x fails to satisfy (1.11). By means of
a Lyapunov-Schmidt reduction only a finite number of functionals of 4 are
needed to determine whether the candidate x is a solution, and so the
problem of determining heteroclinic orbits reduces to the analysis of a
finite-dimensional bifurcation equation.

The advantage of this Lyapunov-Schmidt approach over the
Mel'nikov method is that it does not rely on the existence of stable or
unstable manifolds for the differential equation. Indeed, their existence is
not know for the Eq. (1.11), which does not generate a dynamical system,
and one would expect here that both the stable and unstable manifolds
would be infinite-dimensional if they do exist. Generally, the Lyapunov-
Schmidt method applies to a broader class of equations than does the
Mel'nikov method. Such a Lyapunov—Schmidt approach was first employed
in Ref. 19 to study both homoclinic and subharmonic periodic solutions of
Duffing’s equation. Subsequently, X.-B. Lin developed and applied the
method extensively (see, for example, Ref. 57), and it has sometimes been
known as “Lin’s method.”

Before closing this section, let us construct, in an explicit form,
a traveling wave solution for a particular nonlinearity. This solution will
serve as the starting point for the homotopy used to prove the existence of
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traveling waves for general nonlinearities. Let k >0 be fixed and for any
ge[—1,1] let

_}'(11—(1)(112— 1)
B 1 —5u ’

flu, q) v =tanh k (1.16)

at least for |u| < 1. For u outside this range modify the function / to be C'
and nonzero, and also so that the derivative D, f(u, ¢) with respect to the
first argument u is locally lipschitz in u [ this technical condition will ensure
that condition (i) in Section 2 is fulfilled ]. Note that the nonlinearity (1.16)
is qualitatively similar to the bistable nonlinearity (1.4) with the detuning
parameter ¢. Consider now the system

—exX'(E) =7 X(E—k)—x(E))— fINE) @) (1.17)

which is of the form (1.11) with r, =0 and r, = — k. We claim that for ¢ = |
and ¢ =0 the function

P(&)y=tanh &, eR (1.18)
is a solution to (1.17). To prove this claim we first note that
P(&)=sech’¢é=1—tanh®>&=1— P(¢)?

tanh ¢ —tanh & P(xi) —7
1 —tanh & tanh k1 —yP(&)

P(¢—k)=tanh ({—k)=

We then have that

P& 4y (P(E—k)— P(&))

P(C.“)-;'—P(CT)+)'P(5)2>
1 -7P(S)

=l—P(é)2+;"‘<

L PEP—1 (PER (=1 +yPE)+ 1)
=1-P) B,

L Ty [—7P(&)
PP -1
=P

JUP(E), 0)

which proves the claim.

The system (1.17) with (1.16), and the solution (1.18), will play a key
role in the proof of Theorem 2.6 in Section 8. Specifically, we shall con-
struct a homotopy between the parameterized family (1.17) and a general
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family (2.1) as given in the statement of that theorem. In so doing, we will
be able to homotopically continue solutions from the system (1.17) to the
general system (2.1). Let us remark here that the system (1.17) with the
nonlinearity (1.16) parameterized by ¢ is a so-called normal family, as
defined in the following section. Very roughly, this means that f(u, ¢)=0
at u= +1 and u=g¢, and that f varies monotonically with g, just as for the
cubic nonlinearity (1.4).

The present paper is organized as follows. Section 2 is devoted to
statements of the main results, along with the basic assumptions on the
nonlinear Eq. (1.11). Section 3 presents several technical results, including
comparison principles which will be used repeatedly in proving later
results. Sections 4 and 5 deal with linear Egs. (1.15), such as would arise as
the linearization about a traveling wave solution. The differential equation
case ¢#0 is handled in Section4, where in Theorem 4.1 the basic
Fredholm alternative result needed for the local { Lyapunov—Schmidt/Lin’s
method) continuation of a solution is proved. The case ¢ =0 of a difference
equation is handled in Section 5. There we obtain preliminary results
toward an asymptotic description of the solution. The arguments here are
particularly delicate in the case of irrationally related shifts r;. In Section 6
we return to the nonlinear Eq. (1.11), and prove uniqueness of the wave
speed ¢, and also of the solution when ¢# 0. This requires the detailed
information about asymptotics of solutions given in Theorem 2.2, which is
also proved there. Smooth dependence of the wave on parameters, plus
some monotonicity properties (including Theorem 2.4) are also proved.
Section 7 deals with the singular perturbation limit ¢ — 0. Theorem 2.3,
which describes the convergence of solutions under this limit, is proved
there. Finally, in Section 8, the remainder of the proof of the main existence
result, Theorem 2.1, is given. As well, Theorem 2.6, which gives sufficient
conditions for ¢ #0, is proved.

2. MAIN RESULTS

Our principal interest in this paper is the nonlinear autonomous equation

—ex'(§) = F(x(&+r1), x(E+13)5, x(E+ 1y), p) (2.1)

Here p e V< X is a parameter, where ¥ is the closure of an open subset V
of some Banach space X. We assume that the following conditions are
satisfied for F(u, p).

(i) F:R¥x V- Ris CL Also, its derivative D, F: R¥ x ¥ - R¥ with
respect to the first argument u € R is locally lipschitz in w.
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(ii) For each p e V there exists a nonempty set
Up)S{2,3.4,., N}
of indices such that

OF(u, p)
au,

>0, ueRY,  jew(p)

F(u, p) is independent of u; if 2<j<N and  j¢ #(p)
(ili) The quantities r;, the so-called shifts, satisfy
ry=0, I i 1<j<k<N, N2
and hence r;#0 for 2< j<N.
(iv) Defining @: Rx V- R by
D(x, p)=F(x, x,..., X, p)
we have for some quantity ¢=¢(p)e[ —1, 1] that
PD(x, p)>0, xe(—oo, —l)u(g 1)
&(x, p) <0, xe(—1q¢)u(l,x)
P(—-1,p)=P(g, p)=D(1, p)=0
where g(p)e(—1, 1) if pe V.
(v) We have for g=gq(p) that
D, ®&(—1,p)<0 if g —1
D, d(gq, p)>0 if ge(—1,1)
D, &1, p)<0 if g#1

with D, denoting the derivative with respect to the first argument x € R.
As it is convenient to assume that the set of shifts r; which appear non-
trivially in Eq. (2.1) may depend on the parameter p, we employ the set
A(p) in (ii). In general, the nonlinearity F will always depend on the
variable u,, although not generally in a monotone fashion. As a technical
matter, we choose to exclude j=1 from the set #(p). Let us denote

Fmin(p)= min r, rmax(p)= max r,
je{l} vu(p) je{l}va(p)
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for each p e V, and observe that

rrn.in(p)sogrmax(p)’ rmin(p)<rmax(p) (22)

as r;=0 and %(p)+#¢. Note from (v) that ¢g(p) is C' in p whenever
g(p)e(—1,1), by an application of the implicit function theorem. For
convenience let us denote

W={peV|—-l<gqlp)<l}

We see that ¥'< W< V and that W is a relatively open subset of V. Our
primary interest is with pe W, although as a technical convenience we
sometimes allow p to take values in the closure V. The cases g(p) = +1,
which occur for pe V\W, can often be studied by various limiting
arguments.

We shall take the above conditions (i)-(v) as standing assumptions
throughout this section. They will also be taken as standing assumptions in
some of the later sections, and this will be noted at the beginning of those
sections. We shall let the parameter ¢ € R vary, along with p, although we
keep the shifts r; fixed.

By (iv), for each pe V' Eq. (2.1) has the constant (equilibrium) solu-
tions x= +1 and x=¢q(p), and no others, and these are distinct when
p e W. We are interested in obtaining, and studying, heteroclinic solutions
of (2.1) joining —1 to +1 for some ¢, that is, solutions x: R— R of (2.1)
satisfying the boundary conditions (1.3). When ¢ # 0 any such solution is
smooth, and without loss we may translate ¢ and assume that x(0) =0. We
shall therefore seek such solutions in the subspace

Wie={xeW"=|x(0)=0}

of Wl =w!"*=(R). In fact, by Proposition 6.3 below, any solution of
(2.1) satisfying (1.3) with ¢ #0 is strictly increasing, so requiring xe W§ <
provides a unique normalization to the translation invariance of such solu-
tions. When ¢ =0, we expect discontinuous solutions in general, so such a
normalization is not possible, although we do restrict our attention to
monotone solutions. In this case we seek x e L* = L*°(R).

Throughout this paper we use monotone increasing as a synonym for
nondecreasing, that is, when the monotonicity need not be strict, and
monotone decreasing as a synonym for nonincreasing.

Following the above remarks, we state a main theorem of this paper.

Theorem 2.1. For every pe W, there exists ceR, and a monotone
increasing solution x = P(&) of (2.1) on R satisfying the boundary conditions



Global Structure of Traveling Waves 63

(1.3). This c=c(p)eR is unique, and depends continuously on pe W, and
C' smoothly on p when ¢(p) #0. If ¢(p) #0 then the solution P is unique up
to translation among all ( possibly nonmonotone) solutions satisfying (1.3),
and also satisfies

P'(&)>0, {eR (2.3)

and thus there is a unique translate P()= P(&, p) in the space W5 ™. The
dependence of this normalized P on p, as an element of W =, is C' when
op)#0.

Let us denote
U={peW]|c(p)#0} (2.4)

with ¢(p) as in the statement of Theorem 2.1. Then the set U is relatively
open as a subset of W. Let us also denote

M ={(c, P,p)eRX W) x W|c#0,
and x = P(¢) satisfies (2.1) on R, with (1.3)} (2.5)

or, equivalently,
M ={(c(p), P(p),p)e(RN{O})x Wh = x W |pe U}
in the notation of Theorem 2.1. Then by this result,
aU->R\{0}, P U->Wy~ (2.6)

are smooth (C') functions, and so the set .# is a smooth manifold, in fact
a graph over the subset U of the parameter space. [ It will be immediate
from our proof that if the nonlinearity F in (2.1) is C* smooth, for
2 <k < oo, then the functions (2.6), hence the manifold .#, are also C*.]

[t is typical to have solutions with wave speed ¢ =0 over an open set
of parameters, that is, it may happen in a robust or generic fashion that the
set W\U of p where c(p)=0 has nonempty interior. This phenomenon is
known as propagation failure, as discussed in Section 1.

The next result gives an asymptotic description of the solution P
obtained in Theorem 2.1. Additional information on ¢ is also given.

Theorem 2.2. Let P: R — R with ¢ =c(p) be a be a solution as in the
statement of Theorem 2.1, for some pe W. Then

¢z0 if Prad p) =0, c<0 if Fain(p)=0 (2.7)
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If ¢ #0, then for some quantities C >0 and ¢ >0, we have that

— 1+ C_e-4+0(eM-*99%, ¢ —

s s 2.8
1—C e+ +0(e*+79%), - (28

P(f)={

where A* €(0, ) is the unique positive eigenvalue of the linearization of
(2.1) about x = —1, and 2°, € (— 0, 0) is the unique negative eigenvalue of
the linearization about x = 1. The formulas for P'(&) obtained by formally
differentiating (2.8) (including the remainder terms) also hold.

If ¢=0, then

Jim élog(1+P(é))=A"_e(0,oo), i Fo()>0
T (2.9)
Jim < log(1 —P(&) =2, €(=0,0), i 1uua(p) <0
and also
P —1, s R, i 7 max =0
(©)¢(—1,4(p)) e ¥ Tmax(P) (2.10)

P(C) ¢ (q(p), 1), CeR,  if run(p)=0

In particular, P({)= —1 identically for all sufficiently negative ¢ if
Fmax £) =0, and P(E) =1 identically for all large & if rpinl p) =0, when ¢ = 0.

Remark. Ifc(p)=0 and r,(p)=0, then (2.10) forces the solution P
to be discontinuous, jumping over the interval [ — 1, g(p)], and similarly
for the interval [g{(p), 1] if ¢c(p)=0 and r;.(p)=0.

Remark. As we shall see, there does not exist a positive eigenvalue
A* for the linearization of (2.1) about x = —1 if and only if both ¢ <0 and
Tmax(£) =0 hold. Similarly A%, fails to exist if and only if ¢>0 and
rmin( 2) =0. One easily sees that these facts, together with (2.7), are con-
sistent with the existence of A* and A°, in the cases given in the statement
of Theorem 2.2.

Remark. If pe V\W, that is, if g(p)= +1, then (2.7) can fail. In
addition, there may be more than one value of ¢ for which a monotone
solution to (2.1), with (1.3), exists. Let P R—R be C!, with P(¢)=
— 1+ ¢ for all sufficiently negative ¢ and P(¢)=1—¢& 7! for all large &, and
P(¢) linear in between so that P'(¢&) >0 for all £. Denoting

W) =P L)+ P(E+1)—P()
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we see that p(&)>0 for all & with p(&)=e**! near —oc and y(&)=
(26 +1)E%(E+1)7" near + o0, by a calculation. Therefore, there exists
f1: R—> R with fi(P(&)) = p(&) for all &, that is,

—cP(E) =P+ 1)-P&)—fi(P&)), CeR

with ¢=1. We moreover can ensure that f,(x) >0 for ue(—1,1)u (1, o)
and f,(u)<0 for ue(—o0,1), with fi(u)=e(u+1) near u=—1 and
filwy=(u—1)>(3—u)2—u)"" near u=1.

One can embed f, as part of a function f(u, p), for —1 <p <1, with
fitu)= f{u, 1), and where

—ex'(&)=x(&+ 1) —x(&) — f(x(<), p)

satisfies our standing hypotheses, in fact is a normal family (defined below).
For this family, condition (2.7) fails for the solution P with c=1, at p=1.
In addition, a second solution P,: R — R exists with ¢=0 at the same
parameter value p = 1. Such P, is obtained by solving the difference equa-
tion x,,, =x, + fi(x,) to obtain an increasing sequence with x,— +1 as
n— too. That such a sequence exists is easily seen by graphing the func-
tion u - u+ f(u), where one checks that 1+ f(u#)>0. One then sets
Pyé)y=x,for Ee[n, n+1).

The following theorem describes a continuity property of the solution
P at points where ¢(p)=0. If p,, - p,, with ¢, =c(p,) — 0, then after pass-
ing to a subsequence the limit P,(&) — Py(&) of the corresponding solutions
exists, and satisfies appropriate boundary conditions. Obtaining the limit-
ing solution P, is relatively simple. However, determining the boundary
conditions, namely, the limits of Py(&) as & — + oo, is quite subtle and
rather difficult.

Theorem 2.3. Let p,e W and poeV with p,— p,. Let x=P, (&)
denote any monotone solution of (2.1) satisfying (1.3), with p=p, and
c=c,, where we suppose that c,— 0. Then after possibly passing to a
subsequence, the limit

lim P,(S)=Py(&) (2.11)

exists pointwise, where x = Py(£) satisfies the limiting difference equation
0=F(x(&+r1), X(&+72)ss X(E+7N), o) (2.12)

at all but countably many points. The limiting function P, is monotone
increasing, and either satisfies the boundary conditions (1.3), or else
Po(&) =v identically for ¢ eR, where ve { —1, 1}.
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If in particular ¢,#0 and P,e Wy ™, that is, P,(0)=0 so that
P (&Y= P,(&, p,) is the normalized solution of Theorem 2.1, then (1.3) must
hold for the limit P,.

Remark. By replacing Py(&) in Theorem 2.3 with its right-hand limit
Py(&+0) at every £eR, one obtains a function which satisfies Eq. (2.12)
everywhere.

Remark. The solution P, in Theorem 2.3 quite generally is discon-
tinuous, its discontinuities arising from transition layers in the solutions
P, in the singular perturbation limit ¢, — 0. In the case of shifts which are
not rationally related, one expects such discontinuities on a dense set of
values ¢. See in particular Ref. 15, and also the numerical studies in Refs. 34
and 35.

We next describe a monotonicity property of the function ¢(p).
Defining M= (—1, )" by

M={ue(—1, )N |u,<u, whenever r; <ry} (2.13)

we have the following resulit.

Proposition 24. If p: 1> U is a C' function on some interval ISR,
and if

d
= Flu, p()) <0, ueM (2.14)
do o=
at some o =04€ 1, then
d. 0 2.15
75 cpla)) ,,=,,0> (2.15)

The corresponding result with the signs of the above derivatives reversed also
holds.

A special class of systems occurs when p is scalar, and F depends
monotonically on p in the above sense. Let us define x: R — R to be the
diagonal map

K(x) = (x, Xyu0y X)

We say that (2.1) is a normal family in case the following hold in addition
to (1)—(v).
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(vi) The parameter space is V=[—1, 1], with V=(—1, 1).
(vii) ¢(p)=p for peV, and so W=V.
(viil) We have that

0F(u, p)

iy <0, ueM, peW
(ix) We have that

OF(u, p)

0 umwitn)

is a C' function of pe W, for 1 <j<N.
(x) We have that

O*d(x, p)

0, w
dp O0x > pEe

x=+1

The parameter p in a normal family is called the detuning parameter.
The prototypical normal family is the system

N
—ex'(E)= Y, A, o(x(&+71) —x(E)) = flx(E), p)
j=2

where f'is a cubic-like bistable nonlinearity, such as
fx, p)=(x—p)(x*—1)

and with positive constants 4; >0 for 2< j< N. Let us note that for any
fixed k>0 the system (1.17) with the nonlinearity (1.16), modified as
described, is a normal family with the parameter p =gq. Indeed, we have
that

Fluy, uy, p) =y uy—uy)— fluy, p)

for this nonlinearity, and one readily verifies that conditions (i)—(x) hold.

The next result will follow from Proposition 2.4 once the continuity of
¢(p) is established (we shall in fact define c(p) and prove its continuity
before giving the full proof of Theorem 2.1). Let us define

U,={peUlc(p)>0}, U_={peUlc(p)<0} (2.16)

so both U, and U_ are relatively open in W, with U=U_, w U_.
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Corollary 2.5. Let (2.1) be a normal family. Then there exist quan-
tities

such that U, € W=(—1,1) are the intervals

Up=(ps. 1), U _=(-1p_)

and for the continuous function c¢: (—1, 1) > R we have that

de(p)
—>0, U 2.17
dp pe (2.17)
Remark. It is possible above that either p, =1, or p_ = —1, that is,

U, =¢ or U_=4¢. Indeed, by Theorem 2.2, sufficient conditions for these
are that r;.(p)=0 for all p near +1, and that r_,(p)=0 for all p near
— 1, respectively. On the other hand, the next result gives sufficient condi-
tions for either U, # ¢, or for U_ # ¢, for a normal family.

We say that a normal family is coercive at + 1, respectively coercive
at — 1, if the first, respectively the second, of the inequalities

OF(u, p)

u OF(u, p)
L5
2

N
<0, Yor 5
j=2 uj u=x(—1)
p=—1

>0 (2.18)
uj u==x(1)
p=1

holds. We say a normal family is weakly coercive at +1 (or at +1) if the
relevant inequality in (2.18) holds, but not necessarily strictly (so with <
or >), and if also the function F at p= +1 is affine in 4, for 2< j< N in
a neighborhood of u=#x(+1). In this case one sees that

N
Flu, £1)= Y A; (u;—u;)+P(uy, £1),  unear k(+1)
j=2
for positive constants 4, satisfying also
N
t ) ;s <O
j=2

Let us note that the system (1.17), with (1.16), is coercive at +1, as N=2,
and r,= —k <0 with 4,, =y~!>0. This system will serve as the starting
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point for a homotopy which will play a key role in the proof of the follow-
ing result.

Theorem 2.6. Let (2.1) be a normal family which is either coercive
or weakly coercive at +1. Then p_ <1, with p, as in the statement of
Corollary 2.5, and so U # ¢. Similarly, we have p_> —1 and so U_+#¢
Sor any normal family which is coercive or weakly coercive at — 1.

Our approach to proving Theorem 2.1 and Proposition 2.4 is to seek
zeros of the map

GRXWyPxW-L*
given by

9(c, x, p)(&) = —ex' () = F(x(C+ 1), X(E+1r3), o X(E+71y), ), LeR
(2.19)

If ¢ #0 then x is a bounded solution of Eq. (2.1) on R, with x(0) =0, if and
only if xe Wl * and 9(c, x, p) =0. The map ¥ is C'-Fréchet differentiable,
and its derivative at (¢, x, p)e Rx W ® x W, with respect to its first two
arguments, in the direction (w, y)e Rx W§ =, is

Dl,Z{q(C7 X, p)(W, )’)(é)= _‘vx,(é)_*'(Ac,Ly)(Xi)s éER (220)
where A, ,: W5 ® — L is the bounded linear operator

(A Ly = —cy'(&) — L) ye

N
=—cy'(&)— ) A(E) y(&+ry) (2.21)
j=1
with coefficients
OF(u, p)
auj u=rmn(x,{)

A4,(8) = (2.22)

where for convenience we write

n(x, &) = (x(E+ry), X(C+13), ooy X(E+1y)) (2.23)
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We denote
N
L&y o= 4,8 o(r), ® € C[ T mins "'max ] (2.24)
ji=1

with y«(0) = p(+8) for 0 € [Fmin, 'max ], following the notation in Ref. 63,
in the spirit of Ref. 46, Here L(&), for each £, is a bounded linear functional
on C[ ¥ min> 'max] With norm

N

1L = X 14,00 (2.25)

j=1

Very much as in Ref. 20, we shall show that for any solution x of (2.1),
with (1.3), for ¢ #0 and p,e W, the operator A, ; maps W} © isomorphi-
cally onto a closed codimension-one subspace of L® which does not con-
tain x'. Thus D, ,%(c, x, p) is an isomorphism from Rx Wy ® onto L,
and so an application of the implicit function theorem to ¥ yields a local
continuation, that is, gives the functions ¢{p) and x(p) for p near p,.
Denoting this continuation by P(p) = x(p), we shall obtain, at least locally,
the solution in the statement of Theorem 2.1.

In the proof of Theorem 2.6 we employ a global continuation argu-
ment to pass between two normal families, namely a “trivial” one (1.17)
with (1.16), and the other of which is given. In this spirit, let us define a
homotopy of normal families. By this we mean first a system (2.1) satisfying
conditions (i)-(v) above, with V= (—1, 1) x (0, 1). Denoting p = (5, p) e ¥,
we further require that

(xi) F(u,p,p) is a normal family with detuning parameter
pel[—1,1], for every fixed pe[0, 1].

Necessarily, then, W=(—1,1)x[0,1] for a homotopy of normal
families. We refer to p as the homotopy parameter, as it connects the
normal family F(u, p, 0) to the normal family F(u, p, 1). It is easy to see
that if (2.1) with Fo(u, p) and with F;(u, p) each are normal families, then
a homotopy between them can be given simply by

F(u, p, p) = (1 = p) Fo(u, p) + pFi(u, p) (2.26)

Thus any two normal families can be connected by a homotopy of normal
families. Note that if normal families given by F, and by F, both are
coercive at +1, then for each fixed pe[0, 1] the normal family (2.26) is
coercive at +1. The corresponding statement at —1 also holds, as do
analogous statements for weak coercivity.
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3. PRELIMINARY RESULTS

Here we establish some basic notation and terminology, and as well
present several technical results of use later. Quite generally, let us consider
equations of the form

—ex'(§)=G(& (& +1), X(E+ 1)y s X(E+1y)) (3.1

which arise either as Eqs. (2.1) at specific values of p or as the linearization
of (2.1) about particular solutions. (The nonautonomous case, with G
depending on &, occurs for such linear equations.) Both the differential
equation case ¢ #0, and the difference equation case ¢ =0, will be of inter-
est. We assume that x is scalar, and take as a standing hypothesis
throughout this section that the shifts r; satisfy

r|:0» rj;érk, lSj,ng, N=2 (3.2)

namely, that condition (iii} of Section 2 holds. We will also make these
assumptions in the next two sections, but will again note this at the beginning
of those sections. With the parameter p absent in this and the next two
sections we simply denote
Fmin= MiN_r;, Fmax = Max r;
I<j<N 1<j<N

noting that the analogs of (2.2) hold. The function G is assumed to satisfy
the following conditions.

(i') G:RxRM—R, written G(&, u), is continuous, and is locally
lipschitz in w.
(ii') We have for every ¢ e R that

6G(¢f,u)>
ou, =

J

0, ueRY, 2<jEN

where here we mean u = (u,, Uy, ..., Uy).

We shall note these assumptions in the statements of our results, as
needed.

When ¢#0, by a solution of Eq. (3.1) on an interval J we mean a
continuous function x: J¥ —» R (or sometimes complex-valued x;: J* - C in
the case of a linear equation) on the set

JE={l+r/|¢eJand | <j< N}



72 Mallet-Paret

such that x is C! on J and satisfies Eq. (3.1) there. Observe that if J is large
enough to contain a closed interval of length 7., _ 7min, then the set J#* is
also an interval. In any case, J¥ always contains J, as r, =0.

When ¢ =0, by a solution of

0=G(S, x(E+r1), X(E+712), oy X(C+T4)) (33)

on J we mean a (not necessarily continuous) function x: J¥ - R for which
the Eq. (3.3) holds at every {eJ. If all the ratios r;/r; for r, #0 are
rational, then there is a unique minimal quantity v> 0 such that all shifts
are integer multiples of v, in fact

ry=n, I<j<N (3.4)
ged(n,, Ry, o iy) =1 )

and we say the shifts are rationally related. In this case Eq. (3.3) can be
regarded, in a general sense, as a finite-dimensional difference equation,
and in many cases, can be interpreted as a map on a finite-dimensional
space. If the shifts are not rationally related, so that r,/r, is irrational for
some j and k, then Eq. (3.3) has no finite-dimensional interpretation, and
indeed, the analysis of this equation can present formidable difficulties.

We begin with several comparison principles for classes of both func-
tional differential (¢ # 0) and difference (¢ =0) equations.

Lemma 3.1. Assume that (i') and (ii' ) above hold. Let x;: R — R, for
Jj=1,2, be two solutions of Eq. (3.1) at some nonzero parameter value
ce R\{0}. Assume that

x(§)2x(E),  CeR (3.5)

Then if x(1) =x,(t) at some 1€ R, we have that x,(&)=xy(&) for all £ =<
in case ¢ >0, and that x,(&)=x,(&) for all £ <1 in case ¢ <0.

Proof. Let y(&)=x,(&)—x,(£) =0, and assume that the inequality
(3.5) is an equality at some e R, that is, y(t) =0. Assume for definiteness
that ¢ > 0, the proof when ¢ <0 being similar. Define the function

H(és u) = _C_I(G(f9 u+x2(é +r1)s xl(é +r2)s xl(é"' r3): sees xl(é + rN))
— G, xo(E+11), XL +73), Xo(E+13), ooy X2(E+1y)))

and observe that u = y(¢) satisfies ¥’ = H(Z, u), recalling that r, =0. Also,
from (3.5) and assumption (ii’), we have that H(¢, 0) <0 for every £eR,
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and so p(¢)<0 for all £>1 by a standard differential inequality. Thus
w&)=0 for all £ >r1, as claimed. 0

Lemma 3.2. Assume that the conditions of Lemma 3.1 hold, except
that the solutions x;, for j=1,2, satisfy Eq. (3.1) at different values ¢, > c,
of the parameter ¢, and where either ¢, =0 or ¢, =0 are permitted. Suppose
that x,(t) = x,(t) at some teR. Then if

x,(&) is monotone increasing in £ e R, and ¢, >0 (3.6)
we have that x (&) = x,(&) is constant for all &= 1 —ry,, while if
x,(&) is monotone increasing in £ e R, and ¢, <0 (3.7)

we have that x,(&€) = x,(&) is constant for all E <t —r,,.

Proof. The proof of this result is very similar to that of Lemma 3.1,
except for the choice of the function H. Several cases must be considered,
based on the signs of ¢, and c¢,. First, suppose that (3.6) holds, and also
that ¢, #0, and let

H( u)= —cT G(E u+ xo(E+11), Xy (E412), Xy (E+13), e X((E+ 1))
+ Cz_lG(f7 X & +ry)y x2:E+13), X5(E+13), oy X2(E+Tx))

Then u = x (&) — x,(&) satisfies ' = H(E, u). By replacing x; with x, in the
formula for H, and using the resulting inequality from (3.5) and (ii’), one
sees from (3.6) that H(&,0)<(cei ' —1) x5(6) <0. As before, one con-
cludes that x,(&) —x,(&) <0 for £ 17, and thus x,(&) =x,(&) for all =1,
From the differential Eq. (3.1) we have also that c¢,x}(£)=c,x%(&) for
E21—ry, and as ¢ # ¢, we conclude that x1(&) = x5(&) =0 there.

Now suppose again that (3.6) holds, but that ¢, =0. Set

H(E u)= —c7 Y GE u, Xy (E+73), X1 (E+73), s X (E4TN))

o (HE %), uBxg(d)
Hic,u)= {H@, ), U< x,(8)

One easily checks that H(E, x5(¢)) <0, and thus H(&, u) <0 for all u>
x,(&). From this inequality, from the fact that x, is monotone increasing,
and from the fact that H satisfies the standard Carathéodory and lipschitz
conditions, we have that the unique solution u=x,(&) to the problem
u' = H(¢, u) with u(t) = x,(7) satisfies x3(&) < x,(&) for all &> 7. Thus from
the definition of A we have that u = x,(¢) in fact satisfies ¥’ = H(¢, u) for
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=1 But one sees that u=x,(£) also satisfies u'=H(&, u), and as
X3(7) = x,(t) =x,(7), by uniqueness one has that x,(¢&)=x;(&), hence
X1 (&) < x,(&), for all £=1. One thus concludes that x,(&)=x,(&) for all
£ = 1. As before, these solutions are constant for & =2t —r ;..

The proof of the lemma when (3.7) holds is similar. O

The uniqueness result below will be useful when combined with
Lemma 3.1

Lemma 3.3. Assume that (i') and (ii') above hold, and also that the
inequality in the derivative in (ii') is everywhere strict. Let x;: J - R, for
j=1.2, be two solutions of Eq. (3.1), at some parameter value ceR, on
some interval J. Assume that

xl(é)=x2(é)’ T+rmin<é<‘[+rmax (38)

Jor some teJ for which [T+, T+ a1 SJ. Then either
X&) =x5(8),  Ce(—00, T4 Tma] NJ* (3.9)
or
Fmin=0, ¢=0 (3.10)

both hold. The analogous result for solutions agreeing on [T+, ) N J¥
also holds, with v, replacing r . in (3.10).

Proof. Note that the set J# is an interval, as J contains a closed inter-
val of length r ., — #min. With x,(&) and x,(£) as in the statement of the
lemma, assume that (3.9) fails. Then there exists to& (— 00, T+ ry, ] N J¥
such that x,(&) = x,(&) for all e[ 1y, T+ Fuax ], but that for every >0 we
have x,(&) # x,(&) for some & e (1, — ¢, 7o) N J¥ Note that 7, e J¥ is not the
left-hand endpoint of J# and hence 7o—r,;,€J is not the left-hand
endpoint of J.

As we wish to prove (3.10), let us first assume that r,;, <0, and obtain
a contradiction. Let j, with 2< j, <N be such that ry, =r; <0. Consider
Eq. (3.1) for to—r;—e<{<to—r;, where ¢ is small enough that
{+r;>1y whenever j+# j,, and also that £eJ, for such £ Then
xi(E+r;) =x5(&+r,) for all such & whenever j# jo. Also, x{(&) = x5(¢) for
every such £ if ¢ #0. Thus from (3.1) we have for such ¢ that

G(és xl(é + rl)9 X](é + rZ)’ ey xl(é + rjo)’ (R xl(é + rN))
=G(& x ((E+r1) Xy (E+ra)s vy X2+ 7)o X((E+ 7))
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which implies, by the strict inequality (i1'), that x(§+r;)=x,( +r;) for
such & This contradicts the definition of 74, we conclude that r;, =0.
Now with r;, =0, assume that ¢ #0. We again seek a contradiction.
We have r;>r; =0 for all j, and so Eq. (3.1) is an advanced functional
differential equation (or equivalently, a delay differential equation upon
making the change of variables £ - —¢). Solutions of such equations are
unique in the backward direction, and so regarding (3.8) as an initial
condition for such a problem, we immediately conclude (3.9).
The proof of the analogous results for & = 7+ r,;, follows similar lines.
a

A special case of Eq. (3.1) is the linear equation
—ex'(&) = L(&) xg +h(&) (3.11)

with L(&) as in (2.24), with bounded coefficients A4,({) which are con-
tinuous in & A Fredholm alternative for (3.11), plus several results on
asymptotic behavior of solutions, were obtained in Ref 63 in the differen-
tial equation case ¢ #0. Let us recall some of those results which we shall
need below. A particular case of (3.11) is the homogeneous constant coef-
ficient equation

N
—ex'(§)=Loxs= Z A ox(E+ 1) (3.12)

j=1
with 4, o€ R, where L, is the linear functional

N

Lop= Z Aj,o(P(rj), @ € Clrmins Mmax ]
=1

j=

In this case we have the characteristic equation 4., (s)=0, where we
denote

N
A, (8)=—cs— Y A;0e™

j=1

If ¢ #0 then in every strip |Re s| < K the characteristic equation has only
finitely many roots, and to each root s=4 there corresponds a finite-
dimensional set of eigensolutions to (3.12) of the form e*p(¢), where p is a
polynomial. We say that Eq. (3.12) is hyperbolic in case the characteristic
equation has no roots on the imaginary axis, that is, 4. (in) #0 for all
n € R. Hyperbolic systems were studied in general in Ref. 63 for ¢ #0, and
we extend the definition of hyperbolicity here also to the case ¢ =0.
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Remark. We caution the reader that hyperbolicity is defined solely in
terms of the characteristic equation, and assumes nothing about the
dynamics or the solutions of (3.12), which, when ¢ =0, can be quite subtle.
For example, when ¢ =0 it is not generally the case that each vertical strip
|Re s| < K contains finitely many eigenvalues, as is the case when ¢ #0.
Indeed, if ¢ =0 and the shifts r; are not rationally related then the set of
real parts of eigenvalues

R={Re |4, (#)=0}

can be dense in a nontrivial interval, that is, R can contain a nontrivial
interval. Such a system can be hyperbolic according to our definition, yet
possess a sequence of eigenvalues with Re 4, — 0. It is for such reasons that
the asymptotic formulas (2.9) when ¢ = 0 are not as sharp as those (2.8) for
¢ #0. Indeed, (2.9) is obtained only with significant effort when the shifts
are not rationally related.

In the nonautonomous linear Eq. (3.11) the operator L(&) is in some
cases simply the sum L(&)=L,+ M(&) of a constant coefficient operator
and a perturbation term

N
M(&) g = _Z Bi(&) o(r;)

J

In particular, an asymptotically autonomous system is one for which we
have such decompositions at both + oo, namely,

L) =L, +M (O)=L_+M_(&)
(3.13)

N
Lj:(Pz Z Ajj;(p(rj)’ Mi(f)=

Jj=1 J

Bjj; (&) ("(rj)

1

I' Mz

with the limits
clim A& =4;,, flim A;(&)=4,_, I<j<N (3.14)
of the coefficients in (2.24), or equivalently

Jim M., (E)] =0, 6li111w 1M _()I=0 (3.15)

following the notation (2.25). Such a system is called asymptotically hyper-
bolic if the limiting constant coefficient equations at both + cc are hyper-
bolic. With A, , denoting the operator (2.21) from W *® to L*® associated
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with Eq. (3.11), we have by Theorem A of Ref. 63 that if (3.11) is
asymptotically hyperbolic and if ¢ #0, then A_ ; is a Fredholm operator.
We shall denote the kernel and range of 4, ; by

H L SWhe, R L
and the Fredholm index by
ind(A4, ;) =dim ¥, ; —codim %, , (3.16)
It is convenient here to recall {63] the adjoint

V(&) =—L*E) ye= Y A;(&—r) pé—r)

=1
of Eq. (1.15), where by definition

N
L*(f)(ﬂ=_z Aj(é_rj)(P(—rj)’ (PEC[—rmax, _rmin]

J

We have the associated operator A4, ., and as above we denote the kernel
and range of this operator by #. ,. and #, ., respectively. Again by
Theorem A of Ref. 63, we have the Fredholm alternative, namely

;%c,L;_ {he L®

jm y(é)h(é)dé=0foreveryye.){/('.,L.} (3.17)

— a0

for asymptotically hyperbolic equations with ¢ #0. Here every ye %, ;.
decays exponentially at + co, so the above integral is well-defined.

We now present a technical result on constant coefficient systems
which we need later.

Lemma 3.4. Consider a real-valued function x: [ 1, ) — R of the form
(&) =) +0(e=*9¢), Lo

for some beR and e >0, where y is a nontrivial solution of a constant coef-
ficient system (3.12), with ¢ 0, given by a finite sum of eigensolutions
corresponding to a set F of eigenvalues A, all of which satisfy Re 4= —b. If
Im A+#0 for all A€ F, then there exist arbitrarily large & for which x(£) >0,
and arbitrarily large & for which x(£) <0. On the other hand, if F={ — b},
then x(&)#0 for all large ¢&.

The analogous result for & > — oo holds.
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Proof. First suppose that Im A #0 for all A€ F. Then we may write y
as a linear combination of functions & — e =% sin(#¢ + x) p(&), for various
>0 and xeR, and real polynomials p. Thus, for some integer J =0, we
have that p(&)=&e%(q(&) + O(¢~Y)) as & — oo where ¢ is a nontrivial
quasiperiodic function of mean value zero. In particular,

lim inf ¢(£) <0 < lim sup ¢g(&)

¢&— o E= o

and it follows that &7e®x(&) =q(&) + O(¢~!) must assume both positive
and negative values for arbitrarily large values of £, as claimed.

Now suppose that F={ —b}. Then p(&)=e"%p(&) for some polyno-
mial p, hence the limit

lim & e®x(&)=a#0

&— o

exists and is nonzero for some integers J = 0. O

We shall later need the following technical result about Laplace trans-
forms.

Lemma 3.5. Suppose that f:[0,00)—[0,00) is a nonnegative
measurable function, and let ae [ — 0o, o0 ] be the unique (possibly infinite )
value such that

fls)< oo, s>a

~ 3.18
fls)=, s<a (318)
where f denotes the Laplace transform
To)=[ " emi1e) (3.19)

1]

Then [ is homomorphic in the right-half plane Re s > a. If, further, |a| < oo,
then [ cannot be extended as a homomorphic function to any neighborhood
of s=a.

Proof. The fact that f(s) is holomorphic for Re s >« is standard. We
therefore prove only the final sentence in the statement of the lemma.
Assume therefore that |a| <co and that f can be extended as a holo-
morphic function to some region containing the disc |s —a| <r for some
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r>0. For each n>0, the derivative f"(«a) is the limit of /() for s>a
approaching «. Upon differentiating (3.19) and taking this limit we obtain

Fonay = (=1 [ emenf(e) e

0

by an application of the monotone convergence theorem, using the non-
negativity of /. As the radius of convergence of the power series for f about
a is greater than r, we have that I]"""(a)| < Kr~"n! for some K> 0. Thus if
s€(a-r,a), we have again by the monotone convergence theorem that

[Temeperde=[" etemncespie)
4]

Y0

However, the finiteness of the above integral contradicts the definition of a.
This completes the proof. O

4. LINEAR DIFFERENTIAL EQUATIONS:
A ONE-DIMENSIONAL KERNEL

In this section we consider scalar equations of the form (3.11), where
L(&) in (2.24) has continuous coefficients 4,(). Our main result, Theo-
rem 4.1, is that for a particular class of such equations with ¢ # 0 the kernel
of A, ; is one-dimensional, and the Fredholm index of A, , is zero. The
equations in this class include those that arise as linearizations of our
traveling wave problem, and our results here will allow the use of the
implicit function theorem.

Throughout this section we continue to assume (3.2) as a standing
hypothesis on the shifts r;.

Theorem 4.1. Consider an operator A, as in (2.21) associated to the
differential Eq. (1.15), where ¢ #0 is real, x is scalar, und where there exist
quantities

x.B,eR, 1<j<N
Y (4.1)
a;> 0, 2< <N
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such that
y<AE)<p;,  LeR I<j<N (4.2)

Assume that Eq. (1.15) is asymptotically autonomous and that, in addition,
the limits (3.14) are approached at an exponential rate, say

IM (=0 ), & oo (4.3)

for some k>0 with the notation (3.13), (3.15). Also, assume that each of
the sums Az, given below, of the limiting coefficients at + co, is negative,
namely,

N
Ar, =Y 4;, <0 (4.4)
j=1

with A;, as in (3.14). Finally, assume that there exists a nontrivial solution
x=p(&) to Eq. (1.15) which is nonnegative and bounded on R,

pel®,  p(&)=0, {eR

Then Eq. (1.15) is asymptotically hyperbolic, and A, ,: W"® - L* is a
Fredholm operator, with

dim £, ;, =dim #, ;«=codim Z, ; =1, ind(4, ,)=0 (4.5)
The element p e A, Is strictly positive,
p(&)>0, <eR
and there exists an element p* € A, ;. which is strictly positive,
p*&)>0, <CeR (4.6)

Note above that we require a positive bound 4;() > «;>0 when j#1,
that is, when r;# 0. This is not required for 4,, and indeed this coefficient
may take negative values.

We begin by developing some properties of the constant coefficient
Eq. (3.12) which will hold for the limiting equations in Theorem 4.1. First
note that if in (3.12) we have that

A;0>0,  2<j<N (4.7)
then we have the strict concavity property

AL, () <0, seR (4.8)
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which implies that there are at most two real cigenvalues of Eq. (3.12),
counting multiplicity. The following three results give further information
about the eigenvalues of this problem. In these results ¢ can be either zero
or nonzero. Recall the quantity v>0 in (3.4), when the r; are rationally
related. We define a set /<R by

_ ({0} if the shifts r; are not rationally related

= 49
{{27rnv “neZ} if the shifts r; are rationally related (4.9)

which will play a role below.

Lemma 4.2. Assume that (4.7) holds for the constant coefficient
Eq. (3.12), and suppose that a € R is such that A, ; (a)>0. Then there do
not exist any eigenvalues i€ C such that Re A=ua.

Now suppose that 4, (a) =0 for some ae R. If ¢ #0, then there do not
exist any eigenvalues A€ C such that Re i =a, except for i =a itself.

Finally, if 4. p(a)=0 for some aeR, and ¢=0, then ieC with
Re A=ua is an eigenvalue if and only if A =u+ iy for some neT.

Proof. Suppose that . =a +in satisfies 4., (1)=0 for some real 5
and that 4, , () >0. Then

lca+ Ay ol <lcA+ A4l = <

J

A; 01 < —(ca+ A, )
2 (4.10)

Mz

N
Z Aj. 0(’”/
j=2

By examining the first and last terms in (4.10), we see that the three
inequalities there are equalities. In particular, the third inequality implies
(as an equality) that 4., () =0, and so the first claim in the lemma holds.

Now assume that 4. ; (¢)=0. The first inequality in (4.10) becomes
|ca+ A, ol =|cA+ A, ol, which implies that ¢z =0. If ¢#0 then =0, so
4 =a, establishing the second claim in the lemma.

Finally, suppose that ¢ =0, still with 4, (a)=0. Then the second
inequality (as an equality) implies, from the positivity of 4, for 2<j< N,
that ¢"7=1 for such j. Necessarily the r; are rationally related, and
n=2nnv~! for some integer n, from (3.4), hence ne I Lastly, one sees
these conditions are sufficient, namely that 4., (a +27inv~ 1y =0 if
4. (a)=0and c=0. 0

For convenience, let us denote the quantity

N
Ag= —Ac,Lo(0)= Z Aj,O
j=1
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associated with Eq. (3.12). Observe that the corresponding quantities 4z,
for the limiting equations of (1.15) are participants in Theorem 4.1. We
also define sets M, = (0, «o)¥ and M*% =R" by

M, ={ve(0, 00)"| £ (v, —v;) >0 whenever r;<r,}

M* ={weR”

N

Y. wv,>0 for every veMi}
j=1
Compare these with the definition (2.13) of the set M.

Proposition 4.3. Assume that (4.7) holds for the constant coefficient
Eq. (3.12), and that A5 <0. Then Eq. (3.12) is hyperbolic. There exist at
most one real positive eigenvalue 1* € (0, o), and one real negative eigen-
value A€ (— o0, 0), and each of these eigenvalues is simple. The eigenvalues
¥ and A° depend C' smoothly on ¢ and on the coefficients A 0, and we have
that

ort A2
7 <0 <0 (4.11)
and also that
N aiu
Z w; W < 0, we M’_’;_
= a,{;o (4.12)
Y wi——>0, weM*
j=] 4 aAj’o
and in addition, the inequality
4,.(5)>0,  se(4%1%) (4.13)

The quantities s= A"+ in and s =A%+ iy, for ne I, are eigenvalues if ¢ =0.
For any c e R, all remaining eigenvalues satisfy

Re le(— o0, 15) U (A%, o0), ImAi#0 (4.14)

where we interpret (—oo, A°)=¢ if 1° does not exist, and similarly with
(A¥, ).

Proof. Hyperbolicity follows from Lemma 4.2, along with the obser-
vation that 4., (0)=—A4;>0. With the concavity condition (4.8) we
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conclude the existence of at most one A >0, and at most one A° <0, and
as well the inequality (4.13). In addition, we see that A £,(#°)>0 and
4, . (#*) <0, and so these eigenvalues are simple and depend C' smoothly
on ¢ and on the coefficients 4, ,.

The inequalities (4.11) follow from implicit differentiation, as do the
inequalities (4.12). To verify in particular the first inequality in (4.12), we
calculate the derivative

y c LO(S) N Adr
gl o4, o = —Vzl we* "1 <0 (4.15)

s=A"

for any we M% , where the sign in (4.15) follows from the fact that the vec-
tor ve (0, co)", with coordinates v, = e*"), belongs to M, . As 4., , (i) <0,
we conclude the first inequality in (4.12). The other inequality in (4.12),
and also those in (4.11), follow by similar arguments.

The final claims about the eigenvalues A%* + i, for ne I, and (4.14),
follow directly from Lemma 4.2. O

Remark. One easily sees in the above proof that 1 does not exist
precisely when both ry,, =0 and ¢ <0, for then 4., (s)>0 for all s>0.
Similarly A* does not exist precisely when r_;, = 0 and ¢ > 0. As a conven-

tion, we may set A= 00 and 1° = — oo, respectively, in these two cases, and
thus
AM=oc ifand only if rp,,=0 and c<0
(4.16)
A= —00 ifand only if r;,, =0 and c=20

We see that by regarding these eigenvalues as taking values in the extended
real line, so 1%€(0, 0] and A*e[ —o0,0), both A* and i* depend con-
tinuously on ¢ and on the coefficients 4, ,.

Proposition 4.4. Assume that (4.7) holds for Eq. (3.12) and that
A5 >0. Then either all real eigenvalues of (3.12) lie in (0, co) or they all lie
in (— o0, 0).

Proof. We have that 4., (0)= —A45<0, and 47 , (5) <O for all real s.
The result follows directly from this, using Lemma 4.2. O

The following result precludes the possibility of superexponentially
decaying solutions of Eq. (1.15), when ¢ #0, at least among the class of
nonnegative solutions. In particular, this result applies to Eq. (1.15) as in
the statement as in the statement of Theorem 4.1.
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Proposition 4.5. Ler x: J¥ - R be a solution of (1.15) on J=[r, o)
Jor some teR, with ¢ #0, and with conditions (4.1) and (4.2) on the coef-
ficients holding, but only for € J in (4.2). Assume also that x(&) =0 for all
Ee J*. Then there exist constants a, k e R, and R >0, such that

ax(Q)<x'(§)<kx(f), <E=Zt+R (4.17)
In particular,
zlim e x(E)=0 (4.18)

cannot hold for every be R unless x(&) =0 identically for E=1+ R.
The analogous result for J=(—o0, t] also holds.

Proof. Let us observe first, that the lower bound in (4.17) precludes
superexponential decay of x. In particular, (4.18) is false for b= —a, unless
x(&) vanishes identically for & >t + R, since e “x(&) is monotone increas-
ing in &,

Without loss take J = [ 7, o0), as the case of /= ( — o0, 7] can be handled
by a change of variables £ - —¢&. There are now two cases to consider,
namely, ¢ >0 and ¢ <0. We shall only prove the result in the case that
¢>0. Even though the case of ¢ <0 cannot be reduced to the case of
positive ¢, the proof for negative ¢ is very similar, so we omit it.

To begin, we have that

N
X&) =—c1 Y A X(E+r) < =T A(E) x(E) < — e Moy x(€)
j=1
for ¢>=17, which establishes the right-hand inequality of (4.17) with
k=—c7a,.

We now prove the left-hand inequality in (4.17). We first consider the
case in which r;, <0. Let y(&) = e *x(¢) and note that y'(¢&)<0for &=,
Now fix & >7—rpy,, let £>0 be such that 2e=min{|r;||r; <0}, and
observe for 7 —r;, <& <&, that we have

N

V(& ==& +k) p(&) —e™ Y A(&) e¥ip(E +r))
i=2
<=7t Y aeipé+ry)
<—c! < y otje"’f> Y& —2€) (4.19)

rj<0
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where we have used the fact that ¢ ~'4,(&)+k=c 'a; + k=0, from the
definition of & above. Assuming further that &, —¢ >1 —r,,,, we integrate
(4.19) with respect to &, from &, —e¢ to &, and discard the term y(&,) =0
which appears in the left-hand side, to obtain

-1
W& —e)= Cp(E, —2e), C=£“C<Z a,e"’f>
5<0

and hence
NE=d) < y(E—e)< Cy(d) (4.20)

provided that & > 1 — r, ,nd 0 <0 < e. Now by repeatedly using (4.20), we
conclude that if r <0 and £+ r > 1 —r,y,, then

Y(E +r) < CHHUREy ) (4.21)

where [y] denotes the greatest integer less that or equal to y. Therefore,
from the first line of (4.19), from (4.21), and from the fact that y is
monotone decreasing, we have for & >t — 2r_;, that

Y&z —(c7'pr+k) (&) —c! < Y B+ ¥ lf,-e'"fC”["f'/“'])y(é)

U>0 n<0

=(a—k) y(¢) (4.22)

where (4.22) defines a. From (4.22) we conclude that x'(&) =z ax(&), as
claimed.

Now suppose that r,, =0. With y(&)=e¥x(&) as before, we have
that y(&+r;) < (&) for =17, and hence from the first line of (4.19), we
have that

N
Y= —<k+c-' Y Aj(é)ek'f) #(&)

j=1

N
> —<k+c" y /f,.e'"f> NEY=(a—k) ¥(¢)
j=1

j=
in fact with the same a obtained from (4.22). Again, x'(&¢) = ax(¢). O

The next proposition is a basic result that will help establish a number
of the claims of Theorem 4.1.
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Proposition 4.6. Assume that Eq. (1.15) satisfies all the conditions in
the statement of Theorem .1, except possibly for the existence of the solution
x=p(&). Then Eq. (1.15) is asymptotically hyperbolic. There exist four
(possibly infinite) quantities A°_, 2°_, A% , and A", satisfying

-0 <A, <0< <00

such that A% and 2%, (if finite) are real eigenvalues of the limiting equations
at + co. These are the only such real eigenvalues, so are uniquely determined.
When finite they are simple eigenvalues.

If we only assume the asymptotic conditions of Theorem 4.1 at + o,
and if x(&) satisfies Eq. (1.15) on some interval [ 7, c0) and is bounded as
& — 0, then

X&) =C X+ 0(e*+=98), Lo (4.23)

Sor some constant C | e R and some ¢>>0 if 1°_is finite, while x(£) =0 iden-
tically for =t if A%, = —o0. If A°, is finite, then the asymptotic formula for
x'(&) obtained by formally differentiating (4.23) (including the remainder
term) holds. If, moreover, x(&) 2 0 for all large &, and if x(¢) does not vanish
identically for large &, then C_ >0,

The analogous results, in particular,

x(&)=C_e***+0(e* 9%, (- —o0 (4.24)

when A" is finite, hold for solutions which are bounded at — co.
Proof. The characteristic equations of the limiting equations
N
—ex'(E) =Y A, x(E+7r) (4.25)
j=1
are AC,Li(s) =0, where
N
Ao ()= —es= T Ay e”
j=

By Proposition 4.3, and (4.4), both limiting Egs. (4.25) are hyperbolic, and
the claims about the eigenvalues A% , 4% follow from this, as does the fact
that all other eigenvalues satisfy

Rele(—o0, 4% ) U (4, ©), ImA#0
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where we interpret ( —oc, 4°)=¢ and (4%, w)=4¢ il %, = — x, respec-
tively, A% = cc.

Now suppose that x is a solution of (1.15) on some interval [z, «0),
as in the statement of the proposition. First, if A% = —oc, then r;, =0 by
(4.16), and Re A= 4% >0 for all eigenvalues of the limiting equation at
+ 00, The transformation ¢ — — & converts (1.15) into a delay differential
equation which is asymptotically hyperbolic at —oc with Re A< — 4% <0
for all limiting eigenvalues there. Denoting z(&) = x(—¢&) as a solution of
this equation, one argues in a standard fashion, using a variation of
constants formula [46], to show that ||z, | < Ke ™"~ %)|z, || for some
K, b>0, for £, <& < —1, where |z || denotes the supremum of |z(¢ + 0)]
for €[ —Fmax, 0]. Letting £, > —oc implies, as = is bounded, that =, =0,
and thus x(&) =0 identically for ¢ > 1.

Now suppose for the remainder of the proof that 4°_ is finite. Then
Proposition 7.2 of Ref. 63 and the above properties of the eigenvalues
immediately imply the claim (4.23). Indeed, this result implies either that

M) = pE) +O(e P+, Lo (4.26)

where y is a nontrivial eigensolution corresponding to a set of eigenvalues
with Re A= —bh <0, or that (4.18) holds for all »eR. In the former case
(4.26), either —h = 4%, , in which case y(¢) = C, ¢*** for some C, #0, or
—b < A%, in which case we have (4.23) with C, =0. And if (4.18) holds for
all b, then, again, (4.23) holds with ¢, =0.

The asymptotic expression for x'(¢) now follows by substituting the
expression (4.23) into the right-hand side of the differential Eq. (1.15),
and by noting that the leading term C, ¢*%¢ is a solution of the limiting
differential equation.

Suppose further that x(£) = 0, but is not identically zero, for all large .
In (423) we have C, >0, and as we wish to prove C, >0, we assume,
to the contrary, that C, =0. Proposition 4.5 implies that superexponential
decay, namely, (4.18) for all b, is impossible, and so (4.26) holds with
—b < A% . All eigenvalues A with Re A= —b have nonzero imaginary part,
so by Lemma 3.4 there exist arbitrarily large ¢ for which x(£)>0, and
arbitrarily large ¢ with x(&) <0. This is a contradiction, and so we con-
clude that C, >0, as desired.

The proofs of the corresponding claims at — oo follow similar lines.

O

With the next result, we establish all but one of the claims of Theo-
rem 4.1.
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Praposition 4.7. Assume the conditions of Theorem 4.1. Then the con-
clusions of Theorem 4.1 all hold, except possibly for the positivity (4.6) of
some element p* € X, ;.. We also have the asymptotic expressions

C_e* 40" *9¢), (5 —w
=< 7 s 4.27
PO={0 et opuwint) 5o (4.27)
Sor some & >0, where both C >0, with finite exponents
2 e(—w,0), A% (0, o) (4.28)

and, as well, the asymptotic expressions for p' (&) obtained by formally dif-
ferentiating (4.27), including the remainder terms.

Proof. Proposition 4.6 gives the asymptotic hyperbolicity of (1.15),
and Theorem A of Ref. 63 ensures that A4, ; is a Fredholm operator. Lem-
mas 3.1 and 3.3 ensure the strict positivity p(&) >0 for all £ e R. Indeed, if
p(7) =0 at some 7 then p(&) =0 identically either for £ =7 or for £ <, by
Lemma 3.1. Then Lemma 3.3 would force p(£) =0 identically for all £€ R,
a contradiction. The asymptotic expressions (4.27), with the positivity
C, >0 of the coefficients and the finiteness (4.28) of the eigenvalues now
follow from Proposition 4.6, as do the asymptotic expressions for p'(¢£).

What remains is to establish the claims (4.5) about the kernel, the
range, and the Fredholm index. Let us consider the kernel %, ; of 4_ ;.
Suppose that dim £, ; > 1, and take any x e, ;, which is linearly inde-
pendent of pe X, ,. By Proposition 4.6, again, the solution x enjoys
estimates as in (4.27), but with generally different constants C, which need
not be positive. By adding an appropriate multiple of p to x, we may
assume without loss that the coefficient of e**¢ in the asymptotic expression
for x(&) as £ — oo vanishes. That is, we have that

Coel""f+0(e(“— +e)f)’ Eo —w

Ottt %), oo (4.29)

&) ={

for some C, e R. By replacing x with —x if necessary, we may assume that
Co<0.

By Lemma 3.3, since x is not identically zero, there exist arbitrarily
large & for which x(&)#0. We claim further that there exist arbitrarily
large & for which x(&)>0. If not, and so x(&) <0 for all large £, then by
Proposition 4.6 applied to —x we have the asymptotic formula (4.23) with
coefficient C (different from C, above) which is strictly negative, con-
tradicting (4.29).
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Now consider the family p —uxe ., ,, for 4> 0. There exists gy >0
such that p(&) —uex(&) <0 for some & e R; this is simply because x(&) >0
at some &, as noted above. The asymptotic formulas (4.27), (4.29), and the
signs of C, >0 and Cy <0, ensure that there exists 7> 0 such that

(&) —ux(¢) >0, €] =, O<u<y, (4.30)
It follows by setting

ty=sup{pe [0, 40] | p(&) —ux(&) 20 for all {eR}

that we have u, x($) <p(&) for all £ eR, with equality u, x(&,) = p(&,) at
some &, € R (in fact, with &,e[ —1, t]). However, Lemma 3.1 implies that
p(&) —p, x(&) =0 identically either on [&,, oc) or on (—oo, &y], and this
contradicts (4.30). The proof that £ , is one-dimensional is thus complete.

To complete the proof of the proposition, we show that ind(4, ;) =0.
Indeed, from this and from the definition (3.16) of index, it follows that
codim #, ; =1, and from the Fredholm alternative (3.17) we have that
dim £, ;. =1, establishing (4.5). By Theorem B of Ref. 63, the quantity
ind(A4, ;) depends only on the limiting operators L, as in (3.13), (3.14),
and on ¢. Moreover, by the so-called spectral flow formula, Theorem C of
Ref. 63, we have that ind(A_ ;)= —cross(L”). Here L” is any generic
homotopy of constant coefficient operators joining L _ at p= —1to L at
p =1, and cross(L?) denotes the net number of roots s =4 of the charac-
teristic equation A_ ;,(s)=0 which cross the imaginary axis along this
homotopy (we keep ¢ fixed here). For the homotopy L?=((1 —p) L_ +
(1+p)L,)2 one sees that the corresponding constant coefficient
Eq. (3.12) is hyperbolic for —1 < p <1, by Proposition 4.3, using (4.4) in
particular. No eigenvalues cross the imaginary axis, thus ind(A4,,)=
—cross(L?)=0. O

We now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. All that remains is to establish the positivity
(4.6) of some p*e A, ;.. It is in fact enough to show that p*(¢) =0 for all
¢ eR, for some nontrivial p*e 7, ., for strict positivity (4.6) of this solu-
tion follows by an application of Lemmas 3.1 and 3.3. Let us therefore sup-
pose that there exists p* € , ;. which assumes both signs, say p*(£,) >0
and p*(&,) <0, for some &,, &, e R. We seek a contradiction.

First, we have that p*(¢) does not vanish identically on any interval
of length r ., — Fmin» fOr otherwise, by Lemma 3.3 the solution p* would be
identically zero. Thus without loss we may assume |&; — 5| <7pax — Frmin-
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It follows next that there exists a continuous function #: R — R such
that

" ermeax=0

— o0

where h(&) =0 for all £eR, and where # has compact support, in fact
h(&)=0 for all ¢eR\[7,,7,] where 7,<7, can be chosen to satisfy
To—11<Fmax— 'min BY the Fredholm alternative (3.17), and as
dim 4, ;. =1, we have that he %, , and so there exists x € W' ® such that
A, px=~h. That is, x: R— R is a bounded solution of the inhomogeneous
Eq. (3.11). We note that adding a multiple of pe #, ; to x yields any other
such solution x + up.

As h has compact support, x(£) satisfies the homogeneous Eq. (1.15)
for large |£| and, so by Proposition 4.6, enjoys asymptotic estimates of the
form (4.23) and (4.24), although with generally constants C . different from
those (4.27) for p. As the constants in the formulas (4.27) for p are both
positive, C, >0, we see that if u is sufficiently large, then x(&) +up(&) >0
for all £eR, and that

sy =inf{peR | x(&)+up(£) >0 for all e R}

is a finite quantity. Let us denote (&) = x(&) + u, p(E). Of course, y(¢) 20
for all £eR.

By Proposition 4.6 again, and the nonnegativity of y, we have either
that p(&)=C,e*¥ ¢+ 0(e*+~9¢) as &— oo, for some strictly positive
C. >0 and £>0, in which case y(¢&) >0 for large &, or that y(¢) = 0 identi-
cally for all large £. The corresponding statements for £ - — oo also hold.
We claim that it is not the case that ¥(&)=0 both for ¢ — oo and for
& — —oo. Suppose to the contrary that y(£)=0 for all large |£]. Now y
satisfies the homogeneous Eq. (1.15) on the interval J=[r,, o), as
(&) =0 there. One concludes from this, by Lemma 3.3, that y(£)=0
identically on J*=[t,+ rypn, o). Similarly, y(¢)=0 identically on
(_OO»TI]#=('—w’ Ti+max]. But (=00, Ty + Fmax ] Y [ T2+ Frnin, ©0) =R
as T, — 71 <Fmax — 'min» Ne€nce y is identically zero on R. This contradicts
the fact that A= /A_ ,y is not the zero function.

For definiteness, let us therefore assume that y(&) > 0 for all large &. It
is also the case that y(&) =0 for some £ eR. Indeed, the proof of this uses
arguments similar to those in the proof of Proposition 4.7, so we omit
them. Now denote

Eo=sup{&eR|y(&)=0}
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Certainly both y(£,)=0 and y'(£,) =0, and also y(&) >0 for all £>¢&,. If
it is the case that r_,, >0 then we immediately have a contradiction.
Indeed, if 2 < jo < N is such that r;, =r,,, then by Eq. (3.11), as 4,({,) >0
for 2<j<N, and as p({o+r; ) >0 and A(&,) >0, we have that

N
—oy'(&)= A;(&o) Yo+ 1)) +h(Eo) = A, (o) Y(Eo+1r;)>0
j=1
which is false.

We may also obtain a contradiction if r_,, = 0. In this case, as A* < o
holds (4.28), necessarily ¢ >0 by (4.16). If it is the case that p(&)>0 as
¢ — —co, then as r;, <0, an argument analogous to the one in the above
paragraph, but at the point &g =inf{&eR | y(&) =0}, yields a contradic-
tion. Suppose therefore that y(£) =0 identically as £ - —oc. Denote

¢,=sup{¢eR|¥({)=0 for all {<¢&}

and consider Eq. (3.11) on an interval [&,, £, +¢] for sufficiently small
¢>0, namely, e<|r;| for 2<j<N. Then y(é+r)=0 for 2< <N and
(eé,, &, +e], 50 (3.11) takes the form of an ordinary differential equa-
tion —cy' (&) =A,(&) y(&)+h(E) on this interval, with initial condition
Y(&,)=0. As both ¢ >0 and h(¢) >0, We conclude by a standard differen-
tial inequality that y(&) <0 in this interval, hence y(¢) =0 there. However,
this contradicts the definition of £,. With this, the proof of the theorem is
complete. O

5. LINEAR DIFFERENCE EQUATIONS

Our focus in this section is the linear difference equation obtained by
setting ¢ =0 in (3.11), that is,

L&) xs+ h(E) =0 (5.1)

with L(£) as in (2.24). We continue to assume that x is scalar, the shifts r,
satisfy (3.2), and the coefficients 4;(¢) are continuous and bounded. We
recall that generally, solutions of (5.1) need not be continuous, and indeed,
one often expects discontinuities.

We begin with the following lemma, which provides an exponential
bounds on solutions.

Lemma 5.1. Let x:J* - (0, o) be a positive, monotone decreasing
solution of the homogeneous equation

L(&) x,=0 (5.2)
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either on J=[1, o0) for some teR, or on J=R. Assume either that (5.2)
is actually a constant coefficient system

Loxe=0 (5.3)

or that g, <0, where, in the latter case, assume that the coefficients A;
satisfy the bounds (4.1) and (4.2), but only for £€J in (4.2). Then there
exist constants K>0 and b >0 such that

x(&1) < KeP e 0x(&,), &1 <&, &, &yed* (5.4)

Proof. Letting j,, with 1< j, <N, be such that r ;, =r;, we have

Jo?
that

N
XE+Tmn)=— 3 AU AU (& +r),  Led (5.5)

j=1

jj'#jo
in either case (5.2) or (5.3). If the coefficients 4; are not constant, then
Fmin <0, so the uniform lower bound 4,(¢)>a; >0 implies that 4,(¢)~!

is bounded. From the bounds (4.1), (4.20), and the monotonicity of x, we
have from (5.5) that

(&) <Kx(E+e), LeJF

for some K>0 and some ¢>0, indeed with ¢=min{r,—r i, |1 <j<N
and j# jo}. The result (5.4) now follows easily, with b such that =K.
O

The following three results very broadly relate the rate of decay of
monotone solutions of the homogeneous Eqs. (5.2) or (5.3) to their real
eigenvalues. As noted in an earlier remark, our results here are not as
strong as those for the differential equation in Section 4, due to possible
pathologies of the spectrum when the shifts are not rationally related.

Lemma 5.2. Suppose that x:J*— (0, 0) is a positive, monotone
decreasing solution of the homogeneous constant coefficient Eq. (5.3) on

J=[1, ©), for some TeR. Then there exists j.€ (— o0, 0] with 4o 1 (4)=0.

Proof. Without loss assume that 7 =0. Taking the Laplace transform
of (5.3) now yields, in a standard fashion,

FH) =40 )7 WO W= =3 Ao e +r)dE  (56)
Jj=1 -7
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where the meromorphic function %(s) is holomorphic for Re s > 0, from the
boundedness of x(&). Let ae[ —oo, co] be as in (3.18) for the Laplace
transform X of x. We have that ¢<0 as x is bounded, and that
az —b> —oo with b as in Lemma 5.1. Thus |a¢| < oo, and as  is entire
it follows that 4, ; (a)=0. This proves the lemma, with A =a. 0

Recall the order of an entire function f, namely, the quantity w(f)
defined by

w(f)= li;}lﬂsip lo—g%ﬁ, M(R, f)= Isslt;pk | £(s)]

Clearly, the order is either finite w(f) &[0, o), or infinite w(f)= co. It 1s
known [56] that if f is the quotient f(s) = f(5)/f5(s) of two entire func-
tions of finite order, and if f is also an entire function, then f has finite
order.

Lemma 5.3. Suppose that x:R-—(0,00) is a positive, monotone
decreasing solution of (5.3). Assume that there exists a unique 7. € (— o0, 0]
at which 44,1 (1) =0, and assume further that

0.L,(4)#0
(5.7)
Ao L(A+in)#0,  neR\T
where I' is as in (4.9). Then
x(&)=K(&)e¥, CeR (5.8)

where the function K has period v (as in (3.4)) if the shifts are rationally
related, and K is constant if the shifts are not rationally related.

Proof. We first modify the solution x in the case that the r; are
rationally related. With v as in (3.4) and A as in the statement of the
lemma, fix any {e[0, v) and let

x*E)=x((+n) 2™ v<E<(n+ )y (5.9)

for every n e Z. One easily sees that x* satisfies Eq. (5.3) everywhere, as all
the shifts in that equation are integer multiples of v. We shall show below
that x*(&) = x*(0) e* for all £€R, and therefore that

X(C+nv) = x*({ +nv) = x*(0) M+ (5.10)
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By (5.9) the quantity x*(0) depends only on {e€[0,v), and denoting
K({)=x*(0) and extending K as a v-periodic function, we obtain (5.8)
from (5.10).

For ease of notation, in the case of rationally related shifts we denote
the modified function x* simply by x in the argument below. In this case
we have

x(&)=x(nv) ™ py<E<(n+ 1)y (5.11)

for every neZ, by (5.9).

We take the Laplace transform of (5.3), to obtain (5.6) as before. Let
us also take the Laplace transform j(s) of the function y(&) = x( — &), where
Lemma 5.1 ensures that y(&) has at most exponential growth, so the trans-
form exists. A simple calculation reveals that

Pls)=—do (=) Y(~s) (5.12)

for Res sufficiently large, with the same function  as in (5.6). Since
A, Lo(s)‘1 Y (s) is holomorphic for s e R, except possibly at the point s =/,
we conclude from Lemma 3.5 that X(s) is holomorphic for Res> 1.
Similarly, we have that J(s) is holomorphic for Res> —4, but as
¥(s) = —J(—s) identically by (5.6) and (5.12), we have that X(s) is
holomorphic also for Re s <. These facts, together with the assumptions
(5.7), now imply that

F(s) = do, ()" () is holomorphic in C\{A+iy|nel} (5.13)

with at most a simple pole at s= /.
Let us also note here the bound

%) =140, ()" W()I<K,,  [Res| =K, (5.14)

for some K, and K,. Indeed, if j, is such that ¥y =Fmax> then |4 (s)| ~
|4}, 0le®¢*)"mx uniformly as Re s — oo. In addition we have from (5.6) that
[W(s)| = O(e™®e 'm) uniformly as Res— oo, and this gives (5.14) for
Re s> K,. A similar argument gives (5.14) for Re s < — K.

We next claim that

Yis)=(s— A1) %(s) is an entire function (5.15)

Certainly ¥ is holomorphic at s=4, as this is a simple pole of % Thus
(5.15) holds if the r; are not rationally related, by (5.13), as I'={0}. Sup-
pose, on the other hand, that the r; are rationally related. Then x(&) e=*
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is constant on each interval [av, (n+1)v) by (5.11). One easily shows
directly from the formula (3.19) for the Laplace transform that the function
¥ is a (generally infinite) linear combination of functions s — e* =" for
neZ, and hence ¥(s +2miv™"') = ¥(s) for s e C. Since ¥(s) is holomorphic
at s =4, it is holomorphic at s =4 + in for each n e I', so by (5.13) is entire.

As ¥ is a ratio of two entire functions (s —A4) y(s) and 4 L,(s) of at
most exponential growth, and hence of finite order, we have that
w(¥) < oo for the order of ¥, and similarly w(€) < o for the order of the
entire function Q(s) = s~ (¥(s) — ¥(0)). In addition, from the bound (5.14)
we have that

<Kj, |IRe s| = K,

Y(s)— P00
|Q(s)|=‘%ﬂ‘

for some K. By a theorem of Phragmén-Lindelof type (see, for example,
Rudin [78]), we conclude that Q is in fact constant, and so ¥(s)=
P(0) + ys for some 7, and hence

i) = 2Ot e
s—A

We see directly from (3.19) that %(s) - 0 as s — o0, and so y =0. From here
it is immediate that x(&) = x(0) e* for & =0, with x(0) = ¥(0). To obtain
the same formula for £ <0, we see that p(s)= —F(—s)=P(O0) s+ 1)},
hence x(&) = p(—&) = W(0) e* for & <0. With this, (5.8) is established. O

Proposition 5.4. Suppose that x: J¥ — (0, o0) is a positive, monotone
decreasing solution of the the homogeneous Eq. (5.2) on J=[1, ), for
some teR. Assume also that conditions (4.1) and (4.2) hold, but only for
EeJin (4.2), and that r, <O0. Finally, assume that (5.2) is asymptotically
autonomous at + oo, in the sense that the limits in (3.14) hold, but only for
& — oo, Then there exists Ae(— o0, 0] with AO,L+(,1)=O. Also, if A5, <0
then A=A%_e(—0,0) and

1
lim E log x(&)= 47, (5.16)
{—> o
The analogous results at — oo hold when r,, >0, with 2" replacing 1%, .

Remark. The notation 4°, and A* follows that of Proposition 4.6.
The uniqueness of these eigenvalues is guaranteed by Proposition 4.3.
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Proof. Take any sequence £, — oo, and let

X+
yn(C)— x(f”)

for each { for which &, + ( € J*. By passing to a subsequence, and using the
estimate (5.4) of Lemma 5.1, we may assume the limit y,({) — y({) exists
at every { € R. The limiting function y: R — [0, c©) is monotone decreasing,
with y(0) =1, satisfies the limiting equation L, y,=0 at every (e R, and
inherits the estimate (5.4) so in particular is positive. It follows from
Lemma 5.2 that there exists Ae(—oc, 0] with 4o , (1) =0, as claimed.

Assume further that Ay, <0. Then by Proposition 4.3 we have
A=1% <0. By Lemma 5.3 we conclude that y({)=K({) e*** for all (R,
with K either v-periodic or constant, as in the statement of that result, and
with K(0) =1 in any case. Note that the properties of the roots of 4, ;. (s)
as described in Lemma 4.2 are used here.

Now fix (>0 so that K({)=1, taking, for example, {v for rationally
related shifts, or any positive  if the shifts are not rationally related. As the
sequence £, is arbitrary, we in fact have that

x(é+£) ,M,C

1 _— =

Py x(¢)

It is now easy to conclude (5.16). Writing any large ¢ as & =¢&,+ n{ for
some ¢y€ [ 1, T+ () and integer n, we have

(5.17)

n

log x(&) =log x(&o) + ), (log x(&o+ k() —log x(&q + (k — 1) {))

k=1

=log x(&,) +nd% {+ i £ (5.18)

k=1

by (5.17), where ¢, =¢&,(&o) = 0 as k — oo, uniformly in &,. Dividing both
sides of (5.18) by n{ and letting n - oo yields (5.16), as desired. O

The following lemma prepares for Lemma 5.6, which will be
instrumental in proving Lemma 8.1, and then Theorem 2.6.

Lemma 5.5. Let x: [1, 00) > R be a nonnegative, monotone decreasing
Sfunction with x(¢) > 0 as & — 0. Then for any re R, we have that

| e+ -x(&) dez = rx(zo) (5.19)

o

provided that ty+min{0, r} > 1.
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Remark. We allow the function x to have discontinuities. If x is
discontinuous at & =1,, then we may redefine x at this point to be either
the left- or right-hand limit x(z,—0) or x(ty+ 0), without changing the
value of the integral. We obtain the strongest conclusion by maximizing the
right-hand side of (5.19), that is, by taking x(7o—0) when r<0 and
X(79+0) when r>0.

Proof. Without loss we may take r, =0. First suppose that » <0, and
let

S={(& »[&>0and x(&) < y<x(E+r)}

Then the integral in (5.19) is simply the two-dimensional measure of the
set S. Let

So=Sn{{& 1) 0<y<x(0)} (5.20)

We shall show that the measure of S, equals —rx(0), thereby establishing
(5.19).

As x is monotone decreasing, we have that for all but countably many
ve (0, x(0)), there exists a unique &o=~Eq(y) such that x(&,+0)< y<
X(¢o —0). Note that ;= 0. For such y, we have

(o, Co—r1S{EE eSSt e[ Eo—r]

from the definition of S. Thus, almost every horizontal line in the range
O < y < x(0) intersects the set S, in an interval of length exactly —r. and
so the measure of Sy is —rx(0), as claimed.

The proof of the case r >0 follows similar lines, but is not completely
analogous. Let

S={(& y)eR?|&>0and x(&+r) < y<x(&)}
and let
So={(& M eR?|E> —rand X(E+r) < p<x(&)}
A{(& »)eR?0< ¥ <x(0)} (5.21)

The measure of S equals the negative of the integral in (5.19). Also, the
same argument used above to calculate the measure of the set (5.20), shows
that S, in (5.21) has measure rx(0). But one also sees that S< S,, which
implies (5.19). O



98 Mallet-Paret

Lemma 5.6. Let x:J* >R be a nonnegative, monotone decreasing
Sfunction which satisfies Eq. (5.1) on J=[1, o) for some teR, and where
x(E) >0 as & — 0. Assume that

N
Y oA4E)=0,  hE=0, &>t (5.22)

and also that the associated homogeneous Eq. (5.2) is asymptotically
autonomous at + oo with limiting coefficients satisfying A4;, >0 for 2<
J<N, and

N
Y 1A, <0 (5.23)
j=2
Then we have that
WE)=0  for almost every &>1, (5.24)

for some sufficiently large t,. If (5.23) is replaced with

rid;, =0

P

J

A;(E)=A4,, identically for all large &, I1<j<N

(5.25)

then the same conclusion (5.24) holds.

The analogous result for nonnegative, monotone increasing solutions of
(5.1) on (—o0, 1], where (5.22) is assumed for {<t, with A;_ >0 for
2<j< N and (5.23) replaced with

rid;_ >0

NG

J

and an analogous condition replacing (5.25), also holds.

Proof. If either (5.23) or (5.25) is assumedly then for some 7,=1
there exist quantities y;,>0 such that

rjAj(é)grjyj, 52105 2<J<N

17, <0

o
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Thus for & > 7, we have that

N
0=L(¢) xe+h(&) =Y A;(E) x(E+r)+h(E)

j=1

N
Y AUEN(E + 1)) = x(&)) +h(E)
j=2

\%

SNYAX(E + 1) — X(EN + (&) (5.26)
j=2

where the equation in (5.22) and the monotonicity of x are used. Assuming
that 74> 7 —r,,,, we integrate (5.26) and use Lemma 5.5 to obtain

N o o0
0> % 5| dE+r)—xOde+[ me)de

j=2 %o Ty

szh(é)dé (5.27)

%o

and hence the final integral in (5.27) is zero by the nonnegativity of /1. This
now implies the result.

The results for solutions on ( — oz, ] are obtained after a change of
variable £ —» —¢&. O

6. THE GLOBAL STRUCTURE OF .#

We return now to the analysis of the nonlinear Eq. (2.1), with the
remainder of the paper devoted to proving the results stated in Section 2.
Throughout, we assume conditions (i)—(v), given in Section 2, as standing
hypotheses. Recall also from Section 2 the additional conditions (vi)—(x)
for a normal family, and condition (xi) for a homotopy of normal families.
These will be used below where noted, although we do not take them as
standing hypotheses.

The results in Section 2 will not be proved in the order in which they
are stated, and in particular the proofs of the various parts of Theorem 2.1
are interspersed as propositions throughout this and the following two
sections. We therefore provide, for the benefit of the reader, a rough outline
of the main points of these sections. The strict monotonicity condition
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P'(¢)>0 of every solution of Eq. (2.1) satisfying (1.3), when ¢ #0, is
proved in Proposition 6.3. In Proposition 6.5 we establish for each pe W
that there is at most one value ce R for which (2.1), with (1.3), possesses
a monotone increasing solution x = P(£). We may thus denote this unique
value by ¢ =¢(p), for every p e W for which such a solution exists. Proposi-
tion 6.5 also proves the uniqueness of the solution up to translation when-
ever ¢(p) #0. Observe that with this, all the uniqueness claims (but not yet
the results on existence) of Theorem 2.1 are established. Also, whenever
¢(p) #0 there is a unique translate of the solution such that P(0)=0,
that is, Pe Wk . We denote this translate by P({, p), or simply by
P(p)e W§ = when the argument ¢ is suppressed. The smooth dependence
of ¢(p) and P(p) on p, whenever c¢(p) #0, is a consequence of an implicit
function theorem argument provided by Proposition 6.4. This establishes
the relative openness of the set U< W in (2.4), and shows that the set .#
in (2.5) is a graph over U, as claimed. The present section also contains
the proof of Theorem 2.2, which describes the asymptotic behavior of
solutions, and it closes with the proof of Proposition 2.4, which gives a
monotonicity property for ¢(p) under a related condition on the non-
linearity F.

Section 7 is largely concerned with the behavior of ¢(p) and P(p) at
the relative boundary (U\U)~ W of U in W. It is shown in Proposition
7.2 that c¢(p)— 0 as p approaches this boundary. Theorem 2.3, which
involves related continuity properties of the solution P(p), is also proved
there. In particular, this establishes the existence of a limiting solution
x=P(¢) for each pe(U\U)n W, with ¢=c(p)=0, thereby proving the
continuity of ¢(p) at such points. The proof of Corollary 2.5 is also given
in this section.

In Section 8 the existence of a solution to (2.1), with (1.3), for every
p e W, is established, thereby completing the proof of Theorem 2.1. Exist-
ence is first proved for normal families which are coercive (or weakly coer-
cive) at +1. First, Theorem 2.6 is proved by means of a homotopy
argument, thereby giving U=(—1,p_)u(p,,l) s W=(—1,1) for some
—1l<p_<p, <l This provides solutions for every peUnW=
(=1L, p_1n[p,,1) Next, the existence of a solution with ¢ =0 for every
pe W\U=(p_, p,) is obtained by means of comparison arguments, using
P(p.) as sub- and supersolutions. It is then a simple matter to prove exist-
ence in general, and thus complete the proof of Theorem 2.1, by showing
that any fixed system (2.1), but with the parameter p absent, can be embed-
ded in a normal family which is coercive.

We now proceed with the above program, beginning with some basic
remarks about linearized systems. If x: R — R is any solution of (2.1) for
some p € V, then we have the linearization about x, namely, Eq. (1.15) with
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coefficients (2.22), (2.23). If ¢ #0, then x'(£) satisfies this equation. The
linearization about any of the three equilibrium solutions x= +1 and
x=gq(p) is Eq. (3.12) with constant coefficients

OF(u, p)
ou

J

A olp) = (6.1)

u=1x(x)

We shall distinguish these three sets of coefficients by denoting

_0F(u, p) A.O(p)jF(u,p)

3
O lumrcen) Ou;

A,-i(p)

(6.2)

u=x(q(p))

Observe that condition (ix) for a normal family says precisely that 4, (p)
is a C! function of pe W.

Remark. Note here a departure from the notation of the previous
sections, in particular (3.14), where we used 4, to denote the limits of
coeflicients 4;(&) as £ — + 0. If we linearize about a solution of (2.1) con-
necting x= —1 to x=1, that is (1.3), then our old notation is still valid.
However, we shall also need to consider solutions joining —1 to ¢(p), or
joining g(p) to 1, in which case (3.14) no longer holds. Henceforth, we shall
use the notation (6.2) exclusively, and will abandon the notation (3.14).

We shall also denote, in the spirit of the above remark, the constant
coefficient operators L (p), and the quantities

N
As.(p)= ) A4;.(p)
i=1

7

where . denotes one of the symbols +, —, or ©. Let us note here that

Ar:(p)=DP(£1,p),  Azo(p)=DPq(p). p) (6.3)

where @ is as in (iv) of Section 2, and note by (v) that A5, (p) <0 and
Aso(p) >0, as long as pe W. We observe by (ii), that for any choice of -
we have A4, (p)>0 for those je {1} U%(p), with of course A; (p)=0
when j¢ {1} U%(p), and so from Proposition 4.3 the linearizations about
the equilibria x= +1 are both hyperbolic. Following the notation of
Proposition 4.6, we let 1%, and 4% denote the unique real [or infinite,
following the convention (4.16)] stable and unstable eigenvalues of these
linearizations.
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Let x;, x,: R— R be any two solutions of (2.1) for some ¢. Then the
difference p(&) = x,(&) — x,(&) satisfies the linear Eq. (1.15) with coefficients

1 0F(u,
Aj(é)zfo ézp)

J

dt (6.4)

u=ta(x), £} + (1 — ) a(x,, &)

Indeed, one sees this from the general formula

dt

1 dF 1— :
F(U’/’)_F(W,p)=JO (tv+(dt nw,p)

-
=%
for any v, we R".

Suppose now that P: R — R is a solution to (2.1) for some p € W, with
¢#0, and with the boundary conditions (1.3) holding. That is, P (or a
translate of P) is the solution described in the statement of Theorem 2.1,
and which occurs in the definition of .# which follows that theorem. Then
the operator A, , associated to the linearization (1.15) about P satisfies
all the conditions of Theorem 4.1 except possibly the condition (4.3)
of exponential decay, and the existence of a nonnegative element p in the
kernel. In the following results, we show that in fact any such P is
strictly increasing, and approaches the limits + 1 exponentially fast as
£ - + o0, and conclude that this 4. ; does indeed satisfy the conditions of
Theorem 4.1.

We begin with a technical lemma.

JlaF(z‘v+(l —Hw,p)

0 auj

dt> (v;—w;)

Lemma 6.1. Let x: R— R be a solution of (2.1) for some pe V with
c#0, let

pu_=inf x(&),  u, =supx(&) (6.5)

{eR £eR
and assume that both u . are finite. Then
u_el—Lagp)luil}, p,e{-1}ulq(p)1] (6.6)
The same conclusion (6.6) holds for

4 =liminf x(¢), # ., =limsup x(¢&) (6.7)

E— o0 E— o

and similarly for the lim inf and lim sup ar — co.
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Proof. With u, first as in (6.5), assuming that both y . are finite, we
shall prove that

Du_,p)<0<P(u,,p) (6.8)
which, by (iv), is equivalent to
pu_el—lLqlp)lull, ), pye(—oo, =1Julg(p) 1] (6.9)

As u_ <., we see that (6.9) implies (6.6).

We shall prove only the second inequality in (6.8), as the proof of the
first is similar. Let &,€R be a sequence such that x(£,) > u, as n— oo.
Then the fact that x, and hence x’, are uniformly continuous (from the dif-
ferential Eq. (2.1)) implies that x'(¢,) — 0. Upon passing to a subsequence,
we may assume for some U that x(&, +r;) = ;< as h— 0, for each J,
and upon inserting ¢ =¢, into (2.1) and taking the limit, we have (noting
that g, =, ) that

O=F(puy, pros sy s s PYSFp sttty st p) =Pl 4, p)

where condition (ii) is used. This now proves the inequality in (6.8), as
desired.

Assume now that px, are given by (67). Let £, — oo be such that
X(E,) >, as n—> oo, and set y, (&) =x(+£,). On each interval [z, o)
the sequence y, is uniformly bounded and equicontinuous, so by passing to
a subsequence we may assume the limit p, (&) — y(¢) holds uniformly on
compact intervals. The function y: R — R is a solution to Eq. (2.1), and
satisfies 4 _ < y(&) <p, for all LeR, and in fact u, =sup, g ¥(&). There-
fore, from the first part of this proof, we have that x4, is in the set as
indicated by (6.9), as claimed. The proof for x_ is similar, as is the proof
for £ > —co. O

Corollary 6.2. Let P: R — R be as solution of (2.1), with the boundary
conditions (1.3 ), for some pe V with ¢ #0. Then

—1<P(¢)<i, éeR (6.10)

Proof. Lemma 6.1 implies that — 1 < P(&) <1 for all & e R. The strict
inequalities (6.10) follow from applications of Lemmas 3.1 and 3.3. O

We now prove Theorem 2.2. Even though Theorem 2.1 is not yet
proved, below we establish the claims of Theorem 2.2 for any solution as
in the statement of Theorem 2.1.
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Proof of Theorem 2.2. We consider only the case of £ — oo, as the
proofs of the results for £ - — oo are similar.

First suppose that ¢ #0. Then y(&)=1— P(&) satisties Eq. (1.15) with
coefficients (6.4), where x,(&) =1 and x,(&) = P(¢) in (6.4). This Eq. (1.15)
is asymptotically hyperbolic at + oo, so (&) = O(e %) as & — oo, for some
a >0, by Proposition 5.3 of Ref. 63. It follows from this exponential decay,
from the formula (6.4), and from the Lipschitz condition (i) on the
derivative of F, that A4,(¢) approaches the limiting coefficients A4;, =
A;4(p) in (6.2) exponentially fast as £ — co. Recalling also that Ay, (p) <0
by (6.3) and condition (v), we see that this Eq. (1.15) satisfies the condi-
tions of Proposition 4.6, at least for £ — oo, As y(&) >0 by Corollary 6.2,
we conclude by Proposition 4.6 the asymptotic formula (2.8) at + oo for
some C, >0 and with 4°, > — oo. In addition, the differentiated version of
that formula holds. Also, the finiteness of A% implies that c¢<0 if
Fmin( ) =0, by (4.16), so we have (2.7).

Now suppose that ¢=0 and r;,(p)<0. The proof of (2.9) follows
similar lines to the proof of (2.8), except that Proposition 5.4 is used in
place of Proposition 4.6. We note, in particular, that Lemma 3.3 ensures
the strict inequality P(¢) <1 for all £eR, as (3.10) there does not hold.

Lastly suppose that ¢ =0 and rg;,(p)=0. Then P(¢+r,)> P(¢) for
every j, as P is monotone increasing. Thus for every & € R we have by (ii)
that

O=F(P(é+rl)9P(f+r2)"“a P(é+rN)’p)
ZF(P(E+r), P(E+r1y), o, PE+11)p)
=@(P(S), p)

hence P(&)e[ —1, g(p)] w1, o) by (iv), and we have (2.10). O

We now prove strict monotonicity of solutions joining the equilibria
+ 1, when ¢ #0.

Proposition 6.3. Let P. R > R be a solution of (2.1), with the bound-
ary conditions (1.3), for some p e W with ¢ #0. Then P'(&) >0 for all £ eR.

Proof. By (2.8) of Theorem 2.2 there exists 7> 0 such that P'(£)>0
whenever [£] =1, and such that P(—r1)< P(¢) < P(t), whenever || <1.
From this we have P(& + k) > P(&) for all £eR, provided that &k > 27. Now
suppose that P'(£) <0 for some &, and set

ko=inf{k>0|P(£ +k)> P(&) for all {eR}
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Certainly ko>0. Also, ky<21, and P(&+ky) = P(&) for all £eR. If
0 <k <k, then P(¢ +k) < P(¢) for some &, where necessarily |£] < 1. There-
fore, there exists some &;, with |&,| <7, for which P(&y+kg) = P(&).
Lemma 3.1 applied to the two solutions x,(&) = P(¢ + k,) and x,(&) = P(£)
of (2.1) implies that P(& + ko) = P(&) either for all large &, or all large —¢,
which is a contradiction. We conclude that P'(¢) <0 is impossible, and so
P'(&)=0 for all EeR.

The strict inequality P'(£) > 0 now follows from another application of
Lemma 3.1, this time to the linearization about P, where we take the two
solutions x,(&) = P'(&) and x,(¢&) =0, knowing that P'(¢) >0 for large |&|.

O

We now see that if P: R — R satisfies Eq. (2.1), with the boundary con-
ditions (1.3), for some p € W with ¢ #0, then the operator A, ; associated
to the linearization about P satisfies all the conditions of Theorem 4.1.
With this we may use the implicit function theorem and establish some of
the claims of Theorem 2.1. Recall (2.19) the map ¥.

Proposition 64. Let (cy, Py, po) € M, with H as in (2.5). Then the
derivative of ¥4,

D, ,%(co, Po, po): RXWE® > L™ (6.11)

at this point, with respect to the first two arguments, is an isomorphism from
Rx Wl ™ onto L™. Thus, by the implicit function theorem, there exists for
each p near po a unique point (¢, P)=(c(p), P(p)) € (R\{0})x W near
(co, Py), depending C' smoothly on p, for which

Y(c(p), P(p), p)=0 (6.12)

and with {c(po), P(po)) = (co, Py). For each such p, the solution P(p) to
(2.1) satisfies the boundary conditions (1.3), hence (c(p), P(p),p)e.#.
This, moreover, accounts for all points of M near (cy, Py, po).

Proof. Consider the linearization (1.15) of Eq. (2.1) about P,, and let
A, 1 as in (2.21) denote the associated linear operator from Wt to L.
We see that this operator satisfies all the conditions of Theorem 4.1, In
particular, the exponential condition (4.3) follows from the exponential
approach of P({) to + 1, by Theorem 2.2. Certainly x = Py(¢) satisfies the
linear Eq. (1.15), so by Proposition 6.3 this gives the nonnegative element
p=Pye A, in the statement of Theorem 4.1. One also sees (4.4), following
from condition (v) and (6.3). Thus by Theorem 4.1, the kernel %4 , of
A, o is precisely the one-dimensional span of Pj.
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The strict positivity Py(0)>0 implies that Py¢ W} *, hence the
restriction of A, , to Wy W" > is one-to-one, and in fact an iso-
morphism from Wy onto its range A, 1 < L=, which has codimension
one. Also by Theorem 4.1, there exists p*e A, ,«, with p*()> 0 for all
£eR, so

™ p*E) ey de>0

Y —o

implying that Po¢ %, , by the Fredholm alternative (3.17). We conclude
from this, and from the formula (2.20) for D, ,%, that the derivative (6.11)
i1s an isomorphism from R x ¥ (')"’0 onto L*, as claimed. With this, the
implicit function theorem yields ¢(p) and P(p) satisfying (6.12).

The proof of the limits (1.3) for P(p) follows easily from Lemma 6.1,
Since P(p) varies continuously with p in L*, the quantities u, =g (p) in
(6.7) for this solution also vary continuously. As u_ (pe)=pu_(pe) =1, we
conclude from (6.6) that x4, (p)=u_(p)=1 for p near p,. With a similar
argument for the limit at — oo, we conclude (1.3) for x=P(p), forall pe W
near pg. O

We have now proved that .# in (2.5) is a smooth manifold, which is
locally the graph of a function from a subset of ¥ into Rx W} ®. Let us
now prove that .# is globally a graph, that is, for each p e W there exists
at most one (¢, P, p)e.#. In fact, we prove all the uniqueness claims of
Theorem 2.1.

Proposition 6.5. For each pe W, there exists at most one value ce R
such that Eq. (2.1) possesses a monotone increasing solution x = P(&)
satisfying (1.3). For each ceR\{0} and pe W, there exists at most one
solution x = P(&) of (2.1), up to translation, satisfying (1.3).

Remark. Following Proposition 6.5 we may define a relatively open
set U= W by

U= {pe W]|there exists ce R\{0} and Pe W ® such that (¢, P, p)e .4}
(6.13)

with .# as in (2.5). By Propositions 6.3 and 6.5 we have that the point
(¢, P, p)e #, normalized so that P(0)=0, is unique for each pe U. Thus
we have well-defined functions

c:U->R\{0}, P U->W§=
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which by Proposition 6.4 are smooth. Also, the sets U, € U in (2.16) are
well-defined and relatively open in U.

Remark. It remains to prove that (2.1), with (1.3), possesses a
monotone solution with ¢ =0 when p e W\U, as claimed by Theorem 2.1.
This will be done in the next two sections. There we shall set ¢(p) =0 for
such p, thereby defining ¢: W — R on all of W. Of course, then one sees
that the set U in (6.13) 1s identical to the set U given in (2.4).

In addition, we show there that the function ¢: W — R so defined is
continuous on all of W, or equivalently, that ¢{p) — 0 as p e U approaches
the boundary (U\U)n W of U in W. We shall also prove Theorem 2.3,
namely that P(p) also approaches a limit satisfying the boundary condi-
tions (1.3).

Proof. Suppose for some pe W that there exist ¢, >c¢,, and
monotone solutions x=P;() of (2.1), satisfying (1.3), with ¢=¢; for
j=1,2. To begin, assume without loss that P,(&) < P,(¢) for some ¢ this
may be accomplished by replacing P, with some translate of itself, namely
by shifting the graph of P, to the left. Also, by (4.11) of Proposition 4.3 we
have that

A e, p) <™ (ca, p) A e, pY<At(cy, p) (6.14)

for the real eigenvalues of the linearized equations at x= +1. [Recall
the convention (4.16), which one uses here when (2.10) applies. Also note
that A" (c,, p) =A% (¢, p)= o is impossible, since then r,(p)=0 and
¢, <y <0 by (4.16), which would contradict (2.7) of Theorem 2.2.
Similarly, 2° (¢,, p)=4%(c,, p)= —o0 is impossible.] From (6.14) and
from Theorem 2.2, it follows that P,(&) > P,(&) for all large |&]. Let

ko=inf{k>0|P (& +k)> PyC) for all EeR}

If both ¢, 20 and ¢, # 0, then much as in the proof of Proposition 6.3, one
shows that P (& +ky) = P,(&) for all £eR, with equality at some &=¢&,.
But then Lemma 3.2 implies these solutions are equal and constant either
as £ —» o« or ¢ » — oo, contradicting Proposition 6.3.

If either ¢, =0 or ¢, =0, then the above reasoning also yields a con-
tradiction, provided that the appropriate one-sided continuity (right or
left) of the solution is taken. To be specific, assume that ¢; > ¢, =0. Then
without loss we may assume that P, is right-continuous everywhere in R,
by replacing it with its right-hand limit if necessary. From the continuity of
P, one has that P,(& +k,) = P,(&) for every £eR, so certainly k> 0.
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We claim that again P;(&q + ko) = Py(&,) for some &, necessarily with
|€o| <1, where 7 is such that P,(&) > P,(¢) for all |£| 2 t. Suppose such &,
does not exist, and so P;(£ +ky) > P,(¢) for all e[ —7,1]. Then for any
fixed &, e[ —17, 7], we observe from the continuity of P, and from the
right-continuity and monotonicity of P,, that there exists ¢ >0 such that
P(E+k)>Py&) for |E—¢,|<e and |k—ko| <e By a simple compact-
ness argument, which entails taking a finite cover of [ —1, t] by intervals
((,—& ¢, t+e), we conclude that there exists k,€(0,k,) such that
PE+ky)>Py(&) for all £e[—1,t]. However, as P(&+k,)> Py(&)
holds also for || =1, we obtain a contradiction to the definition of k.
Having now established the existence of £;, one obtains from Lemma 3.2
a contradiction as before. With this, the uniqueness of c R is established.

Now suppose, for some ¢ # 0, that there exist two solutions x = P;(&),
for j=1, 2, to (2.1), satisfying (1.3), where P, and P, are not translates of
one another. With the same quantities A*. = 1% (¢, p) and 1%, = 2°_(c, p) for
both solutions, we have from Theorem 2.2 that

14 C,_ e 4 0(eH+9%), s o

. s 6.15
1-C;, e* ¢4 O 9%, E- (6.15)

Pj(é)={

for (generally different) constants C;, >0 and £>0. By replacing P,(¢)
with P,{¢ + k), with some k >0, if necessary, we may assume without loss
that C,_ > C, and C,, > C,,, and hence that P (&) > P,(&) for all |£|. By
further shifting the graph of P, to the left, we may assume without loss that
P(&)> Py(&) for all £ eR. Assuming this, set

ko=sup{k>0|P (&)= Py(&+k) for all R}

Then certainly ky< oo and P,(&) = P& +ky) for all £eR, and hence
Ci_=C,_e**and C,, e*+*> C,, . We claim that we in fact have the
strict inequalities

Ci_>C,_eMh ¢, k>, (6.16)

and therefore that P(&) > Py(& + k) for all large |£]. If this is true, then as
before, we have that P,(&,) = P,(&, +k,) for some & eR, which with
Lemma 3.1 yields a contradiction.

To prove the strict inequalities (6.16), let p(&) = P(&) — Po(& + ko).
Then

YE) =(Cyp etrfo—Cy ) e*+ ¢+ O(ePs 9%y, &— (6.17)
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by (6.15), and p(£)=0 for all £eR. Also, y is a solution of the linear
Eq. (1.15) with coefficients (6.4), where ¢&,(&)=P(&) and x,(&)=
Py(& + kg). Moreover, y does not vanish identically on any interval [1, o),
otherwise by Lemma 3.3 it would vanish identically on R, implying the
solutions P, and P, were translates of one another. Proposition 4.6 now
implies that the coefficient C,, e***— C,, in (6.17) is positive, and this
establishes the second inequality in (6.16). The first inequality in (6.16)
follows from a similar argument. This proves the uniqueness of P, for each
c#0. O

Let us conclude this section with a proof of Proposition 2.4, which
establishes a monotone relation (2.15) between the wave speed ¢ and the
parameter p, under condition (2.14).

Proof of Proposition 2.4. With p=p(cg) as in the statement of the
proposition, we differentiate the identity (6.12) with respect to ¢ at g =g,
Recalling the definition (2.19) of %4, we have

—wP(&) + (A, LXxNE) — QL) =0 (6.18)
where P, = P(p(0g,)), and where

d
o x=— P(pla)) ,

do

g =0, l7=ﬂu

c(plo))

W=

d
Q(f)=z;F(“a pla))

“=”(P0y <)
ag=a,

The operator A, ; corresponds to the linearization of (2.1) about P,
and satisfies all the conditions of Theorem 4.1, as in the proof of Proposi-
tion 6.4. Also, n( Py, ) e M as P, is strictly increasing, and so Q(&) <0, for
each ¢ eR, by (2.14). Upon multiplying Eq. (6.18) by the strictly positive
element p* € ., ,. of the adjoint kernel, and then integrating from — o to
+ oc, we obtain

fo 0]

—w [T POPO &[T pO G Ax=0  (619)

— — 0

the term A, ,xeA, , having been annihilated. We conclude from the
signs of the integrands in (6.19) that w > 0, that is, (2.15) holds as desired.
|
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7. THE SINGULAR PERTURBATION LIMIT ¢— 0

In this section we examine how solutions of (2.1) with small ¢ # 0 con-
verge to solutions with ¢=0. In particular, we prove Theorem 2.3 and
Corollary 2.5. We maintain the standing hypotheses (i)-(v) on Eq. (2.1), as
in the previous section.

Recall (6.13) the subset U< W consisting of those parameters pe W
for which there exists a solution of Eq. (2.1), with boundary conditions
(1.3), with ¢#0. We prove in Proposition 7.2 that c=c¢(p)—>0 as pe U
approaches the boundary of U in W. We first need the following technical
lemma.

Lemma 7.1. Suppose for some pe W and ceR that there exists a
monotone increasing solution x_: R— R of Eq. (2.1) such that

limwx_(é)=—1, élimw x_(&)=4q(p) (7.1)

¢m -

Then either there exists a real, negative eigenvalue 1%, <0 of the linearization
of (2.1) about x=q(p) or

"min(P)an c=0 (72)

both hold. Similarly, if there exists a monotone increasing solution x . :
R — R with

lim x,(&)=q(p), lim x,(¢)=1 (7.3)

&> —0 §— oo

then either the linearization about x = q(p) possesses a real, positive eigen-
value 1% >0 or

Fmax(p)=0,  ¢=0 (7.4)

both hold.
In any case, for each pe W and c € R there do not simultaneously exist
monotone increasing solutions x _ and x, on R satisfying (7.1) and (7.3).

Proof. Consider the solution x _, and assume that (7.2) is false. Then
by Lemma 3.3 and the monotonicity of x_ we have the strict inequality
x_(&)<q(p) for all £eR. Let y(&)=q(p)—x_(&). Then y is a strictly
positive, monotone decreasing solution of the linear Eq. (1.15), with coeffi-
cients (6.4), where x,(&) =q(p) and x,(&) =x _(&). If ¢ =0 then r;,(p) <0,
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and by Proposition 5.4 we have the existence of an eigenvalue 4%, <0 of the
linearized equation, namely, 4 1., (4%)=0. As

Ao, Lo 0) = —Azo(p)=—D1P(q(p), p) <0 (7.5)

we have in fact 13, <0, as desired.

Suppose, then, that ¢ #0. We would like to apply Proposition 7.2 of
Ref. 63 directly to p{&) as in the proof of Proposition 4.6, however, we have
no assurance that |M(&)| in the statement of the first proposition decays
exponentially, since the equilibrium x =¢(p) need not be hyperbolic. We
instead take a different approach. By Proposition 4.5 we have the
inequality y'(&) = ay(&) in (4.17), for all £eR, for some ¢ e R. Now take
any sequence ¢, — oo, and let z,(¢)= y(¢+¢,)/¥(&,). Then each z, also
satisfies the left-hand inequality in (4.17), for the same «, on R. As
z,(0) = 1, we conclude that the sequence of functions z,, is uniformly bounded
and equicontinuous on each compact interval, and so without loss we have
that z,(&) — z(&) uniformly on compact intervals. One easily sees that =
satisfies the autonomous limiting Eq. (3.12), (6.1), at x =¢(p) that is, the
linearization of (2.1) about x=g¢(p). Moreover, az(£)<z'(£)<0 for all
£eR, with z{0) =1, so z(&) >0, and - does not decay faster than exponen-
tially.

We may now apply Proposition 7.2 of Ref. 63 to the above solution z,
We conclude that z(¢) = w(&) + O(e ~®*9¢) as & » oo, where w is a non-
trivial sum of eigensolution corresponding to a set of cigenvalues with
Re A= —b <0. The positivity of z, together with Lemma 3.4, implies that
the linearization about x = ¢(p) possesses a nonpositive eigenvalue A%, <0.
As before, 4. 1 .,,(0) <0, so in fact A%, <0.

The proof of the statements about x, are similar.

To prove the final statement of the lemma, first note from Proposition 4.4,
using (7.5), that there do not simultancously exist eigenvalues 1%, <0< A%
as above. Therefore either {7.2) or (7.4) holds; to be specific, assume that
(7.2) holds. But this now implies that

N
AE).Lo(p)(S) = — Z Ajo(p)rje'"!<0 (76)
j=2

as r;>0 for each je #(p). Together with (7.5) we see that (7.6) implies that
there does not exist A% >0 with 4, ; ,(A%)=0. Thus (7.4) also holds,
however, this contradicts the strict inequality in (2.2). We conclude that
there do not Simultaneously exist solutions x, as in (7.1), (7.3). O
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Proposition 7.2, Let p, e U with p, — poe W, and suppose that py¢ U.
Then c(p,) — 0.

Proof. Let us denote ¢,=c(p,)#0 and P,=P(p,)e W} for sim-
plicity, and also ¢, =¢(p,), namely, the zero of @ at p=p,, in condition
(iv). We denote ¢y = g(p,), which is the limit ¢, — ¢4, and as p,e W, we
have that goe(—1,1). We assume for definiteness that ¢, >0 for all n,
the proof for negative ¢, being similar. We finally assume, without loss,
that the limit ¢, — ¢, does exist, although it is possibly infinite, and so
0< ¢y < 0.

We first eliminate the possibility that ¢, = co. Assume that ¢, — oo, fix
a point

94 €(qo. 1) (1.7)

and let x,(&)=P,(c,&+¢,), where &, eR is such that P,({,)=g¢,. Then
from (2.1),

—x (&) =Fx &+ tr), x (et ) n X E4+ e ) p0) (7.8)

for £ e R. The functions x, are uniformly bounded and equicontinuous, as
solutions of (7.8), and without loss we have x,(&)— x(£) uniformly on
compact intervals, after possibly passing to a subsequence. The limiting
function x satisfies —x'(&) = d(x(&), py), obtained by taking the limit of
(7.8). Now x,(0)=g,, hence x(0)=¢,, and so x'(0) = —P(q,, po) <0. On
the other hand, x(&) >0, hence x'(£)=0, for all & This contradiction
implies that ¢, = oo is impossible.

As we wish to show that ¢, =0, let us assume that c,e (0, o0). We
shall prove that p, e U, which is a contradiction. Now fix, in addition to
the point g, satisfying (7.7), a second point ¢, €(—1, ¢o), let £, {,€R be
such that

Pn(én):q*’ Pn(Cn)=q** (79)

and set

X (E)=P,(E+E,), X, () =PL+(,) (7.10)

Again, we may take limits x, (&) —> x (&) and x,_(&)— x_(&), where
both x (&) satisfy the Eq. (2.1) at ¢ =c¢, and p = p,.

Both x, and x_ are monotone increasing bounded functions, and so
possess limits at + oo, which we denote by x (4 o) and x_( 4+ 00). These
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limits are equilibria of the differential Eq. (2.1), and so belong to the set
{—1,¢0,1}. From (7.9) and (7.10), we have x ,(0)=gq,e(q,, 1) and
x_(0)=g,,€(—1, q¢), so necessarily

X (—owo)e{—1, 4}, x, (c0)=1,

x_(—o0)=—1, x_(0)e{qo, 1}

By Lemma 7.1, it is impossible that x , (—o0)=x_(o0)=g¢,, and so either
X,(—ow)=—1, or else x_(oo)=1. But this means that either x, or
x_ satisfies the boundary conditions (1.3), and so provides a point
(cg» P po) € #, where P, is a translate of either x, or x_. Thus pye U,
as desired, completing the proof. O

Let us now set
«p)=0, pe W\U

From the above result we have that ¢: W — R is continuous on all of W.
Of course, we hare not yet shown the existence of a solution P(p} as in the
statement of Theorem 2.1 when ¢(p)=0. Theorem 2.3, which we now
prove, gives such a solution in particular for p e (U\U) n W on the bound-
ary of U in W. Following this, we prove Corollary 2.5.

Proof of Theorem 2.3. In a standard fashion, we may assume upon
passing to a subsequence, that the limit (2.11) of the monotone functions
x =P, (&) holds at every £ € R, Taking this limit in the integrated form

¢
G PAE = PoO) = [ FP 4 10) P41 P61 )
of (2.1) yields, for each &,
4
0= L F(Po(s+11), Pols + )y s PolS+Fn)s o) ds

which when differentiated gives (2.12) almost everywhere for x = Py(¢). In
fact (2.12) holds at every ¢ for which £ +r, is a point of continuity of P,
for each j, and hence at all but countably many &,

Upon taking either limit £ — + 0 in (2.12), with x = Py(&) we obtain

0= F(Po(£00), Po(£0), ... Po(£00), po) =P(Po( +0), po)
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which implies that
Po(too)e{—1,q(po) 1} (7.11)
If g(po) e { —1, 1}, then we are done, so assume that g(p,)e(—1, 1), that

is, pye W. Fix any points ¢, and g, satisfying —1 <q,, <q(po) <q, <],
and much as in the proof of Proposition 7.2, let &,,{,€R be such that

Pu(S) <Gy <l
s S P <qy, (,<E<S,
P8) 24y, <><

Without loss we may assume the limits &, - &, and {,— {, both exist,
although possibly are infinite. It is enough to show that the difference
&, — ¢, is bounded. Indeed, if this is the case, and if £, (and hence also {,,)
are themselves bounded, so that &, and {, both are finite, then Py(¢) <gq,,
for all £ <{, and Py(¢) = ¢, for all £>¢&,, which with (7.11) implies (1.3).
If, on the other hand, &, ={,= o, then Py(&) <q,,, hence Py(¢) = —1, for
all £eR, and if £y ={,= — o0, then Py(&)=1 for all £eR.

To prove that ¢, —{, is bounded, assume that &, —{, - oo, and define
X,y (&) by (7.10). Upon passing to a subsequence and taking limits
Xn4 (&) = x (&), as above, we obtain solutions of (2.12) which satisfy the
four boundary conditions in (7.1), (7.3), with g(p,) replacing g(p).
However, this is impossible by Lemma 7.1.

The final claim in the theorem is established by taking ¢, and g, in
the above argument to satisfy also ¢,, <P,(0)=0<gq,. In this case
£, <0 <¢, holds, and it follows that both &, and {,, are themselves bounded.
From here the boundary conditions (1.3) follows easily. O

Proof of Corollary 2.5. The strict monotonicity (2.17) follows from
Proposition 2.4 using condition (viii) in the definition of a normal family.
The remainder of the corollary follows from the continuity of ¢(p). O

8. THE EXISTENCE OF SOLUTIONS

In this section we prove Theorem 2.6 by globally continuing a solution
along a homotopy between two normal families. As the families are coer-
cive at 1, we are able to maintain ¢ 50 throughout the homotopy. We
then complete the proof of Theorem 2.1 by constructing solutions for
pe W\U, using an argument involving sub- and supersolutions.
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Lemma 8.1. Suppose (2.1) is a normal family which is either coercive
or weakly coercive at +1. Then there does not exist a solution P.R — R
which is monotone increasing on R and Which satisfies the boundary condi-
tions (1.3 ), with ¢ =0 and p = 1. The analogous result for a family which is
coercive or weakly coercive ar —1 holds, with p=—1.

Proof. Assume (2.1) is coercive at +1, and that P is monotone
increasing and satisfies (2.1), with (1.3), for ¢=0 and p=1. Let us write
(2.1) for this solution as

0=F(P(E+r), P(E+ry), . PE+Ty). 1)
— F(P(S), P(E), ., P(S), 1)+ B(P(S), 1)

N
=Y A;ENPE+r)—P(E)+BPE), 1)
j=2

N
- Z Aj(é)(x(é"'rj) —x(&))—h(&)

j=2

= =YNA; (&) X(E+ 1) —hE)
j=1

where here
1 0F(u, p) )
A.(&)= dt, 2< €N
SA€) -[0 Ou, u=m(P. &)+ (1= 0 K(P(E) /
P
N
A& == 4,00, (&)= —D(P(&), 1)
j=2

and where we denote x(&)=1— P(£). We note that (&) =0 for all £ and,
also, that the limits as & — oo in (3.14) hold, with

N
Y rd;, <0 (8.1)

j=2
in the case of coercivity (2.18). In the case of weak coercivity the inequality
in (8.1) may not be strict, although 4,({)=A4;, identically for large ¢. In
any case, note that r; (1) <0, since r (1) =0 would imply that the left-
hand side of (8.1) is positive. Thus A(¢)=0 for almost every large &,
by Lemma 5.6, and so x(&) =0, that is, P({}=1 for all large £. But this
contradicts Lemma 3.3 since r (1) <0, and so completes the proof. [

Recall the system (1.17), with the nonlinearity (1.16), described in the
Introduction. Also recall that P(¢) =tanh ¢ is a solution to this system for
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c=1 and ¢=0. As noted in Section 2, this system is a normal family with
the parameter p = ¢, and moreover it is coercive at + 1. This system plays
a key role in the following proof.

Proof of Theorem 2.6. Assume (2.1) is a normal family which is either
coercive or weakly coercive at + 1, and denote the nonlinearity F there by
F(u, p) = F\(u, p). Similarly consider the system (1.17), with (1.16), with
the nonlinearity there denoted by Fy(u, p). Form the homotopy (2.26), that
is,

—ex'(&) = (1= p)y(x(& — k) — x(&)) — f(x(&), P))
+/3F1(X(€ +rl)’ X(é + 7'2), ooy X(é + rN)’ ,5) (82)

with f as in (1.16). Certainly, the system (8.2), which is a homotopy
between normal families, is coercive at +1 for each fixed pe[0, 1), and
either coercive or weakly coercive at +1 when p=1. For each p let us
denote by p, =5 _.(p) the value p, of the detuning parameter as in the
statement of Corollary 2.5. Then U, € W=(—1, 1)x [0, 1] for the system
(8.2) is given by

U, ={(3, ) e(=1,)x[0, 1115 (p)<p<1)
Moreover, since the system (8.2) at =0, with 5 =0 and ¢ =1, possesses

the solution x =tanh &, we have that (0,0)e U, that is, §,(0) <O.
We claim for all sufficiently small ¢ > 0, that

{(1—¢} x[0,11€ U, (8.3)
or equivalently that j_,(p)<1—¢ for all pe[0, 1]. Suppose that (8.3) is
false for all £>0. Then taking a sequence ¢,,— 0, we have quantities
o, € (0, 1] such that

{I—Sm}X[O,Um)§U+, (1~8m,0'm)¢U+
as U, < Wis relatively open. Also, ¢(1 —e¢,,, p) — 0 as p — a,, from the left,
for each m, by Proposition 7.2, hence there exists {,,€[0, ¢,,) such that

ol—e,,(n)—0 as m— . Denoting p,,=(1—¢,,.(,)eU,, we have
upon passing to a subsequence that

Pm—po=(1,{o) € 14
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for some {,€[0,1]. Now letting P, (&)= P(&, p,,) denote the solution
P,e W, to Eq. (8.2), with ¢=c(p,,), upon passing to a further sub-
sequence, we obtain by Theorem 2.3 a monotone solution x = Py(&) to the
equation at py = (1, {,), with ¢ =0, which satisfies the boundary conditions
(1.3). However, the normal family (8.2) at § =, is coercive or weakly coer-
cive at +1, so by Lemma 8.1 does not possess such a solution P,. With
this contradiction, the proof is complete. O

Proposition 8.2. Consider a normal family (2.1), for which p, <.
Suppose also that p, > — 1. Then there exists, for p=p ., with ¢=0, a
monotone increasing solution x = P(&) on R which satisfies the boundary con-
ditions (1.3). The same conclusion holds for p _ if —1<p_<1.

Proof. This is a straightforward application of Theorem 2.3, with
pa€(p,, 1) any sequence with p, — p, . The assumption p, > — | ensures
that p, e W=(—1,1), and so ¢,=c(p,) — 0 by Proposition 7.2. |

The next two results concern values p € W\U. Using sub- and super-
solutions, we shall obtain a monotone solution x = P(&) to (2.1), satisfying
(1.3), for ¢=0. By a subsolution of (2.1) with ¢=0, for some pe V, we
mean a function x: R — R, not necessarily continuous, for which

F(-’C(é+rl)s'\‘(é+r2)s---’x(é_"_rN)vp);O, CGR

and by a supersolution with ¢ =0 we mean such a function satisfying the
opposite inequality

F(x(E+r), x(E+7r3), .y x(EFT1x), p) <0, eR

We note that we shall only be concerned here with sub- and supersolutions
with ¢ =0, as above.

Lemma 8.3. Suppose for some pe V, that B is a nonempty set of sub-
solutions to (2.1), and that there exists a pointwise upper bound

x(&)<K(&), ¢eR, xe
for some K: R — R. Then the function xy: R — R given by

Xo(&) = sup x(¢) (84)

xed

is also a subsolution.
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Proof. Fix £eR, and let £>0. Then there exists é > 0 such that

|F(uy, Xo(E+13)s s Xo(E+ 1), P)
_F(xo(é'f' rl)’ x()(é + r2)5 ) XO(é +rN)a P)| Ss

whenever Ju; —xo(&+r)| <0 (8.5)
There exists x € Z such that x(&) < xo(&) < x(&) + . We therefore have
F(x(&+ry), xo(S+12)s o Xo(E +7x), p)
= F(x(E+1y), X(E+713), 0 X(E+1y), p) =0
as xo(¢ + 1) = x(&+r;) for every j, and with (8.5) we conclude that
F(xo(E+ry), xolE+r3)s s Xo(E+TN), p) = —¢

Since ¢ is arbitrary, as is £, we conclude that x; is a subsolution. O

Proposition 84. Suppose for some peV that there exist x_:R—-R
and x . : R > R, which are sub- and supersolutions respectively, and which

satisfy
x_(£)<x,(£), <CeR (8.6)

Then there exists P: R > R, with x _(&) <P(E)<x (&) for all £ R, which
is a solution to (2.1) with ¢c=0. If in addition x . is monotone increasing,
then P can be chosen monotone increasing.

Proof. Let
% = {x: R— R|x is a subsolution, and
x_(E)<x(&) < x (&) forall Ee R}

and let

P(E) = sup x({)

xeR

Then P is a subsolution by Lemma 8.3, and we claim that it in fact is a
solution. Suppose, to the contrary, that

F(P(Ey+ry), P(Eg+T3), oy P(Eg+FN), p) >0
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at some £yeR. Let us first observe the strict inequality P(&,) <x (&) at
this point. If this were false then P(&y) =x,(&,), and one obtains

Flx (Co+ry)x, (Co+ra), s X (Eg+Tp), p)
ZF(P(&Eg+ry), P(Eg+1,), oy P(Eg+ry), p)>0

a contradiction.
Next define P: R - R by

_ (P&, E#E,
P(é)‘{mfws, E=¢,

where ¢ > 0 is sufficiently small that

F(ﬁ(éo+rl)s F(f.o“"'z), - F(éo+’~),P)>0

holds and so that also P(&y) < x . (&,). At any & # &, we also have that

F(F(é-i_rl)’ F(é+r2)’ evey P(é+rN)’p)
ZF(P(CHr), P(C+rs), o, P(E+ry), p) 20

as P(E+r)=P(E+r)), while P(E+r;) = P(E+r) for 2< j< N. Thus Pis
a subsolution, and so Pe %A. However, P({,) > P(&,) contradicts the defini-
tion of P as the supremum of elements in 4. From this contradiction we
conclude that P is a solution.

Suppose, in addition, that x_, is monotone increasing. We shall show
that for any x € 4, the function

X(&) =sup x(s) (8.7)

s<{

also belongs to B. As x(&) < x(&) for all £eR, it follows that the function
P given by (8.4) is monotone increasing, as claimed.

One easily checks from the monotonicity of x, that
x_(&) < X&) € x, (&) for all &, so all that must be shown is that X is a sub-
solution. Fix any £ € R, and let 5, <& be such that x(s,) - %(&), using the
definition (8.7). Then

O F(x(s,+ 1), X(8,+72)s ey X(8,+1y) p)
s F(X(Sn+ rl)a .’X-'(é + r2)’ ey f(é + rN)’ /’)
= F(HE+r), X(E+r3), 0 X(E+ry), p)

which implies that ¥ is a subsolution. O
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The next result shows how the real eigenvalues A* and A% of the
linearization about x= +1 in a normal family vary with p.

Proposition 8.8. For a normal family we have that

775 0A°,
7 >0, o >0

for any ceR and pe(—1,1) for which A* (c, p) or 2% (c, p) is finite.

Proof. These results follow directly from Proposition 4.3 once we
show, for each p, that

—w_eM*, w,eM* (8.8)
for the two vectors w, € R” defined componentwise by

wie = A (p), I<j<N

where 4, (p) are the coefficients as in (6.2). These coefficients are Clin
p by condition (ix). Moreover, from condition (viii) and the fact that
@D(+1, p) =0 we see directly that

yoo 0%*F(u, p)
+Y oA (p) =+ Y 5o

)i =0, veM (8.9)
j=1 j=1 0p 6u u=r(x1) *

and so (8.8) will follow once we show the inequality in (8.9) is strict. Now
Mz <(0,0)" is an open set, and so if (8.9) is an equality for some
ve M ;, necessarily

A (p)=0 for each j (8.10)

However, condition (x) is simply the inequality

Z Aj:tp

and so (8.10) is impossible. O

We will be able to complete the proof Theorem 2.1 once we have
the following lemma, which shows that any system (2.1), but without a
parameter p, can be embedded in a normal family. In fact, by possibly
introducing two additional shifts r_, and r, , ,, the normal family can be
made coercive at + 1.
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Lemma 8.6. Consider a system

—ex'(§) = Fo(x(E+r1), x(E+73), oy X(E+ 1Y) (8.11)

as in (2.1), satisfying (i)-(v), but for which the parameter p is absent.
Assume that q=gqoe(—1, 1) for the quantity in condition (v). Then there
exists a normal family (2.1), possibly with N replaced by N+ 1 or by N+ 2,
which is coercive at + 1, and which reduces to (8.11) at p=q,.

Proof. Denoting ®y(x) = Fy(x, X,..., x), we see that it is straight-
forward to find a C' smooth function @:Rx[—1,1]—>R such that
@D(x, p) satisfies conditions (iv) and (v) for all pe[ —1, 1], with g(p)=p
identically (thus @(p, p) =0), satisfies condition (x), and such that also

D(x, qo) =Py(x), xeR
0P(x,
%w, xe(=1,1), pe(—1,1)

[ We note here that the given function &, may have multiple local maxima
and minima in ( — 1, ¢,) and in (g,, 1), so some care is needed in construct-
ing @.] For such &, let F: R¥x(—1,1)— R be given by

F(ul, Ugyers Upy p) = Foltly, Up,es i) + P(uy, p) — Polu,y)

It is now easy to see that the system (2.1) with this F is a normal family,
which of course reduces to (8.11) when p=gq,.

A final modification is needed to produce a normal family which is
coercive at + 1. This is accomplished by introducing two new variables
Uy, and uy -, with shifts ry | and ry, , satisfying

rNe1<0<ry,s
We define F: RV *2x[—1,1]->R by

Fluy, uy,s iy 5, p)

=Fluy, gy i, p)+ K (p)uyy—u)) + K _(pHupyyr—uy)

with coefficients K, (p) to be determined. We require first that K, (p) be
C! in p and satisfy

K,(p)=0, + Ky (p)=20, pe[—1,1]
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With this, all conditions (i)—(x) for a normal family hold. Note in par-
ticular that K, (p) >0 implies condition (ii), with N+ 1e%(p) if and only
if K, (p)>0,and N+2e%(p)ifand onlyif K_(p)>0. Also, £ K'.(p) 20
implies condition (viii). Next, our modified system must reduce to (8.11) at
P = 4o, and this requires that K, (p,)=0. Finally, coercivity is achieved by
choosing ry,, and ry,, to have sufficiently large norm. Indeed, our
system is coercive at +1 if

N OF(u, p)

Z Fy Fl

= U lu=x(n)
p=1

+ry 1K (1)<0

with a similar condition for coercivity at —1. One easily sees that it is
possible to choose K, (p) satisfying all the required conditions. O

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1. With the exception of existence of a monotone
solution for each pe W\U, with ¢=0, all the claims of Theorem 2.1 have
been proved. [ Here the set U < W is defined by (6.13), with .# as in (2.5).]
In particular, the monotonicity condition (2.3), when ¢ #0, follows from
Proposition 6.3. The uniqueness of ¢, and of P when ¢#0, is given in
Proposition 6.5. The smooth dependence of ¢ =c¢(p) and of P=P(p) on
p e U, that is when ¢(p) #0, is given in Proposition 6.4. Finally, if we set

dp)=0, peW\U

then Proposition 7.2 implies that ¢: W — R so defined is continuous.

We consider then any given system (8.11) as in the statement of
Lemma 8.6. By this lemma, the system (8.11) can be embedded in a normal
family (2.1) which moreover is coercive at 4+ 1. By Theorem 2.6 we have
—l<p_<p, <1, and so a solution (¢, p), as required, exists for pe U=
(=L p_)u(p,,l) Also, by Proposition 8.2 there exist monotone solu-
tions of (2.1) satisfying (1.3) for ¢ =0, at p =p . Let us denote these solu-
tions by

x=x,({) for p=p_, x=x_({) for p=p, (8.12)

[ Observe the reversal of signs + in the above definition (8.12) of the solu-
tions x, . We choose this notation so as later to conform with the notation
of Proposition 8.4.]

Now fix any poe(p_, p, ). It is enough to obtain a monotone solution
x = P(&) of (2.1) satisfying (1.3), for ¢ =0, at this p,. In fact, the solution P
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will be obtained from Proposition 8.4 by showing for p = p, that x_ and
x, are sub- and supersolutions, respectively, which satisfy (8.6).
We first establish (8.6). In fact, it is enough to show that

X_(O)<x,6), =T (8.13)

for some 7, since the inequality (8.6) on all of R can then be achieved by
replacing either x_ or x, with a translate of itself. By Proposition 8.5 we
have that either

— 00 <2%,(0,p_) <A(0,p,) (8.14)
or else that
—00=4%(0,p_)=4A%(0,p,) (8.15)

for the stable eigenvalues of the linearization about x=1. In particular,
A%(0, p, )= —o0 holds if and only if r,(p.)=0, by (4.16). From (2.9)
and (2.10) of Theorem 2.2 we thus conclude in either case (8.14) or (8.15)
that

x_(§)<x,(8),  &=27

for some 7. With a similar argument at — co, we obtain (8.13).

We now show that x_ is a subsolution, omitting the similar proof
that x, is a supersolution. We have from the monotonicity of x_ that
n(x_,¢)e M, where M [ —1,1]" denotes the closure of the set M in
(2.13). With condition (viii) in the definition of normal family, it follows
that

0=F(7t(x_,C),P+)<F(7f(x—,é)’l70)

as p, > pg. This implies that x_ is a subsolution for p = py, and completes
the proof of Theorem 2.1. O
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