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Chapter 1

Introduction

Major depression is caused by a gene, which causes serotonin shortage in the brain.
True or false? Likewise: extraversion causes party-going in individuals. Again:
true or false? These and similar statements are not a figment of my imagination,
these are real statements in either the scientific literature or in the popular press;
and these statements depict a deceptively simple picture of what psychological con-
structs such as major depression and extraversion are. Small and inconsequential
as such statements may seem, they speak volumes of how people—scientists and
laypeople alike—(implicitly) think about psychological constructs in general: for
example, 1) they are ultimately reducible to specific (neuro)biological properties
(e.g, disorder X is caused by gene A), 2) they operate in the minds of individual
people (e.g., personality trait Y is somewhere in my brain), and 3) we know for
a fact how these constructs, in your and in my mind, operate to cause a con-
stellation of (pathological) thoughts, feelings, and behaviors (e.g., we know how
disorder X causes symptoms B and C). One of the main forces that drove the
inception of this dissertation was the realization that these statements are most
likely false. Let us consider some of the facts: despite tremendous efforts to find
it, there is no gene (or constellation of genes) that explains more than a fraction of
the phenotypic variance in major depression, or any other psychological construct
(Kendler, 2005a; Stefanis, 2008); antidepressants, which aim to augment available
serotonin levels in the brain, do not work in all patients with major depression
(e.g., Lacasse & Leo, 2005); there is no single experiment that has ever shown how
exactly extraversion causes party-going behavior in individual people (Cramer,
van der Sluis, et al., 2012); etc. That is, given the actual findings, it is at best
premature to claim to know what psychological constructs are and how they are
caused, let alone presupposing that biological reductionism should be the ultimate
goal of psychological science. At worst, we are essentially clueless regarding the
nature of psychological constructs.

There is one thing that we do know, which forms the starting point of this
dissertation: undisputed and consistent, perhaps the number one fact in clinical

Partly adapted from: Cramer, A. O. J., & Borsboom, D. (under review). Problems attract
problems: The network perspective on mental disorders.

Borsboom, D., & Cramer, A. O. J. (in press). Network analysis: An integrative approach to
the structure of psychopathology. Annual Review of Clinical Psychology.
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2 1 INTRODUCTION

and personality psychology is that some (pathological) thoughts, feelings, and
behaviors co-occur more often with one another than with other thoughts, feelings
and behaviors. For example, liking parties and liking people tend to co-occur in
individuals while liking parties and sorting one’s socks by color do not. Likewise
in psychiatry, since the early 20th century, psychiatrists such as Kraepelin (1923)
and Lewis (1934) have observed that, for example, depressed mood and feelings
of guilt tended to co-occur more frequently with one another than, say, depressed
mood and having panic attacks. Now, the number one question is, or should be,
what causes these specific patterns of covariation? What is the glue that holds
together some (pathological) thoughts, feelings and behaviors?

For decades the answer has been: different underlying causes. That is, in per-
sonality psychology, the dominant idea is that, for instance, liking parties and
liking people co-occur because they share the same underlying cause, namely ex-
traversion. Liking parties and sorting one’s socks by color, in contrast, covary
to a lesser extent because they have different underlying causes: liking parties is
caused by extraversion while sorting socks by color is caused by conscientiousness.
Likewise in psychiatry, depressed mood and feelings of guilt co-occur frequently
because they are caused by the same underlying disorder: major depression. In
contrast, depressed mood and panic attacks do not co-occur as frequently because
they are caused by different disorders: depressed mood is caused by major depres-
sion while panic attacks are caused by panic disorder. In particular for mental
disorders, the idea of disorders being common causes of their symptoms proba-
bly has its roots in the successful paradigm of Western medicine (Hyland, 2011).
For quite some medical diseases, it makes sense to postulate that disorders cause
their respective symptoms: for example, a lung tumor that, because of its physical
presence in someone’s lungs, causes shortness of breath, chest pains and coughing
up blood. This medical disease model is exactly what has fueled the quest for the
analogy of the ‘tumor’ in the case of mental disorders: some pathophysiological
correlate that, like a lung tumor, causes the symptoms of a particular mental dis-
order. For instance, in the case of major depression, a plethora of work appears
to show that major depression is associated with a host of pathophysiological cor-
relates: e.g., serotonin depletion, allelic variants of certain genes that appear to
predict treatment outcome (Ogilvie et al., 1996; Serretti, Kato, De Ronchi, & Ki-
noshita, 2007; Wong, Dong, Andreev, Arcos-Burgos, & Licinio, 2012), and atrophy
in brain areas such as the hippocampus (MacQueen & Frodl, 2011; Sheline, Wang,
Gado, Csernansky, & Vannier, 1996).

The problem, however, with many of these findings is at least fourfold: 1) speci-
ficity : abnormalities in the serotonin reuptake function, for example, are not only
implicated in the etiology of major depression but in that of obsessive-compulsive
disorder, substance abuse and anxiety disorders (Nakamura, Ueno, Sano, & Tan-
abe, 2000); 2) explained variance: when combining all possible candidate genetic
variants, they still explain only a very small portion of the variance in major de-
pression (Wong et al., 2012); 3) cause or effect : for hippocampal atrophy, for
example, it is not clear whether this is a cause or effect of (repeated episodes of)
major depression (MacQueen et al., 2003); and 4) no omnipresence: serotonin
depletion, for example, is not present in a substantial proportion of patients with
major depression (Lacasse & Leo, 2005). As such, given these problems, the com-
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mon causes that correspond to mental disorders (the ‘tumors’) either do not exist
or else are very hard to find. There are two ways in which one can respond to such
a gap between theory and empirical evidence. One way, the road that has usually
been taken in the past years, is that we should look harder. With more partic-
ipants, better research equipment and ever more intricate ways of analyzing the
data, we will eventually find the ‘tumor’ equivalent and its associated physiological
and genetic abnormalities. The other road, and the one we, and others (McGrath,
2005; Kendler, Zachar, & Craver, 2011) have taken, is to accept these findings as
an indication that we may need to rethink the nature of mental disorders, and of
psychological constructs in general.

So if not common causes, what then is the glue of (ab)normal mental life?
In this dissertation, I will argue that direct interactions between (pathological)
thoughts, feelings and behaviors in a network are the glue. As such, liking parties
and liking people do not covary because they are both caused by extraversion;
they covary because they directly interact with one another: e.g., enjoying the
company of other people prompts a person to seek out environments in which one
can mingle with people, for example at parties. Likewise, depressed mood and
feelings of guilt do not co-occur frequently because they are both caused by major
depression; they covary because of a direct relation: e.g., depressed mood causes
a person to feel guilty towards friends and family for being so blue all the time. In
Chapter 2, this network approach will be explicated and exploratively tested for
mental disorders, in particular for comorbidity between major depression and gen-
eralized anxiety disorder. Also, the network model will be conceptually contrasted
to the mathematical formalization of the common cause idea, namely latent vari-
able models. In Chapter 3, I respond to various commentaries that were written in
reply to Chapter 2. In Chapter 4, I will show that the network model explains the
phenomenon that various stressful life events (e.g., the loss of a loved one) influence
different symptoms of major depression; a finding that is not easily accommodated
by latent variable models. In Chapter 5, I present a mathematical formalization
of the network model in which the probability of a symptom becoming activated
is a logistic function of the activation of its neighboring symptoms in the network.
Additionally, I show that this model is able to explain empirical phenomena such
as spontaneous recovery, and that the model accommodates taxonomic as well as
continuous views on major depression. In Chapter 6, I outline a network per-
spective on normal personality traits and show how taking this perspective might
change our outlook on the concept of a ‘trait’, the relationship between genes and
traits, and between personality and psychopathology. In Chapter 7, I respond to
various commentaries that were written in reply to Chapter 6. Finally, Chapter 8
provides a practical guide to construct and analyze networks.
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Chapter 2

Comorbidity: A network

perspective

Abstract

The pivotal problem of comorbidity research lies in the psychometric foundation it rests on, that
is, latent variable theory, in which a mental disorder is viewed as a latent variable that causes a
constellation of symptoms. From this perspective, comorbidity is a (bi)directional relationship
between multiple latent variables. We argue that such a latent variable perspective encounters
serious problems in the study of comorbidity, and offer a radically different conceptualization
in terms of a network approach, where comorbidity is hypothesized to arise from direct rela-
tions between symptoms of multiple disorders. We propose a method to visualize comorbidity
networks and, based on an empirical network for major depression and generalized anxiety, we
argue that this approach generates realistic hypotheses about pathways to comorbidity, over-
lapping symptoms, and diagnostic boundaries, that are not naturally accommodated by latent
variable models: Some pathways to comorbidity through the symptom space are more likely than
others; those pathways generally have the same direction (i.e., from symptoms of one disorder
to symptoms of the other); overlapping symptoms play an important role in comorbidity; and
boundaries between diagnostic categories are necessarily fuzzy.

Adapted from: Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom, D.
(2010). Comorbidity: A network perspective. Behavioral and Brain Sciences, 33, 137-150.
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6 2 COMORBIDITY: A NETWORK PERSPECTIVE

If suffering from a single mental disorder is bad, suffering from multiple mental dis-
orders (i.e., comorbidity) is worse. Compared to suffering from a single mental disorder,
comorbidity is consistently associated with a greater demand for professional help, a
poorer prognosis, greater interference with everyday life, and higher suicide rates (e.g.,
U. Albert, Rosso, Maina, & Bogetto, 2008; T. A. Brown, Antony, & Barlow, 1995; Scho-
evers, Deeg, van Tilburg, & Beekman, 2005). Also, among people who meet diagnostic
criteria for one mental disorder, approximately 45% receive additional diagnoses (e.g.,
Kessler, Chiu, Demler, & Walters, 2005). Thus, comorbidity is a widespread and serious
problem, the underpinnings of which need to be unraveled. Indeed, the comorbidity issue
has been studied extensively in the past decades (e.g., Anderson, Williams, McGee, &
Silva, 1987; Angold, Costello, & Erkanli, 1999; Boyd et al., 1984; T. A. Brown, Camp-
bell, Lehman, Grisham, & Mancill, 2001; Kashani et al., 1987; Kessler et al., 1994,
2004; Kessler, Berglund, Demler, Jin, & Walters, 2005; Low, Cui, & Merikangas, 2008;
Merikangas et al., 1998; Moffitt et al., 2007; Neale & Kendler, 1995).

However, although considerable progress towards furthering our understanding of co-
morbidity has been made, some pivotal questions remain unanswered. Probably the most
crucial question is what we observe when two disorders covary: a genuine phenomenon
that is independent of our diagnostic criteria, measurement scales, and measurement
models, or (in part) an artifact of the structure of these criteria and models (e.g., see
Borsboom, 2002; Neale & Kendler, 1995)? The former possibility holds that a gen-
uine source of comorbidity rates exists. As such, the disorders themselves are comorbid,
which causes the symptoms of such comorbid disorders to correlate. The latter possibility
holds that comorbidity is produced by the way we empirically identify these disorders;
for instance, because disorders often share a number of symptoms, which leads to an
artificially increased comorbidity rate. Thus, in this view, comorbidity is an artifact of
the diagnostic system.

In this chapter, we argue that these possibilities are not exhaustive. Specifically, we
argue that comorbidity is not an artifact. However, we do contend that comorbidity,
as it has been studied so far, is dependent on the way we psychometrically portray
disorders and comorbidity between them: namely, with a latent variable model (e.g.,
factor models, item response models). Within this psychometric framework, comorbidity
is generally conceptualized as a (bi)directional relationship between two latent variables
(i.e., disorders) that underlie a set of symptoms. In our view, there are good reasons
to doubt the validity of the psychometric assumptions that underlie this approach. We
discuss these reasons and propose an alternative conceptualization of the relation between
symptoms and disorders that offers a natural way of explaining comorbidity

The central idea is that disorders are networks that consist of symptoms and causal

relations between them. In a nutshell, what binds, say, the set of depression symptoms, is
that they are thus connected through a dense set of strong causal relations. With regard
to comorbidity, such a network approach presents a radically different conceptualization
of comorbidity, in terms of direct relations between the symptoms of multiple disorders.

In contrast to existing perspectives, it is inappropriate to say that the symptoms
measure the disorder in question. The reason is that the presence of direct causal rela-
tions between symptoms contradicts the essential assumptions that underlie psychology’s
main class of measurement models (latent variable models; e.g. Borsboom, 2005, 2008b).
In fact, a network approach nullifies the need to invoke latent variables as an explana-
tion of the covariance between symptoms. In a network approach, the relation between
symptoms and disorders (or, more generally, test scores and constructs) should not be
viewed as one of measurement, but as one of mereology : The symptoms do not measure
the disorder, but are part of it (see also Markus, 2008 for a discussion of the role of mere-
ology and causality in statistical modeling). This is consistent with McGrath’s (2005)
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observation that theoretical terms in psychology, such as ‘depression’, may often refer to
complex constellations of variables, rather than to a single latent structure.

Hence, it is likely that comorbidity’s true colors are obscured by methodological prob-
lems that spring from the assumptions underlying current techniques. The specifics of
those problems vary, but all bear one striking resemblance: they are at least in part at-
tributable to the notion that one can focus on diagnoses in current comorbidity research,
because diagnoses serve as reliable proxies for the latent variables that supposedly un-
derlie them. In this chapter, we provide an in-depth discussion of these problems and
show that the network approach avoids them.

The structure of this chapter is as follows. First, we introduce the network approach
by contrasting it to the latent variable variable model. We subsequently propose an inte-
grative way to visualize comorbidity as a symptom network, and discuss the basic features
of an empirical network for major depressive disorder (MDD) and generalized anxiety
disorder (GAD), based on data from the National Comorbidity Survey Replication1 .
Then, we discuss three additional methodological problems that characterize current co-
morbidity research and argue that adopting a network approach may help in answering
questions that are, in our view, crucial when painting an accurate picture of comor-
bidity: How important are symptoms that overlap between two disorders as sources of
comorbidity? Can we identify symptoms of a disorder that put someone at more risk of
developing a second disorder compared to other symptoms? Is there an order in which
people generally develop one particular disorder first and another disorder second?

Mental disorders: Networks of directly related

symptoms instead of latent variables

Measurement models used in clinical and personality research have one thing in com-
mon: the assumption that there is some attribute we cannot observe directly (i.e., is “la-
tent”)—MDD or extraversion, for instance—and therefore, must be measured indirectly

through the presence or absence of certain observable variables (e.g., MDD is measured
by depressed mood and extraversion is measured by party-going behavior; McCrae &
Costa, 2008; see Michell, 2005 for a detailed explanation of measurement in science).
In doing so, latent variable models are consistent with the hypothesis that the latent
attribute has causal relevance for the observed values of symptoms (e.g., see Borsboom,
Mellenbergh, & van Heerden, 2003, 2004; Borsboom, 2008b; Hood, 2008). In this view,
for instance, depression (i.e., the latent attribute) causes the occurrence of symptoms
such as fatigue.

In line with this idea, it is commonly hypothesized that comorbidity arises due to
some direct relation between two latent variables; for example, a substantial correlation
as depicted in Figure 2.1 (e.g., MDD and GAD; Neale & Kendler, 1995). Some theorize
even further, and hypothesize that a direct relation between two latent variables actually
reflects the existence of a ‘super disorder’ —for example, in models in which the super
disorder ‘negative affect’ causes a variety of mental disorders (e.g., depression), which, in

1The National Comorbidity Survey Replication (NCS-R) is a nationally representative house-
hold survey of English speakers 18 years and older in the United States (see Kessler et al., 2004).
The NCS-R survey schedule is the version of the World Health Organization (WHO) Composite
International Diagnostic Interview that is developed for the WHO World Mental Health Survey
Initiative (WMH-CIDI; Kessler & Ustun, 2004). The interviews were conducted between Febru-
ary 2001 and April 2003. A total of 9282 respondents participated in Part 1 of the interview (core
diagnostic assessment) that we used for this chapter. The symptoms that participants reported
within one disorder all occurred within the same time frame.
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turn, cause observable symptoms (e.g., see Barlow, Allen, & Choate, 2004). In accordance
with both views on comorbidity, current comorbidity research mainly focuses on diagnoses
as proxies of the latent disorders and computes tetrachoric or odds ratios between those
proxies. Although this methodology has yielded important insights (e.g., T. A. Brown
et al., 2001; Kessler et al., 1994, 2005; Merikangas et al., 1998; Moffitt et al., 2007),
the latent variable model may not always offer the best psychometric perspective to
conceptualize mental disorders (see also Borsboom, 2008b).

Disorder A 

X
1
 

X
2
 

X
3
 

X
4
 

X
5
 

Disorder B 

Y
1
 

Y
2
 

Y
3
 

Y
4
 

Y
5
 

Figure 2.1: A model of comorbidity between disorders A and B under the standard assumptions
of latent variable modeling. The circles represent the disorders (i.e., latent variables) and the
rectangles represent the observable core symptoms of those disorders (i.e., X1 −X5 for disorder
A, and Y1 − Y5 for disorder B). In this model, comorbidity is viewed as a correlation between
the latent variables, visualized by the thick bidirectional edge between disorders A and B.

To see this, it is useful to consider the essence of latent variable modeling, the common

cause hypothesis, in more detail. The common cause hypothesis posits that a latent
variable causes its observable indicators. If one adopts this hypothesis for a particular set
of variables, then one has to accept an important consequence: The observable indicators

cannot be directly related ; that is, if a single common cause is held responsible for the
occurrence of a particular set of variables, then covariation between those variables is
entirely attributable to the common cause. It is important to note here that we are
referring to the psychometric as opposed to a clinical interpretation of a latent variable
model. In the clinical interpretation, clinicians adhere to the existence of a latent variable
while at the same time acknowledging direct relations between symptoms. In a strict
psychometric sense, a latent variable model does not allow for many direct relations since
the majority of covariance between symptoms needs to be explained by the common
cause. As such, psychometric latent variable models imply that correlations between
observable indicators are, in a non-trivial sense, spurious. When statistically modeling
the relationship between a hypothesized latent variable and a set of indicators, the fact
that the indicators cannot be directly related results in the statistical assumption of
local independence (such assumptions are made, for instance, in the models used in
Aggen, 2005; C. A. Hartman et al., 2001; Krueger, 1999): when fitting a latent variable
model to observed data, any two indicators are conditionally independent given the latent
variable (Lord & Novick, 1968). As such, local independence is a statistical consequence
of adopting the hypothesis that a common cause structure gave rise to the associations
in the data.

In our view, a common cause structure is unlikely to hold for symptoms of mental
disorders. For instance, consider ‘sleep disturbances’ and ‘fatigue’, both of which are
DSM-IV symptoms of MDD (see Diagnostic and Statistical Manual of Mental Disorders,

4th edition; APA, 1994). If one adopts the common cause hypothesis, a high positive
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correlation between these symptoms is entirely due to the common influence of the latent
variable, MDD. It is questionable whether this is plausible. For instance, a direct causal
relationship between those symptoms is likely to hold in at least a subset of people who
experience them: If you don’t sleep, you get tired. Another example: Is it plausible to
assume that GAD necessarily causes both chronic worry and a difficulty to concentrate?
It may well be that a direct causal relationship exists between these symptoms: the more
you worry, the more difficult it is to concentrate at other things.

Thus, it appears likely that latent variable models do not optimally conceptualize the
relationship between mental disorders and their symptoms. This is not to say we object
to the notion that symptoms of various disorders tend to cluster together in predictable
ways and that, as such, disorders may be pragmatically useful to denote such clusters
(see C. A. Hartman et al., 2001). However, we do suggest that mental disorders may
not explain covariation between symptoms in the way a latent variable pictures the
situation. If this is so, then even though the application of latent variable modeling
may have considerable instrumental utility (e.g., in facilitating predictions or gauging
rough differences between people), one cannot plausible say that the symptoms actually
measure a latent variable. Therefore, we consider it important to examine relationships
between individual symptoms more closely.

Initiating such an endeavor is a major goal of this chapter. As a starting point,
we propose to use the theory of complex networks. This theory has provided major
contributions to current knowledge about the structure of the World Wide Web, power
grids, and neural systems (e.g., see Albert & Barábasi, 1999, 2002; Boccaletti, Latora,
Moreno, Chavez, & Hwang, 2006; Strogatz, 2001; X. F. Wang, 2002). The basic idea of
the network approach is straightforward: We define and analyze relationships between
symptoms, without assuming a priori that such relationships arise from a mental disorder
as a common cause (Borsboom, 2008b; van der Maas et al., 2006). Simply put, in such a
network, a disorder is conceptualized as a cluster of directly related symptoms. In a fairly
recent study, Kim and Ahn (2002) showed that this conceptualization comes naturally to
some clinicians: depression, anorexia nervosa, antisocial personality disorder, and specific
phobia were all characterized as clusters of causally related symptoms. And, adhering to
such a network perspective cannot be reconciled with the psychometric properties of a
latent variable model. Thus, when modeling comorbidity, we no longer assume a direct
relation between two latent variables. Instead, we model comorbidity in terms of a set
of distinct relationships between symptoms of distinct disorders.

A network model represents symptoms as nodes in a graph and the relationships
between them as edges. Figure 2.2 depicts an example of such a graph for two disorders:
two sets of symptoms belong to two distinct mental disorders. Within each disorder,
all symptoms are connected with one another, but between disorders, there are fewer
(or weaker) edges between the symptoms. There are also symptoms that do not clearly
belong to one or the other disorder, because they receive and send out effects to the
symptoms in both of the disorders (i.e., overlapping symptoms). If such symptoms over-
lap perfectly, they can be collapsed into a single symptom, which we propose to call a
bridge symptom. We hypothesize that in clinical practice, such bridge symptoms turn
up as symptoms that are used in diagnostic schemes, such as the DSM-IV, for multiple
disorders.

Our hypothesis regarding the crucial role of bridge symptoms in explaining comor-
bidity can be tested, just as a host of hypotheses can be tested with latent variable mod-
els. For binary data, a statistical parameterization of the network is a loglinear model,
which is implemented in the gRbase package for R (Dethlefsen & Hojsgaard, 2005). In
short, with a loglinear model, one searches for the most parsimonious model—among
models ranging from only main effects through model with nth-order interactions—that
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X1 

X2 X3 

X4 X5 

Y1 

Y2 Y3 

Y4 Y5 

B1 

B2 

Disorder A Bridge symptoms Disorder B 

Figure 2.2: Comorbidity under a network approach. Disorder A consists of bidirectionally
related symptoms X1-X5, and disorder B consists of symptoms Y1-Y5. Symptoms B1 and B2
are bridge symptoms that overlap between disorders A and B. In this model, comorbidity arises
as a result of direct relations between the bridge symptoms of two disorders.

accounts for the distribution of cases in contingency tables of categorical variables (e.g.,
see Agresti, 2002). If the main effects model should turn out to be the best model, then
the MDD and GAD symptoms are statistically independent, and our hypothesized bridge
model should be rejected accordingly. Thus, in gRbase, we fitted a model like the one
shown in Figure 2.2 to the NCS-R MDD and GAD data: All symptoms of MDD/GAD,
including the bridge symptoms, are connected with one another, and comorbidity arises
only through connections between overlapping symptoms, on the one hand, and other
symptoms of MDD/GAD, on the other hand2 . We used the Akaike Information Criterion
(AIC) to compare the fit of three models: (1) with only main effects, (2) with first-order
interactions within disorders (including bridge symptoms, as in Figure 2.2), and (3) with
second-order interactions within disorders (including bridge symptoms). Of these three
models, the best fitting model according to the AIC is the one with first-order interac-
tions (AIC differences are: (2) - (1) = -177.551 and (3) - (2) = 347.123). Thus, according
to this analysis, the bridge model holds with all variables being statistically dependent
on one another. Naturally, such a single fit is not sufficient to conclude that this model
is the best choice, especially since—considering parsimony—such a low chi-square value
with so many degrees of freedom cannot be interpreted in a straightforward manner.
Nonetheless, this model fit shows that our hypothesis about the importance of bridge
symptoms in explaining comorbidity is not a priori wrong.

The network approach is based on the hypothesis that symptoms are related directly.
It is important to qualify this terminology to prevent misunderstandings. We intend the
term “directly” to mean that relations between symptoms are real; that is, not spurious in
the sense that a latent variable model assumes them to be. However, this does not imply
that intermediate processes or attributes are not involved in these symptom-symptom
relations. For instance, the influence of one symptom on another is likely to be mediated
by, or instantiated in, a chain of processes that are not directly observable. Even the

2 We did not collapse the six symptoms that overlap between MDD and GAD into three
bridge symptoms because the log odds ratios between each pair of overlapping symptoms were
not high enough to warrant such a collapse. A probable explanation for this is that some people,
for instance, did report concentration problems in the depression section, but were unable to
report those same problems in the generalized anxiety section because that section was skipped
(e.g., because the respondent did not experience chronic anxiety).
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influence of the symptom ‘sleep disturbances’ on ‘fatigue’, mundane as it may seem, will
invoke various intermediate mechanisms concerning the homeostatic processes involved
in sleep regulation (Achermann, 2004; Borbély & Achermann, 1999; Finelli, Baumann,
Borbély, & Achermann, 2000). Thus, within a network framework, it makes perfect
sense—and is naturally necessary—to introduce non-symptom causal processes such as
homeostasis that partly explain relations between symptoms. Also, such processes may
involve pathways that contain some of the other symptoms in the network; for instance,
a lack of sleep may lead to a loss of concentration via fatigue. Finally, the causal effect of
a symptom may feed back into that same symptom via a loop. For instance, fatigue may
lead to a lack of concentration, which may lead to thoughts of inferiority and worry, which
may in turn lead to sleepless nights, thereby reinforcing fatigue. In such a case, we have
a vicious circle, or negative spiral, a well-known phenomenon to any practicing clinical
psychologist. In some disorders, the existence of feedback loops is in fact considered to
be a core aspect of the disorder; an example is panic disorder, in which ‘fear of fear’
appears to play a crucial role; for instance, when the fear of having a panic attack itself
contributes to the occurrence of such an attack (McNally, 1994). It is therefore notable,
and problematic, that in standard psychological measurement models, such phenomena
cannot arise because latent variable models, being instantiations of a common cause
structure, are directed graphs which, by definition, do not contain feedback relations3

(Pearl, 2000).
Moreover, targeting such relationships between symptoms or processes that influence

such relationships is a major goal of many successful therapeutic interventions such as
cognitive therapy (e.g., lessen the impact of cognitions on relationships between symp-
toms: “If I do not finish all tasks I set out to do during the day, I am a worthless person
and it is better for everyone if I were gone”; see Beck, Rush, Shaw, & Emery, 1979)
and exposure therapy (i.e., breaking the link between seeing a particular object and re-
sponding to it with fear by repeatedly exposing a patient to the feared object; see e.g.,
Kamphuis & Telch, 2000; Rothbaum & Schwartz, 2002). It is therefore also problematic
that such successful and common therapeutic interventions do not naturally arise from a
latent variable perspective. This is not to say that targeting relations between symptoms
is prohibited by a latent variable perspective; the more logical consequence of adopting
such a perspective just seems to be to target the latent variable: eliminating the common
cause will result in the disappearance of its indicators (i.e., the symptoms). In the case of
major depression, for example, finding the common cause was therefore a major goal in
research, with serotonin shortage being the most likely candidate. However, treatment
with antidepressants that specifically target that shortage turned out to be beneficial
for only some people, thereby ruling out serotonin as the common cause of depression
symptoms (e.g., see Nierenberg et al., 2008). No other plausible common causes have
ever been found, in our opinion due to the fact that there simply is no common cause
that explains the entirety of depression symptoms.

3 It is prudent to note that feedback loops can create considerable methodological difficulties
in model fitting, because they lead to models that cannot be recursively estimated. However,
given our present state of ignorance concerning the nature of comorbidity, we think it is more
useful to construct a theoretical representation that is likely to be faithful to reality, than it is
to construct a model based on a list of desirable computational properties.
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An integrative method to visualize symptom asso-

ciations through graphical models

Many of the effort in complex systems theory have been aimed at providing adequate
visual representations of networks, and this has yielded a number of algorithms to opti-
mally represent networks (Berg, Cheong, Kreveld, & Overmars, 2008; DiBattista, Eades,
Tamassia, & Tollis, 1994; Herman, 2000), as well as freely available software to visualize
them; most notable, in this respect, are the programs Cytoscape (Shannon et al., 2003
—used in constructing the graphs for this chapter), aiSee (http://www.aisee.com), and
igraph (Csárdi & Nepusz, 2006 —used in this chapter for the detection of community
structures). We therefore propose that the study of comorbidity through network models
may best start by constructing insightful visualizations.
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Figure 2.3: The key for the comorbidity networks shown in Figures 2.4, 2.5 and 2.6.

Among a plethora of possibilities to define and visualize both nodes and edges (see,
e.g., Boccaletti et al., 2006; Krichel & Bakkalbasi, 2006), we propose an integrative
method that, in our view, optimally visualizes key aspects of comorbidity on a symptom
level. Figure 2.3 provides the complete key to such a comorbidity network for MDD
and GAD, which is presented in Figure 2.44 First, the thickness of the edges is deter-
mined by the co-occurrence of two symptoms: the more two symptoms co-occur, the
thicker the edge between them. Second, the color of the edges is determined by the

4 This network is based on the NCS-R questionnaire that mostly contains dichotomous
items. However, some of the items were ordinal or continuous (e.g., “How many pounds have you
gained?”), and we dichotomized those according to the DSM-IV diagnostic algorithms. Details
of the dichotomization process are provided at: http://www.aojcramer.com.
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log odds ratio between two symptoms5 (i.e., strength of the association; results avail-
able at: http://www.aojcramer.com): the higher the log odds ratio, the darker blue
the edge between symptoms (please note that other options exist to define some mea-
sure of the strength of the association between two symptoms: for instance, tetrachoric
correlations6). Third, the size of the nodes is determined by the raw frequency: the more
frequent a symptom, the larger the node. Finally, the color of the nodes is determined
by their individual node strength (see, e.g., Boccaletti et al., 2006; Krichel & Bakkalbasi,
2006). The node strength is simply the sum of the weights of all edges that are incident
in that node. In the complex networks literature, the node strength is taken to be a
measure of the centrality of a node such that the more strength, the more central a node
is in the network.

In addition, we propose the following two rules for the positioning of the nodes in
a comorbidity network (see also Figure 2.4): First, we propose that from left to right
(i.e., the x -axis), non-overlapping symptoms of two disorders are placed in the middle of
the graph. As such, one can immediately see whether comorbidity between two disorders
runs mostly through the overlapping symptoms or (also) exists independently from them.
Second, we propose that from top to bottom (i.e., the y-axis) the nodes are placed based
on descending node strength. As such, one can immediately see which symptoms are
more central in the network (i.e., top of the graph).

The basic structure of the depression and general-

ized anxiety comorbidity network

A few characteristics of the MDD and GAD comorbidity network stand out in particular
(see Figure 2.47). First, GAD symptoms are more frequent than MDD symptoms (i.e.,
GAD nodes are generally larger than MDD nodes). At first sight, this may appear at odds
with the higher prevalence of MDD compared to GAD that is usually reported (Carter,
Wittchen, Pfister, & Kessler, 2001; Kessler, Chiu, et al., 2005). However, on a diagnosis
level, only respondents who display a certain number of MDD or GAD symptoms with a

certain duration qualify for a diagnosis. Additionally, because of a hierarchical exclusion
rule, the GAD diagnosis will not be assigned if its symptoms occur exclusively within the
course of MDD (T. A. Brown & Barlow, 1992, 2001; L. A. Clark, Watson, & Reynolds,

5 The odds ratio is the ratio of the odds of an event (e.g., suffering from loss of interest)
occurring in one group (e.g., people who suffer from depressed mood) to the odds of that event
occurring in another group (e.g., people not suffering from depressed mood). For cell counts
in a 2x2 contingency table, the sample odds ratio equals n11n22/n12n21 (see Agresti, 2002).
Since the odds ratio scales between zero and infinity, with a value of 1 signifying the absence
of association, the odds ratio is not optimal for visualization in our network; therefore, we used
the natural logarithm of the odds ratio. A log odds ratio of 0 (i.e., an odds ratio of 1) indicates
that the event is equally likely in both groups. Please note that a high co-occurrence (= n11)
does not necessarily imply a high odds ratio. For example, (1) a high co-occurrence (n11 = 500),
(2) almost no people who do not have both symptoms (n22 = 3), and (3) thus relatively many
people who have one or the other symptom (n12 = 15 and n21 = 100) yields an odds ratio of
1 (500*3/100*15), signaling no association between those symptoms. Thus, co-occurrences and
odds ratios show different aspects of a data set.

6 In fact, we also computed tetrachoric correlations for the MDD and GAD symptoms with
a full information maximum likelihood approach through which we dealt with the missing values
that were Missing At Random (MAR). We found that the ordering of the symptoms in terms of
their node strength was nearly the same as with log odds ratios.

7 We have checked the stability of the results depicted in this figure by randomly splitting
the sample in two and running all analyses for both groups separately. Those separate analyses
revealed the same results and, therefore, we consider the components of Figure 2.4 to be stable.
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Figure 2.4: A comorbidity network for major depressive disorder (MDD) and generalized anxi-
ety disorder (GAD). Larger nodes represent more frequent symptoms, darker circumference rep-
resents higher centrality, thicker edges represent higher co-occurrence, and darker edges represent
stronger associations. Only edges with a log odds ratio higher than (+ or -)0.60 are represented.
Centrally positioned nodes represent overlapping symptoms. Non-overlapping MDD symptoms
are displayed on the left of the figure, and non-overlapping GAD symptoms on the right.

1995; Mineka, Watson, & Clark, 1998; Watson, 2005). Since MDD and GAD are highly
comorbid (see, e.g., T. A. Brown et al., 2001, 1998; Mineka et al., 1998), such exclusion
rules lower the prevalence of GAD artificially. Here, we consider data of all respondents
who completed the MDD and GAD interview sections, regardless of whether or not they
obtained diagnoses. As such, the network demonstrates that, when considering both
subthreshold and threshold depression and generalized anxiety, symptoms of generalized
anxiety are in fact more prevalent.

Second, if MDD and GAD are separate entities, we would have expected the edges to
be thickest between symptoms of the same disorder (i.e., high co-occurrence). However,
it is apparent that this is not the case in the network: Some of the thickest edges connect
MDD with GAD symptoms; for instance, the thick edge between loss of interest (mInt)
and reporting more than one event one worries about (gEvent). Also, we would have
expected edges to be darkest blue between symptoms of the same disorder (i.e., high log
odds ratios), but that is also not evident when inspecting the figure. In other words,
associations between symptoms of one disorder are not stronger than between symptoms
of different disorders. These findings are in line with an earlier hypothesis that MDD and
GAD are hard to distinguish on a genetic level (Mineka et al., 1998) and, as such, raise
the question of whether MDD and/or GAD are truly distinct disorders. We will return
to this matter in more detail in the paragraph about the non-uniformity of diagnostic
criteria.

Third, duration (mDur and gDur) is hardly associated with any of the other MDD
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and GAD symptoms8 (i.e., few edges are incident in those nodes). This may appear
surprising since, in clinical practice, duration is key in determining the presence or ab-
sence of a mental disorder. However, if we consider medical illnesses as an analogy, the
finding is potentially less surprising: Cancer will be diagnosed regardless of how long its
symptoms (e.g., coughing up blood in the case of lung cancer) have been present.

Finally, the strongest evidence for comorbidity stems from strong associations that
involve at least one overlapping symptom (e.g., between depressed mood, mDep, and
sleep disturbances, gSleep). This apparent nontrivial role of overlapping symptoms in
comorbidity stands in stark contrast to earlier findings regarding MDD, GAD, and other
mental disorders (e.g., see Biederman, Faraone, Mick, & Lelon, 1995; Bleich, Koslowsky,
Dolev, & Lerer, 1997; L. A. Clark & Watson, 1991; C. L. Franklin & Zimmerman, 2001;
Kessler, DuPont, Berglund, & Wittchen, 1999; Seligman & Ollendick, 1998; Watson et
al., 1995). We will return to this issue in more detail in the paragraph about overlapping
symptoms.

It is crucial to note that the network is not necessarily complete. That is, this
comorbidity network is based on the symptoms of major depression and generalized
anxiety, but, naturally, it stands to reason to hypothesize the presence of factors—other
nodes—that selectively influence some of the symptoms and are thus part of the network.
For instance, it is well known that major life events, such as the loss of a loved one, can
trigger major depression and, more specifically, there is evidence for selective influence of
such personal tragedies on the more psychological symptoms of depression (e.g., depressed
mood, thoughts of suicide; David, Ceschi, Billieux, & van der Linden, 2008; Kessler, 1997;
Monroe, Harkness, Simons, & Thase, 2001). Also, there is evidence that traits such as
neuroticism (mediated by rumination on sadness) and behavioral inhibition (i.e., shy,
fearful, and withdrawn) can trigger the onset of depression and/or anxiety symptoms
(e.g., see Hirshfeld et al., 1992; McNiel & Fleeson, 2006; Roelofs, Huibers, Peeters, &
Arntz, 2008, 2008). Because such and other more “etiological nodes” are missing from
this network, they are in a sense latent. However, such latent etiological nodes do not
turn the MDD and GAD comorbidity network into a latent variable model: A network
with multiple latent nodes that selectively influence some of the symptom nodes is not the
same as a latent variable model in which one latent factor influences all and thus entirely
explains relations between symptom nodes. Moreover, an unobserved variable is indeed
latent, but not every unobserved variable automatically qualifies as a latent variable in
the psychometric sense in which such variables are portrayed in latent variable models
commonly used in data analysis.

The inequality of symptoms and its consequences

for diagnostic cut-offs and the definition of a men-

tal disorder

The focus in comorbidity research is on diagnoses, which means that inferences regarding
comorbidity rest on summed scores that are obtained by counting symptoms. In latent
variable modeling, such an unweighted summed score is either a sufficient statistic for

8 The fact that duration is weakly associated with the other MDD and GAD symptoms
cannot be explained by a skip structure that only allowed respondents to progress to the other
symptoms’ section if they fulfilled the duration criteria for depressed mood/loss of interest (MDD:
more than 2 weeks) and chronic anxiety (GAD: more than 6 months): respondents with depressed
mood/loss of interest for at least 3 days for more than 1 hour per day (MDD) as well as respon-
dents with chronic anxiety for at least one month were allowed into the sections about the other
symptoms.



16 2 COMORBIDITY: A NETWORK PERSPECTIVE

the latent variable (e.g., see Andersen, 1973; Masters & Wright, 1984) or has a monotone
likelihood ratio with that latent variable (Grayson, 1988). In both of these cases, infer-
ences based on the summed symptom scores will often generalize to the latent variable.
The unweighted summation of symptom scores implies that all symptoms are considered
equal. Although thus formally consistent with latent variable modeling (Grayson, 1988),
this assumption is highly problematic and may be the origin of some significant problems
in comorbidity research. In a network approach, symptoms are likely to be actually un-
equal in terms of their centrality, a property that is not reflected in any latent variable
model, and this has consequences for the comparability of equal summed scores.

Suppose that Alice displays two MDD symptoms—depressed mood and loss of inter-
est—while Bob displays two other MDD symptoms —psychomotor and weight problems.
On an intuitive level, it is plausible that Alice’s symptoms are more likely than Bob’s
to eventually result in a full-fledged depression. In other words, some symptoms ap-
pear to be more central features of depression than others. The comorbidity network
sustains this intuition. When considering the node strengths in Figure 2.4 (i.e., colors
of the nodes), one immediately sees that, indeed, depressed mood (mDep) and loss of
interest (mInt) are far more central in the network than are psychomotor (mRest) and
weight problems (mWeight). In other words, the same summed score of Alice and Bob
may not adequately capture that the symptoms of Alice result in a higher probability
of developing other MDD symptoms—and thus augment the probability of eventually
developing depression—compared to Bob’s symptoms. Hence, summed scores appear
to be incomparable, at least with respect to elucidating which people with subthreshold
depression problems are at more risk of developing MDD. Naturally, such symptom in-
equalities are widely recognized among psychiatrists and clinical psychologists, and they
do occasionally appear in DSM-IV (e.g., depressed mood and loss of interest as central
features of major depression); the problem is, however, that the models that underlie
current comorbidity research do not naturally allow for them.

If our line of reasoning is correct, and there is no latent variable that screens off
correlations between symptoms (a latent variable model renders all symptoms equally

central and exchangeable9), then the inequality of symptoms in terms of their centrality
also renders diagnostic cut-offs open to debate. We are certainly not the first ones to
point out that diagnostic cut-offs appear to be arbitrary (e.g., see Gotlib, Lewinsohn, &
Seeley, 1995; Lilienfeld & Marino, 1999; Maier, Gänsicke, & Weiffenbach, 1997; Solomon,
Haaga, & Arnow, 2001). For instance, there are individuals who do not meet diagnostic
criteria for MDD yet appear to be psychosocially as dysfunctional as individuals who are
diagnosed with MDD; that is, the consequences of subthreshold MDD problems may not
always be distinguishable from those of diagnosed MDD. With the network approach,
we offer a potential explanation of such findings. Suppose that Alice displays four MDD
symptoms and Bob five. The diagnostic cut-off of criterion B for MDD is five, so Alice
would not be diagnosed with MDD while Bob would. So far so good, but now suppose
that Alice’s symptoms are all highly central in the MDD network while Bob’s are more
peripheral. Is it, in such a scenario, plausible to conclude that Bob is depressed and Alice
is not depressed? In other words, based on diagnostic cut-offs, we may fail to disentangle
symptom-specific effects, because such cut-offs do not take into account the centrality of
symptoms.

This brings us to another important point: namely, the definition of a mental disor-
der, generally conceptualized as “Disorder A is X or more symptoms out of Y possible

9 It is important to note here that within a latent variable framework, factor loadings cannot
be measures of symptom centrality as we view the concept, since those loadings are simply
reliability estimates: the higher the factor loading, the more reliably an indicator “represents”
the common cause.
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symptoms”. According to a latent variable perspective, it is not only perfectly defensible
to entertain such a definition, but the definition is the same for every single individual;
that is why Alice is not depressed and Bob is. However, if symptoms are not exchange-
able in terms of their centrality, as we think is plausible, one cannot help but question
such a definition of a mental disorder. In other words, if diagnostic cut-offs alone are
no longer the demarcation line above which someone suffers from a particular mental
disorder, then how do we define a mental disorder?

From a network perspective, there are several possibilities to define what constitutes
a mental disorder. As a starting point, we propose to define a disorder as a cluster,
a set of nodes (symptoms) that are strongly connected. Now, from a graph theoretic
perspective, there are multiple ways to define in what sense a set of nodes is strongly
connected (see, e.g., L. J. Hubert, 1994). First, let us call the giant network consisting
of all symptoms of all mental disorders (i.e., the entire symptom space) as defined in the
DSM-IV, graph G. Then a subgraph H (for instance, consisting of all MDD symptoms) is
a cluster of G if and only if the minimum node strength of H is larger than the minimum
node strength of H + n, with n being any other node adjacent to H (Definition 1 ). It is
also possible to define a subgraph H as a cluster of G if and only if the minimum of the
average distance between all nodes in H is strictly smaller than that of H + n for any node
n in G (i.e., closeness; see, e.g., Boccaletti et al., 2006) (Definition 2 ). Other definitions
are possible, and it is—in our opinion—up to future debate and research to determine
which is the most sensible one. Second, now that we have hypothetically defined the
cluster of all possible symptoms of a disorder, we need to determine when such a cluster
is disordered. One plausible candidate is a modified version of the diagnostic cut-off; for
example, in the case of MDD, at least three of the most central symptoms in the entire
MDD cluster (with “central” either defined as the nodes with the largest node strengths,
or as the smallest average distance within the cluster). In contrast to a latent variable
perspective, both definitions acknowledge the centrality differences of symptoms but, at
the same time, accept the inevitable fact that some form of a diagnostic cut-off is needed
to disentangle people with and without a disorder.

A related point concerns the external effects of different symptoms. One readily
imagines extending a network with variables that are not part of the disorder itself, but
constitute nontrivial consequences of many mental disorders (e.g., losing one’s job, low-
ered educational achievement, or suicide attempts). It is interesting to note that, under
the assumption of a latent variable model, it is the latent variable that has a direct re-
lationship with external effects, and not the symptoms. Due to the absence of a direct
relationship between a symptom and an external effect, this means that a symptom can
never be statistically independent of such an external effect, given another symptom.
Thus, for instance, a suicide attempt by someone with thoughts of suicide and concen-
tration problems (and three other symptoms resulting in a diagnosis of major depression)
is entirely attributable to the overarching latent depression and, given the thoughts of
suicide, the concentration problems are thus still associated with the suicide attempt. In
our view, it would be more logical to hypothesize a direct relationship between thoughts
of suicide and a suicide attempt and a weaker or perhaps even nonexistent relationship
between concentration problems and a suicide attempt. In the same vein, it appears
to make sense to envision a stronger relationship between concentration problems and
losing one’s job than between losing weight and losing one’s job. This differential impact
of symptoms on external effects is not possible in a latent variable model, whereas it is
very easily envisioned within a network perspective.

Centrality differences between symptoms imply that there probably will be pathways
to comorbidity that are more likely (i.e,. strong connections between symptoms that are
central in the network) than others. Figure 2.4 confirms this idea: One likely pathway
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to comorbidity connects depressed mood (mDep) with sleep problems (gSleep) and anx-
iety (gAnx ). Less likely pathways involve psychomotor problems (mRest) because this
symptom has such weak associations with the other symptoms in the network. Natu-
rally, inspecting a graph is not enough to draw any solid conclusions on the pathways
to comorbidity between MDD and GAD, but we do think it is evident that the network
approach could contribute to finding answers to this question, if only because the visual
representation of a network immediately leads to a host of interesting hypotheses.

Non-uniformity of mental disorders

Quite a few scholars are essentialists in describing the relationship between the two
main diagnostic categories “disorder” and “no disorder” that are based on diagnostic
criteria and the real world (e.g., see Haslam, 2000, 2002; Lilienfeld & Marino, 1999): The
diagnostic criteria we use result in a distinction between disordered and non-disordered
people that also exists in the real world. Seductive as this line of reasoning may seem,
in order for it to be true, two conditions must be satisfied. First, a mental disorder
must have defining features such that everyone, based on those defining features, could
be assigned to the “disorder” category (i.e., defining features are present) or the “no
disorder” category (i.e., defining features are absent) provided that these features were
known with certainty. Second, as a result, all members of the same category must
essentially be the same with respect to those defining features (i.e., uniformity). Down’s
syndrome is a good example of a medical disorder that satisfies those two conditions:
The syndrome has one defining feature, the presence of all or part of an extra 21st

chromosome, and everyone with Down’s syndrome possesses that defining feature while
everyone without Down’s syndrome does not possess it.

This line of reasoning is unlikely to hold for mental disorders. First, quite a few
mental disorders do not have defining features, at least not in an essentialist sense. For
example, besides depressed mood or loss of interest, which must always be present for a
person to be diagnosed as having MDD, any constellation of five symptoms (i.e., features)
will suffice to fulfill criterion B for MDD. When any such constellation of symptoms is
present for at least two weeks in an individual, then that individual will be assigned to the
“MDD” category, otherwise to the “no MDD” category. This renders the core features
of depression non-defining because, for instance, someone with the feature “depressed
mood” could end up in de the “MDD” category—because he or she suffers from five or
more symptoms for more than two weeks—as well as the “no MDD” category because
he or she suffers from less than five symptoms or the symptoms are present for less
than two weeks. Second, as a result of the lack of truly defining features, the “basket”
with depressed people does not contain uniform members: Pete is depressed because
he suffers from sleep disturbances, fatigue, concentration problems, depressed mood, and
psychomotor problems; while Anne is depressed because she suffers from depressed mood,
loss of interest, self-reproach, weight problems, and thoughts of suicide.

As such, one must wonder whether the distinction between “disorder” and “no dis-
order”, as we have defined it in our diagnostic criteria, actually exists in the real world.
Latent variable modeling schemes posit the existence of such a categorical system (in a
latent class model) or a continuous one (in a factor or item response theory [IRT] model)
as a hypothesis. Hence, such models are consistent with the hypothesis that we may
one day find out “what depression really is”; that is, latent variables may “become”
observed through of a refinement of the conceptual and measurement apparatus used
to study them (e.g., Bollen, 2002; Borsboom, 2008b). However, in the absence of such
refinements, the acceptance of the latent variable hypothesis depends at least partly on
its explanatory values (Haig, 2005), and in the context of comorbidity research these
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explanatory virtues are, at present, quite limited. That is, apart from the fact that such
a model would explain why correlations between symptoms are positive and that it more
or less fits the observed frequency of symptom patterns, there is little that speaks in its
favor.

When studying comorbidity based on diagnoses, this inevitably leads to the question
of what we actually observe when two disorders covary: genuine covariation between
two real disorders, or covariation between certain constellations of symptoms we have
designated to be disorders, but that are in fact not indicators of the same latent variable?
This issue, of course, has generated a heated debate throughout the history of psychiatry
and clinical psychology (Haslam, 2000, 2002; Jablensky, 2007; R. E. Kendell, 1975;
D. F. Klein, 1978; Krueger & Markon, 2006; Lilienfeld & Marino, 1999; Richters &
Hinshaw, 1999; Spitzer, 1973, 1999; Spitzer & Endicott, 1978; Wakefield, 1992, 1999a,
1999b; Zachar, 2000; Zachar & Kendler, 2007). The network approach could contribute
to finding an answer to this question in two ways: first, by utilizing techniques to find
what is called a community structure, and second, by reconceptualizing the question
itself, and thereby the range of possible answers.

The community structure of a network refers to the existence of at least two clusters
of nodes, such that the nodes within a cluster are highly connected with one another,
but only modestly or sparsely with the nodes within another cluster (see Newman, 2006;
Newman & Girvan, 2004). We analyzed the community structure of the MDD and GAD
comorbidity network twice with a spinglass algorithm (for technical details, see Reichardt
& Bornholdt, 2006): one time with co-occurrence between symptoms as edge weights and
one time with the log odds ratios between symptoms as edge weights. The results are
in line with the notion that there is no essential distinction between MDD and GAD, as
has also been found in behavioral genetics and diagnostics research (Mineka et al., 1998;
Wadsworth, Hudziak, Heath, & Achenbach, 2001): Our network reveals no community
structure whatsoever, regardless of which edge weights were used; that is, the comorbidity
network did not differ from a random network in terms of connectivity between nodes.
These results suggest that MDD and GAD may not be separate entities. Naturally, this
conclusion may be different for other mental disorders.

We are by no means pioneers when claiming that boundaries between diagnostic
categories are fuzzy, for this phenomenon was noticed quite some time ago (e.g., see
R. E. Kendell, 1975; D. F. Klein, 1978; Spitzer, 1973; Spitzer & Endicott, 1978). How-
ever, earlier ponderings have not included an account of why the boundaries are fuzzy
and, in our view, a network approach offers such an explanation. If we are indeed cor-
rect to assume that a mental disorder is best conceptualized as a network of symptoms
and—consequently—comorbidity is best viewed as a network of symptoms of two disor-
ders, then boundaries are fuzzy because they simply do not exist. And the reason that
they do not exist lies in the fact that the networks are not isolated from each other. The
very fact that there are bridge symptoms precludes such a situation from occurring. As
a result, we can draw the line between disorders A and B everywhere in the network. For
instance, we could draw a boundary between MDD and GAD such that MDD contains
only non-overlapping MDD symptoms while GAD contains its own symptoms and the
overlapping MDD symptoms. Or, we could draw a boundary such that MDD only con-
tains non-overlapping MDD symptoms and GAD only its non-overlapping symptoms. In
other words, from a network perspective, the DSM-IV-defined boundary between MDD
and GAD is no more defensible than any other boundary.

The network perspective offers an intermediate position between essentialism and
conventionalism regarding mental disorders and the comorbidity that exists between
them. On the one hand, there is a sense in which the delineations of mental disorders are
arbitrary (there is no preferred line that separates the relevant networks). On the other
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hand, since realizations of common causes for symptom clusters cannot be detected, the
actual phenomenon of comorbidity is not a matter of convention, since it depends on
causal patterns that exist in the real world independent of the researcher who studies
them. Although mental disorders can be defined as a network in various ways, which
may reflect mainly pragmatic concerns, comorbidity will remain regardless of how one
draws the lines. In this sense, comorbidity may be more real than the mental disorders
on which it is defined.

This is consistent with, and may offer an explanation of, results typically found
in quantitative behavior genetics. Through twin studies and related methodologies, it
has been established that a considerable portion of the individual differences in anxiety
and depression, as well as many other psychological variables, is determined by genetic
factors (Boomsma, Busjahn, & Peltonen, 2002; Kendler, Gardner, Neale, & Prescott,
2001; McGue & Christensen, 2003). Much research has focused on determining the
genes responsible for this fact, but so far these efforts have been moderately successful at
best, with the typical result being that individual polymorphisms do not account for more
than a minor portion of the phenotypic variance (e.g., 1% or 2% at best). Thus, such
phenotypes are highly polygenetic. The network account explains this naturally: It is
likely that the strength of connections between symptoms (e.g., the relation between lack
of sleep and irritability) differs over individuals, and it is also likely that these individual
differences are at least partly under genetic control. However, a network of k nodes
consists of k2 - k relations between distinct nodes (380 possible relations for the network
in Figure 2.4), and it is rather unlikely that the strength of each of these relations stands
under control of the same genes. Thus, the network approach is not only consistent with
the fact that most psychological phenotypes are polygenetic, but may actually offer an
explanation of that fact. In addition, the approach suggests that gene-hunting efforts
may be better served by relating polymorphisms to the relations between symptoms,
rather than to composites of symptoms such as total scores on questionnaires.

The possibility of individual differences in a network structure raises the question of
whether a uniform definition of comorbidity exists. For example, is there a particular
sequence in which two comorbid disorders arise that holds for every single individual?
At first sight, this appears to be unlikely. However, even though there may be individual
differences in qualitative structure and quantitative characteristics of networks, statistical
considerations regarding the average strength of connections may suggest pathways that
are more or less prevalent in the population.

For instance, in contrast to Moffitt et al. (2007), who found that MDD and GAD
were equally likely to be the first in the comorbidity sequence, the MDD and GAD
comorbidity network (see Figure 2.4) does suggest the existence of a general pathway:
namely, from MDD to GAD. First, because the non-overlapping MDD symptoms are not
highly associated with one another, it does not appear to be very likely that someone
with a few non-overlapping MDD symptoms will progress to other non-overlapping MDD
symptoms. Second, a pathway from non-overlapping to overlapping MDD symptoms to
GAD symptoms could be more likely because of stronger associations between those types
of symptoms. The converse scenario—that is, from GAD to MDD—appears to be less
likely in this particular network. In general, associations between non-overlapping GAD
symptoms are relatively strong, at least stronger than between the symptoms of MDD,
and, most importantly, more or less as strong as associations between non-overlapping
and overlapping GAD symptoms. As such, when in the GAD network, to progress quickly
from a few non-overlapping GAD symptoms to overlapping GAD symptoms and from
there to MDD symptoms, does not appear to be more likely. Instead, it appears to
be equally likely that someone stays in the GAD network without progressing to MDD
symptoms. Given the structure of this particular MDD-GAD network, we therefore
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hypothesize that Neale and Kendler (1995) are correct in concluding that the most likely
pathway could indeed be from MDD to GAD.

Naturally, further research involving the time course and etiology of mental disorders
is required to test this hypothesis. It should be noted, however, that the hypothesis
follows naturally from a (tentative) causal interpretation of the network: the stronger
the association between symptoms, the more likely that one symptom will lead to another.
Furthermore, a causal explanation of a network suggests that some symptoms within a
disorder put one at greater risk for comorbidity than do others. To the contrary, one does
not get these implications from either unidimensional or two-dimensional latent variable
models that assume exchangeable symptoms, save for measurement precision (see Bollen,
1989 for a good explication of this point). Thus, studying the etiology of symptoms may
offer interesting insights with respect to the question of whether symptom development
is best conceptualized in terms of a latent variable model, or in terms of a network
perspective. We therefore consider the direction of research efforts toward the study of
temporal dynamics of symptoms to be essential.

Symptom overlap between disorders

A final problem with current comorbidity research has to do with the fact that many
disorders share a number of symptoms: sleep disturbances, fatigue, restlessness, and
concentration problems in the case of MDD and GAD (APA, 1994). The obvious problem
of such symptom overlap is that it raises doubt as to whether comorbidity is a real
phenomenon: If we would remove overlapping symptoms from our diagnostic system,
would comorbidity estimates look more or less the same, or is it that comorbidity is just
that, symptom overlap? The latter does not appear to be true. Numerous researchers
have approached this problem via different angles and with respect to different disorders,
and the majority have reached the same conclusion: Yes, there is considerable symptom
overlap between some disorders, but it seems highly unlikely that this overlap explains
most systematic covariation between those disorders (Biederman et al., 1995; Bleich et
al., 1997; C. L. Franklin & Zimmerman, 2001; Kessler et al., 1999; Seligman & Ollendick,
1998).

However, there are reasons to argue that some of the methodological approaches to
study the effects of symptom overlap are problematic, rendering the conclusions based
on such approaches open to debate. For instance, Bleich et al. (1997) removed symp-
toms that overlapped between posttraumatic stress disorder (PTSD) and MDD and re-
diagnosed Israeli combat veterans who were already diagnosed with PTSD and/or MDD.
The results showed that, after the removal of the overlapping symptoms, 98% (95%) of
the veterans with lifetime (current) MDD were re-diagnosed with MDD, whereas 70%
(55%) of the veterans with lifetime (current) PTSD were re-diagnosed with PTSD. Be-
sides the fact that the re-diagnosis percentage of both lifetime and current PTSD is
somewhat low, the problem with this approach is that re-diagnosing someone with MDD
without overlapping symptoms does not prove that symptom overlap does not play a role
in the etiology of comorbidity between MDD and another disorder.

Suppose that someone endorses eight MDD symptoms, three of which overlap with
GAD. Two problems arise here. First, the effect of removing the overlapping symptoms
depends on the diagnostic cut-off: This person will be re-diagnosed with a cut-off of five
while with a cut-off of four, there will be no re-diagnosis. Hence, conclusions about the
effects of removing overlapping symptoms depend entirely on diagnostic cut-offs that,
as we noted earlier, are at least partially arbitrary. Second, and more important, it is
impossible to exclude that a re-diagnosis actually signals the major impact of overlapping
symptoms in explaining the etiology of comorbidity: What if overlapping symptoms are
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relay stations that trigger the onset of symptoms in the entire network, resulting in a
comorbid diagnosis? As such, a subsequent re-diagnosis does not have to signal the
relative unimportance of overlapping symptoms. To the contrary, it could be justifiable
taken to mean that overlapping symptoms have a seminal role. They cause comorbidity
with such a profound effect on the network that removing them does not affect the initial
diagnosis: the damage has already been done.

Figure 2.5: The comorbidity network for major depressive disorder (MDD) and generalized
anxiety disorder (GAD) after removal of the overlapping symptoms and their bivariate associa-
tions with the other symptoms. This network is based on exactly the same four characteristics
as the full network in Figure 2.4.

This is not to say that studying the effects of removing overlapping symptoms is a bad
idea per se. We think it is a useful starting point, but (a) the effects of removing overlap-
ping symptoms are perhaps better studied on a symptom level instead of on a diagnosis
level, and (b) the matter should be investigated further; for instance, by not removing
overlapping symptoms but by separately analyzing a subgroup: people who display one
or more overlapping symptom pairs. Thus, we first investigate the impact of removing
the six symptoms that overlap between MDD and GAD, as well as their associations
with all other symptoms from the comorbidity network in Figure 2.4, resulting in Figure
2.5 (see Figure 2.3 for the key). This figure confirms our initial suspicions: without the
overlapping symptoms, not much comorbidity seems to remain. In fact, only depressed
mood (mDep) and loss of interest (mInt) have some relatively strong connections with
GAD symptoms such as anxiety (gAnx ), loss of control (gContro), and number of events
that cause worry (gEvent).

Next, we performed the subgroup analysis: We thus computed log odds ratios, co-
occurrences, frequencies, and node strengths for only those respondents who displayed
at least one pair of overlapping symptoms (e.g., both MDD and GAD concentration
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problems; N = 1059)10 . Figure 2.6 presents their comorbidity network without the
overlapping symptoms (see Figure 2.3 for the key). This figure leaves no room for doubt
about the importance of overlapping symptoms: All symptoms are more frequent and
co-occur more frequently, and having one symptom increases the odds of having another
substantially (and thus the node strength) compared to the comorbidity network in
Figure 2.5. Taking all results together, it is likely that overlapping symptoms play a
more important role in explaining comorbidity than was originally thought.

Figure 2.6: A comorbidity network for major depressive disorder (MDD) and generalized
anxiety disorder (GAD) for those respondents (N = 1059) who displayed at least one pair of
overlapping symptoms. This network is based on exactly the same four characteristics as the
network in Figure 2.5.

Conclusions and future directions

In this chapter, we have introduced a radically different conceptualization of mental dis-
orders and their symptoms: namely, the network approach. Under the assumption of such
an approach, a mental disorder is a network of symptoms that stand in direct, possibly
causal, relations to one another. Comorbidity between mental disorders is then concep-
tualized as direct relations between symptoms of multiple disorders. We have argued
that such an approach bears a closer resemblance to the reality of mental disorders and
comorbidity between them, as it allows for (1) multiple etiological processes that interact
in causing symptoms, (2) interindividual differences in the manner in which a constella-
tion of symptoms is contracted, (3) direct relations between overlapping symptoms, and

10 The contingency tables, as well as the computational script (made in R), are available at:
http://www.aojcramer.com. We have checked the stability of the results depicted in Figure 2.6
by randomly splitting the sample in two and have run all analyses for both groups separately.
Those separate analyses revealed the same results, and therefore, we consider the components of
Figure 2.6 to be stable.
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(4) inequality of symptoms. Also, we have proposed an integrative method, based on
bivariate associations, to visualize comorbidity networks.

Based on such an empirical network for major depression and generalized anxiety,
we showed that a network approach results in a host of realistic and testable hypotheses
that are not naturally accommodated by latent variable models. First, it is likely that
there exist pathways to comorbidity through the symptom space that are more likely
than others (e.g., via core psychological symptoms such as depressed mood and loss of
interest). Second, it is plausible that those pathways generally follow the same direction
(e.g., we found that comorbidity from major depression to generalized anxiety appeared
to be more likely than the other way around). Finally, overlapping symptoms play a more
than trivial role in explaining the roots of comorbidity (i.e., we showed that symptoms
of major depression and generalized anxiety were more strongly connected in people who
displayed at least one pair of overlapping symptoms).

The present work bears interesting relations to that of Van der Maas et al. (2006),
who showed that the positive manifold of correlations between various IQ tasks—often
thought to result from a single latent variable, general intelligence—may result from
a dynamical system in which a network of bidirectionally related cognitive processes
beneficially interact with one another during development (i.e., the mutualism model).
The mutualism model serves as an excellent starting point for developing a unified theory
for mental disorder networks because of their similarities. For instance, the mutualism
model is a dynamical system (Alligood, Sauer, & Yorke, 1997) (for examples of dynamical
systems in other areas of psychology, see Cervone, 2004; Shoda, LeeTiernan, & Mischel,
2002; van Geert, 1998). Such a system consists of a set of possible states with a rule that
determines the present state in terms of past states. At any point in time, dynamical
systems are in a particular state and that state can be represented as a point in state

space. If a dynamical system evolves long enough, then it will encounter one or more
attractors in state space: regions in state space that the system will move towards and
enter. In state spaces with more than one attractor, some systems tend towards one
attractor and remain there in a stable state (i.e., monostable systems; see, e.g., Pisarchik
& Goswami, 2000).

The mutualism model is an example of such a monostable system. Like the mutualism
model, mental disorders are also dynamical systems that evolve over time. However,
unlike the mutualism model, mental disorder networks are probably minimally bistable

systems with a “disorder” attractor state and a “no disorder” attractor state between
which the system oscillates. For example, in a substantial number of people who suffer
from major depression, it is a well-established fact that depressive symptoms come (i.e.,
the system moves towards a “depressed” attractor state), and go (i.e., the system moves
towards a “not depressed” attractor state), either through therapeutic intervention or
spontaneous remission (e.g., see Posternak & Miller, 2001). Some mental disorders may
bemultistable systems with the system oscillating between more than two attractor states.
It is possible that bipolar II disorder is a system that oscillates between hypomania,
major depressive episodes, and under the influence of therapeutic interventions, remission
states. Dynamical systems theory can be used to predict the trajectory of a system in
the state space; that is, future states of the system can be predicted from earlier states, a
technique that is, for instance, widely employed in weather forecasting (e.g., see Palmer,
2001). Analogously, such techniques could in the future be used to predict trajectories
of a variety of mental disorders, given the initial state of a network for an individual.
If there are individual differences in the precise structure of networks, this may require
person-specific network structures to be determined for each individual separately, as
is, for instance, possible through the analysis of intra-individual time series (Hamaker,
Nesselroade, & Molenaar, 2007; Molenaar, 2004).
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The trajectory of any mental disorder as dynamical system cannot be adequately pre-
dicted without taking external variables into account. One important feature of many
mental disorders is that all or most symptoms are positively correlated. As such, when
modeling the reality of mental disorders from a dynamical systems perspective, if peo-
ple enter the network by displaying one symptom, this symptom will quickly turn other
symptoms “on”. As a result, the trajectory of such a system will be predictable and
unrealistic: everyone will “contract” the mental disorder. In reality, there are many ex-
ternal variables that mitigate relationships between symptoms: good news that prevents
someone progressing from depressed mood to thoughts of suicide, homeostasis due to
which someone with sleep difficulties will not stay fatigued indefinitely, and so on. Such
external variables thus play a critical role in determining toward which attractor state
the system moves, and, as such, must be included in mental disorder systems.

Also, we should take into account the possibility that the entire symptom space
network displays characteristics of a small world (e.g., see Barrat & Weigt, 2000; Rubinov
et al., 2009; Watts & Strogatz, 1998). A small-world network is a highly clustered network
with relatively short characteristic path lengths (i.e., it takes relatively few steps to
“travel” from one node in the network to another). Networks with such properties are
frequently found, ranging from the power grid of the western United States through the
neural network of the worm Caenorhabditis elegans. If a general mental disorder system
would indeed also display small-world features, it potentially offers a powerful explanation
of the generally high comorbidity between mental disorders (i.e., short characteristic
path lengths). Also, it might reconfirm the existence of distinct symptom clusters that
represent distinct mental disorders (i.e., high clustering).

Finally, any adequate general network model for mental disorders must encompass
the fact that mental disorders as systems are essentially complex (e.g., see Cilliers, 1998):
Because of the interplay between the individual components (i.e., symptoms) of the sys-
tem and the interaction between the system and its environment, the system/disorder
as a whole cannot be fully understood by analyzing its individual components. Also,
these interactions change over time, and this can result in emerging properties, proper-
ties of the system that are not evident from inspecting the individual components. In
complexity research, rapid advances are made with respect to modeling emerging prop-
erties in complex systems, and the network approach for mental disorders could benefit
from those advances (see, e.g., Paik & Kumar, 2008; Solé, Ferrer-Cancho, Montoya,
& Valverde, 2000). An important additional question is how dynamical properties of
complex systems relate statistically and conceptually to interindividual differences as
commonly analyzed with latent variable models (Molenaar, 2003).

As such, multiple insights from various research disciplines may be further devel-
oped and combined into a general psychometric theory of mental disorders as networks.
Such a theory should, in our view, address the dynamical nature of causal systems (i.e.,
model that tracks the development of a mental disorder network over time), allow for
representing the influence of external variables (e.g., treatment that potentially turns
symptoms “off”), and allow for an adequate conceptualization of causal relations be-
tween symptoms. Advances in the areas of complexity and dynamical systems may be of
considerable help in constructing such a theory. Also, given the relevance of results from
various disciplines (e.g., mathematics, physics, and computer science), the construction
of a viable psychometric theory based on these ideas is likely to involve the integration
of theory and methods from different fields, and we therefore hope to attract the atten-
tion of scholars from a wide variety of disciplines. The need for a general theory of this
type is, we think, evident: We have been looking at mental disorders through the wrong
psychometric glasses, and it is high time for us to craft new ones.
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Chapter 3

Complex realities need

complex theories

Abstract

This chapter was written in response to a set of commentaries (abstracts of these commentaries
available in Appendix A and full texts available at http://www.aojcramer.com), which were
written in response to the previous chapter. The commentators comprised scholars from various
disciplines, ranging from philosophy and clinical psychology to psychometrics. We thank these
commentators for their suggestions and critiques that have aided sculpting the ideas that are
presented in this chapter. Although critical at times, the majority of commentators agree on one
thing: Our network approach might be the prime candidate for offering a new perspective on the
origins of mental disorders. After briefly discussing the gist of the commentaries, we elaborate
in our response on refinements (e.g., cognitive and genetic levels) and extensions (e.g., to Axis II
disorders) of the network model, as well as discuss ways to test its validity.

Adapted from: Cramer, A. O. J., Waldorp, L. J., van der Maas, H. L. J., & Borsboom,
D. (2010). Complex realities require complex theories: Refining and extending the network
approach to mental disorders. Behavioral and Brain Sciences, 33, 178-193.
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In Chapter 2, we have proposed a network view of mental disorders, in which system-
atic covariation between symptoms is explained by direct relations between the symp-
toms themselves. The approach breaks radically with the dominant doctrine, in which
disorders are considered to be common causes of their symptoms (i.e., the latent variable

perspective). We were pleased to see that many commentators view the network approach

as a potential substantive theory of mental disorders. Given the varied set of responses,
many of which proposed worthwhile empirical research avenues and theoretical extensions
of the approach, we have fortunately succeeded in bringing together researchers from dif-
ferent fields to reconsider what disorders are and how we should investigate them.

One of the most surprising and noteworthy facts about the present set of commen-
taries concerns what they do not contain: Very few commentators attempt to defend
the received view that underlies many current approaches to psychopathology: that is,
the latent variable perspective. We take this to imply that the time is ripe for a change
of perspective. In addition, the comments have strengthened our conviction that, with
the necessary refinements and extensions, “inference to the best explanation” could ul-
timately lead us to the network approach as the substantive theory of mental disorders
(Haig, 2009). Certainly, Rothenberger, Banaschewski, Becker, and Roesner ar-
gue that the network approach is complex with its “manifold interactions between symp-
toms”, but we agree with them even more that this reflects reality. And as we will argue
here, complex realities require complex theories.

In this response, we discuss the most important extensions, refinements, investiga-
tive tools, and objections voiced by the commentators according to the following themes.
First, several commentators argued that network models can and necessarily must include
latent variables (e.g., Haig & Vertue; McFarland & Malta). In Section 2, we explain
why some relations qualify for such a measurement model—and are thus likely to be in-
corporated into a network model—while others do not (e.g., depression as common cause
of a cluster of symptoms). Other commentators provided excellent suggestions for refine-
ment of the network model in order to include genetic, neurological, and cognitive levels
of explanation (e.g., Rubinsten & Henik; Yordanova, Kolev, Kirov & Rothen-

berger), which we discuss in Section 3. Additionally, in Section 4, we discuss ways to
test the network model, as suggested by several commentators (e.g., Davis & Plomin;

Fleeson, Furr & Arnold; van der Sluis, Kan & Dolan). Section 5 investigates the
possibility of extending the network approach to other disorders (e.g., Axis II personal-
ity disorders: Bornstein & Ross). Section 6 focuses on an important question, posed
by several commentators, as to what constitutes a mental disorder (Haslam; Hood &

Lovett; Zachar). Finally, commentators raised methodological objections that were
claimed either to invalidate the network model we suggested (e.g., Danks, Fancsali,

Glymour & Scheines; Krueger, DeYoung & Markon), or to sustain a common
cause view on mental disorders (e.g., Belzung, de Villemeur, Lemoine & Camus;

Humphry & McGrane). In Section 7, we discuss these issues and argue that—despite
methodological difficulties that have to be addressed in the future—the network model
should be viewed as the prime candidate to elucidate the origins of mental disorders.

Latent variables in the network approach

Markus and Molenaar remark that, if the network approach is to move from a mere
representation of the data to a possible representation of the underlying causal and
functional relations between its components, one requires a way to deal with the fact
that the observations (i.e., symptom reports) are likely to be imperfect indicators of these
components (i.e., the actual symptoms). These commentators note that, if measurement
error is neglected, relations between symptoms can be inaccurately represented because
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of attenuation effects. The only way to deal with this is to invoke latent variables into the
model. Other commentators express this concern as well when discussing symptoms that
should be measured in multiple ways (Krueger et al.; McFarland & Malta) or non-
symptom causal processes that mediate the direct relations between symptoms (Belzung

et al.; Danks et al.; Haig & Vertue; Humphry & McGrane). Our response is
simply to acknowledge that this is the case; in fact, in Chapter 2, we specifically hint at
this idea in the last paragraph of Section 4.

We construct the situation as follows: At the level of individual symptoms, we take
symptom reports to be measures. If measurement error is to be accounted for at this level,
one would indeed need multiple indicators per symptom and a parallel extension of the
network model with latent variables; for example, a network model for depression could
include sleep disturbances as a latent variable measured with three observable indicators
(i.e., clinical interview, polysomnography, laboratory observation; see McFarland &

Malta). Figure 1 depicts such a network model with sleep disturbances and weight
problems as latent variables. Also, a model in which some non-symptom causal processes
are latent because they are measured in multiple ways (e.g., “major life events” for
depression) is easy to conceive, and we welcome the development of such extensions of
the model (Belzung et al.; Danks et al.; Haig & Vertue; Humphry & McGrane).

The central tenet of Chapter 2 is, therefore, not to shun latent variables completely.
For example, a measurement model that includes a latent variable makes perfect sense
in case of the symptom “insomnia” with three indicators. This is because (1) a natural
referent exists (i.e., not falling asleep/not staying asleep), of which we know (2) how it
affects our three measurements (e.g., trouble with falling asleep will be measured as a
long time lying awake before falling asleep for the first time during a nightly observation
in the laboratory); and we know (3) that it explains the correlation between the three
measurements (i.e., the common cause of measures obtained in a sleep laboratory and of
ticking the box “long time to fall asleep” in a questionnaire).

In case of mental disorders, on the other hand, a latent variable model is an unlikely
candidate for giving a truthful explanation of the associations between distinct symp-
toms of a disorder. In other words, we do not object to measurement models per se, but
to the idea that the association between a mental disorder and its symptoms is one of
measurement. First, many supposed latent variables in psychological science—such as
depression or neuroticism—do not appear to have a natural referent (for an elaboration
on this point, see Borsboom, Cramer, Kievit, Zand Scholten, & Franic, 2009). Second,
without a natural referent, we have no idea how the supposed measurements would be
affected by the latent variable, and we therefore cannot justify a common cause interpre-
tation, where the disorder explains correlations between its symptoms. Thus, the things
that render the correlation between insomnia and three observed variables one of mea-
surement are lacking in the case of, say, depression. Naturally, if one day we should find
a natural referent for the hypothetical construct “depression”, and we could prove that
referent to be the common cause of all depression symptoms, the network model would
be disproved. But we doubt that day will ever come.

Refining the network approach: Genetics, brain,

and cognition

The network model in Chapter 2 is, naturally, not the end of the story (Ross). To
the contrary, the network we presented for comorbidity between major depression and
generalized anxiety represents a starting point. Refining this model in particular—and
the network idea in general—should be the focus of future research in order to adequately
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Figure 3.1: A hypothetical network model for major depression. Circles represent latent vari-
ables and squares and rectangles represent observed variables. The nine symptoms of major
depression are represented as black squares/circles. The dashed rectangles represent multiple
measurements for latent symptoms (i.e., weight and sleep problems in this example; see Section
2). The black rectangles represent the genetic level, the light grey rectangle the neurophysio-
logical level and the medium grey rectangles the cognitive level of the model. mInt : loss of
interest; mDep: depressed mood; mFatig: fatigue; mRest : restlessness; mSleep: sleep distur-
bances; mWeight : weight problems; mSuic: (thoughts of) suicide; mRep: self-reproach; mConc:
concentration problems; polysomno: polysomnography; EncPosMem: problems in encoding/re-
trieving positive autobiographical memories; NegIntMood : negative interpretation of bad mood;
and LeftHippo: smaller volume of the left hippocampus.

(1) test the validity of the model and (2) generate hypotheses about the etiology of
particular mental disorders (Johnson & Penke).

Johnson and Penke correctly state that an important goal of the network model
is to help unravel the etiology of a wide variety of mental disorders. We acknowledge
that a plethora of work has already been done in that regard, but, as we also argued in
Chapter 2, that work might be grounded in the wrong psychometric theory of mental dis-
orders. As such, etiology is currently interpreted in terms of the development of a single
vulnerability (i.e., the common cause) that causes a cluster of symptoms. For exam-
ple, an evolving lack of serotonin may be hypothesized to cause the symptoms of major
depression. However, if a network approach, rather than a latent variable model, cor-
rectly describes the system, the conceptualization of etiology and vulnerability radically
changes, for we are no longer talking about one, but about a multitude of vulnerabilities
at the genetic, neurological, and cognitive levels that may explain the onset of symptoms
and the relationships between them (Fleeson et al.; Hyland; Rubinsten & Henik;

Yordanova et al.). Figure 1 depicts such a hypothetical descriptive network model for
the nine symptoms of major depression. The etiology may then be conceptualized in
terms of the development of such a network over time; naturally, this process may differ
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over individuals.
Many mental disorders have a strong genetic component, as evidenced by high her-

itability estimates, but, despite numerous research efforts, the genetic culprits have not
been found (van der Sluis et al.). This poses a dilemma. Are the heritability estimates
wrong—and is the genetic influence on mental disorders hence highly exaggerated—or is
there something wrong with the methods we use to investigate this issue? Van der Sluis
et al. suggest the latter and corroborate this by referring to the practice of correlating
genes to the entire aggregate of symptoms. If the network model is accurate in describing
the origins of mental disorders, this method provides limited prospects for success in gene
hunting. Since, in this case, there simply is no common cause, its hypothesized proxy
(i.e., a sum score) is an amalgam of distinct factors and will only capture the genetic
components that are shared by the aggregated symptoms and relations between them.
As we have argued in Chapter 2, it is likely that different genes (or constellations of
genes) influence different symptoms (and relations between them). For instance, it is not
a wild guess to assume that the symptoms “sleep disturbances” (mSleep) and “thoughts
of suicide” (mSuic) are controlled by a different set of genes (with some overlap; see
Figure 1). Multiple genes for each symptom separately does render the entire picture
far more complex and we agree with van der Sluis et al. that the network model faces a
challenge in that regard. Part of this complexity could possibly be tackled by examining
the time series of symptom development and relating the patterns that emerge from such
analyses to (constellations) of genes.

While we generally reject the idea of one common cause underlying a constellation of
symptoms, we by no means dismiss the potential relevance of pathological mechanisms
discovered by the quest of finding such causes. For example, a smaller left hippocampal
volume has been consistently found in people with major depression (e.g., see Bremner
et al., 2000). Although it appears unlikely that this mechanism causes all depression
symptoms, it could be one of the vulnerabilities underlying one or more symptoms; for
instance, thoughts of suicide (see Figure 1). Also at the neurological level, Rubinsten

and Henik argue that abnormalities of the intraparietal sulcus (IPS)—commonly associ-
ated with numerical cognition—are the common cause of the symptoms of developmental
dyscalculia (DD). Although we agree that the evidence points to the relevance of IPS
deficiencies, we are not so sure that those deficiencies are the common cause. Since DD
involves deficiencies in a variety of complex abilities that require input from memory,
attention, and spatial systems, a single underlying vulnerability is highly unlikely (e.g.,
see Cohen Kadosh & Walsh, 2009; Landerl, Bevan, & Butterworth, 2004). Thus, also
in the case of DD, existing neurophysiological findings can be incorporated easily into
a network perspective once one is willing to accept the demise of the “common cause”
idea.

At the cognitive level, it is, for instance, well known that both major depression and
generalized anxiety are intimately connected to negative beliefs, as is evidenced by the
success of cognitive therapy in reducing depression and preventing relapse (DeRubeis et
al., 2005; Kuyken et al., 2008; Papageorgiou & Wells, 2001; Paykel et al., 1999; Wells
& Carter, 2001) (see also Hyland). We are skeptical about Hyland’s view that those
beliefs form an interconnected system that completely explains the onset of depression
and/or generalized anxiety. Rather, we hypothesize that negative beliefs directly in-
fluence (1) symptoms —for example, negative thinking that causes a depressed mood;
and (2) relations between symptoms —for example, an overly negative interpretation of
one’s depressed mood that results in making a suicide plan (see Figure 1). Stanilou and

Markowitsch report another intriguing possibility: Problems in encoding and retrieving
positive autobiographical memories could result in an inability to imagine an optimistic
future, which may lead to the onset of the symptom “suicide attempt” (Markowitsch,
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Vandekerckhove, Lanfermann, & Russ, 2003; Schacter & Addis, 2009; Sharot, Riccardi,
Raio, & Phelps, 2007).

How to investigate the network model? A research

agenda

We have provided several arguments for the thesis that a network model paints a more
realistic picture of mental disorders than the latent variable model does. Naturally,
future research must determine whether the network model is also the better model
in reality, and several commentators have put forward some excellent suggestions for a
research agenda (e.g., Davis & Plomin; Fleeson et al.; Tzur-Bitan, Meiran &

Shahar). Given the complexity of the network approach, such an agenda is necessarily
comprehensive. As such, when Krueger et al. ask, “How would one use the information
in Figure 2.4 to explain to a policy maker how we might go about spending public funds
wisely in the service of working to ameliorate the burden of depression and anxiety? By
funding hundreds of separate projects focused on understanding each line in the figure?”
—our short answer is yes. For those skeptical of this answer, we suggest that the same
question may be asked about, say, complex systems like the earth’s climate. Should we
really fund hundreds of projects investigating the diverse factors that influence climate
change? The answer to that question is uncontroversially affirmative, and it has not
proven difficult to persuade policy makers of this fact. We do not see why the situation
would be different for mental disorders. Given this perspective, we think of three lines
along which network research should ideally be aligned: (1) validating the network model,
(2) elucidating the vulnerabilities underlying (relations between) symptoms (see Fleeson
et al.) and (3) tracking the developmental trajectories of symptom constellations.

Validating the network model

Relations between symptoms represent an ideal opportunity to test the network model
against the latent variable model: If no latent variable exists, one should find that exper-
imentally manipulating one symptom results in change in another symptom. Some work
has already been done in that regard; for example, unsurprisingly, one look at the liter-
ature reveals a direct effect of sleep deprivation on fatigue (e.g., see Durmer & Dinges,
2005). Other symptom relations, such as the one between loss of interest and worrying
about multiple events in Figure 2.4 of Chapter 2, appear less obvious and need exper-
imental verification in the future. In a more direct manner, the network model could
be confirmed by the genetic association studies (GAS) on the individual symptoms, as
proposed by Van der Sluis et al.; it would be especially interesting to execute such
analyses on patterns found in time series that describe symptom dynamics. If the net-
work model is true, this type of GAS should reveal constellations of genes that better
account for the high heritability of mental disorders than GAS on a sum score. In the
same vein, Davis and Plomin suggest multidimensional scaling as a method to reveal the
genetic closeness of multiple symptoms. If such endeavors would point to the presence
of direct relations between symptoms, the latent variable model could be put to rest in
psychopathology.

Elucidating vulnerabilities

Fortunately, there may be no need for funding “hundreds of projects”, as Krueger et al.

fear, since many of such projects, aimed at understanding the inner workings of a variety
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of symptoms, have already been carried out; most symptoms in Figure 2.4 in Chapter
2 are associated with large scientific literatures (e.g., fatigue, anxiety). With regard to
vulnerabilities underlying the relations between symptoms, not all edges are an a priori
mystery to us; for example, the mechanisms that are involved in the influence of sleep
deprivation on fatigue are quite well-known (e.g., see Durmer & Dinges, 2005).

With regard to symptom relations whose underlying mechanisms are less well-known,
insights from treatment rationales should further our understanding. For instance, mind-
fulness based cognitive therapy offers a specific hypothesis with regard to the relation
of depressed mood with the other symptoms of depression: Depressed mood triggers
ruminative thinking, which—if not hindered by a successful intervention—could lead to
other depression symptoms (e.g., see Ma & Teasdale, 2004; Nolen-Hoeksema, 2000; Segal,
Williams, & Teasdale, 2002). Another example comes from the panic disorder literature
in which renewed interpretation of bodily signals is used to break the link between having
a panic attack and worrying about its consequences (“I will have a heart attack”; e.g.,
see D. M. Clark et al., 1994). On a related note, several successful interventions are
not primarily aimed at reducing or eliminating symptoms or the relations between them
but, rather, at reinforcing so-called protective factors. For example, the relative success
of the methadone program is attributable to reinforcing coping skills and finding work
and housing (i.e., protective factors) while stabilizing the addiction with the methadone.
Once a stable situation is created, addicts enter a total abstinence program (e.g., Gossop,
Stewart, Browne, & Marsden, 2002; van den Brink, Hendriks, & van Ree, 1999). Such
treatment programs could provide some valuable insights into the mechanisms by which
one progresses from a disordered to a healthy state.

Tracking developmental trajectories

Much of the current literature reports research that involves interindividual research,
often carried out cross-sectionally. Although such research can provide important in-
sights, Wass and Karmiloff-Smith correctly suggest that it results in a snapshot of
reality: an interindividual picture of mental disorders, frozen at a particular time frame.
In reality, it is likely that, for instance, edge strengths differ across individuals, as well as
across time. If so, another line of research is required to generate answers to two pivotal
questions: (1) How do mental disorders develop, and (2) how does that development dif-
fer across individuals (Fleeson et al.; Rothenberger et al.). Such differences should
be detectable through the intra-individual analysis of time series, as noted by various
commentators (e.g., Fleeson et al.; Tzur-Bitan et al.; van Geert & Steenbeek). In
earlier times, it was quite difficult to obtain data suitable for such analyses. Fortunately,
we now live in a time in which intensive time series data can be gathered relatively eas-
ily (e.g., by letting patients report the status of symptoms through handheld devices,
etc.). We think that, within a few years, it will become possible to analyze symptom
development in real time, and to update network structures and parameters as the data
come in. And when that time comes, we are confident that thorough investigation of the
network approach will result in a better understanding of symptoms, their relationships,
and their course in individuals over time.

Extending the network approach to other disorders

In Chapter 2, we introduced the network approach for two disorders that are prime
examples of Axis I disorders in the DSM-IV (APA, 1994). Any theory that presents itself
as the potential substantive theory of mental disorders must be able to explain more
than comorbidity between major depression and generalized anxiety disorder (Johnson
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& Penke). As a first step, we deem it necessary to evaluate to what extent the network
approach fits a variety of other mental disorders (also see Cervone).

With regard to other Axis I disorders, some commentators have presented specific
examples of (clusters of) disorders for which common causes are supposedly identified,
thereby rendering the network approach invalid in those cases (e.g., Ross; Rubinsten

& Henik). For example, Ross argues that addictions share a common cause: namely,
hyperactivation of the dopamine reward circuit combined with weakened frontal and
prefrontal serotonin and gamma-aminobutyric acid (GABA) circuits. We share Ross’s
view on the importance of these brain pathologies in addiction; however, we do not agree
that such pathologies automatically qualify as the common cause of addictions. The most
commonly reported consequences of the dysfunctional dopamine, serotonin, and GABA
circuits are (1) the strong desire to consume salient targets, coupled with (2) difficulty
resisting that desire. In other words, the brain pathologies that Ross mentions result in
the core characteristics of an addiction. However, does this make those brain pathologies
the common cause of addiction? To qualify as such, those pathologies should cause the
other symptoms of addiction. This is unlikely.

If we take a look at the DSM-IV criteria for substance abuse, for instance, we notice
(1) the apparent inability of dysfunctional neurotransmitter circuits to explain “recur-
rent substance use resulting in a failure to fulfill major role obligations”; and (2) the
undeniable possibility of direct relations between the symptoms of addiction: “Recur-
rent substance use in situations in which it is physically hazardous” (e.g., drunk driving)
can cause “recurrent substance-related legal problems” (e.g., getting arrested for drunk
driving). As such, we think addiction can potentially be envisioned as a causal chain
of symptoms in which one symptom—the desire to consume a substance and the in-
ability to withstand this—may be triggered by dysfunctional dopamine, serotonin, and
GABA circuits; thus, no common cause, but one pathological mechanism—in combina-
tion with other etiological factors—potentially results in a cascade of events in a network
of addiction symptoms (i.e., the “fan-out” principle that Wass & Karmiloff-Smith

mention). Such a chain of symptoms is also likely in panic disorder and other—very
heterogeneous—Axis I disorders such as schizophrenia and attention-deficit hyperactiv-
ity disorder (ADHD). Hence, in these cases the network approach cannot be ruled out a
priori (e.g., Borsboom, 2008b).

Considering the extension of the network approach to Axis II disorders, Bornstein

sees some roadblocks that need to be overcome in the case of personality disorders (PDs).
First, patients with PDs tend to experience their symptoms as congruent with themselves.
As a result, these patients have limited insight into their own condition. Bornstein
rightly sees two resulting consequences: (1) Self-report measurements alone will not be
adequate in assessing people with suspected personality pathology, and (2) the symptoms
that patients cannot reflect on themselves are in a sense “latent”. However, we do not
think these consequences pose serious problems for the network approach since—as we
outlined in Section 2 of this chapter—it can easily deal with latent variables that have
an established measurement relationship with a set of indicators, including tests that do
not rely on self-assessment. Second, the revision of PD symptoms is founded on a desire
to both increase diagnostic accuracy and reduce comorbidity. According to Bornstein
(2003), this practice has resulted in simply removing symptoms from the diagnostic
checklist, and, as Bornstein rightly claims, this poses a potential problem for the network
approach; however, not in terms of its potential as substantive theory of mental disorders,
but in terms of its practical applicability to PDs with potentially incomplete symptom
inventories. So, in the case of Axis II PDs, we see no immediate problems that the
network approach cannot surmount.
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What is a mental disorder?

In Chapter 2, we argued that boundaries between mental disorders are necessarily fuzzy.
In contrast, Haslam argues that boundaries between categories of the same disorder
(e.g., “disordered” versus “not disordered”) are not fuzzy at all. To address this apparent
dilemma properly, we dissect a disorder network in two components: (1) its structure and
(2) its state. The structure of a disorder network refers to the strength of the relations
between symptoms. As we show in Figure 1, these relations are controlled by a host of
vulnerabilities (e.g., negative interpretation of one’s mood resulting in a relatively strong
relation between depressed mood and thoughts of suicide). Since those vulnerabilities
probably differ across individuals, it is safe to assume that the resulting basic network
structure is individually tailored as well. Now, pertaining to comorbidity, it is likely that,
in some cases, individual network structures do not obey the DSM boundaries between
disorders (nor any other fixed boundaries). It is likely as well that certain vulnerabilities
influence relations between symptoms of different disorders: for instance, ruminative
thinking may strengthen the relation between “depressed mood” and “chronic anxiety”.
As such, the boundary between major depression and generalized anxiety for someone
with a ruminative thinking style probably (1) does not equal the DSM-defined boundary
(because of a strong relation between “depressed mood” and “chronic anxiety”) and (2)
lies somewhere else than the boundary of someone without that thinking style. Thus, at
the individual level, the line can be drawn practically anywhere and therefore we defend
the notion of fuzzy boundaries in these cases. In other cases, a sharp boundary might
be more feasible; for instance, because relations between symptoms of these disorders
are virtually nonexistent or negative. For example, large individual differences in the
boundary between social anxiety and psychopathy are not very likely given the opposite
nature of the symptoms of those disorders (e.g., “excessive self-consciousness and anxiety
in everyday social situations” versus “grandiose sense of self-worth”; Hare, 2003).

The state of a disorder network depends on how much symptoms are “on”. When
adhering to a categorical perspective, disorder networks can be in two or more stable
states. For example, with two stable states, one commonly distinguishes between a
healthy state, in which few symptoms are “on”, and a disordered state, in which several
symptoms are “on”. In these cases, a sharp boundary is needed to distinguish few
from several. Now, we agree with Haslam that such sharp boundaries are theoretically
possible and that evidence for two latent classes corroborates that hypothesis (provided
that the analysis was conducted on a large and representative sample). However, as we
already argued for the structure of a network, it is unlikely that boundaries between states
are invariant over persons; for, in subjective terms, some people feel depressed because
they have sleep and concentration problems for two weeks, whereas others succumb to
a full-blown depression only after a prolonged period of experiencing a multitude of
symptoms. Therefore, in these cases, a more dimensional perspective might be in order;
that is, no sharp boundaries between categories, but, instead, a continuum of network
activation. Here, we think that symptom severity might be an excellent candidate for
representing the degree of network activation (Markus): the more severe someone’s
symptoms, the more that person is located at the “disordered” end of the continuum.

In theory, any network with connected nodes (i.e., structure) that can be in different
states could be taken to qualify as a mental disorder. As such, liberalism could be
viewed as a mental disorder (Zachar): a set of connected political beliefs (e.g., if you
believe in freedom of religion for everyone, then it is more likely that you are tolerant of
minorities) that we call “liberalism” when a sufficient number of nodes are activated. In
practice, though, we—and probably the majority of humankind with us—do not consider
liberalism to be a mental disorder. Why? The DSM provides a sensible answer: The
symptoms of any candidate mental disorder should cause “clinically significant distress
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or impairment in social, occupational, or other important areas of functioning” in the
person who is experiencing these symptoms (APA, 1994). Although liberalism apparently
causes distress in some other people (Savage, 2005), it clearly does not satisfy the DSM’s
prerequisite. Thus, providing a sensible boundary between disorders and non-disorders,
we would welcome this prerequisite as an extra node in the symptom space.

About 40% of people with major depression experience a new depressive episode
after treatment (e.g., Paykel, 2008). Any substantive theory of mental disorders must be
able to explain such recurrence, a phenomenon that is very common in a host of mental
disorders. In our opinion, the network approach is up to that task. Take, for instance,
an alcoholic who, because of treatment, manages to stay sober, as a result of which the
other symptoms of his/her substance abuse also subside. Also suppose that this person’s
network has strong connections between symptoms; that is, if one symptom turns on, it
is likely that the other symptoms will turn on as well. As such, we have a situation in
which the substance abuse network is in a more or less healthy state (i.e., no symptoms
are “on”) while the structure of the network is risky (and thus unhealthy). Now, this is
exactly what makes a disorder likely to recur: If, for whatever reason, this person decides
to drink one beer, it will likely result in a cascade of symptoms being turned on, and
eventually the network will return to a disordered state. In other words, recurrence is
most likely when the healthy state of a disorder network is unstable because of the strong
connections between its symptoms. We think this is precisely what clinicians mean when
they talk about silent disorders, and therefore we do not agree with Hood and Lovett

that the network approach cannot accommodate such notions. On a final note, in the
case of major depression, it is established that one of the most reliable predictors of
recurrence is the presence of residual symptoms (e.g., Kennedy & Paykel, 2004). But
we also know that not every patient with residual symptoms experiences a subsequent
recurrence. If we are right in suggesting that recurrence is most likely when the structure
of the network is strong, residual symptoms in depression patients offer a way to prove
this hypothesis: Of patients with residual symptoms, only those with strong connections
between symptoms should eventually experience a new episode of major depression.

Networks versus common causes: Methodological

issues

Several commentators raise methodological issues regarding the network approach as
opposed to latent variable models. In the following, we discuss criticisms according to
the methodological topics mentioned by the commentators.

Local independence

Many commentators question our criticism of the local independence assumption. In
their opinion, a unidimensional model with local independence is unnecessarily strict
(e.g., Humphry & McGrane; Markus; Molenaar). It is true that violations of local
independence can be represented in a latent variable model, for instance, by allowing
correlated residuals or direct relations between indicator variables. However, these mod-
eling possibilities should not be given too much conceptual weight. Being more than a
convenient restriction, local independence has the status of an axiom in measurement
models used in psychometrics (e.g., Ellis & Junker, 1997; Holland & Rosenbaum, 1986;
Junker & Sijtsma, 2001). This makes sense because psychometric models aim to give
conditions under which composite scores (e.g., summed item scores) can be treated as
measures of a latent variable. A prerequisite for this is that the item scores measure
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the same latent variable, which plausibly requires that the latent variables functions as
a common cause; and the classical way of testing this is by testing whether the latent
variable screens off the associations between the item scores. This is precisely what local
independence requires. Thus, although it is statistically possible to allow for direct rela-
tions between indicator variables in a model, this should be considered a deviation from
a psychometric norm (which in itself is reasonable in setting up a measurement model).
As such, a unidimensional model with local independence is anything but a “straw man”
(Danks et al.).

Model equivalence

Several commentators raise the possibility that we may have overstated the difference
between networks and latent variable models. Danks et al. note that cyclic graphs and
latent variable models are closely related; Molenaar points to the fact that longitudinal
factor models are equivalent to specific types of directed network models; and Humphry

and McGrane indicate that latent variable models concern individual differences and,
as such, may allow for individual level causal relations without violating the individual
differences model.

It is true that latent variable models and network models are statistically indistin-
guishable in certain situations. A prominent example of such an exact indistinguishability
is the mutualism model of intelligence proposed by Van der Maas et al. (2006), which is a
network model that can produce data that are exactly equivalent to a single factor model.
Similar relations are likely to exist for item response theory (IRT) models; Molenaar,
in earlier work (see Molenaar, 2003, p. 82) has noted the close relation between Markov
field models, such as the Ising model, and IRT models like those of Rasch (1960) and
Birnbaum (1968). Indeed, one supposes that model equivalence may obtain as well in
those cases.

Does this render the network model and the latent variable model equivalent in
general? No, because the inability to distinguish between different possible generating
models in a given data-set does not imply that the models are equivalent with respect
to all possible data-sets or under all possible interventions. Thus, the advice in a model
equivalence situation is to get better data, such as intensive time series (see Section 4).

Parsimony

Krueger et al. defend the latent variable model by emphasizing its superior parsimony
relative to the network approach. First, latent variable models are not inherently more
parsimonious than network models because the number of parameters of the latter can be
made arbitrarily small. For instance, suppose that one has k observed dichotomous symp-
toms. If one assumes a completely connected network consisting of bidirectional relations
of equal size, where these relations are functionally the same for any two nodes (e.g., lo-
gistic relations with equal intercepts and slopes, as in a Boltzmann machine; see Ackley,
Hinton, & Sejnowski, 1985), then, statistically speaking, one has an extremely parsimo-
nious model even though it may consist of many—namely, (k(k - 1)/2)—connections
between variables.

Second, it should be recognized that even though parsimony is a useful criterion in
choosing between statistical models, it will lead to truth only if reality itself is simple;
it this is not the case, then we may deceive ourselves by overemphasizing parsimony. As
Tryon (1935, p. 428) remarked, “The ‘law’ of parsimony is not a natural law, but a rule
agreed upon men to simplify their thinking”. While simplifying our thinking is clearly
useful in scientific investigation, complex realities will ultimately require complex models.
In the case of mental disorders, we doubt that reality is simple given the likelihood of
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variation in network structure over individuals and time. As such, an extremely restricted
model such as Boltzmann machine—although favorable in terms of its parsimony—might
not be particularly viable. Therefore, we think that the sword of parsimony should be
wielded with caution, for we may accidentally kill promising candidate models through
its use.

Extensions of the network approach

Danks et al. provide one of the most critical analyses of our approach. First, they raise
a number of questions concerning terminology and procedure. For instance, they criticize
our use of the term centrality because “[centrality] is neither a causal nor a statistical
notion.” This is obviously correct; it is a notion that comes from network analysis and
has proved to be useful in many contexts (e.g., see Boccaletti et al., 2006). Danks et al.
also question our statement that observables in a standard psychometric latent variable
model are exchangeable. In a measurement model, observables do not differ with respect
to the property they measure; they are thus exchangeable in this sense. And it is this
exchangeability that—among other things—renders the standard measurement model
inappropriate in the context of psychopathology, for how could “weight loss” measure
the same property as “suicide plans”1? Finally, Danks et al. indicate that the data
we analyzed involved a great deal of missingness. We agree but refer to Footnote 6
in Chapter 2, where we highlight an appropriate estimation approach we used to deal
with the data, which is missing at random because of the skip structure of the interview
schedule used in the National Comorbidity Survey Replication (NCS-R).

Second, Danks et al. state that we “do not engage what is known” about the
investigation of causal relations, instead settling for an unsatisfactory and unrestrictive
visualization method. They propose that causal inference algorithms should be used
instead and report the outcome of an algorithmic search procedure. Perhaps ironically,
the use of such procedures formed the starting point of our research. However, the search
procedures as implemented in the program TETRAD (Scheines, Spirtes, Glymour, Meek,
& Richardson, 1996) returned causal structures that we felt were extremely hard to make
sense of. This is also the case for the model suggested by Danks et al., in which, for
instance, the core symptoms of depression and generalized anxiety (i.e., depressed mood
and chronic anxiety) are completely disconnected from the model. Our diagnosis of this
situation is that two assumptions of the search algorithms in existence are not satisfied in
the data at hand: (1) Individuals have the exact same causal structure and (2) resulting
graphs are acyclic. In contrast, we think that the network structure of mental disorders
(1) varies over individuals and (2) likely contains feedback loops. Therefore, we judge the
implementation of causal search algorithms to the preliminary; it would be more sensible
to gather time series data on symptom dynamics and to fit models on an intra-individual
basis. However, what we can do unproblematically, absent such intensive time series
data, is to provide a starting point for further investigations and hypothesis formulation,

1 The exchangeability of items with respect to the property they measure is clear from the
fact that one can parameterize, for instance, standard IRT models such as the one- and two-
parameter logistic models by identifying the latent variable with the expectation of any one of
the item responses (Gunter Maris, personal communication). A similar situation holds for the
(essentially) tau-equivalent model of classical test theory (Lord & Novick, 1968), in which the
expectations of observed variables are simple transformations of one another, and for the con-
generic model of factor analysis, in which the observed variables are linear transformations of one
another (Jöreskog, 1971)). Intuitively, this means that if one has a single perfect thermometer,
adding information from other, noisy thermometers is useless (note that this makes sense in a
measurement situation). In contrast, if one knew the expectation of the item “how much weight
have you lost?” one would presumably still want to know whether the person had suicide plans.
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based on the visualization of statistical associations that exist in the data, and this is
what we aimed to do. This does not commit us to any particular type of modeling, while
it serves the purpose of introducing and explaining the network approach extremely well.
In conditions that justify their use, however, we acknowledge that causal modeling and
search algorithms may be very useful.
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Chapter 4

The relation between

stressful life events and

depressive symptoms

Abstract

Previous research has shown that stressful life events (SLEs) influence the pattern of individual
depressive symptoms. However, we do not know how these differences arise. Two theories
about the nature of psychiatric disorders have different predictions about the source of these
differences: 1) SLEs influence depressive symptoms and correlations between them indirectly, via
an underlying acute liability to develop a depressive episode (DE; common cause hypothesis);
and 2) SLEs influence depressive symptoms and correlations between them directly (network
hypothesis). The present study investigates the predictions of these two theories. We divided
a population-based sample of 2096 Caucasian twins (49.9% female) who reported at least two
aggregated depressive symptoms in the last year into four groups, based on the SLE they reported
causing their symptoms. For these groups, we calculated tetrachoric correlations between the 14
disaggregated depressive symptoms and, subsequently, tested whether the resulting correlation
patterns were significantly different and if those differences could be explained by underlying
differences in a single acute liability to develop a DE. The four SLE groups had markedly different
correlation patterns between the depressive symptoms. These differences were significant and
could not be explained by underlying differences in the acute liability to develop a DE. Our results
are not compatible with the common cause perspective but are consistent with the predictions
of the network hypothesis. We elaborate on the implications of a conceptual shift to the network
perspective for our diagnostic and philosophical approach to the concept of what constitutes a
psychiatric disorder.

Adapted from: Cramer, A. O. J., Borsboom, D., Aggen, S. H., & Kendler, K. S. (2012). The
pathoplasticity of dysphoric episodes: differential impact of stressful life events on the pattern
of depressive symptom inter-correlations. Psychological Medicine, 42, 957-965.
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Depressive symptom profiles of people were long thought to be stable. Until well in the
1990s mainstream theories (e.g., diathesis-stress model) predicted that both between and
within individuals, the pattern of symptoms displayed across multiple episodes is roughly
the same. As such, it was thought that external factors, like stressful life events (SLEs),
that were known to be associated with an increased risk for the onset of an episode of
major depression (MD; e.g., Kendler, Karkowski, & Prescott, 1999; Rijsdijk et al., 2001;
Leskelä et al., 2004; Olsen, Mortensen, & Bech, 2004; Jacobs et al., 2006; Middeldorp,
Cath, Beem, Willemsen, & Boomsma, 2008; Munafò, Durrant, Lewis, & Flint, 2009),
were not capable of influencing the occurrence of individual symptoms. This assertion
changed when research showed that depressive symptom profiles across multiple episodes
of MD within the same individual were moderately stable at best (e.g., Coryell et al.,
1994; Oquendo et al., 2004): could this partly be due to the direct influence of SLEs on
individual symptoms? Yes, depressive symptoms were shown to vary as a function of the
particular class of SLEs that preceded the onset of these symptoms (Keller & Nesse, 2005,
2006; Keller, Neale, & Kendler, 2007; Slavich, Thornton, Torres, Monroe, & Gotlib, 2009:
for example, romantic breakups were associated with high levels of guilt, while stress was
associated with fatigue and hypersomnia (Keller et al., 2007). Thus, depressive symptom
profiles are more pathoplastic than was once thought in that environmental precipitants
like SLEs can give ‘content, coloring and contour’ to the individual expression of such
profiles (K. Birnbaum, 1923). Instead of individual symptoms, this chapter presents a
novel approach in which the impact of SLEs on the overall pattern of correlations between
these symptoms is investigated.

Why is studying the impact of SLEs on correlations between depressive symptoms
important? An answer brings us back to the pioneering work of, for example, Kraepelin
(1923) who tried to distinguish between psychiatric disorders based on the observation
that some symptoms were more often seen together in patients than others. For example,
depressed mood and feelings of worthlessness were displayed in patients more frequently
than depressed mood and disorganized thinking. Many similar observations later cul-
minated in the definition of distinct psychiatric disorders, designating depressed mood
and feelings of worthlessness as symptoms of MD and disorganized thinking and thought
insertion as symptoms of schizophrenia. Put in statistical system, the setup of the cur-
rent classification system is based on the fact that some symptoms are more strongly
correlated with each other (e.g., depressive symptoms with one another) than with other
symptoms (e.g., depressive symptoms with symptoms of schizophrenia).

The critical question is why symptoms of psychiatric disorders are strongly inter-
correlated. The leading hypothesis—one that is more often assumed than examined
critically—postulates a common cause framework (Pearl, 2000; Bollen, 2002; Borsboom
et al., 2003; Reise & Waller, 2009). Panel A of Figure 4.1 displays how correlations
between symptoms of a depressive episode (DE), that is, an episode of MD, would be
understood from this perspective: the DE is the common cause of its symptoms. That
is, depressive symptoms are correlated because they are caused by the same underlying
(acute) liability to develop a DE. Importantly, this perspective claims that correlations
between symptoms are not indicative of a real relationship between them: insomnia
(or hypersomnia), for example, is not directly related to fatigue; both symptoms are
only correlated because they are both caused by the same underlying depressive liability.
Recently, a novel alternative has been articulated (Cramer, Waldorp, van der Maas, &
Borsboom, 2010) in which there is no common cause (see panel B of Figure 4.1). Instead,
correlations between symptoms (lines between the symptoms in the figure) represent
real relationships (possibly causal in nature) and, as such, the connected symptoms
form a network. That is, this alternative model postulates that a DE (and its more
severe counterpart, MD) is a network of symptoms that stand in direct (causal) relations
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toward one another. The most compelling argument for a network account of psychiatric
disorders is commonsensical. It seems unrealistic to assume that insomnia and fatigue
are only correlated because both are a result of an underlying liability to develop a
DE. Surely, all of us have experienced that having trouble sleeping can directly lead to
tiredness the next day.

MD 

d6 d5 d4 d3 d2 d1 

SLE1 SLE2 

d6 

d5 d4 

d3 d2 

d1 

SLE1 

SLE2 

A 

B 

Figure 4.1: Major depression (MD) according to a common cause (A) and a network (B)
perspective. A: the common cause MD causes its six symptoms (d1-d6). Stressful life events
(SLE1 and SLE2) influence the symptoms of MD only indirectly, via the common cause MD. B:
MD is a network in which symptoms d1-d6 are directly connected with one another. SLE1 and
SLE2 influence the symptoms of a depressive episode directly.

These two ways of conceptualizing psychiatric disorders assume a different relation-
ship between a DE and SLEs. According to a common cause perspective (see panel A
of Figure 4.1), SLEs influence the symptoms only indirectly, via their impact on the
common cause: if, after SLE1, d3 and d4 are more strongly correlated than after SLE2,
this is because the acute liability to develop a DE (i.e., common cause) is increased after
SLE1 compared with SLE2. According to a network perspective (see panel B of Figure
4.1), SLEs can influence symptoms directly: if, after SLE1, d3 and d4 are more strongly
correlated than after SLE2, this results from a real increase in the strength of the cor-
relation between d3 and d4 after SLE1 compared with SLE2 due to the direct impact
of both SLE1 and SLE2 on depressive symptoms. Hence, if SLEs make an impact on
the pattern of correlations between depressive symptoms differently, the common cause
perspective predicts that those differences are due to underlying differences in acute lia-
bility to develop a DE while the network perspective predicts a direct influence of SLEs
on depressive symptoms and correlations between them. This chapter investigates the
prediction of the common cause perspective by a comparison of the impact of four SLEs
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on disaggregated depressive symptoms1 in twins from a general population sample with
a DE in the last year.

Method

Participants

The data for this chapter consisted of a subsample of 2096 participants (49.9% female)
from the larger Virginia Adult Twin Study of Psychiatric and Substance Use Disorders
(VATSPUD), a population-based longitudinal study of Caucasian twins from the Mid-
Atlantic Twin Registry (for details, see Prescott, Aggen, & Kendler, 2000; Kendler,
2006). The present chapter is based on member of female-female, male-male and male-
female twin pairs who, at the first interview, reported (1) having experienced a DE (see
Measures section) and (2) that their depressive symptoms were precipitated by one of
four SLEs.

Measures

The first VATSPUD interview assessed the presence/absence of the 14 disaggregated
symptoms of MD (representing the nine aggregated symptoms of criterion A for MD in
DSM-III-R), lasting at least 5 days during the previous year. Whenever a symptom was
present, interviewers probed to ensure that its occurrence was not due to medication
or physical illness. Participants were then asked which symptoms co-occurred, and the
interviewer aggregated these symptoms into syndromes. Following earlier work (Keller et
al., 2007) we define a DE as any syndrome in which two or more of the nine aggregated
depressive symptoms co-occurred.

For each DE, participants were asked whether something had happened to make them
feel that way or the symptoms just came out of the blue: this methodology is to a sub-
stantial extent based on the Life Events and Difficulties measures (LEDS; G. W. Brown,
Bifulco, & Harris, 1987) with the main difference that the LEDS concepts were adapted
to be rated by the interviewer. If participants could think of a reason, they were asked
to describe it. Timing of the event was recorded as described by the respondent and if
unsure, the interviewer helped them with other key events in the last year. Interviewers
subsequently encoded the responses to specific causal codes. If participants indicated
multiple causes, they were asked to order them by causal importance. Following earlier
work (Keller et al., 2007), the primary codes (i.e., codes that participants had indicated
were of highest causal importance) were collapsed into nine SLE groups of which the
four most prevalent were used in the analyses: (1) Stress: stress due to work, finances,
legal problems, etc.; (2) Romantic loss (henceforth abbreviated as RomLoss): ending
of a romantic relationship, including divorce; (3) Health: one’s own health problems;
and (4) Conflict: interpersonal conflict between self and another. Inter-rater reliability
for determining the occurrence and dating of the SLEs was found to be in the good to
excellent range (see Kendler et al., 1995).

1 We opted for the disaggregated symptoms instead of the more commonly used aggregated
symptoms because correlations between aggregated symptoms are more difficult to interpret. For
example, what does a high correlation between sleep disturbances and depressed mood mean:
an association between insomnia and depressed mood or between hypersomnia and depressed
mood?
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Statistical analysis

We computed tetrachoric correlations between the symptoms for each SLE and presented
the resulting networks graphically. We conducted three main analyses. Descriptive in
nature, the first analysis investigated differences between the four SLE groups in the
graphical representation of their symptom networks: for example, is the correlation be-
tween depressed mood and thoughts of death stronger in one SLE group compared with
the other SLE groups? Also, we analyzed differences between SLE groups by computing
each symptom’s centrality in their respective networks (i.e., the sum of all tetrachoric
correlations between that symptom and all others in a network; Boccaletti et al., 2006):
the higher the centrality of a symptom, the more strongly that symptom is connected
with other symptoms in the network.

In the second analysis, we tested whether the observed patterns of correlations among
the symptoms in the four SLE groups were significantly different from one another. To
this end, we assessed whether constraining correlations to be equal across SLE groups
(i.e., homogeneity) would result in a poorer relative fit compared with allowing the free
estimation of correlations in each SLE group (i.e., heterogeneity). If so, heterogeneity
would thus be preferred over homogeneity, and this implies that the differences in the
correlation networks between SLE groups are significant.

In the third analysis, we sought to evaluate whether the differences in the correlation
networks between the SLE groups could be due to underlying differences in acute liability
to develop a DE. To this end, we compared two versions of the model as it is depicted in
panel A of Figure 4.1. The first model (model I) assumes that differences in the networks
cannot be explained by underlying differences in acute liability to develop a DE (i.e., the
impact of different SLEs on the DE circle in the figure is the same). Instead, differences
in the networks are explained by differences in the strength of the associations between
a DE and its symptoms (i.e., arrows between DE and d1-d6 in the figure). The second
model (model II) assumes that differences in the networks can be explained by underlying
differences in acute liability to develop a DE: SLEs influence the DE circle in the figure
differently while the associations between a DE and its symptoms (i.e., arrows between
DE and d1-d6 in the figure) are the same for individual SLEs. We compared the fit of
both models2 : if model II does not fit worse than model I, this would be consistent with
a common cause perspective on DEs.

We estimated models in Mplus 4.2 (Muthén & Muthén, 2007) with the weighted least
squares mean and variance adjusted estimator and a Delta parameterization. The fit of
the models was assessed with (1) the χ2 statistic (with 0 ≤ χ2 ≤ 2 degrees of freedom
(df) indicating good fit and 2 ≤ χ2 ≤ 3 df indicating acceptable fit); (2) root mean square
error of approximation (RMSEA; with RMSEA ≤ 0.06 indicating good fit); and (3) the
comparative fit index (CFI; with CFI ≥ 0.95 indicating good fit; Hu & Bentler, 1999).

Results

Sample characteristics

Descriptive characteristics of the groups of participants exposed to the four different
SLEs are provided in Table 1. The average symptom sum score (i.e., the total number

2 In more technical psychometric terms, model I is a baseline model in which loadings and
thresholds are freely estimated in all groups (factor means fixed to 0, and factor variances and
scaling factors fixed to 1 in all groups). Model II is a weak factorial invariance model in which
loadings are constrained to be equal across groups (factor means and variances freely estimated
in all but the first group, scaling factors fixed to 1 in all groups, thresholds freely estimated in
all groups).
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of endorsed symptoms) differed across the SLE groups (e.g., the average sum score was
lowest in the Stress group and highest in the Conflict group) and these differences were
significant (non-parametric Kruskal-Wallis test: χ2 = 99.03, df = 3, p < 0.001).

Table 4.1: Descriptive characteristics of the four SLE groups

Participants (n) Proportion female (%) M SD Mean rank
Stress 710 42.54 3.80 2.03 880.65
RomLoss 528 50.38 4.88 2.43 1167.91
Health 371 55.53 4.33 2.19 1035.78
Conflict 487 56.06 4.89 2.39 1173.45

SLE, stressful life event; proportion female, percentage of females in (sub)sample; M, average symptom
sum score; SD, standard deviation of the average symptom sum score; Stress, stress due to work,
finances, legal problems, etc.; RomLoss, ending of a romantic relationship, including divorce; Health,
one’s own health problems; Conflict, interpersonal conflict between self and another.

Graphical representation of the correlation networks

Figure 4.2 presents the correlation networks for the SLE groups (figure made with the
R-package qgraph; Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012). In
general, the correlations between depressive symptoms are stronger after RomLoss and
Conflict than after Stress or Health (where thickness of the connections between symp-
toms reflects the magnitude of the correlation). This general difference is, however,
modest: average correlations between depressive symptoms in the four groups are 0.23,
0.21, 0.19 and 0.17 for the Stress, RomLoss, Health and Conflict groups, respectively.
Differences are more substantial when differences in individual correlations between the
SLE groups are examined. For example, the correlation between depressed mood (depr)
and thoughts of death (deat) is much stronger in the Health and Conflict groups than in
the Stress and RomLoss groups. The connection between feelings of worthlessness (wort)
and thoughts of death (deat) is stronger in the Stress and RomLoss groups than in the
Health and Conflict groups. There are also some similarities: in all four groups, weight
loss (wlos) and weight gain (wgai) are strongly connected to decreased appetite (dapp)
and increased appetite (iapp), respectively.

Centrality of MD symptoms in the networks

Figure 4.3 presents the centrality of each symptom in the four SLE groups. Some differ-
ences between the groups are worth noting: decreased appetite (dapp) is highly central in
the Conflict group (is a distinct peak in the graph) while relatively peripheral in the Rom-
Loss group (no peak in the graph). Loss of interest (inte) is very central in the RomLoss
group while relatively peripheral in the Health group. Finally, fatigue (fati) is relatively
central in the RomLoss group while relatively peripheral in the Stress and Health groups.
In general, differences between SLE groups are more striking than their similarities but
one similarity does stand out: feelings of worthlessness (wort) and thoughts of death
(deat) rank among the most central symptoms in every SLE group.
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Figure 4.2: Correlation networks between the symptoms of a depressive episode for the four
stressful life event groups. The top left depicts the network after stress (Stress); the top right
after a romantic loss (RomLoss); the bottom left after health problems (Health); and the bottom
right after an interpersonal conflict (Conflict). Each symptom is represented as a node in the
networks and a connection between two symptoms represents the tetrachoric correlation between
them. The connection is green when the correlation is positive and red when the correlation
is negative. depr : depressed mood; inte: loss of interest; wlos: weight loss; wgai : weight
gain; dapp: decreased appetite; iapp: increased appetite; isom: insomnia; hsom: hypersomnia;
pagi : psychomotor agitation; pret : psychomotor retardation; fati : fatigue; wort : feelings of
worthlessness; conc: concentration problems; deat : thoughts of death.

Homogeneity versus heterogeneity of the correlation net-

works

The solution in which correlations were estimated separately for each SLE group (i.e.,
heterogeneity) fitted much better than a solution in which correlations were constrained
to be equal across SLE groups (i.e., homogeneity). This result was found in two separate
analyses: (1) thresholds were estimated separately in each SLE group in both solutions;
and (2) thresholds were constrained to be equal across SLE groups in both solutions. In
both analyses, a highly significant χ2 difference test (χ2 = 384.41, df = 273, p < 0.001)
indicated heterogeneity: the patterning of tetrachoric correlations between depressive
symptoms of the SLE groups is significantly different from one another.
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Figure 4.3: Centrality of symptoms in the four stressful life event groups. The top left panel
depicts symptom centrality after stress (Stress); the top right panel after a romantic loss (Rom-
Loss); the bottom left panel after health problems (Health); and the bottom right panel after
an interpersonal conflict (Conflict). The x-axis represents the 14 disaggregated symptoms of
an episode of MD while the y-axis represents centrality (defined as the sum of the tetrachoric
correlations between a symptom and all the other symptoms in the network). depr : depressed
mood; inte: loss of interest; wlos: weight loss; wgai : weight gain; dapp: decreased appetite;
iapp: increased appetite; isom: insomnia; hsom: hypersomnia; pagi : psychomotor agitation;
pret : psychomotor retardation; fati : fatigue; wort : feelings of worthlessness; conc: concentra-
tion problems; deat : thoughts of death.

Source of differences in correlation networks

This analysis contrasted the fit of model I to model II, as described in the Method section,
and was based on a categorical one-factor model in which the following correlations were
allowed to be estimated in all models, but constrained to be equal across SLE groups3

(χ2 = 499.15, df = 72, RMSEA = 0.053, CFI = 0.863)4 : weight loss with decreased
appetite, psychomotor retardation with fatigue, insomnia with psychomotor agitation
and hypersomnia with fatigue. Table 2 presents the results of fitting model I and model
II to the data as well as a test of their relative fit. This test indicated that model II fitted
the data significantly worse than model I (p < 0.001). This means that the differences
in the correlation networks of the four SLE groups cannot be explained by underlying

3 The choice for these correlations in particular was based on the modification indices in
Mplus.

4 The χ2 statistic and CFI suggest poor fit but, given the low standardized residuals, we
conclude nonetheless that the model fitted the data reasonably well.
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differences in acute liability to develop a DE5 .

Table 4.2: Goodness-of-fit statistics and χ
2 difference tests for models testing

factorial invariance of depressive symptoms across SLE groups

χ2 df RMSEA CFI χ2
diff dfdiff p

Model I 769.97 303 0.054 0.856
Model II 797.67 342 0.050 0.860 81.64 39 <0.001

SLE: stressful life event; df: degrees of freedom; RMSEA: root mean square error of approximation;
CFI: comparative fit index; χ2

diff : χ
2 statistic of the χ

2
diff difference test; dfdiff : degrees of freedom

of the χ
2 difference test; p: p value of the χ

2 difference test

Discussion

Two theories about the nature of psychiatric disorders—the common cause and the net-
work hypothesis, respectively—postulate competing reasons for why SLEs influence de-
pressive symptoms differently. The main goal of the present study was to investigate the
predictions of these two hypotheses, an endeavor that is, to our knowledge, the first of
its kind. To this end, we constructed networks of disaggregated depressive symptoms
for four SLE groups based on participants with a DE. We compared these networks in a
descriptive fashion, and assessed whether differences in the networks were (1) statistically
significant and (2) best explained by underlying differences in acute liability to develop a
DE. Our main results are that SLEs influence the correlations between depressive symp-
toms in markedly different ways; these differences are significant and cannot be explained
by underlying differences in acute liability to develop a DE. That is, for example, the
generally stronger correlations between depressive symptoms after a romantic breakup
are not due to the fact that people have a higher liability to develop a DE after a romantic
breakup compared with other SLEs.

Our results are not compatible with a common cause perspective. If a psychiatric
disorder arises as predicted by the common cause hypothesis, then exogenous variables
like SLEs should influence depressive symptoms only indirectly, via the common cause
(i.e., acute liability to develop a DE; see panel A of Figure 4.1). And, as such, differences
between SLEs in their impact on depressive symptoms should arise due to underlying
differences in the common cause. A common cause model might be adjusted so that
it fits in the SLE groups with equal strength of the associations between a DE and its
symptoms; e.g., by allowing (1) SLEs to influence the symptoms directly or (2) some of
the residual variance of symptoms to be correlated. However, such a model might fit but
still violates the idea of a common cause through which exogenous variables (SLEs) exert
their influence.

A network perspective on psychiatric disorders explains our results in a natural way:
the symptoms and direct (causal) relations between them are the causes of a psychiatric
disorder. As such, the network perspective predicts that exogenous variables (SLEs) will

5 For the psychometrically interested reader: we have also fitted a strong factorial invariance
model in which loadings and thresholds were constrained to be equal across groups (factor means
and variances freely estimated in all but the first group, scaling factor fixed to 1 in all groups).
Also in this case, the baseline model (in which loadings and thresholds were freely estimated
across groups) was the preferred model.
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make an impact on the symptoms directly without an intervening common cause: for
example, a romantic breakup results in more hypersomnia than a health problem. We
have not directly tested this hypothesis (i.e., we have not fitted a model like panel B in
Figure 4.1 to the data, which is not possible given available methodological tools and
the cross-sectional nature of the data), but, given that a common cause explanation is
unlikely, the network perspective is currently the most plausible candidate for explaining
the differences between SLEs in their influence on depressive symptoms.

If a network perspective on psychiatric disorders is accurate, then how do associa-
tions between symptoms arise? Suppose that depressed mood, insomnia, fatigue and
concentration problems are strongly associated in someone: e.g., when Alice has trouble
concentrating at work, she easily feels self-reproach for not being able to focus. Now,
in such a strongly associated network of symptoms it theoretically takes only one symp-
tom to become present as a results of an interpersonal conflict for instance—e.g., in-
somnia—for a syndrome to develop; for example, via the following sequence of events:
insomnia → fatigue → concentration problems → self-reproach → depressed mood. It
is likely that such connections between symptoms are governed by distinct pathological
mechanisms. That is, a network perspective hypothesizes that symptoms will have partly
distinct etiologies. For example, the connection between insomnia and fatigue will prob-
ably involve more physiological homeostatic mechanisms while the connection between
depressed mood and self-reproach will be governed by more cognitive mechanisms. More-
over, individual differences are likely to arise in exactly these pathological mechanisms
such that Alice will feel fatigued after only one sleep-deprived night while Bob can endure
four sleepless nights without developing fatigue. Therefore, given that the analyses in this
chapter indicate that such a network of connected symptoms might portray an accurate
picture of DEs, we need an alternative research agenda that promotes the discovery and
analysis of pathological mechanisms that govern individual symptoms and connections
between them, currently not a focus in research into the etiology of psychiatric disorders.

A conceptual shift to a network perspective has clinical implications, for example the
identification of people who are at risk of developing a DE, or its more severe counterpart,
MD. We have shown that the centrality of certain symptoms in the correlation networks
varies depending on the nature of the precipitating event; for example, loss of interest
is a central symptom after a romantic breakup but relatively peripheral after a health
problem. What might this difference in centrality imply in terms of risk for developing
a DE? The centrality of a symptom could be interpreted as an indicator of how risky
the presence of that symptom is for the development of a full-blown syndrome: a central
symptom is one that is strongly connected (i.e., correlated) to the other symptoms in
the network. As such, when someone develops such a symptom, there is a substantial
risk that other symptoms will subsequently emerge as well, potentially resulting in a
depressive syndrome. The present findings generate testable hypotheses with respect to
which SLEs in combination with what symptom(s) might most likely result in a diagnosis
of a DE in the future. One such hypothesis would be that people, after having experienced
a romantic breakup, who present themselves with loss of interest have an elevated risk of
developing a DE compared with those (1) with the same SLE but with other, peripheral,
symptoms and (2) with the same symptom but with another SLE for which loss of interest
is not a central symptom.

Our results have conceptual and philosophical implications regarding the nature of
psychiatric disorders. The most common approach to understanding psychiatric disorders
has been ‘essentialism’ (Kendler, 2006; Kendler & Baker, 2007): all important properties
of a psychiatric disorder arise from a single causal process roughly analogous to the way
in which all features of Down’s syndrome arise from the presence of all or part of an extra
21st chromosome. The common cause model is consistent with an essentialist model in
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that all the symptoms of a DE arise from a common process, analogous to an essence.
Alternatively, we argue that a different concept of the nature of psychiatric disorders,
mechanistic property clusters (MPCs), may be a more accurate model (Kendler et al.,
2011). This theory suggests that psychiatric disorders are more accurately defined in
terms of mutually reinforcing networks of causal mechanisms. The network hypothesis
is closely related to the concept of MPCs in suggesting that psychiatric disorders arise
from interactions between their component symptoms rather than from some underlying
essence. The findings presented in this chapter are, to our knowledge, the first empirical
piece of evidence that such models might be accurate in their portrayal of psychiatric
disorders.

Our findings should be interpreted within the context of some limitations. First,
the participants were Caucasian twins born in the US state of Virginia. As such, we
cannot be sure whether our findings will generalize to other populations. Second, the
basic model that we used for comparing model I and model II did not fit the data well,
and it might therefore be argued that the results of that analysis should be interpreted
with some degree of caution. The most plausible reason for this lack of good fit was that
our sample was a selection of only those people who reported at least two aggregated
symptoms, thus not including participants with one symptom or no symptom at all (the
model fitted the pre-selection sample data well). We repeated the analysis twice: (1)
on the disaggregated data with a four-factor model that was not interpretable from a
substantive point of view but fitted the data better; and (2) on the aggregated data for
which a one-factor model fitted the data better than the model we reported on. In both
cases, the outcome was identical to the one reported here. Third, with the available
data, we cannot rule out the possibility that some of the covariation between some of
the symptoms is due to an underlying, latent, mechanism (i.e., a common cause of some
symptoms, rather than the common cause model as depicted in panel A of Figure 4.1).
However, we note that for many of the depressive symptoms, direct relations appear to
be more likely: e.g., that it is the actual experience of not sleeping that makes you tired
(instead of a common underlying mechanism that causes both insomnia and fatigue).
Finally, we investigated a limited range of all possible symptoms in the context of a
limited number of stressors. Also, because the inclusion criterion for this study was
less stringent than having a diagnosis of MD (i.e., two or more co-occurring aggregated
depressive symptoms sufficed), the results paint a picture of DEs and, as such, cannot be
straightforwardly generalized to their more severe counterpart, MD. That said, it must
be noted that in this particular sample, 29% of participants did have a diagnosis of MD,
a percentage that is almost three times higher than what is normally reported in MD
studies.
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Chapter 5

Major depression as a

complex system

Abstract

What is major depression? In this paper, contrary to a latent variable perspective on psy-
chopathology, we argue that major depression should be characterized as a complex dynamical
system in which symptoms (e.g., insomnia and fatigue) causally interact with one another: in-
somnia → fatigue → psychomotor retardation. Next, we hypothesize that individual people can
be characterized by their own network with unique architecture and resulting dynamics. With
respect to architecture, we argue that individuals vulnerable to developing major depression are
those with strong connections between symptoms: e.g., for a particular person, a sleepless night
has a strong influence on feeling tired the next day. Such vulnerable networks, when pushed
by external forces such as stressful life events, are more likely to end up in a depressed state
(i.e., “depression” attractor); whereas networks with less strong connections tend to remain in
or return to a healthy state (i.e., “health” attractor). We show this with a simulation in which
we model the probability of a symptom becoming ‘active’ in a person as a logistic function of the
activity of its neighboring symptoms. Additionally, we show that this model explains some well-
known empirical phenomena (e.g., spontaneous recovery) and accommodates both continuous
and taxonomic views on major depression. Finally, we elaborate on how therapeutic strategies
(e.g., cognitive behavioral therapy) can be understood within this causal systems perspective.
To our knowledge, we offer the first intra-individual, symptom-based, process model with the
potential to explain the empirical reality of major depression.

Adapted from: Cramer, A. O. J., Giltay, E. J., van Borkulo, C. D., Kendler, K. S., van der
Maas, H. L. J., Scheffer, M., & Borsboom, D. (in preparation). I feel sad therefore I don’t sleep:
Major depression as a complex dynamical system.
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“Slowly, over the years, the data will accumulate in your heart and mind, a
computer program for total negativity will build into your system, making
life feel more and more unbearable. But you won’t even notice it coming on,
thinking that it is somehow normal, something about getting older, about
turning twelve or turning fifteen, and then one day you realize that your
entire life is just awful, not worth living, a horror and a black blot on the white
terrain of human existence. One morning you wake up afraid you are going to live.”

(Wurtzel, 2002)

Major depression (MD) imposes a heavy burden on people suffering from it. Not only are
the symptoms of MD themselves debilitating, but their potential consequences such as job
loss and facing stigmatization and rejection by other people can be equally detrimental
to long-term physical and mental health (Greden, 2001; C. L. Hammen & Peters, 1978;
Murray & Lopez, 1997; J. Wang, Fick, Adair, & Lai, 2007). Combined with the fact that
major depression approximately affects 17% of the population at some point in their
lives, denoting MD as one of the biggest mental health hazards of our time is hardly an
overstatement (Kessler et al., 1994; Lopez, Mathers, Ezzati, Jamison, & Murray, 2006;
WHO, n.d.). It should therefore not come as a surprise that vast amounts of time and
money in clinical research have been allocated towards elucidating the causes of MD and
effective ways to eliminate them.

One of the key questions that have to be asked first in order to investigate causes and
design treatment interventions is what MD is; or, more generally, what a mental disorder
is. The very notion of separate mental disorders, each associated with a specific set of
symptoms, was first pioneered by Kraepelin (1923) and Lewis (1934) who, independently
from each other, observed that particular symptoms tend to ‘co-exist’ with some but
not all other symptoms. For example, depressed mood and feelings of worthlessness
were seen together quite frequently in patients whereas depressed mood and disorganized
thinking were not. Many such observations later culminated in the definition of distinct
mental disorders, designating depressed mood and feelings of worthlessness as symptoms
of MD and disorganized thinking as a symptom of schizophrenia. Put in statistical
terms, the setup of the current classification system is based on the fact that some
symptoms are more strongly correlated with one another (e.g., MD symptoms) than with
others (e.g,. MD symptoms with symptoms of schizophrenia; see also C. A. Hartman
et al., 2001). Now, the million-dollar question is why psychopathological symptoms
show these particular correlational patterns. For many decades, the short answer to this
question has been that mental disorders are latent variables, common causes of their
symptoms, analogous to a lung tumor that causes shortness of breath and coughing up
blood (see also Borsboom & Cramer, 2013). In this chapter, we present an alternative,
namely that MD should be characterized as a complex dynamical system of interacting
symptoms. First, we briefly review current conceptualizations of MD as a common cause
of its symptoms. Next, we outline our view of MD and show that simulated networks
have characteristics that are well-known in the empirical realm, for example spontaneous
recovery; and accommodate both continuous and taxonomic views on major depression.
Finally, we elaborate on how therapeutic strategies (e.g., cognitive behavioral therapy)
can be understood within this causal systems perspective.

MD as a common cause of its symptoms

The general idea that symptoms of a mental disorder are attributable to the same cause
(i.e., the common cause view) permeates—in explicit or implicit form—the field of psy-
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chiatry and clinical psychology (e.g., psychosis is caused by hyperdopaminergia; Howes
& Kapur, 2009) and is reflected in its mathematical formalization in psychometrics, the
generic latent variable model (Borsboom et al., 2003; Cramer et al., 2010). In this model,
the symptoms of MD cluster together because they share a common cause, MD: For ex-
ample, the high correlation between insomnia and fatigue is hypothesized to be due to
the fact that both were caused by the same underlying disorder (MD). In that sense, this
model equates mental disorders such as MD to medical conditions, for example a lung
tumor: in patients with such a tumor, symptoms such as chest pains, shortness of breath
and coughing up blood are caused by the physical presence of the tumor. Likewise, the
symptoms of Huntington’s disease are caused by an abnormal length of the Huntingtin
gene resulting in a mutant Huntingtin protein (Plomin, DeFries, McClearn, & McGuf-
fin, 2008; Walker, 2007). Additionally, in both medical conditions, there is a clear-cut
distinction between people with and without the disease: all people with Huntington’s
disease (or: lung cancer) have the mutant protein (or: tumor) and all people without
Huntington’s disease (or: lung cancer) do not have that protein (or: tumor).

We fitted a latent variable model—that is, the statistical equivalent of the common
cause view as described above—to empirical data on the nine symptoms of MD—as they
are indicated in DSM-IV (APA, 1994)—assessed for the previous year from the Virginia
Adult Twin Study of Psychiatric and Substance Use Disorders (VATSPUD; Kendler &
Prescott, 2006; Prescott et al., 2000). To be more precise, we fitted a one-factor model
to this data and the results of this analysis are shown in Figure 5.1. The model fits the
data nicely (χ2 = 233.7, df = 27, p < .001, CFI = .998, TLI = .997, RMSEA = .029)
so one could argue: since it fits, why is the latent variable/common cause model not a
good model to describe covariation among MD symptoms? One reason has to do with
what happens when one fits a one-factor model to the exact same data but with the
disaggregated instead of the aggregated MD symptoms. It is common practice in most,
if not all, empirical papers that the latent variable model is fit onto the aggregated data
in which symptoms such as insomnia and hypersomnia are collapsed (i.e., aggregated)
into one symptom, sleep problems1 . To us, these aggregations are suboptimal since,
for example, there is good reason to believe that insomnia and hypersomnia have very
different functions and might even be part of distinct subtypes of MD (more on this
in the next section). Nonetheless, when a common cause on MD is accurate, then one
should expect that the latent variable model would hold for the disaggregated symptoms
as well. In the VATSPUD data, this is clearly not the case: the one-factor model fits
poorly on the disaggregated symptom data (χ2 = 3366.49, df = 77, p < .001, CFI =
.967, TLI = .961, RMSEA = .069). Naturally, it is possible to tweak the model in such
a way that it does fit. In this example, the model fit for the disaggregated data was
good (χ2 = 432.55, df = 69, p < .001, CFI = .996, TLI = .995, RMSEA = .024) when
allowing seven residual variances—based on modification indices greater than 100—to be
correlated2 . However, although this statistically tweaked model fits disaggregated data,
it is, theoretically speaking, a far cry from a common cause model: for how could one
claim that a certain variable (MD in this case) is the common cause of a set of observable
symptoms while at the same time allowing that, say, weight loss and decreased appetite
are (cor)related?

It should be stressed that a pivotal consequence of adhering to a common cause view

1 Other aggregated symptoms are psychomotor disturbances (agitation and retardation) and
weight problems (weight loss and gain, increased and decreased appetite.

2 The following residual variances were allowed to be correlated: weight loss with weight
gain, weight loss with decreased appetite, weight loss with increased appetite, weight gain with
decreased appetite, weight gain with increased appetite, decreased appetite with increased ap-
petite, insomnia with psychomotor agitation, and psychomotor retardation and fatigue
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d6 d5 d4 d3 d2 d1 d8 d7 d9 

MD 

0.90 0.81 0.88 0.74 0.81 0.78 0.81 0.80 0.74 

0.10 0.35 0.20 0.40 0.34 0.39 0.35 0.37 0.40 

Figure 5.1: A one-factor model of major depression based on data from the Virginia Adult
Twin Study of Psychiatric and Substance Use Disorders (VATPSUD). The circle on top of the
figure represents the latent variable “MD” whose metric was fixed such that its mean was 0 and
its variance 1. The nine squares represent the nine aggregated symptoms of MD according to
DSM-III-R. The grey lines (i.e., edges) from the latent variable ”MD” to the squares represent
the factor loadings. The vertical line in each of the squares represents the threshold above which
a “yes” response is given: the further to the right the line, the higher the threshold. The dashed
lines going in and out of the squares represent the residual variance. d1 : depressed mood;
d2 : loss of interest; d3 : weight problems; d4 : sleep problems; d5 : psychomotor problems; d6 :
fatigue; d7 : feelings of worthlessness; d8 : concentration problems; d9 : thoughts of death.

is that one assumes that there are no causal relations between symptoms (i.e., no arrows
between symptoms in Figure 5.1). From the common cause view, insomnia and fatigue
‘co-exist’ because they are caused by MD and not because they are causally related:
e.g., insomnia → fatigue. In latent variable models—again, the model of choice when
adhering to a common cause view—the “local independence” axiom translates this idea
into statistical terms: conditioning on the latent variable (i.e., MD in Figure 5.1 renders
the symptoms statistically independent (e.g., Holland & Rosenbaum, 1986; Lord, 1953;
McDonald, 1981). Again, this idea makes sense for quite a number of medical diseases:
involuntary jerking and lack of impulse control are likely not causally related but both
caused by the mutant Huntingtin protein.

The pervasiveness of the common cause view has its roots in a mix of the philosophical
traditions of disease realism, reductionism and essentialism (e.g., Haslam, 2000; Haslam
& Ernst, 2002; Lilienfeld & Marino, 1999; R. Kendell & Jablensky, 2003; Thornton,
2000). Briefly, the combined views claimed mental disorders are real in the sense that
it has “a real, substantial existence regardless of social norms and values, and exist
independent of whether they are discovered, named, recognized, classified or diagnosed”
(Freitas, 2007). As such, a mental disorder like MD is ultimately grounded in tractable
biological abnormalities and a true distinction exists between people with and without
MD. While we know that this is potentially true for a number of medical conditions,
there is no convincing evidence for the validity of this conceptualization of MD. There
is no clear-cut distinction between people with and without MD: there exists no set
of biological abnormalities that are always present in people with MD vis-a-vis people
without MD. Even worse, after decades of intensive research, no one has been able to
even come up with a likely candidate to function as the common cause of MD (research
into common causes for other clusters of psychopathological symptoms share the same
fate). One could argue that we have not found those common causes yet : we will find
the root causes of mental disorders like MD some day but we simply need better tools to
discover them (Bollen, 2002; Borsboom, 2008b). A different take on the matter is simple:
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there are no common causes to be found because they do not exist (Cramer et al., 2010;
Cramer, van der Sluis, et al., 2012).

MD as a network of interacting symptoms

So what, then, is responsible for the established fact that symptoms of MD cluster
together (i.e., are highly correlated)? Our alternative conceptualization of MD starts
out with the exact opposite assumption of a common cause view concerning relations
between symptoms: MD is a network of symptoms that do causally interact with one
another. That is, insomnia, fatigue and concentration problems are not highly correlated
because they are caused by MD but because they are causally related to each other:
insomnia → fatigue → psychomotor retardation (Borsboom, 2008b; Cramer et al., 2010;
Cramer, Borsboom, Aggen, & Kendler, 2012). Such direct relations make more sense
than postulating a common cause: why would one need a common cause to explain
why not sleeping and feeling tired are highly correlated? Likewise, if one considers the
symptoms “depressed mood” and “self-reproach” it is plausible to assume a direct causal
relationship: if one suffers from depressed mood long enough, at least a subset of the
people experiencing this might start developing feelings of self-reproach because of these
depressed feelings; and, again, this makes more sense than postulating a common cause
for whose existence we have no evidence. Thus, both the common cause as well as the
network perspective on psychopathology share the starting point that some symptoms
are more strongly associated with one another than with others; they differ, however, in
the hypothesized reason for these association patterns: a common cause, from a common
cause perspective, and direct relations between these symptoms, according to the network
perspective.

There are several ways to construct a network for any given set of variables. Ordinary
correlations are a potential starting point but, as we have emphasized elsewhere (Cramer,
van der Sluis, et al., 2012), their usefulness is limited since a high correlation need
not be indicative of a direct relation between two variables. For example, it might
be the case that two nodes in a network—say, self-reproach and fatigue—are highly
correlated but only do so because they are both caused by a third node in the network,
say, insomnia (Borsboom & Cramer, 2013). A fruitful alternative to determine which
nodes are connected in a network is by exploring conditional independence relations. The
package pcalg for R (Kalisch, Maechler, Colombo, Maathuis, & Buehlmann, 2012) can
be used for the discovery of conditional independence relations from observed data. In
a nutshell, the package starts out with a graph in which all nodes are connected to one
another without directionality. Next, it determines conditional independence relations
because these imply which nodes should be connected and which not. For example,
consider the network in panel B of Figure 5.2, suppose that this network is the ‘true’
network that gave rise to a dataset: thus, in this example, both variables X and Y
are caused by Z (i.e, a common cause structure). Now, such a network implies that
X and Y are conditionally independent given Z (Pearl, 2000). Generally, two variables
X and Y are said to be conditionally independent given a third variable Z, denoted as
X⊥Y |Z, iff Pr(Y |X,Z) = Pr(Y |Z). That is, X and Y are conditionally independent if
the probability of Y given X and Z is the same as the probability of Y given Z alone:
values ofX thus give no additional information about the probability of Y occurring. And
because X does not contribute information, beyond the information contributed by Z,
to the probability of Y , the program removes the edge between X and Y . pcalg searches
the dataset for all such relations (for all possible combinations of nodes in the network
including all interactions) to delete edges from the completely connected network. In the
next step, it infers the directionality of the edges by, for example, exploiting the special
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case of the collider (see panel C of 5.2). A collider, Z in panel C of Figure 5.2, is a
node that is the outcome of two other variables, X and Y . In this particular case, X
and Y are conditionally dependent given Z. Once search algorithms like pcalg find such
colliders, the edges are oriented accordingly. On a cautionary note, a limitation of these
and similar search algorithms is that a set of conditional independencies can be consistent
with multiple graphs (these graphs are said to be Markov equivalent): for example, the
networks in panel A (i.e., causal chain) and B (i.e., common cause) of Figure 5.2 imply
the same, single, conditional independency: X⊥Y |Z. This means that when using such
search procedures, it would be premature to claim the discovery of the network that
gave rise to the conditional independence relations between a given set of variables. A
network for a particular sample discovered through causal discovery algorithms such
as pcalg would need independent verification in unrelated samples; and/or, additional
variables could be added as extra nodes in the network in order to facilitate the process
of determining directionality of the edges.

X Z Y 

Z 

X Y 

X Y 

Z 

A B C 

Figure 5.2: An illustration of the three most important causal relations that can be discovered
through tracking conditional independence relations. Panel A shows a chain structure: Z func-
tions as a mediator between X and Y . Panel B shows a common cause structure: Z acts as the
common cause of both X and Y . Panel C shows a collider structure: Z is a common effect of
both X and Y .

Figure 5.3 presents such a graph derived from pcalg for the VATSPUD data. In this
figure, each symptom is represented as a node while each line (i.e., edge) between two
nodes implies that these nodes are conditionally dependent, given all combinations of
other nodes in the network. We have omitted arrows in this figure so all edges are inter-
preted as bidirectional connections. The positioning of the nodes is such that nodes with
many connections with other nodes are placed towards the middle of the graph; while
nodes with relatively few connections with other nodes are placed towards the periphery
of the graph. The first thing that stands out when inspecting Figure 5.3 is that a couple
of symptoms appear to be isolated from the remainder of the network: most noteworthy
in this respect are weight loss (wlos), weight gain (wgai), increased appetite (iapp) and
hypersomnia (hsom). Pertaining to the latter three, the fact that these appear to be
somewhat isolated from the other symptoms of MD might not come as a surprise since
the distinction between MD with typical (e.g., weight loss, decreased appetite, insomnia)
versus atypical (e.g., weight gain, increased appetite, hypersomnia) symptoms was first
observed and articulated into theory many decades ago (e.g., D. F. Klein & Davis, 1969)
and is currently recognized in the most recent version of the DSM (i.e., DSM-IV; APA,
1994). Second, some symptoms are clearly more central than others: these nodes have
relatively many connections with other nodes in the network. Consistent with the diag-
nostic importance that DSM-IV assigns to depressed mood and loss of interest—either
one of these symptoms must be present for a diagnosis of MD—these symptoms (depr
and inte) rank among the most central symptoms in the MD network. On a final note,
many of the connections in Figure 5.3 make intuitive sense: for example, the connec-
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tion between insomnia (isom) and fatigue (fati); the connection between fatigue (fati)
and concentration problems (conc); and the connection between feelings of worthlessness
(wort) and thoughts of death (deat).

depr

inte

wlos

wgai

dapp

iapp

isom

hsom

pagi

pret

fati

wort

conc

deat

Figure 5.3: A network model of major depression derived from conditional independence re-
lations and based on the VATSPUD data. Each node in the figure represents one of the 14
disaggregated symptoms of MD according to DSM-III-R. A line (i.e., edge) between any two
nodes means that they are conditionally dependent, given all possible subsets of other nodes
in the network. The absence of an edge indicates conditional independence. depr : depressed
mood; inte: loss of interest; wlos: weight loss; wgai : weight gain; dapp: decreased appetite;
iapp: increased appetite; isom: insomnia; hsom: hypersomnia; pret : psychomotor retardation;
pagi : psychomotor agitation; fati : fatigue; wort : feelings of worthlessness; conc: concentration
problems; deat : thoughts of death.

Recent (circumstantial) evidence appears to be in favor of the network model for
MD (Cramer, Borsboom, et al., 2012). For example, the death of a spouse triggers
depressed mood (depr) and loss of interest (inte) while health problems trigger insomnia
(isom) and psychomotor retardation (pret) in Figure 5.4 (i.e., the solid arrows); and
this phenomenon cannot be explained by underlying differences in the common cause
(i.e., the dashed arrows in Figure 5.4): for example, the fact that the death of a spouse
triggers more depressed mood and loss of interest compared to health problems, cannot
be explained by the death of a spouse causing a higher score on the common cause/latent
variable “MD” compared to health problems. This result points to the unique role that
MD symptoms appear to play in the pathogenesis of MD: each receives, potentially
unique, input from external variables such as stressful life events. And this unique role
of individual symptoms is hard, if not impossible, to explain from a latent variable or
common cause perspective where, by the very implication of positing a common cause,
all external influences (such as stressful life events) should run via the common cause.
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MD 

iapp dapp wgai wlos inte depr 

Death spouse 

Health problems 

pagi wort fati conc isom deat pret hsom 

Figure 5.4: Two potential ways in which stressful life events (i.e., the death of a spouse
and health problems) can impact major depression. The circle with “MD” represents the latent
variable “major depression” while the rectangular boxes represent the 14 disaggregated symptoms
of MD. First, a stressful life event can influence the latent variable MD directly and not the
symptoms (i.e., dashed lines from Death spouse and Health problems to MD). This setup is
consistent with a latent variable perspective. Second, a stressful life event can influence the
symptoms directly and not the latent variable (i.e., solid lines from Death spouse and Health
problems to depr, inte, isom and pret). This setup is consistent with a network perspective. depr :
depressed mood; inte: loss of interest; wlos: weight loss; wgai : weight gain; dapp: decreased
appetite; iapp: increased appetite; isom: insomnia; hsom: hypersomnia; pret : psychomotor
retardation; pagi : psychomotor agitation; fati : fatigue; wort : feelings of worthlessness; conc:
concentration problems; deat : thoughts of death.

The intra-individual network model of MD

The network in Figure 5.3 is based on inter-individual data and as such, without ad-
ditional testing of the mapping between what happens at the inter-individual level and
what happens within an individual, could not serve as an intra-individual network model
of MD. How, then, could we model what happens at the intra-individual level? Let
us start with explication how one could conceive such a model. First, we assume that
symptoms can be ‘on’ (1) or ‘off’ (0) and can influence one another in time if they are
connected in the graph based on conditional independencies derived from the VATSPUD
data (Figure 5.3). Symptoms that are connected in this graph are called neighbors of
one another. In Figure 5.3 for example, hypersomnia has only two neighbors (increased
appetite and fatigue) and only these neighbors can influence hypersomnia. Likewise,
psychomotor retardation has five neighbors (loss of interest, increased appetite, fatigue,
feelings of worthlessness and concentration problems). The state (0: ‘on’ or 1: ‘off’) of a
symptom i at time t is denoted Xt

i . The connection between symptom i and j is denoted
Wij and can be considered as a binary variable (connection is either present (1) or absent
(0) as in the connections in Figure 5.3) or a continuous variable (for example ranging
from -1 to 1 reflecting partial correlations). Furthermore, there is no autocatalysis: the
weights Wii—that is, a connection (self-loop) between a symptom and itself—are set to
0. The matrix W contains all weights of the connections between J = 14 symptoms.

Next, we assume that the probability of a symptom to turn ‘on’ (i.e., becoming
present/active in a ‘person’) depends monotonically on the activation of its neighbors: the
more neighbors of symptom i are ‘on’ at a given point in time, the higher the probability
that symptom i, at a later point in time, becomes present itself. The total activation

function of symptom i at time t is:

At
i =

J∑

j=1

WijX
t
j (5.1)

Thus, when connections between symptoms are stronger and more symptoms are
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turned ‘on’, A becomes increasingly large. As a next step, the probability of a symptom
i becoming active at time t+ 1 depends on At

i and is expressed as follows:

P (Xt+1
i = 1) =

1

1 + eai(bi−At
i
)

(5.2)

Note the similarity of this probability function with the probability function for an
item in a Rasch model (Rasch, 1960) and the conditional probability of a variable given
its neighbors in the classical Ising model (Ravikumar, Wainwright, & Lafferty, 2010) (see
Appendix F for more details on the exact correspondence of our model with the Rasch
model and the Ising model). In the current function, the parameter bi gives the threshold
of symptom i. Symptoms with higher thresholds require more activation, while symptoms
with lower thresholds are easily activated. A special case arises when A is equal to bi,
that is, when the amount of activation of the neighbors of symptom i is exactly equal to
the threshold of symptom i. In that case, the probability of symptom i becoming active
is exactly 1/2. Given known prevalence differences in MD symptomatology—for exam-
ple: sleeping problems are more prevalent than thinking of suicide—threshold differences
between symptoms appear to be a reasonable modeling assumption. The parameter ai is
a symptom-specific parameter that controls the steepness of the probability function: for
higher levels of ai, a given change in At

i results in a steeper change in the probability of
symptom i becoming active. Together, formulas 5.3 and 5.2 control the dynamic behavior
of the system. We implemented the model in the freely available program NetLogo (van
Borkulo, Borsboom, Nivard, & Cramer, 2011)3 .

The above formulas describe the dynamic behavior of one network over time. Sup-
pose we would simulate many of these networks to represent individuals, how might these
networks differ in their architecture? We hypothesize two things: First, individuals’ net-
works differ in terms of the connections between symptoms; that is, individuals might
have a different Wij matrix. In substantive terms for binary weights, this might mean,
for example, that insomnia has no neighbors in Alice’s network (i.e., for Alice, poor qual-
ity of sleep does not influence other symptoms in her network); while in Bob’s network,
insomnia has eight neighbors (i.e., in Bob’s case, poor quality of sleep influences many
other symptoms in his network). When the connections are considered to be continuous,
then a strong connection between, say, insomnia and fatigue in someone’s network of
MD means that poor sleep one day has a substantial impact on feeling fatigued the next
day: this person likely will feel tired after a night with poor sleep. On the other hand, a
weak connection between insomnia and fatigue means that poor sleep one day has only
a limited impact on feeling fatigued the next day: this person likely will not feel tired
after a night with poor sleep. Second, we hypothesize that someone who is vulnerable

to develop an episode of MD has a network in which the MD symptoms are generally
strongly connected: according to formulas 5.3 and 5.2, if one symptom is developed in
networks with high connectivity, then the probability of other symptoms quickly becom-
ing activated as well is high, due to (1) the presence of relatively many connections (in
case of Wij containing binary weights) or (2) the overall strong connections (in case of
Wij containing continuous weights) in that network. The worst case scenario, in terms of
vulnerability, is the combination of strong connections between symptoms and relatively
low thresholds: in that particular case, not much activation of neighboring symptoms is
needed to exceed the threshold of a symptom and, as such, activate it. On the other
hand, relatively high thresholds might ‘protect’ a person from harm because in that case,
despite strong connections, al lot of neighboring symptoms need to be activated in order
to exceed the threshold. Resilience can be thought of as a network in which the symptoms

3 The simulation tool can be downloaded at http://ccl.northwestern.edu/netlogo/models/community/
Symptom%20Spread%20Model
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are weakly connected: the development of one symptom is not likely to set off a cascade
of symptom development culminating in an episode of MD; because the relations are not
strong (or not omnipresent in the case of binary weights), thereby having a relatively
small impact on the probability of symptom development.

To incorporate the possibility of different weight matrices and study the potential
impact on the behavior of the network, we adapted the formula in 5.2 to include a
connectivity parameter c, a number that is identical for all symptoms with which matrix
Wij is multiplied: the higher c, the more strongly the symptoms are connected:

At
i =

J∑

j=1

cWijX
t
j (5.3)

For our simulations, c took on three values to create networks with low (lowest value
of c), medium and high connectivity (highest value of c). At all time points during
simulations, we tracked the global mood state, M , of these networks by computing the
total number of activated symptoms at these time points. We simulated 10000 time
points with this basic intra-individual MD model for each of the three values of c to
investigate whether, as we predict, stronger connectivity results in higher levels of M .
The ai and bi parameters for the probability functions of the 14 symptoms were derived
from fitting a logistic regression to the VATSPUD data, in which each symptom was
regressed on the total score of its neighbors in the network model as it is presented in
Figure 5.34 . Detailed results as well as R scripts are available at www.aojcramer.com.
The most important result is that, as we predicted, the higher the connectivity of the
network, the higher the mood state M averaged over the 10000 simulations. That is,
more strongly connected networks are more vulnerable in that they become “depressed”
more easily.

Another important result has to do with the weakly connected network in particular.
It is a well-known, but relatively understudied, phenomenon that quite some individuals
who suffer from an episode of MD recover independently of treatment. Estimates of
this spontaneous recovery range somewhere between 23% and 98% (e.g., see Krøgsboll,
Hróbjartsson, & Gøtzsche, 2009; Kendler, Walters, & Kessler, 1997; Whiteford et al.,
2012) depending on the exact time frame within which people with MD are observed and
on whether these people have received treatment: for example, the spontaneous recovery
rate is around 23% for untreated individuals within three months while it is around 90%
for a community sample within a year combining both treated and untreated individu-
als. In treatment studies, these people are, when identified, omitted from the statistical
analyses and preferably, the baseline period before the start of a treatment intervention
is increased such that as little spontaneous recovery as possible ‘contaminates’ the re-
sults. While a sensible requirement when the aim is to study the effects of a treatment
intervention, it has resulted in very limited knowledge about the naturalistic course of
major depression (see: Posternak et al., 2006). As a result, there are no solid theories
about how spontaneous recovery might come about. To our knowledge, the results of
this basic simulation study are the first to hint at a possible mechanism through which
spontaneous recovery might occur. See Figure 5.5 in which the mood state M (y-axis)

4 Parameter estimates are available at www.aojcramer.com. Please note that the intercept
(bi) and slope parameters (ci) derived from logistic regression for each symptom on the total

score of its neighbors (Si) (i.e., P (Xt+1
i = 1) = ebi+ciSi

1+ebi+ciSi
); do not have a one-to-one mapping

with our ai and bi parameters in P (Xt+1
i = 1) = 1

1+e
ai(bi−At

i
)
. Such a mapping can be achieved

by setting our ai parameter to be equal to the ci parameter of the logistic regression; and our bi
parameter to be equal to −

bi
ci
.
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for a weakly connected network is shown for the first 2000 time points. The figure clearly
shows spontaneous recovery: that is, there are points (e.g., at time points 50 and 600)
where many symptoms are activated and, without any change to its parameters, the
system recovers spontaneously to a state in which no symptoms are activated.
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Figure 5.5: The mood state of the MD system over time. The x-axis represents the first 1000
time points of the basic simulation with the MD network model while the y-axis depicts the
mood state; that is, the total number of activated symptoms at a given time point. The figure
shows the presence of spontaneous recovery: there are distinct peaks in the mood state, which,
without intervening in the parameters of the system, spontaneously return to lower mood states.

Vulnerability to develop MD: a catastrophe?

Our current knowledge of how stress (in interaction with vulnerability) can cause episodes
of MD is based on inter-individual differences: for example, in Chapter 4, inferences about
the impact of stress on symptoms of MD were made by comparing groups of individuals.
As such, we have no clear idea of what happens inside an individual person when put
under stress, which might or might not result in an episode of MD. Therefore, in order
to investigate the impact of stress on intra-individual networks, we extend our basic
network model of MD, explicated in the previous section, with a stress parameter St

i , a
number for each symptom i that is added to the activation of the neighbors of i: the
higher St

i , the more stress, the higher the total activation function, and thus the higher
the probability that symptom i will become active. This results in the following modified
activation function:

At
i =

J∑

j=1

WijX
t
j + St

i (5.4)
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Thus, in our model, stress St
i triggers the development of one or more symptoms of

MD. It then depends on the strength of the connections between the MD symptoms (W)
whether the symptoms that were developed due to the stressor cause the development
of other symptoms. If someone is vulnerable (i.e., symptoms are strongly connected), a
mild stressor triggering the development of one symptom could be enough to trigger a
cascade of symptom development eventually culminating in a full-blown episode of MD
(i.e., large M). In a resilient person/network, a relatively large stressor might trigger
the development of one or a few symptoms, but these symptoms will not likely cause the
development of other symptoms. Consider an analogy with a bowl containing a ball (see
also Figure 5.6): the ball is the MD network and the lowest point of the bowl is one of two
possible mood states (alternatively called: attractors or basins of attraction), a healthy

euthymic state and a depressed state. Now, when someone is resilient (i.e., at low risk to
develop MD), stressors are capable of pushing the ball out of the healthy attractor but
when the stressor diminishes, the ball quickly rolls back towards that healthy attractor.
That is, in a resilient person, there is a quick homeostatic return to the prior mood state.
Box A of Figure 5.7 illustrates this: larger stressors only slightly affect mood along the
equilibrium attractor curve.

We hypothesize that the MD symptom networks of people who are vulnerable to
develop MD (i.e., strongly connected networks) behave like what is known in the complex
systems literature as a cusp catastrophe model (Ehlers, 1995; Flay, 1978; Goldbeter, 2011;
M. T. Hubert, Braun, & Krieg, 1999; Thom, 1975; Zeeman, 1977). The catastrophe
model is a mathematical model that can explain why small changes in some parameter (in
our case: small increment in the stress parameter St

i ) can, under certain circumstances,
result in catastrophic changes in the state of a system (in our case: a catastrophic shift
from a healthy to a depressed state, and vice versa). In the case of someone who is
vulnerable to develop MD, even a small perturbation like a particularly bad day at
work has the potential to push the ball outside the healthy attractor, causing it to roll
towards another attractor, namely that of the depressed state (see also Figure 5.6). If
this depressed basin of attraction is large and deep, the network of MD symptoms may
become solidly locked in the depressed state. But under what circumstances can such a
catastrophic shift from health to MD happen?

Box C of Figure 5.7 illustrates three features of a cusp catastrophe model that,
combined, can bring about catastrophic semi-permanent changes in response to small
perturbations. First, the equilibrium curves are folded backwards with multiple equilibria
for a given stressor as a result: e.g., a divorce might result in the MD network ending
in the healthy or depressed attractor. Second, the equilibrium attractor curve contains
two tipping points that represent the border between the basins of attraction of the
two alternative stable states on the upper and lower branches (Scheffer et al., 2009).
Near such tipping points the equilibrium is unstable (dashed middle sections in Box C
of Figure 5.7), meaning that modest disturbances (e.g., a small argument with a spouse
over which restaurant to go to) may already move the network away from the healthy
attractor instead of returning to it; and may even result in a large catastrophic affective
shift to the depressed state. Third, the two alternative stable states of the MD are stable,
implying that once the MD network has gone through a catastrophic affective shift, it
tends to remain in that new affective state until the external input (i.e., stress) is changed
back to a much lower level than was needed to trigger the episode of MD; a phenomenon
known as hysteresis (see also Box C of Figure 5.7). That is, this model predicts that
Bob, who developed an episode of MD in response to severe marital problems, will not
recover automatically when, for some reason, the current marital problems are solved:
more is needed, for example additional treatment, to trigger Bob’s recovery.
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Figure 5.6: Three-dimensional landscape model for major depression (MD). Stable affective
states are represented as curvatures (i.e., wells), in a two-dimensional surface. The model contains
two tipping points, represented by blue dots, resulting in two equilibria or stable states (solid
green lines in the two wells) that exist for a given stressor. The green dotted line marks the
unstable state, as the equilibrium curve is folded backwards. The balls represent the MD network.
Far from the bifurcation point (1), resilience is large because the basin of attraction in the deep
well of the healthy state is larger with a high rate of recovery from perturbations. This state is
typical for a MD network with weakly connected symptoms. Under gradual influence of stress,
the well becomes shallower and the basin of attraction shrinks (ball progressing along the red
arrow from 1 to 2). More symptoms become activated (marked by red nodes). The basin finally
vanishes at a critical threshold (i.e., bifurcation points or tipping points), causing the ball to
abruptly roll towards the depressed state attractor (progressing along the red arrow from 2 to
3).

The simulation

For the actual simulation that tested our hypotheses regarding the behavior of weakly,
medium, and strongly connected MD networks in response to stress, we—similar to the
basic MD network model—simulated 10000 time points for each of the three connectivity
c values. For these three types of networks, we observed the impact of variation in the
stress parameter: over the course of the 10000 time points St

i was repeatedly gradually
increased as well as gradually decreased from -15 to 15 with small steps of 0.01 (for details
of the simulation see www.aojcramer.com). The impact of the stress parameter on the
behavior of the network was quantified by computing the average global mood state M :
that is, since all stress parameter values were used multiple times during the simulation,
we averaged mood states within 0.20 ranges of the stress parameter values.

Figure 5.8 shows the main results of the simulation: the x-axis represents stress,
St
i , while the y-axis represents the global mood state M . The red line represents the

mean number of activated symptoms (for stress parameter values within 0.20 ranges)
when stress was increasing and the blue line represents the mean number of activated
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Figure 5.7: Diagrams of potential (critical) transitions in affective states in a cusp catastrophe
model. The two control variables are connectivity of the MD network and stress. The equilibrium
state of the mood system can respond in different ways to stress. Red arrows in the plots indicate
the direction in which the system moves under the influence of stress. Box A: In resilient people,
severe stress results in relatively modest changes in the affective state, the system quickly returns
to its prior state. A resilient person is not immune to stress, but is able to re-establish equilibrium
following stressful experiences. Box B: In more vulnerable people, relatively small stressors may
induce a larger drop in the affective state. Small stressors thus can cause relatively large changes
in the absence of true bifurcations, provided that the system is very sensitive along a certain
range of stressors. Box C: The equilibrium is folded backwards in a model for some of the more
severe forms of depressive disorders, resulting in two tipping points (i.e., critical thresholds or
bifurcation points; marked by blue dots) and two alternative stable states for a certain set of
values of the stress parameter. This represents the cusp catastrophe model. When the MD system
is near a tipping point (i.e., critical threshold), a small disturbance may result in a catastrophic
affective shift towards an episode of MD as the system jumps to the far-away attracting lower
branch.

symptoms (for stress parameter values within 0.20 ranges) when stress was decreasing.
As a general result, differences in the strength of connections between MD symptoms
resulted in markedly different responses to external activation by stress. MD networks
with low connectivity proved resilient (left panel of Figure 5.8): stress increments led
to a higher number of developed symptoms in a smooth continuous fashion, and stress
reduction resulted in a smooth continuous decline of symptom activation. The dynamics
were very different for the networks with medium and strong connectivity, which proved
vulnerable (middle and right panel of Figure 5.8, respectively). Here, the shift between
healthy and depressed states was of a non-linear character as two tipping points appeared:
a small increase in stress could lead to a disproportional reaction, resulting in a depressed
state. Additionally, these vulnerable networks needed a significant decrease in stress
to move the network back to a healthy state. The middle (medium connectivity) and
right (high connectivity) panel of Figure 5.8 also clearly show that during the transition
from the healthy to the depressed state or vice versa, a ‘forbidden’ zone (from 1 to 5
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activated symptoms) was crossed that does not seem to function as a stable affective
state. Moreover, hysteresis, as we anticipated earlier, was evident in the networks with
strong connectivity: in order to make these networks return to a healthy state, the stress
level needed to be reduced to a level far below the level of the initial external activation
by stress. Thus, a cusp catastrophe was present for such networks. Thus, in sum, the
results of this simulation as visualized in Figure 5.8 highly resemble the hypothesized
behavior of MD networks as visualized in Figure 5.7. In the remainder of this section,
we describe some of these results, and, if applicable, their connection with the empirical
reality of MD, in greater detail.
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Figure 5.8: The mood state of the MD system in response to stress. The x-axis represents
stress while the y-axis depicts the average mood state: that is, the total number of activated
symptoms averaged over every 0.20 range of the stress parameter value). The red line depicts
the situation where stress is increasing whereas the blue line depicts the situation where stress
is decreasing. The three graphs represent, from left to right, the simulation results for networks
with low, medium, and high connectivity, respectively.

Hysteresis

As we hypothesized, the results of the simulation of a network with high connectivity
showed clear hysteresis: the amount of stress reduction needed to get the system into
healthier mood states (i.e., only a few symptoms present) exceeds the amount of stress
that tipped the system into depressive mood states in the first place. We do not know
of other (simulation) studies that showed this phenomenon to be present in ‘individuals’
vulnerable to developing episodes of MD. It does seem to resonate with clinical observa-
tions concerning the non-linear course of affective shifts between healthy and depressed
states that is frequently encountered in the empirical literature: it takes relatively little
time to induce an episode of MD by mild stress, but it takes more time to recover from
such an episode because more is needed for recovery, besides removing the stressor that
initially triggered the development of the episode (e.g., Penninx et al., 2011).

One could argue, since we have used one specific setup of the simulation with specific
choices for (empirically derived) parameters, that the hysteresis effect is an effect of this
specific setup; and that, as such, the observed hysteresis is not a robust phenomenon
that can be consistently associated with high connectivity networks. In order to check
the robustness of the hysteresis effect, we repeated the simulations in which we system-
atically varied five parameters: (1) weights Wij : either discrete (as in our original setup)
or continuous (with uniformly distributed values between 0 and 1), (2) connectivity pa-
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rameter c ranging from 1 to 3, (3) number of nodes J in the network: 5, 10, 15 or 20,
(4) the bi parameter which was randomly sampled from a normal distribution in three
configurations: µ = 1 and σ = 0.25, µ = 1.50 and σ = 0.50 or µ = 2 and σ = 0.75 and
(5) the ai parameter which was randomly sampled from a normal distribution in three
configurations: µ = 1 and σ = 0.25, µ = 1.50 and σ = 0.50 or µ = 2 and σ = 0.75.
Each simulation consisted of 10000 time points and each combination of parameter val-
ues was simulated 20 times. For each simulation we computed a hysteresis effect H: for
both increasing and decreasing stress (the same red and blue lines, respectively, as in
Figure 5.8), we determined the point at which the mood state (i.e., symptom sum score)
was closest to the midpoint J/2 (i.e., half of symptoms activated). Subsequently, the
hysteresis effect was computed by subtracting the point at which the increasing stress
line was closest to the midpoint from the point at which the decreasing stress line was
closest to that same midpoint. A value of 0 thus indicates no hysteresis (point at which
symptom sum score is closest to the midpoint is equal for both increasing as well as
decreasing stress) while increasing positive values H indicate a larger hysteresis effect:
the larger H, the more stress reduction is needed to reduce the sum score to roughly half
the symptoms when stress is decreasing; compared to the amount of stress that results
in the activation of roughly half of the symptoms when stress is increasing. For every 20
simulations with the same parameter values, we computed the average hysteresis effect
on which subsequent analyses were based.

Figure 5.9 shows the average hysteresis effect for the five parameters whose values we
varied systematically. First, with linear models, we estimated the impact of each param-
eter on the hysteresis effect. Most importantly, the connectivity of the network signifi-
cantly impacted the amount of hysteresis (as we found in our main simulation; estimate:
3.75, t = 11.02, p < .001): the more strongly connected the network, the larger the hys-
teresis effect. Additionally, except for the b parameter, all other parameters influenced the
hysteresis effect significantly: continuous weights result in a more pronounced hysteresis
effect compared to discrete weights (estimate: 1.93, t = 3.47, p < .001); the more nodes in
the network, the stronger the hysteresis effect (estimate: 0.70, t = 9.94, p < .001); and the
higher the mean of a, the stronger the hysteresis effect (estimate: 4.10, t = 6.02, p < .001).
Finally, two interaction effects (computed with all variables being centered around their
respective means) were significant as well: the effect of connectivity on the hysteresis
effect was even stronger for an increasing (1) number of nodes in the network (esti-
mate: 0.40, t = 6.57, p < .001) and (2) mean of the a parameter (estimate: 2.59,
t = 3.09, p < .001). As such, we conclude that the hysteresis effect is robust in that
increasing connectivity of a network results in more hysteresis; and that this effect is
more pronounced for networks with more nodes and a probability function with a higher
average a parameter.

Taxa versus continua

The question whether psychopathological conditions are instances of taxa (i.e., distinct
categories, natural kinds) or continua (i.e., a continuous dimension with psychopathology
located at an extreme of that continuum) is an old one and one without a definitive answer
(e.g., Flett, Vredenburg, & Krames, 1997; R. E. Kendell, 1975; R. Kendell & Jablensky,
2003; Haslam, Holland, & Kuppens, 2012; Meehl, 1992; Waller & Meehl, 1998; Widiger
& Samuel, 2005). There is evidence for both views although the last few years, more
evidence seems to point into the direction of psychopathological conditions being continua
(e.g., Haslam et al., 2012), which poses a challenge for diagnostic schemes, such as the
DSM that offer categorical perspectives on psychiatric diagnosis. Pertaining to major
depression specifically, the results are inconclusive: for example, Baldwin et al. (Baldwin
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Figure 5.9: The average hysteresis effect for different values of five parameters of the MD
simulation model: (1) weights: weights of the connections between nodes, either continuous (0)
or discrete (1); (2) connectivity: parameter with which the adjacency matrix is multiplied, either
1, 2 or 3; (3) nodes: number of nodes, either 5, 10, 15 or 20; (4) b: b parameter in the probability
function randomly sampled from a normal distribution with mean 1 (σ2 = 0.25), 1.50 (σ2 = 0.50)
or 2 (σ2 = 0.75); (5) a: a parameter in the probability function randomly sampled from a normal
distribution with mean 1 (σ2 = 0.25), 1.50 (σ2 = 0.50) or 2 (σ2 = 0.75).

& Shean, 2006) report evidence, based on taxometric procedures, that total scores on
the Center for Epidemiological Studies Depression scale (CES-D) were best represented
as a continuum; while Ruscio et al. (Ruscio, Zimmerman, McGlinchey, Chelminski, &
Young, 2007) report evidence that total scores on a semi-structured clinical interview
for assessing major depression were best represented as a taxon. The results of our
simulation offer an alternative stance in the taxon-continuum debate, namely that MD
is both a taxon and a continuum, depending on the connectivity of the network. More
specifically, as one can infer from Figure 5.8, networks with weak connectivity appear
to behave as continua: transitions from less to more MD symptoms and vice versa take
place in a smooth, continuous fashion. That is, the network model for MD hypothesizes
that in people resilient to develop episodes of MD, progressing from not having symptoms
to many symptoms, and back, under the influence of stressors, is a continuous smooth
process. On the other hand, networks with strong connectivity appear to behave as
taxa: under the influence of stress, transitions from less to more MD symptoms and vice
versa take place in a discontinuous with a ‘forbidden’ zone of rarity (between 1 and 5
symptoms) that does not seem to function as a stable state. This hypothesis is consistent
with empirical findings that major depression appears to be a taxon in patient samples
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while a continuum in studies with community samples (which often contain many people
that are resilient for developing depression; e.g., Baldwin & Shean, 2006; Ruscio et al.,
2007; Ruscio, 2009; Slade & Andrews, 2005; Slade, 2007). Additionally, our hypothesis
sits well with clinical observations that for patients prone to developing episodes of MD,
their mood states indeed seem to fall in two distinct zones with a large gap between the
two.

Diathesis-stress theory of major depression

The generic diathesis-stress model (Abramson, Metalsky, & Alloy, 1989; Bebbington,
1987; Beck, 1987; McGuffin, Katz, & Bebbington, 1988; Robins & Block, 1988) attempts
to answer questions such as why some people develop MD after experiencing stressful
life events while others do not. The model does so by positing that developing disorders
such as MD is the result of an interaction between a certain diathesis (i.e., vulnerability)
and a range of possible stressors. According to this model, the experience of a certain
stressful life event can activate the diathesis, thereby “...transforming the potential of
predisposition into the presence of psychopathology” (Monroe & Simons, 1991). Thus,
the theory posits that some people are just more vulnerable than others and when put
under stress, these people have a high risk of developing MD and experiencing relapse.
Exposed to the same stress, those without this diathesis are at quite low risk.

A substantial problem with existing formulation of the diathesis-stress model is that
despite many efforts to define diathesis, there is no universally accepted and proven hy-
pothesis about what diathesis is: what do we mean when we say that a particular person
is vulnerable? Does diathesis/vulnerability refer to some pathology that is predominantly
(1) biological such as having lots of risk alleles, (2) developmental like having experienced
sexual abuse as a child or (3) psychological such as having a relatively high level of neu-
roticism (Caspi et al., 2003; Ensel & Lin, 1996; Harris et al., 2000; Kessler & Magee,
1993)? Or, alternatively, is vulnerability a particular combination of these three patholo-
gies, for example being sexually abused as a child which causes relatively high levels of
neuroticism later in life? Additionally, there is no consensus about how diathesis and
stress interact in bringing about an episode of MD (Belsky & Pluess, 2009; C. Hammen,
2005; Monroe & Simons, 1991): do stressful life events activate the diathesis (e.g., loss of
a loved one results in the expression of risk alleles) or does diathesis act as a moderator
(e.g., loss of a loved one results in the development of more MD symptoms in someone
with lots of risk alleles than in someone without these risk alleles)?

Our network model of MD is a diathesis-stress model in that it both explicitly mod-
els vulnerability—which is, in our model, the overall strength of the connections in a
given network—as well as the interaction between this vulnerability and the influence
of stressful life events: stress augments the probability of symptoms to become ‘active’
resulting in one or a few symptoms becoming actually active; and when the connections
in the MD network are generally strong, then these activated symptoms will result in
the activation of other symptoms as well, eventually culminating in a full-blown episode
of MD. As such, our model provides an alternative, concrete and testable interpreta-
tion of diathesis, stress, and the interaction between them; and our preliminary results
are encouraging for this particular interpretation of the diathesis-stress model. Addi-
tionally, the results of our simulation show that the level of stress necessary to activate
symptoms was decreasing with increasing connection strengths. As such, an additional
testable hypothesis, for instance via time series modeling, would be that when a person
is more vulnerable to develop an episode of MD (i.e., stronger intra-individual connec-
tions), less stress is needed to induce the activation of symptoms (possibly culminating
in a full-blown episode of MD).
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Treatment

The hypothesis, which we confirmed with simulations, that vulnerable networks (i.e.,
networks with strong connectivity) behave as a cusp catastrophe model potentially of-
fers a new outlook on treatment: more specifically, the different therapeutic approaches
for patients with MD can be categorized according to their effects on the MD system.
First, a continuous force may be applied that reduces the whole set of stress param-
eter values. The aim would be to reach the lower left threshold that shifts the mood
system back towards the healthy attractor. Many antidepressants may work through
this mechanism. The metabolism or reuptake of monoamines (e.g., serotonin and nore-
pinephrine) is blocked immediately after drug administration, while different antidepres-
sants were shown to positively affect emotional processing in healthy subject already
within one week (A. Frazer & Benmansour, 2002; Harmer, Shelley, Cowen, & Goodwin,
2004; Harmer, 2010). Yet, in many patients it takes more than 6 or 8 weeks to expe-
rience the full benefits of treatment with antidepressants (Quitkin, McGrath, Stewart,
Taylor, & Klein, 1996; Trivedi et al., 2006). The hysteresis effect may help to explain
the delay in antidepressant drug action. At critical thresholds, tiny disturbances may
not only cause a large affective shift (i.e., a critical transition), but that shift is accom-
panied by a high degree of irreversibility (i.e., inertia). That is, the system can shift
towards MD under the influence of a mild stressor, but if that same amount of stress is
subsequently removed from the system, the system does not directly return to a healthy
state. Second, a strong perturbation may be applied that ‘kicks’ the mood state of the
MD system. In other large-scale complex systems with alternative attractors and tipping
points, perturbations may tip the system into an alternative basin of attraction (Scheffer
et al., 2009; van Nes & Scheffer, 2007). A perturbation increases the chance of arriv-
ing at another (more desirable) attractor. Sleep deprivation, the N -methyl-D-aspartate
(NMDA) antagonist ketamine, and electroconvulsive therapy may destabilize a person’s
basin of attraction, which may induce rapid (but often transitory) antidepressant effects
(J. C. Gillin, Buchsbaum, Wu, Clark, & Bunney, 2001; Zarate et al., 2006). A third
option from a theoretical standpoint would be to loosen or split the connections between
the nodes of the MD network. This would transform the whole shape of the state space
landscape, removing bifurcations and the hysteresis effect. Depressive symptoms would
recede when the adverse influence of one activated node of the node would no longer
transmit its effects to other nodes, and a more resilient state would be achieved. Cogni-
tive behavioral therapy contains techniques that can help to desynchronize and loosen the
connections between MD symptoms (see also Cramer et al., 2010): techniques that help
a patient, when experiencing, say, depressed mood, to not easily let that depressed mood
cause suicidal thoughts, for example by challenging the patient’s assumptions about the
abnormality of suffering from depressed mood from time to time. Finally, combining
these options might be most promising: loosening the connections between MD symp-
toms first, followed by reducing stress, may allow for a continuous and smooth path to
euthymia. However, we are still at the first stages of exploring the use of the cusp catas-
trophe model in MD and therefore, these treatment options are merely theoretical at this
point.

Discussion

We have shown that a model in which MD is characterized as a network of causally
connected symptoms has the potential to explain what makes certain people vulnera-
ble to develop an episode of MD: the stronger the connections between the symptoms
of someone’s individual MD network, the easier it is for a full-blown episode of MD



72 5 MAJOR DEPRESSION AS A COMPLEX SYSTEM

to develop. Additionally, we showed that in the weakly connected networks (i.e., the
hypothesized resilient networks/people) spontaneous recovery occurred, a well-known
clinical phenomenon. The network model of MD also has the potential to explain why
some people develop an episode of MD after (mild) stress while others do not; and why
the shifts from depressed to healthy states and vice versa generally follow a non-linear
pattern. More specifically, we have formulated a novel definition of diathesis in terms
of the strength of connections between MD symptoms; as well as a novel hypothesis
about the interaction between diathesis and stress: stressful life events influence individ-
ual symptoms directly and the diathesis then determines whether a cascade of symptom
development emerges that can culminate in a depressed state. With simulated data,
we have shown that our formulation of the diathesis-stress model works: resilient net-
works (i.e., with weakly connected symptoms) could handle significant amounts of stress
without falling into a depressed state; while the vulnerable networks (i.e,. with strongly
connected symptoms) behaved like a cusp catastrophe: at tipping points, only slight
amounts of stress sufficed to tip these networks into a depressed state.

There are some extensions of the model that might serve to test additional theories
about the pathogenesis and maintenance of MD. For example, there is evidence for a
reverse relation between stressful life events and MD in which the presence of depres-
sive symptoms predisposes a person towards experiencing certain stressful life events
(Maciejewski, Prigerson, & Mazure, 2000): e.g., experiencing fatigue and loss of inter-
est resulting in the loss of employment. Our model could thus be extended by allowing
symptom development to trigger the development of stress. Additionally, kindling—the
phenomenon that stressful life events play the greatest role in the first onset rather than in
subsequent episodes of MD—might be incorporated in the model by making the connec-
tions between MD symptoms stronger after every MD episode: that is, each consecutive
episode makes the network more vulnerable. This extension of the network model would
resonate with evidence suggesting that kindling does not necessarily mean that after the
first onset, subsequent episodes come out of the blue; rather, such episodes are elicited
by less and less severe life events (Monroe et al., 2006). As Kraepelin (1921) noted about
one of his patients: she became depressed “after the death first of her husband, next of
her dog, and then of her dove” (pp. 179). A final future extension of our model could be
the incorporation of the fact that not all symptom dynamics take place within the same
time scale. For example, it stands to reason that mood is a variable that can fluctuate
within a time scale of hours; but that the relation between insomnia and fatigue unfolds
over days (in most people, insomnia one day will not immediately cause fatigue the next
day). And the relation between depressed mood and thoughts of suicide is likely an even
slower dynamical process. These different time scales are currently not implemented in
the model. Additionally, it might also be another source of intra-individual differences:
it is possible that vulnerable people differ from healthy people in that the dynamics of
the former group are on a faster time scale than the dynamics of the latter group. For
example, it is possible that, ceteris paribus, in vulnerable people, depressed mood causes
thoughts of suicide faster than in resilient people.

In this chapter, we used simulated data but naturally, testing the model with empirical
data is needed in order to draw definitive conclusions. What kind of data would we need
for such testing? We cannot stress enough that time-intensive data is key in testing
many, if not all, assumptions of network(-like) models. More specifically, one would need
intra-individual data in which individuals are followed for a long period of time and
are asked about life events, minor daily hassles and symptoms at multiple time points
per day. Experience Sampling with data collection through electronic diaries and smart
phones would be a particularly suitable method for collecting such data (Myin-Germeys
et al., 2009). With such data, it becomes possible to estimate network parameters for
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individual people and to test whether intra-individual networks with strong connections
are indeed vulnerable to the impact of relatively mild stressors. Also, one would expect
that resilient people, when suffering from some symptoms due to a stressful life event,
have a higher probability of recovering spontaneously than vulnerable people. Finally,
one could also further test the hypothesis that in vulnerable people, MD is a taxon while
it is a continuum in resilient people.

If an extended model based on empirical data would confirm that vulnerable networks
(i.e., networks with strong connections) behave according to the dynamics of a cusp
catastrophe, what would the implications be? For one, a cusp catastrophe implies the
existence of tipping points. Finding these tipping points for individuals’ networks could
then prove beneficial for two reasons. First, knowing that someone’s MD system is close
to tipping from a healthy to a depressed state would allow for precisely timed therapeutic
interventions that might prevent such a catastrophic shift. Second, on the other hand,
knowing that someone’s MD system is close to tipping from depressed to a healthy state
would offer the opportunity of giving the system a large kick (e.g., sleep deprivation) at
exactly the right time so that the system, like the ball in the bowl, is kicked out of the
depressed attractor and ends up in the healthy attractor. Thus, the tipping points in the
cusp catastrophe model might help in predicting when prevention and intervention have
the highest probability of success.

But how does one find these tipping points? Recent findings suggest that all catas-
trophic systems, from financial systems to the climate, display early warning signals that
a system is approaching a tipping point (Carpenter & Brock, 2006; Dakos et al., 2008;
Fort, Mazzeo, Scheffer, & van Nes, 2010; van Nes & Scheffer, 2007; Scheffer et al., 2009).
One such early warning signal is called critical slowing down: right before a tipping point,
the system is getting slower in recovering from small perturbations. Pertaining to MD,
for instance, one might see that someone has more difficulty than usual to recuperate
from a minor daily hassle like an unpleasant day at work. Numerically, this slowing
down can be traced by inspecting autocorrelations: the correlation between scores of the
same variable at multiple time points (e.g. the correlation between 60 measurements of
depressed mood). Such autocorrelations go up when the system slows down: slowing
down means that at each time point, the system much resembles the system as it was
at the previous time point, meaning that the autocorrelation is relatively high. With
time-intensive intra-individual data it will become possible to inspect autocorrelations
and other potential signals that someone is in critical danger of developing an episode of
MD or that a healthy state is within reach.
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Chapter 6

Dimensions of normal

personality as networks in

search of equilibrium

Abstract

In one currently dominant view on personality, personality dimensions (e.g., extraversion) are
causes of human behavior, and personality inventory items (e.g., “I like to go to parties” and “I
like parties”) are measurements of these dimensions. In this view, responses to extraversion items
correlate because they measure the same latent dimension. In this chapter, we challenge this way
of thinking and offer an alternative perspective on personality as a system of connected affective,
cognitive and behavioral components. We hypothesize that these components are not associated
because they measure the same underlying dimension; they do so because they depend on one
another directly for causal, homeostatic or logical reasons (e.g., if one does not like people it is
harder to enjoy parties). From this network perspective, personality dimensions emerge out of the
connectivity structure that exists between the various components of personality. After outlining
the network theory, we illustrate how it applies to personality research in four domains: 1) the
overall organization of personality components, 2) the distinction between state and trait, 3) the
genetic architecture of personality; and 4) the relation between personality and psychopathology.

Adapted from: Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind,
N., Aggen, S. H., Kendler, K. S., & Borsboom, D. (2012). Dimensions of normal personality
as networks in search of equilibrium: You can’t like parties if you don’t like people. European
Journal of Personality, 26, 414-431.
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People differ widely in how they navigate through the landscape of life: some peo-
ple feel comfortable around others and like to go to parties, whereas others do not.
Some worry much and often have trouble sleeping, whereas others rarely experience such
problems. Two main challenges in personality psychology are (1) to provide a plausible
account of how the coherent ‘organization’ of such behaviors arises within an individual
and (2) to describe and explain the structure of ‘individual differences’ in personality
(Caprara & Cervone, 2000). Modern personality psychology has mainly focused on the
latter task. Starting with pioneering work of, among others, Thurstone (1934), the dom-
inant doctrine in current personality theory has come to define individual differences in
the structure of personality in terms of a number of unobserved trait ‘dimensions’ (e.g.,
neuroticism and extraversion; Berrios, 1993; Digman, 1990; Goldberg, 1993).

In most interpretations of this concept, consistent differences between people in the
behavior they display are thought to result from underlying differences in these per-
sonality dimensions. The interpretation of the term ‘underlying’ is typically borrowed
from measurement models in psychometrics, which invoke latent variables —variables
that are indirectly measured through a number of noisy indicator variables (i.e., per-
sonality inventory items; Borsboom, 2008b). In line with this mode of thinking, the
items of a personality inventory are usually considered to be ‘trait measurements’, for
example, the item “I like to go to parties” is considered a measurement of the dimen-
sion/trait extraversion. Analogous to temperature, which causes mercury to rise and fall
in a mercury thermometer, personality dimensions are presumed to cause responses to
personality questionnaire items. For example, higher levels of extraversion cause peo-
ple to make friends more easily and to feel good in the company of others, and these
properties are queries in typical questionnaire items. Thus, for example, Alice is not
only more extraverted than Bob in the sense that her responses can be ‘described’ by a
higher position on an abstract personality dimension (e.g., extraversion); her higher level
of extraversion is what ‘causes’ her to like parties better than Bob does. In this way,
personality dimensions are interpreted as causes of human behavior. Perhaps the most
outright commitment to this point of view is expressed in McCrae and Costa (2008, p.
288) who claim that “E[xtraversion] causes party-going”.

In this chapter, we challenge this approach to personality. In addition, we offer
an alternative perspective. We propose that personality is a system of inter-connected
affective, cognitive, and behavioral ‘components’. More specifically, we propose that
every feeling, thought or act is a potential component of personality if it is associated with
a unique ‘causal system’: the pattern of causes and effects that the component exhibits
in relation to other components. The component must thus be unique in the sense that
its causal system differs from that of other (potential) components. This means that a
personality component is, to a certain degree, causally autonomous and, as such, not
‘exchangeable’ with other components. Thus, liking parties is a personality component
because it has unique causes and effects on other components (e.g., being interested in
meeting new people and not feeling insecure about making a good first impression) that
differ from the causes and effects of other components (e.g., starting conversations easily,
also an extraversion item, does not necessarily imply that one is interested in meeting new
people). To the contrary, making to-do lists that are followed point by point and sorting
clothes by color may not be separate components at the level of personality (i.e., their
causes and effects on other components will likely be similar) but two ways of assessing
one component, namely liking order. Barring such exceptions, personality components
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are typically assessed through single items in personality inventories1 . This is because two
items that assess precisely the same component will be very highly correlated, which tends
to cause problems in typical psychometric analyses (i.e., this will show up as correlated
errors).

We hypothesize that such components cannot change independently of one another
and, therefore, form a network of mutual dependencies that may alternatively have
causal, homeostatic or logical sources. Directional dependencies (typically associated
with ‘causality’) will form if one component influences the other but not the other way
around: for example, if one cannot plan ahead, it is difficult to meet obligations at work.
Bidirectional dependencies will form if two components influence one another (and, as
such, create a feedback loop): for example, after a sleepless night worrying, one may feel
stressed out and tired the next day; as a result of which one may not sleep the following
night either because of worries about yet another sleepless night. An important special
case of feedback involves negative feedback loops that serve to maintain ‘homeostasis’:
for instance, after a few sleepless nights, one will ordinarily get so tired that one will
start sleeping again (incidentally, if this does not happen, problems are likely to spread
to other components, e.g., not being able to concentrate and foul mood; Cramer et al.,
2010). Finally, semantically ‘logical’ dependencies will form if two components assess the
same or a narrower/broader version of a personality characteristic (which may ultimately
but not necessarily result in these two components being merged into one component):
for example, liking a clean house and liking a clean desk. We postulate that the re-
sulting pattern of connectivity among such components provides a fruitful avenue into
personality research. Also, the dependencies between these components result in a typical
network architecture (e.g., being interested in other people and spending time with them
are mutually dependent while planning ahead and liking people are not) that can serve
as a sufficient explanation of the correlational structures typically observed in personality
research (e.g., trouble falling asleep and feeling jittery are more strongly correlated than
feeling jittery and liking people).

This opens the perspective of a personality theory that is holistic (i.e., that is about
the ‘organization’ of behavior: network architecture) and that addresses personality at
the level of the individual but is nevertheless systematically formalizable through net-
work models. Importantly, this view does not regard personality dimensions as causes of
behavior. We will instead argue that personality dimensions emerge out of the connec-
tivity structure that exists between its components, such that certain components cluster
together more than others, with the known personality dimensions as a result.

The structure of this chapter is as follows. First, we examine affective, cognitive
and behavioral components of personality and argue that a network perspective natu-
rally accommodates mutual (in)dependencies among them (see also Cramer et al., 2010;

1 We acknowledge that personality inventories tend to measure self-concept, a person’s view
of one’s own personality that might, to some extent, deviate from one’s actual, objective per-
sonality. Because the network perspective is undecided concerning whether or not personality
networks should be solely based on objective personality, or on both objective personality and
self-concept, using personality items as a starting point for defining personality components is
sensible, also given the lack of viable alternatives. Future experimental research with a focus on
elucidating whether thoughts/feelings/acts, and their mental representations, have unique effects
on other personality components might prove beneficial in refining personality networks in terms
of what components they should contain: objective ones or also their mental representations.
However, we note that current latent trait models often do equate self-concept and objective
personality: the personality literature shows an abundance of statement concerning traits (e.g.,
women are more neurotic compared with men, suggesting an objective difference); the evidence
for which is often based on personality inventory items (a more appropriate statement would
then be as follows: women’s self-concept of their personalities tends to include more neurotic
features compared with men).
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Schmittmann et al., 2013; Read et al., 2010 for similar perspectives). We describe the
consequences of the network perspective for prominent topics in personality psychology
in the subsequent sections of this chapter, which deal with the state-trait distinction, the
relation of personality to psychopathology and the genetic basis of personality. Through-
out the chapter, we relate the network perspective to currently dominant trait theories.

Humans as dynamical systems

Few psychologists would challenge the conclusion that human beings are complexly or-
ganized. Even the simplest behavioral act (e.g., starting a conversation with a stranger
while waiting for the bus) reinforces cognitive schemas (e.g., it provides evidence for the
hypothesis that one is capable of starting such a conversation) and affective conditions
(if the small talk is successful, this most likely generates a feeling of satisfaction). Be-
cause these cognitive and affective components are associated with a class of behaviors
in a given situation, they almost certainly serve to sustain the ability and willingness to
execute these behaviors when a similar situation is encountered in the future (Mischel &
Shoda, 1995). That is, one who has successfully engaged in small talk and enjoyed it is
likely to engage in small talk again.

Thus, even this extremely simple example suggests the presence of feedback loops
among the components of the personality system, in which behavior is not just an out-
come variable in need of explanation but itself may serve as input to the system (i.e., the
behavior was successful so probably will be executed again under similar circumstances
in the future). There most likely are many such feedback mechanisms operating at dif-
ferent time scales, giving rise to a dauntingly complex picture. Thus, Skinner (1987)
was definitely on target when he said that human behavior is ‘possibly the most difficult
subject ever submitted to scientific analysis’. In fact, in view of the stunning complexity
of the system, it should be considered remarkable that stable behavioral patterns exist
at all.

But they do. For some reason, human systems tend to settle in relatively fixed areas
of the enormous behavioral space at their disposal, where they are in relative ‘equilibrium’
with themselves and their environments. By equilibrium, we mean a stable state (e.g.,
Joan is interested in other people and sympathizes with their feelings; as a result of which,
she has a job as a social worker) that is not left upon a small disturbance (e.g., one of
Joan’s clients steals some money from her; after which, she is naturally disappointed in
the culprit, but she is still interested in people and their feelings, and she continues her
job as a social worker). This definition of equilibrium is analogous to ‘attractors’ in the
complex systems literature (e.g., Teschl, 2008).

The idea that human beings strive to survive and reproduce by actively interacting
with their environments is an old one and can be traced back to Darwin (1871). In
psychology, several scholars have argued for a theory in which human beings are open
systems that are constantly searching for equilibrium or a state of homeostasis. Such
equilibriums have been argued to exist with respect to components internal to the human
system (e.g., in Freudian psychology, id and superego) and with respect to the relation
between the human system and its environment (Allport, 1960; Stagner, 1951; Tryon,
1935).

Such states of homeostasis, which we designate to be ‘behavioral equilibriums’, can be
achieved and maintained in several ways. For instance, people can and will (consciously
or not) seek out environments that match their behavioral repertoire (e.g., Heady &
Wearing, 1989; Kendler & Baker, 2007; Kendler, Gardner, & Prescott, 2003). For in-
stance, Alice who loves to go to parties, actively seeks environments that provide many
opportunities to party and to meet people who can invite her to parties. Thus, organism-
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environment feedback loops are important sources of stability because they can serve to
sustain behavioral patterns. As a consequence of such feedback-driven selection of en-
vironments, however, other behavioral states can also become more difficult to access.
This is because they would require different types of environments. For example, Alice
cannot both love parties and dislike being around people at the same time. For the
former preference to thrive, a socially busy environment with many parties is required,
whereas the latter preference would require a more tranquil environment featuring only
a limited number of people. Thus, active selection of environments has two important
consequences. First, it allows people to settle in an ‘typical’ pattern of behavior (a be-
havioral equilibrium, analogous to an ‘attractor’ in complex systems theory) through
organism-environment feedback loops. Second, it creates negative dependencies between
behaviors that require different environments because people’s behavioral options are not
inexhaustible: every behavioral act comes at the expense of not performing another one
and, as such, closes the futures that could have been if another act had been chosen.

It is further characteristic of the behavioral patterns typically studied under the
rubric of personality that they can be shaped and maintained in a variety of ways. Thus,
people can respond in their own idiosyncratic ways to the situations in which they find
themselves. For example, Jane does not like being around people she does not know very
well, so when an acquaintance throws a party, she will attend but she will not mingle
much and go home as early as is politely possible. However, at a family reunion, she
enjoys the company of her close relatives and stays late to catch up with them. These
idiosyncratic patterns of situationally dependent responses have been addressed in the
cognitive-affective personality system, which we consider to be naturally compatible with
a network perspective (CAPS; Mischel & Shoda, 1995, 1998). According to the CAPS
model, personality depends not only on the person but also on the environment, that
is, one’s idiosyncratic way of behaving is stable within environments but variable across
environments.

As a result, each person defines a somewhat idiosyncratic equilibrium with his or her
environment that is likely to be organized around some properties that play key roles in
the individual’s cognitive and affective economy (i.e., that are important to the person;
Cervone, 2005). Because of the connectivity structure of the human-environment system,
these properties cannot vary entirely in isolation: one is unlikely to enjoy parties if one is
nervous around others, and one cannot be nervous around others if company makes one
feel comfortable. Similarly, in the realm of conscientiousness, one cannot be completely
successful at finishing tasks in time if one cannot plan ahead, and for finishing tasks, its
generally helps if a person enjoys working hard. Some of these properties are connected,
in the sense that they are mutually dependent on one another. Other properties are
unconnected or very weakly connected (i.e., relatively mutually independent). For in-
stance, one can like working hard without being able to make friends easily. Thus, these
dependencies between personality components define the structure of the network that
characterizes a person: the personality architecture (Cervone, 2005).

Now, suppose that one settles into a behavioral equilibrium with respect to one
property. Say, a person likes to be around people and as a child seeks the company of
others systematically (for a similar point of view, see Caspi, Bem, & Elder, 1989; Caspi,
Elder, & Bem, 1987, 1988). As a result, one’s social skills are developed and improve
over time, which makes it easier to be around others, until at some point an equilibrium
is reached. This means that the situation has become relatively stable: one likes to be
around others, and one has succeeded in findings a way to realize that state (e.g., a job
in a social environment), barring situations where one is temporarily and involuntary
‘kicked out’ of equilibrium (e.g., being ill and therefore unable to leave the house for
some time). Then, the evolution of this property (i.e., enjoying the company of others)
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will cause other properties, such as social skills, to co-evolve into a related equilibrium: it
is quite hard to like to be around people and actively seek out environments that match
this preference without at the same time developing social skills. Another person may
reach the same equilibrium but approach from the other direction; for some reason, the
person becomes highly skilled in social interactions and comes to like the company of
people as a result. Thus, groups of properties will move synchronously, like a flock of
birds or a swarm of bees, simply because the organization of the human system and its
environments require it.

This idea stands in stark contrast to the idea that behavior is caused by a small
set of latent personality dimensions/traits. In terms of the flock of birds analogy: in
the situation as mentioned earlier, one bird in the flock flies in a particular direction
because its neighboring birds do so; in a latent trait scenario, all birds in the flock fly in
a particular direction because of the instructions of an invisible (i.e., latent) bird. That
is, in the standard model, personality dimensions/traits function as ‘common causes’ of
a set of item responses (Borsboom, 2008a; Edwards & Bagozzi, 2000; Schmittmann et
al., 2013). In psychometric terms, one of the most important features of a latent trait
model that signals this assumption is ‘local independence’ (Holland & Rosenbaum, 1986;
Lord, 1953; McDonald, 1981). Local independence means that, conditional on any given
position on the latent variable, the observed item responses are statistically independent.
Essentially, this means that the associations between items are spurious in the sense that
they arise ‘solely’ from the items’ common dependence on the latent variable. This is
structurally analogous to the textbook example of the correlation between the number of
storks and the number of newborns across Macedonian villages: villages that have more
storks also have more newborns. This association is spurious because the correlation
between storks and newborns arises solely from both variables’ dependence on village
size: larger villages have more chimneys, which attracts storks, and more people, who
produce babies.

A latent variable model works in the same way. It relies on the assumption that
dependencies among the cognitive, affective and behavioral components of personality
(i.e., the individual birds in the flock, for example neuroticism items) arise ‘solely’ because
all components depend on the same underlying trait (i.e., the invisible bird, for example
neuroticism). Figure 6.1 shows an application of this model to the Big Five dimensions
as measured with the NEO-PI in 500 first year psychology students at the University
of Amsterdam (Dolan, Oort, Stoel, & Wicherts, 2009). Reliance on the assumption of
local independence is evident by the absence of any direct connections between items. As
such, local independence explicitly prohibits causal relations between the components of
personality as represented by the items. The model with five latent traits influencing only
their respective items, as depicted in Figure 6.2, does not fit the data (df = 28430, χ2 =
60839, p < 0.001), which is mainly due to violations of simple structure: particularly, the
correlations between items that belong to different personality dimensions are too high
to be accounted for by the model. How can one address this problem? One way, the
standard way in personality psychology (e.g., Savla, Davey, Costa, & Whitfield, 2007)
is by tweaking the model ‘on the basis of the data’ so that the basis latent variable
hypothesis is preserved (e.g., by allowing cross-loadings, exploratory factor analysis with
procrustes rotation; see also Borsboom, 2006 for an elaborate critique). Another way
would be to make the simple structure more complex, for example, by introducing first-
order and second-order latent variables (not to detract from the main aim of the chapter,
we have not included fitting such more complex models). Another way, the central tenet
of this chapter, is to consider the misfit of the untweaked model an indication that the
latent variable hypothesis fails as an explanation of the emergence of normal personality
dimensions, and to move on towards alternative models.
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Figure 6.1: The five-factor model for the NEO-PI items. Covariation between items is explained
by the hypothesis that five latent variables (big circles in the middle) act on distinct sets of
items (boxes). Positive parameters in the model are green; negative parameters are red. The
arrows between circles and boxes represent factor loadings, arrows between circles are correlations
between factors and arrows pointing into the boxes represent residual variance.

That is, because of the local independence assumption, the very idea of cognitive, af-
fective and behavioral components (i.e., items) that are directly connected to one another
for causal or homeostatic reasons (or, for that matter, because of logical ones) is irrec-
oncilable with the dominant latent trait perspective on personality dimensions and their
items. If we take the connections between the components of personality to be real, that
is, non-spurious, then a viable alternative approach is to describe them as a network.
The crucial aspect of such a network is its organization: the way in which functional
components of human personality are linked to one another. In turn, this organization
depends critically on the equilibriums of the human system and its environments: certain
behaviors correlate or coincide, whereas others do not because they are compatible or
incompatible, respectively, with respect to specific equilibriums.

From this point of view, neuroticism items are tightly connected not because they
are caused by the same latent trait (neuroticism) but because they arise in similar equi-
libriums: for example, someone who feels threatened easily will likely also suffer from
nerves, feel lonely and worry too long after an embarrassing experience. Items related
to the free exploration of environments (e.g., being open to new people) will unlikely
co-evolve within threat-related equilibriums and hence will not be tightly connected to
neuroticism items. This is not to say it is no longer valid to speak of ‘neuroticism’ or
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‘openness’ as personality dimensions/traits: it certainly is, but under the assumption of
a network perspective, these terms do not indicate latent causes of behavior but groups
of tightly inter-connected personality components. Thus, we can still use a term such as
‘neuroticism’ to refer to a phenomenon that emerges as a result of the biological, psy-
chological and environmental forces that knit some behaviors closely together. However,
we speak of such a phenomenon just like we speak of a flock of birds. We know that a
flock emerges out of the synchronized behavior of the birds it contains and would not
venture hypothesize that it existed independently of that behavior, let alone was caused
by it (Schmittmann et al., 2013).

Naturally, we are not the first to raise questions about the incompatibility of current
trait models with dynamic interactions between personality components and the environ-
ment. Similar ideas have been manifested in the writings of personality theorists, almost
since the inception of the discipline; recent theorists such as Mischel and Shoda (1995)
and Cervone (2005), as well as Read et al. (2010), have argued along very similar lines.
However, the methodology to study complex networks has been developed to maturity
only relatively recently (R. Albert & Barábasi, 1999; Newman, 2006; Watts & Strogatz,
1998). As a result, we are now able to use such techniques to visualize and analyze large-
scale networks in ways that have not been possible before. The remainder of this chapter
aims to give first passes at applying these ideas systematically in the study of personal-
ity. We focus on four illustrations regarding (1) the overall organization of personality
components, (2) the distinction between state and trait, (3) the genetic architecture of
personality and (4) the relation between personality and psychopathology.

A network of personality components

Mapping the structure of personality onto a network is a daunting task. Fortunately, we
have a reasonable starting point in the form of common personality questionnaires that
query respondents for their status with respect to exactly the type of components that
would be likely candidates to make up a personality network structure. The correlations
between components will tend to be higher when the connectivity in the human system is
stronger. Thus, by studying correlations and by representing them in a network structure,
one may obtain a first glance at the visualization of the global (i.e., average) structure of
personality components. We have developed an R-package for network analysis (qgraph:
Epskamp et al., 2012) that is capable of constructing such visualizations directly from
the data. In essence, the routines in this package treat a correlation matrix as a so-called
weighted network, that is, it treats the items as components and their correlations as
the strength of the connections among these components. The result of applying this
routine to the items of the NEO-PI-R is presented in Figure 6.2 (for the large central
graph, same sample as used for Figure 6.1; for the small graph in the top right, simulated
data)2 .

A graph like that in Figure 6.2 offers a powerful visualization that can be used to
reveal patterns and structures that would be very difficult to spot by using traditional
methodology (note that Figure 6.2 represents the complex structure of no less than 240
x 240 = 57600 correlations with little data reduction). For instance, looking at Figure
6.2, there are a few things that catch the eye immediately. First, the network is very

2 Please note that for this graph, and the other networks that are presented in this chapter,
the positions of the nodes in the graph are not identified. That is, by using a force-embedded al-
gorithm, the graphs are a two-dimensional representation of networks that are multi-dimensional.
In this representation, the position of a node is defined relative to other nodes in the network.
The resulting distance in two dimensions between two nodes does not represent the correlation
but, rather, is an approximation of the distances in the multi-dimensional network.



83

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

7677

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198
199

200 201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Neuroticism
Extraversion
Openness
Agreeableness
Conscientiousness

Figure 6.2: A network representation of 240 NEO-PI items based on data (large central graph)
and based on expected correlations if a (fitted) five-factor model were true (i.e., simulated data,
small graph top right). Each item is represented as a node, and the numbers in the nodes refer to
the item numbers in the Dutch version of the NEO-PI. Nodes are connected by green (red) lines
if they are positively (negatively) correlated. The thicker the line, the higher is the correlation.
The spring-based algorithm used to generate the graph places strongly correlated nodes closely
together and towards the middle of the graph.

densely connected, much more connected than would be expected if a small number of
latent variables gave rise to the correlational structure (even if we let these five latent
variables correlate, as we did in Figure 6.1). In particular, this visualized pattern of
correlations between personality items is not convincingly suggestive of five distinct latent
traits. This can also be seen when comparing the empirically constructed graph with the
inserted graph at the top right of the figure, which shows the correlations that would be
expected if the five-factor model of personality were true (i.e., if the covariation between
items could be solely explained by five correlated latent variables that cause the item
responses).

In this dataset, the strongest organization arises for neuroticism and conscientiousness
items (red and purple nodes/circles in Figure 6.2). Extraversion and agreeableness items
(yellow and blue nodes in Figure 6.2) are largely intertwined with one another, meaning
that, on average, an extraversion item is not much more strongly correlated with other
extraversion items than with agreeableness items (and vice versa; difference in average



84 6 NORMAL PERSONALITY DIMENSIONS AS NETWORKS

correlations is 0.12). This makes sense from a network perspective. For instance, it
becomes easier to spend time with others (agreeableness) if one likes to be around others
(extraversion), and it is difficult to talk much with people at parties (extraversion) when
one is not really interested in others (reversed agreeableness item).

Another interesting aspect of the graph in Figure 6.2 is that some items are more
strongly connected to other items (those items are placed towards the middle of the
graph: e.g., nodes representing item numbers 15, 48, 49, 135 and 229), whereas others
are only weakly connected to other items or not connected at all (those items are placed
towards the periphery of the graph: e.g., nodes 88 and 239). That is, some items are
more ‘central’ in the network than others (see also Cramer et al., 2010). Without a
network representation, one would be very unlikely even to think about a concept such
as centrality in this way, let alone think of ways of computing it.

For example, the item “When I promise something, one can count on me to fulfill
that promise” (node 135) is a central item in the Big Five network. This makes sense
because the content of that item is closely connected to not only other conscientiousness
items—for example, to fulfill a promise, one generally has to be a reliable person (node
45) and have a tendency to finish things one has started (node 145)—but also items
of other personality dimensions as well (i.e., thick lines in Figure 6.2): for example,
someone who likes people and sympathizes with them is more likely to fulfill a promise
(agreeableness, node 126) as well as be someone to whom other turn when decisions have
to be made (extraversion, node 132). On the contrary, the item “We can never do too
much for the poor and the elderly” (node 89) is a peripheral item: other than a few
connections with other agreeableness items—people who care about the poor and the
elderly generally feel sympathetic towards people are worse off (node 209)—(not) caring
about the poor and the elderly has (very) little to do with how open, extraverted, neurotic
and/or conscientiousness one is. Thus, items in the Big Five network differ in terms of
their centrality in that network, and given the content of the items, these differences in
centrality appear to make theoretical sense.

Importantly, the entire notion of central versus peripheral components in the Big Five
network is irreconcilable with a latent trait perspective in personality, which is articulated
in a latent variable ‘measurement’ model: in such a model, save for measurement errors,
items that measure the same trait are exchangeable and thus equally central or peripheral
(factor loadings are reliability estimates and as such, cannot be measures of centrality
as we view the concept). For instance, if the latent variable model in Figure 6.1 were
true, then someone’s position on the conscientiousness continuum could be determined
perfectly from knowing the expected value of any of the conscientiousness items (Jöreskog,
1971; Lord & Novick, 1968; Borsboom, 2005). In other words, the model holds that if
one knew the expected value of a person, say, on the item “I tend to finish things once
started”, then none of the other items would offer any additional information about how
conscientious that person is (i.e., that person’s position on the latent conscientiousness
continuum). In that sense, all items are equally central (or peripheral), just like mercury
thermometers are no more ‘central to temperature’ than digital or other thermometers
are.

Does it matter if some components in the Big Five network are more central than
others? It does because, first, it hints at which pathways are more likely to result in
the emergence of certain personality structures in some people. A person’s personality
structure can be represented in a network analogous to the one in Figure 6.2 (for such
an individual network, connection strength then refers to how strongly two personality
components are connected over time in one person), a subject we will return to in the
next section. Because Figure 6.2 is based on between-subjects data (and is, as such, an
‘aggregation’ of the networks of all these individual subjects), it is likely that at least in
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some of these subjects, the central components in Figure 6.2 are prominent features in
their networks as well. The network model predicts that once such a central component
becomes ‘active’3 in someone (i.e., a component changes in terms of its state, for example,
not having experienced this before, someone starts to experience fear of disappointing
others, a component linked to both agreeableness and extraversion; Mongrain, 1993),
then the probability of neighboring components to become active as well rises because of
the strong connections of that component with other components in the network (e.g.,
“I get chores done right away” and “I finish things I have started”). This particular
pathway (fear of disappointing others ↔ getting chores done ↔ finishing things) to a
personality structure in which multiple conscientiousness items are active is then more
likely than a pathway to conscientiousness that includes peripheral components (e.g., “I
take voting and other duties as a citizen very seriously”, node 35).

Second, centrality matters because it is linked to the ability to change and to how
widely spread out the consequences of such change will be. When a personality compo-
nent is central, it is likely to be dependent on many other components (and vice versa),
so it will be more difficult to change. Changing a habit of not fulfilling promises, for
example, is more likely to be difficult because in order to change that component, there
are many others that may need to be changed as well (e.g., sympathize more with other
people’s needs and learning to finish things). Drawing analogy to a trade network, there
are tradesmen who operate as pivotal points in the network (i.e., as central nodes): they
have a large influence on the total productivity of the network (how much money the
network as a whole makes), and it is very difficult to drive them out of business because
of their strong connections with so many others (i.e., individual components of person-
ality). It is unlikely but for some reason, it might be that a central component in fact
does change (in the trade analogy, a pivotal person goes out of business). If so, then
the consequences for the remainder of the network will be more widespread than if a
peripheral component (tradesman on the periphery) changes. For instance, if one ceases
to take voting seriously, this is not likely to have major effects on other aspects of one’s
expression of personality. In contrast, if because of whatever circumstance, one ceases to
be a reliable person—as might occur in the early phases of dementia with a deterioration
of memory functions—this is likely to have effects throughout the system.

Network structure as a source of stability

Human actions are flexible and unpredictable across situations, but at the same time,
general patterns of behavior can be extremely rigid and very difficult to change. Theories
of personality aim to reconcile these two facts of human life and provide compelling
explanations for the stability that apparently underlies the great variability in daily
moods, thoughts and behaviors. The traditional way of dealing with this issue is to
invoke a two-part explanation in which the variation in behavior is governed by transient
factors, whereas the average around which these variations are dispersed is caused by
a stable factor. The latter is typically conceptualized as a trait, defined as a relatively
enduring organismic (psychological, psychobiological) structure underlying an extended
family of behavioral dispositions (Tellegen, 1991). Thus, in this definition, a ‘trait’ is a
‘common cause’, a structure that ‘explains’ the stable level of functioning around which
a certain variability in ‘states’ revolves (e.g., the trait-state-error model; see Kenny &

3 For the sake of simplicity, this chapter focuses on activation as a dichotomous characteristic
of a personality component: it is either “on” or “off”. However, it is also possible to define
activation as an ordinal or continuous characteristic, in which components’ activation varies
along a scale. In this way, components in a personality network can be active with a certain
‘intensity’.
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Zautra, 1995). An example of such a structure is the latent dimension of extraversion,
which is thought to cause stability by affecting the chances for a broad range of states
to occur, as shown in the left panel of Figure 6.3.
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Figure 6.3: Illustration of the trait view according to a traditional latent variable (left panel)
and a network perspective on personality (right panel). From a latent variable perspective, a
trait such as extraversion is a common cause of stable dispositions that, together with transient
factors, explain momentary states. The network alternative views direct interactions between
personality components, influenced by transient factors, as the source of synchronized stability of
components. In this view, a trait such as extraversion emerges out of these interactions. Traits
are no longer common causes but summary statistics or index variables describing the average
activation level of states.

Both the traditional model in the left panel of Figure 6.3 and the network in Figure 6.2
are between-subjects models that—for several reasons—cannot be assumed automatically
to generalize to specific individuals (Borsboom et al., 2003; Borsboom, Kievit, Cervone,
& Hood, 2009). From a network perspective, inference at the level of the individual
is possible if one assumes that the dynamic structure of personality components of an
individual can be represented in a similar network form (e.g., Figure 6.4 is an example
of such a hypothetical network of an individual). Individual differences can then be
captured by allowing for individual differences in components and the strengths of the
connections among them.

From a network perspective, there are multiple ways in which trait-like and state-like
characteristics can be defined at the level of individual networks (see Figure 6.4 for an
illustration). This flexibility stands in stark contrast to the trait view, in which traits
and states can only be sensibly defined at the level of the (first-order or second-order)
latent dimensions (from a latent trait perspective, it would make no sense to define states
and traits at the level of the items, although it might be technically possible). As such,
individual differences can only be expressed in terms of that latent dimension as in,
for example, ‘Alice is more trait neurotic than Bob’, whereas the network perspective
can express many differences between Alice and Bob, such as ‘Alice’s network has more
trait-like neurotic components than Bob’s’ and ‘The connections in Alice’s network are
more state-like than Bob’s’. Such multiple observations are likely more true to the subtle
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nature of individual differences.

i4 i5 

i3 

i1 

i2 

Situation 

Figure 6.4: The possibilities of conceptualizing traits and states within an individual’s network
of five personality components (i1-i5). The light grey circles refer to possible conceptualizations
of traits, whereas the medium grey circles refer to possible conceptualizations of states in the
network. Situations in the environment can influence either individual components or connections
among them, thereby changing their states.

A first way to define traits and states in a network is at the level of the network as a
whole (turquoise circle around the entire network in Figure 6.4): synchronized stability
of multiple components can result in the emergence of a stable trait such as extraversion
(as illustrated in the right panel of Figure 6.3, in this case for extraversion components).
That is, instead of the current view that a trait ultimately ‘causes’ behavior (i.e., arrows
pointing from Extraversion in the left panel of Figure 6.3), the network perspective views
a trait as a phenomenon that is the ‘result’ of (and, in that sense, emerging from) direct
interactions between thoughts, feelings and behaviors as measured with personality items
(i.e., arrows pointing towards Extraversion in the right panel of Figure 6.4). As such,
a trait, from a network perspective, is similar to a summary statistic or index variable
that describes the average activation level of states, which is consistent with the key
assumption of a formative model (Edwards & Bagozzi, 2000). Importantly, the network
perspective is thus not contradictory to current trait theories. Networks result in traits
too, the only difference with current trait theories being that in the latter case, traits are
most typically explained with a latent variable model in mind. That is, trait theories are
currently intertwined with a latent variable perspective (as depicted in the left panel of
Figure 6.3).

Networks can result in traits because transient factors and context determine the
activation of affective, cognitive and behavioral components that in turn may activate one
another if they are connected in the network architecture. Every time a set of components
is activated (e.g., when a person feels energetic), the activation contributes to a self-
evaluation stored in memory (“I am an energetic person”) that is of the kind queried in
typical personality questionnaires (“Would you consider yourself an energetic person?”)
and serves as evidence for evaluating the self-related hypothesis (van der Maas, Molenaar,
Maris, Kievit, & Borsboom, 2011). General evaluations that arise from densely connected
areas in the network will covary; as a result, these variables will form a large principal
component if submitted to a data reduction technique such as principal components
analysis. However, a simple structure confirmatory factor model (like that in the left
panel of Figure 6.3) may not fit well because of violations of conditional independence
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(i.e., because the model does not get the causal structure right). We understand this to
be typical in personality research where confirmatory models can fit badly even though
principal component structures are robust and replicable (McCrae, Zonderman, Costa,
Bond, & Paunonen, 1996).

A second way in which networks can display trait-like and state-like properties in
individuals’ networks is at the level of these individual components themselves (turquoise
and pink circles around the item boxes in Figure 6.4). Roughly speaking, there are two
reasons why components can display both trait-like and/or state-like features. First, the
wording of the items themselves may or may not refer to stable behavioral dispositions
(e.g., “I easily feel offended by other people” and “I finish things once I have started
them”), whereas the responses to other items may greatly vary over time (e.g, “I feel
offended now” or the items represented in Figure 6.5). The latter components can be
considered to be inherently more state-like, whereas the first are inherently more trait-
like. Second, the activation of components can be altered (from ‘active’ to ‘not active’ or
vice versa), depending on a specific ‘situation’ a person is in (orange arrow from situation
to i2 in Figure 6.4). Some of these components are more state-like because alterations in
the environment (i.e., different situations) result in unstable activity patterns (i.e., the
change in activity is relatively temporary). For example, a component such as “I’m full of
ideas” can be unstable in certain people: the component would be active (i.e., Alice feels
full of ideas) for Alice after a positive day at work during which her boss complimented
her on having a good idea but inactive (i.e., Alice does not feel full of ideas) the next
day because her mother-in-law describes her in her face as a follower and not a leader.
In contrast, some situations result in long-term stable changed activity in one or more
nodes. For example, Bob, a trusting person, obtains a venereal disease from his cheating
girlfriend who also dumps him. Subsequently, Bob re-examines basic assumptions about
how he sees the world and as a result, changes: becomes less trusting, more suspicious
of the motivations of others and so on.

Situations can also influence the connections among the components (orange arrow
from situation to the connection between i1 and i2 in Figure 6.4; analogous to modera-
tion). Connections subject to such influences can be more susceptible to change and thus
more state-like in that they are aspects of personality that vary in response to different
situations (analogous to what is hypothesized in the CAPS model: Mischel & Shoda,
1995, 1998). For example, Bob normally does not feel guilty because he sometimes
feels just miserable for no reason (i.e., relatively stable weak connection between feeling
miserable and feeling guilty). But, when Bob feels just miserable right when his wife
surprises him with tickets for a cruise, he feels incredibly guilty: that is, the connection
between feeling miserable and feeling guilty is stronger, triggered by the situation. It is,
on a related note, this very malleability of certain connections that is the focus of many
psychological treatment strategies (e.g., cognitive behavioral therapy; see Cramer et al.,
2010). Other connections are likely relatively trait-like, in part, because the components
they connect are inherently more trait-like as well, for example, the connection between
“I like to go to parties” and “I feel comfortable around people”.

The empirical study of this dynamic structure of personality networks becomes pos-
sible through the use of time series data. For instance, Figure 6.5 presents empirical
correlation networks of four people who participated in a larger study into the effects of
mindfulness training on a range of emotion and psychopathology variables (Geschwind,
Peeters, Drukker, van Os, & Wichers, 2011; see supplementary materials available at
http://www.aojcramer.com for a description of the sample and the measures). The par-
ticipants in this study were assessed multiple times a day by using an experience sampling
protocol, which generates series of observations over time. The networks in Figure 6.5
represent the lag-1 correlations between time series of four variables: anxiety, feeling
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down, irritability and the pleasantness of the event reported to be the most important
one during the assessment period. Specifically, a thick green arrow from A to I means
that a higher level of anxiety at t predicts a higher level of irritability at t + 1; a thick
red arrow from E to A means that a more positive evaluation of the event that took place
at t predicts a lower score on anxiety at t + 1 and so on. Naturally, it is also possible
to construct such intra-individual networks for correlations within the same time frame:
the construction and interpretation of such graphs would be analogous to the procedure
explicated for the inter-individual network that was presented in Figure 6.2.
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Figure 6.5: Network representations of the temporal dynamics of four individuals (1, 2, 3 and
4) who were repeatedly assessed in an experience sampling study. An arrow from, for example,
node A to node I represents the correlation between the score on node A at time t with the
score on node I at time t + 1: green (red) lines represent positive (negative) correlations. The
thicker the arrow, the stronger the connection. E : pleasantness of the event reported to be most
important; A: anxious; D : feeling down; I : irritable.

The individuals showed marked differences in their dynamic structure. Individual
1, who is relatively typical for the sample studied here, showed positive dependencies
among A, I and D: for example, the more anxious at t, the more irritable at t + 1 (and
vice versa). A, I and D all had negative dependencies with E: for example, lower anxiety
at t predicted higher pleasantness of the event reported at t + 1, but a more pleasant
event at t also predicted lower anxiety at t + 1. This appears not to be the case for
individual 2 whose relations between E and the psychological variables were one-way
traffic: for example, lower anxiety at t predicted higher pleasantness of the event at t +
1, but a more pleasant event at t did not appear to predict lower anxiety at t + 1. One
might speculate that this individual ‘profits’ less from positive events. Individual 3 also
showed this pattern but in addition showed no noticeable predictive relation between the
psychological variables at t and the pleasantness of the event at t + 1. This individual
thus appeared to function independently of the events reported in the relevant time.
Finally, individual 4 showed a surprising pattern of purely negative relations, in which
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the anxiety variable functioned as a source node without substantial incoming effects
and seems to steer the other variables in a counterintuitive way (‘increased’ anxiety at
t predicted ‘decreased’ irritability and depressed mood at t + 1, whereas ‘decreased’
irritability and depressed mood at t predicted a ‘more’ pleasant event at t + 1). We
do not know, from the present data, to what extent these patterns generalize outside
the studied time window or whether they have meaningful connections to the everyday
functioning of the studied individuals. However, the differences between the network
structures are quite suggestive and may, in future research, be shown to have significant
consequences.

Thus, from a network perspective, the components of individuals’ personality net-
works as well as the connections among them can exhibit trait and/or state-like prop-
erties, in part influenced by situations that figure as separate nodes in the network (see
also Figure 6.4), and traits such as extraversion, or openness, emerge out of the combined
activity of the components of the personality network, instead of being the common cause
of these components. Traits as emerging entities do not violate some definitions of traits:
for instance, the definition of Tellegen (1991) of traits as “enduring [...] structure[s] un-
derlying an extended family of behavioral dispositions” would in fact seem neutral on
whether the structure in question is a latent dimension or a network structure.

Understood in this way, the network perspective offers a possible resolution between
trait approaches and situationist approaches that emphasize that traits can be adequately
described as situation-relevant reaction patterns (e.g., Mischel & Shoda, 1995): the con-
nections among situational nodes—external to the human system—and components that
are more internal to the human system are likely to differ in strength across individuals.
Such differences in situation-behavior associations lead to if-then signatures of the kind
identified by Mischel and Shoda (1995).

Given the ample opportunities for individual differences to arise in a personality net-
work structure, is it in fact possible that both stable individual differences and significant
day-to-day variation arise from the same network structure? The answer is yes. To illus-
trate this, Figure 6.6 shows three simple networks, representing three fictitious people,
consisting of three binary nodes (i.e., nodes that can either be ‘active’: 1 or ‘inactive’: 0).
All variables are measured at multiple time points but without implying any direction of
causation (i.e., all variables influence all other variables). Thus, each resulting network
is an intra-individual representation of how three variables influence one another bidi-
rectionally over time. The only differences among these networks are the strengths of
the connections among the nodes (i.e., each connection has a certain weight that deter-
mines its strength): the rightmost network in Figure 6.6 is the most strongly connected,
whereas the leftmost network is the least strongly connected. At time point t, whether or
not a node is active is dependent on the status (0 or 1) of each of its neighbors times the
relevant connection weight, which results in a total incoming effect A. The probability
that the node is active then depends on the total incoming activation as follows:

P (Xi
t+1) = 1/(1 + eAt ),

4 (6.1)

n = number of nodes in the network;
Xi = node i ;
i = 1, 2, ..., n;
t = time;
A = n * n activation matrix

4 Please note the similarity of this equation to equations in item response theory (e.g., Lord,
1953)
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If we simulate data points according to this model for the three networks in Fig-
ure 6.6, the networks will all transition between activation patterns in a random fashion.
That is, there will be significant (‘day-to-day’) variation in which nodes are active
or inactive. On the other hand, the probability distributions of the total activation
scores (i.e., the total number of nodes that are active at a randomly chosen time
point for each network) will be stable: in Figure 6.6, the average activation level of
the leftmost network will be lowest, whereas that of the rightmost network will be
highest, and this is no surprise, given the fact that those networks are weakly and
strongly connected, respectively. Thus, stable individual differences in average activation
levels are possible as well, and it is exactly that synchronized activity of consistent
patterns of node activation within individuals that may give rise to traits: if Figure
6.6 represented openness networks, then the person with the rightmost network would
likely be an open person—because, on average, many openness nodes are active at the
same time—whereas the person with the leftmost network would likely not be an open
person. So given this potential of individual differences in network structure to generate
both traits and day-to-day variations without invoking any latent dimensions, what, in
turn, could cause these differences in network structure?

Figure 6.6: How network structures can lead to stability. The three network structures at
the top of the figure, each representing a fictional individual, differ in connection strength:
the darker a connection between two nodes, the stronger that connection. These structures
generate stationary distributions at the bottom panel. The stationary distribution depicts the
probability (y-axis) that, at a randomly chosen time point, a given number of components (x-
axis) is active. These distributions are themselves stable over time, so if the number of active
nodes were measured at repeated time points, the resulting scores would show high test-retest
correlations.

The genetic origins of personality networks

Genes influence many human characteristics, and personality is one of them. Multi-
ple studies have shown that personality dimensions are at least moderately heritable
(Boomsma et al., 2002; Bouchard, 1994; Jang, Livesley, & Vernon, 1996; Kendler & My-
ers, 2010; Riemann, Angleitner, & Strelau, 1997; Loehlin, 1992): for example, 40% of
the phenotypic variance in extraversion can be explained by additive genetic factors.
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Assigning one number to represent heritability of any particular personality dimension
makes sense from a latent trait perspective: items are no more than indicators of a
common underlying trait (e.g., extraversion). As such, what is transmitted via genes
from one generation to the next is the predisposition for developing that personality trait,
not the propensity for a particular type of behavior/emotion/cognition as measured with
a single item (i.e., personality component; see the left panel of Figure 6.7). In analogy
with height, height is a latent trait (i.e., height is an unobserved variable for which we
need measurement instruments to quantify it in individuals; see Bollen, 2002; Borsboom,
2008a)5 , which is measured with various methods (e.g., measurement tape). What is
heritable is relative height itself—that is, children of tall parents tend to be tall as
well—not any particular measurement of height.

Neuroticism 

i1 i4 i5 i2 i3 

gene 1 gene 2 gene 3 

i1 

i4 i5 

i2 i3 

gene 1 gene 2 gene 3 

Figure 6.7: The influence of genes (grey boxes) on neuroticism according to a latent trait
perspective (left panel) and a network perspective (right panel) on personality. Left panel: genes
influence the individual items (i1-i5) not directly, only indirectly via the latent trait ‘Neuroticism’.
Right panel: genes influence the individual items and connections between them directly.

One can go one step beyond defining heritability as a characteristic of a personality
dimension such as extraversion (whether it be a latent trait or an emerging feature, as
it is defined in a network model), namely, by defining heritability as genetic influence on
the individual components of the network and the connections between these components
(see the right panel of Figure 6.7). For example, it might be that liking parties is 20%
heritable, whereas enjoying the company of other people is 65% heritable, the difference
not being due to differences in reliability (consistent with a latent independent pathways
model). Likewise, it could make sense to say that the degree to which people who are
quick to understand things have a tendency to be full of ideas (i.e., connection strength
between these components) is 34% heritable or the degree to which people who regularly
just feel miserable have a tendency for suicidal ideation (and vice versa) is 78% heritable.

Now, if the network perspective is accurate in portraying personality, then current
techniques for the next step in behavioral genetic research, that is, the identification
of genes that are the driving forces behind these heritability estimates, might prove
problematic. Current techniques employed in genetic association studies typically rely

5 Some may argue that height is not an appropriate example of a latent variable. However,
see these papers for an explication of the point that latent variables are variables that are not
directly observed (i.e., we cannot observe directly whether someone is 5.1 ft or 5.2 ft). We
therefore need measurement instruments to quantify such variables. Also, for example, Harman
(1960) argued that a latent variable is an underlying variable that helps explain why certain
other variables correlate (i.e., two methods to measure height in Bob correlate because they are
caused by the same underlying variable, namely Bob’s height). In both non-formal views of the
theoretical status of a latent variable, height is an appropriate example.
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on a sum score (e.g., the sum of the neuroticism item scores of the NEO-PI) as a proxy for
the latent variable, neuroticism in this example. Genetic association studies in their most
rudimentary form identify genes or genetic variants as being associated with a particular
personality dimension if they predict the sum score (i.e., the dependent variable in the
design: Cramer, Kendler, & Borsboom, 2011; van der Sluis, Kan, & Dolan, 2010). If
personality dimensions were indeed latent traits, this approach is sensible, although not
necessarily optimal (van der Sluis, Verhage, Posthuma, & Dolan, 2010).

To date, standard genetic linkage and association studies have not yielded any clear
genetic candidates: for the Big Five personality dimensions, many candidate gene find-
ings are not replicated, and the genetic polymorphisms that are consistently identified
typically account for less than 2% of the genetic variance (Amin et al., 2011; de Moor et
al., 2010; Fullerton et al., 2003; Kuo et al., 2007; Nash et al., 2004; Terracciano et al.,
2010). This discrepancy between moderately high estimates of population heritability
and the inability to identify the responsible genetic polymorphisms is called the ‘missing
heritability’ problem, a problem that is pervasive throughout the entire realm of psychol-
ogy as well as other complex biomedical traits such as height and blood pressure (Maher,
2008; Manolio et al., 2009).

Although many explanations have been put forward for the missing heritability prob-
lem (e.g., additive small effects of many individual genes, limited sample size, population
stratification and selection bias; K. A. Frazer, Murray, Schork, & Topo, 2009; Maher,
2008; P. Sullivan, 2011), we focus on another possible reason: misconceptualization of
the phenotypic model (6.7). In particular, the model in the left panel of Figure 6.7
might be wrong (as was, for example, recently shown for nicotine dependence where
two genes influenced individual symptoms quite differently: Maes et al., 2011). From a
network perspective (the right panel of Figure 6.7), it is not likely that all components
and connections between them in the personality network are influenced by the exact
same set of genes: gene 1 influences different parts of the network than gene 2. For ex-
ample, components such as feeling sad and finding political discussions boring probably
involve different antecedent pathways: feeling sad has more to do with emotional pro-
cesses whereas finding political discussions boring is more likely a cognitive phenomenon,
and as such, feeling sad and finding political discussions boring probably involve different
biological substrates and pathways and thus different genes. If so, then attempting to re-
late genetic polymorphisms to their sum score is not likely to contribute to effective gene
hunting because with a sum score, one only captures the genetic variance that is shared
among the components and their connections (van der Sluis, Verhage, et al., 2010): the
power to detect effects from single-nucleotide polymorphisms (SNPs) in sum scores is
multiple times lower when these gene effects are local (e.g., gene 2 in the right panel of
Figure 6.7 influences two neuroticism items) compared with when these effects are global
(e.g., gene 1 in the left panel of Figure 6.7 influences all neuroticism items via the latent
trait ‘neuroticism’).

It is hard to pit the models in Figure 6.7 directly against each other because estimation
and fitting algorithms for the network model have not been developed in sufficient detail.
However, we can examine and test divergent predictions of the models such as the location
of the effect of SNPs: from a latent trait perspective, one would expect SNPs to impact
at the latent trait level, whereas from a network perspective, one expects SNPs to impact
at the level of the individual components (Maes et al., 2011).

We tested this prediction by using data from 1625 healthy individuals who partici-
pated in the dbGAP GAIN Major Depression Disorder study (dbGAP study accession,
phs000020.v2.p1). In particular, we investigated the effects of seven top SNPs that were
implicated in neuroticism in two recent genome-wide association studies (de Moor et al.,
2010; Terracciano et al., 2010). We tested whether the effects of these genes on the item
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responses were most likely to be mediated by the latent trait ‘neuroticism’ or whether
these effects were more likely to be item specific (see supplementary materials available at
htpp://www.aojcramer.com for an extended description of the sample and the method).

The analyses showed that in this sample, none of the seven top SNPs had a significant
direct influence on the latent trait ‘neuroticism’. On the one hand, this result can be
interpreted as a non-replication of these SNPs in this sample, which could be due to a
limited sample size or the use of a different neuroticism instrument (see supplementary
materials available at http://www.aojcramer.com). On the other hand, the result can be
interpreted as lack of support for a latent trait perspective on the influence of genes on
personality dimensions. At the same time and consistent with a network perspective, we
did find evidence for significant direct influences of three SNPs (rs17453815, rs12509930
and rs7329003) on three individual neuroticism items (“restless”, “can’t sit still”, “guilty”
and “sleepless due to thought racing”: see Figure 6.8). These effects were significant at α
= 0.005 (p-values for the SNP-latent trait ‘neuroticism’ relations ranged between 0.16 and
0.62; see supplementary materials available at http://www.aojcramer.com). Naturally,
replication of these specific SNP-item relations in other, larger samples is imperative to
draw definitive conclusions. This example with real data mainly serves to illustrate how
to test the diverging predictions from the latent variable versus the network perspective.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
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Figure 6.8: The phenotypic latent variable model relating the latent neuroticism factor (black
oval) to 30 neuroticism items (black rectangles). In light grey are the significant relations of three
single-nucleotide polymorphisms (SNPs) (light grey boxes) with individual items. Relations
between the SNPs and the latent neuroticism factor were not significant. Two-sided arrows
represent correlations; one-sided arrows represent regressions. The impacts of the SNPs on the
neuroticism items are expressed as standardized regression weights. 1 : fantasy; 2 : daydreams;
3 : lonely; 4 : undecidedness; 5 : wandering thoughts; 6 : nervous superiors; 7 : distracted; 8 : not
old self; 9 : nightmares; 10 : listless; 11 : up/down energy; 12 : senseless thoughts; 13 : worry
about set back; 14 : restless, can’t sit still; 15 : miserable; 16 : needs to be alone; 17 : up/down
spirit; 18 : guilty; 19 : handle disappointment; 20 : take things at heart; 21 : easily hurt; 22 :
nervous; 23 : worry about past; 24 : dissatisfied; 25 : irritable; 26 : even tempered; 27 : sad; 28 :
mood swings; 29 : sleepless due to racing thoughts; 30 : sleepless worry.

Another way of testing the viability of the latent trait perspective is to check whether
the directions of the effects of the seven top SNPs (i.e., increase or decrease risk) are the
same across the individual neuroticism items. If the latent trait perspective is correct
and genes influence individual items only indirectly via the latent trait ‘neuroticism’,
then all relations between a SNP and identically coded neuroticism items should have
the same sign. This, however, is not what we found in this data set (see supplementary
materials available at http://www.aojcramer.com for the odds ratios (OR) between SNPs
and neuroticism items and p-values computed according to false discovery rate criteria).
For example, SNP rs17453815 was associated with a decreased risk for being “easily
irritable” (OR = 0.69, 0.01 < p < 0.05) but with an increased risk for “restless, can’t sit
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still” (OR = 1.32, 0.001 < p < 0.01). Similarly, SNP rs11707952 was associated with a
decreased risk for “experiencing mood swings” (OR = 0.73, 0.01 < p < 0.05) with also
with an increased risk for “not feeling your old self” (OR = 1.22, 0.01 < p < 0.05).

Given that the current methodological state of affairs does not allow for a direct
statistical test, psychometric modeling with genetic data might provide a fruitful avenue
to explore the feasibility of latent trait versus network models because these models come
with specific predictions that can be tested in a confirmatory factor analytic framework.
As such, we do not take the aforementioned results to signify anything definitive about
SNP effects on neuroticism items; rather, these results serve as concrete examples of how
one might go about testing predictions of the two competing models. It might be argued
that finding local effects (i.e., SNP effects on individual items) is not in violation of the
‘statistical’ aspects of the latent trait model. Although this is true, the ‘theoretical’
notion of a latent variable as an accurate reflection of personality dimensions is much
harder to maintain in the face of genetic effects whose impact is not at that latent level
but, instead, at the item level.

If future evidence favors the network model, the next step would be to wonder how
personality networks are tied to psychopathological phenomena. As we have argued else-
where (Borsboom, 2008b; Cramer, 2012; Cramer et al., 2011, 2010), mental disorders
can also be understood in terms of networks of interacting symptoms (e.g., insomnia
→ fatigue → concentration problems). Because it is well known that certain personal-
ity dimensions predict the development of certain forms of psychopathology (Hettema,
Neale, Myers, Prescott, & Kendler, 2006; Kendler, 2006; Terracciano, Lockenhoff, Crum,
Bienvenu, & Costa, 2008; van Os & Jones, 2001), how might this covariation arise from
a network perspective?

The roads from personality dimensions to mental

disorders

Some aspects of personality are correlated with the onset and/or maintenance of certain
mental disorders: for example, (1) trait neuroticism and major depression (MD), (2)
alienation (a tendency to feel mistreated, victimized, betrayed and the target of false
rumors) and substance dependence and (3) high negative emotionality (a propensity to
experience aversive affective states) and antisocial personality disorder (D. N. Klein, Ko-
tov, & Bufferd, 2011; Krueger, 1999; Krueger, Caspi, Moffitt, Silva, & McGee, 1996).
From a latent variable perspective—in which a personality dimension and a mental dis-
order are latent entities—there are three ways in which personality features (P) and
mental disorders (M) can be modeled (see Figure 6.9): (1) models in which P and M are
not causally related in whatever shape or form. Instead, P and M are correlated because
they are (partly) influenced by the same etiological processes (the A arrows in Figure
6.9); (2) models in which P is an effect of M (the B arrow in Figure 6.9); and (3) models
in which P precedes M (the C arrow in Figure 6.9).

From a network perspective, the three classes of models as depicted in Figure 6.9 do
not work because in both personality and mental disorder networks, there are no latent
variables. Because items are at the heart of personality networks and symptoms at the
heart of mental disorder networks, the most sensible way to conceive of relations between
the two networks is by means of direct relations between these items and symptoms (see
blue lines in Figure 6.10). Instead of one option for three types of pathways between
personality and psychopathology (i.e., A, B and C model in Figure 6.9), each blue line
between an item and a symptom in Figure 6.10 represents an optional pathway that can
be of the A, B or C type. For example, in Figure 6.10 (without implying causality because
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Figure 6.9: Three ways of modeling the relationship between a personality dimension and a
mental disorder. In all three models, personality dimensions (P) and mental disorders (M) are
hypothesized to be latent variables (ovals) that have causal influence on the items that are used
to measure these variables (p1-p5 for personality and m1-m5 for mental disorder). The models
hypothesize that either (A) P and M are related via common etiological processes, (B) P is an
effect of M or (C) precedes M.

there are no arrows in the figure), one pathway from personality to mental disorder
(and vice versa) could be: p2 - p4 - m5 or, alternatively, m2 - p3 - p5. That is, from
a network perspective, pathways between items and symptoms indicate dependencies
between them, such that one may activate another, analogous to how diseases spread
through a population. For example, the tendency to feel nervous around other people
(p2) likely increases the probability of spending much time alone (p4), which may result
in relatively frequent feelings of anhedonia (m5). The other way around may be an
equally likely pathway: prolonged feelings of anhedonia may well undermine the capacity
to enjoy the company of other people.

p1 

p4 p5 

p2 p3 

m1 

m4 m5 

m2 m3 

Figure 6.10: Modeling the relations between personality dimensions and mental disorders.
Items from a certain personality dimension (p1-p5) that are connected with one another (black
lines) are directly connected (grey lines) with symptoms of a certain mental disorder (m1-m5)
that are also connected with one another (black lines).

As a starting point, like in Figure 6.2, correlations between personality items and
mental disorder symptoms could be used as quantifications of the strength of the connec-
tions between these items and symptoms. Figure 6.11 shows such a correlation network
for neuroticism and MD data obtained from the Virginia Adult Twin Study of Psychiatric
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and Substance Use Disorders (Kendler, 2006; Prescott et al., 2000) (see supplementary
materials available at http://www.aojcramer.com for a description of the sample and
the measures). Some marked differences in connection strength among the items and
symptoms stand out. First, there are clearly two clusters of strongly connected item-
s/symptoms, one corresponding to neuroticism (blue nodes) and the other corresponding
to MD (red nodes). Second, some neuroticism items are more strongly connected to
MD symptoms than other neuroticism items (and vice versa): for example, feelings of
worthlessness (wort : MD) and feelings of loneliness (lone: neuroticism) are more strongly
connected than one’s feelings being easily hurt (hurt : neuroticism) and increased appetite
(iapp: MD).

Within a network such as the one in Figure 6.11, central nodes might be the crucial
nodes on pathways connecting neuroticism and MD because such nodes are strongly
connected with both neuroticism and MD nodes (as argued earlier in the chapter). So
for example, in this particular sample, feeling just miserable (mise: neuroticism), being a
nervous person (nerv : neuroticism), feelings of loneliness (lone: neuroticism) and feelings
of worthlessness (wort : MD) are the most likely candidates for being part of the multiple
pathways from neuroticism to MD (and the other way around).

Another way of generating hypotheses about likely pathways from personality to
psychopathology (and vice versa) is through partial correlations. The general idea is the
same as with simple correlations—one constructs a network with the strengths of the
connections between the nodes reflecting the magnitude of the correlations—but partial
correlations are potentially more informative about whether two variables are in fact
truly related. A high simple correlation between two variables does not necessarily imply
that a unique relation exists between these variables. For instance, a high correlation
between feelings of guilt and feelings of worthlessness may be due to the fact that both
components are influenced by another component in the network, for example, depressed
mood. As such, feelings of guilt and feelings of worthlessness are not uniquely related;
the correlation arises because of their common cause, depressed mood. If that is true,
the correlation between feelings of guilt and feelings of worthlessness should be (very)
low when depressed mood is controlled for, and this is exactly what a partial correlation
does: it quantifies the association between any two components while controlling for one
or multiple other components in the network. As such, when one computes correlations
among the neuroticism and MD items/symptoms while controlling for all other compo-
nents in the network, a high partial correlation is potentially more indicative of a true
relation than a simple correlation. Figure 6.12 presents such a partial correlation network
on the basis of the same data that was used for Figure 6.11.

A few things stand out when inspecting Figure 6.12. First, many connections are
weaker in Figure 6.12 compared with connections between the same components in Figure
6.11, for example, the connection between feelings of worthlessness (wort : MD) and
feelings of loneliness (lone: neuroticism): a direct relation between these components
might exist (the partial correlation is not close to 0) but is likely partially influenced
by other components in the network (because the partial correlation is lower than the
simple correlation). On the other hand, feelings of worthlessness (wort : MD) and feelings
of guilt (guil : neuroticism) are almost as strongly connected in both figures: these two
components are likely directly related without being substantially influenced by other
components in the network. Second, some pathways from neuroticism to MD (and vice
versa) are more likely than others (i.e., are more strongly connected compared with
other pathways): for example, a pathway via feelings of worthlessness (wort : MD) and
guilt (guil : neuroticism) is more likely than a pathway via weight loss (wlos: MD) and
describing oneself as a nervous person (nerp: neuroticism). When considering which
nodes are the most central in this network, the most likely candidates for playing pivotal
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Figure 6.11: A network based on tetrachoric correlations between the 12 neuroticism items
from the EPQ and the 14 disaggregated DSM-III-R symptoms of major depression (MD). The red
nodes represent the individual MD symptoms, whereas the blue nodes represent the neuroticism
items. Nodes are connected by green (red) lines if they are positively (negatively) correlated.
The thicker the line, the higher the correlation. The same algorithm as in Figure 6.2 was used
to generate the network: the most strongly connected nodes appear in the middle of the figure.
hsom: hypersomnia; isom: insomnia; fati : fatigue; iapp: increased appetite; dapp: decreased
appetite; inte: loss of interest; conc: concentration problems; pret : psychomotor retardation;
wgai : weight gain; wlos: weight loss; pagi : psychomotor agitation; depr : depressed mood; wort :
feelings of worthlessness; deat : thoughts of death; mood : mood often goes up and down; mise:
sometimes “just miserable” for no reason; irri : irritable; hurt : feelings are easily hurt; fedu: often
feels fed-up; nerp: rather nervous; worr : worrier; stru: tense or highly strung; expe: worries too
long after an embarrassing experience; nerv : suffers from “nerves”; lone: often feels lonely; guil :
often troubled about feelings of guilt.

roles in pathways from neuroticism to MD (and vice versa) are feelings of loneliness
(lone: neuroticism), guilt (guil : neuroticism) and worthlessness (wort : MD); thoughts of
death (deat : MD), being nervous (nerv : neuroticism) and describing oneself as a nervous
person (nerp: neuroticism).

Partial correlations may be used to generate more parsimonious hypotheses about
likely pathways from certain personality dimensions to certain mental disorders (and
vice versa) but the technique is by no means bulletproof. It could be, for example, that
a connection between two components with a low partial correlation does in fact ex-
ist. Sampling error, for example, might result in a low partial correlation between two
components whereas a direct relation in fact exists in the whole population. Therefore,
replication of findings in multiple samples is a necessity before any definitive conclusion
can be drawn. Another way of testing hypotheses generated by partial correlations in
between-subjects data is via longitudinal studies in which these hypotheses are verified in
individuals. But instead of focusing on total scores on personality and psychopathology
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Figure 6.12: A network based on partial correlations between the 12 neuroticism items from
the EPQ and the 14 disaggregated DSM-III-R symptoms of major depression (MD). The red
nodes represent the individual MD symptoms, whereas the blue nodes represent the neuroticism
items. Nodes are connected by green (red) lines if they are positively (negatively) correlated. The
thicker the line, the higher the partial correlation. The same algorithm as in Figure 6.2 was used
to generate the network: the most strongly connected nodes appear in the middle of the figure.
hsom: hypersomnia; isom: insomnia; fati : fatigue; iapp: increased appetite; dapp: decreased
appetite; inte: loss of interest; conc: concentration problems; pret : psychomotor retardation;
wgai : weight gain; wlos: weight loss; pagi : psychomotor agitation; depr : depressed mood; wort :
feelings of worthlessness; deat : thoughts of death; mood : mood often goes up and down; mise:
sometimes “just miserable” for no reason; irri : irritable; hurt : feelings are easily hurt; fedu: often
feels fed-up; nerp: rather nervous; worr : worrier; stru: tense or highly strung; expe: worries too
long after an embarrassing experience; nerv : suffers from “nerves”; lone: often feels lonely; guil :
often troubled about feelings of guilt.

questionnaires, which is the sensible thing to do when a unidimensional latent vari-
able model holds6 (see Grayson, 1988) —longitudinal studies from a network perspective
would analyze each item and symptom separately for a prolonged time. In addition, with
the time series techniques explicated earlier in this paper, the temporal pathways among
these items and symptoms for individual people may be identified and directly modeled.
Such studies undoubtedly will reveal many idiosyncracies—that is, there are likely many
ways by which people develop certain forms of psychopathology as a result from cer-
tain personality characteristics (and vice versa)—but with some strong between-persons
partial correlations, we have found in the data example earlier that some important
commonalities can be expected as well. As such, the network perspective and its associ-

6 In every unidimensional latent variable model, the sum score has a monotonic likelihood
ratio with the latent variable, thereby rendering the sum score a better approximation of the
latent variable than a single item.
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ated investigation techniques may shed light on the exact nature of the complex relation
between personality dimensions and mental disorders.

Conclusion

In this chapter, we have argued for a novel perspective on personality, in which the cog-
nitive, affective and behavioral components of personality (e.g., liking parties and finding
political discussions boring) are related through causal, homeostatic and logical connec-
tions. Traits such as extraversion and agreeableness emerge out of these connectivity
structures, which implies a radical departure from traditional perspective in which traits
are causes of the relevant components. We have shown how the network perspective
may potentially alter our conception of what personality is and may supply new research
techniques to investigate (1) overall personality architecture, (2) state and trait concep-
tualizations of personality, (3) the genetic background of personality architecture, and
(4) the relations between personality and psychopathology.

Network methodology is far from fully developed. Examples concern the develop-
ment of estimation and fitting algorithms for network models, robustness analyses for
inferences on network structures, combining inter-individual and intra-individual data
and model testing. Pertaining to the latter example, falsifying or confirming a network
model can sometimes be quite complicated—for example, a unidimensional latent vari-
able model will fit data that is generated by a network model in which all nodes are
bidirectionally connected with equal strength—and sometimes surprisingly easy: for ex-
ample, if one has the hypothesis that an inter-individual network is mutualistic (i.e.,
has only positive bidirectional connections so that nodes reinforce one another), then
observing a negative correlation is enough to falsify that hypothesis. In its current state,
network modeling could be compared to latent variable modeling in the 1950s: we have
the ideas and the models but we still need to overcome many methodological obstacles.
Nevertheless, the network perspective offers a plausible candidate model for explaining
the ‘common’ structures of personality and the many idiosyncratic ways in which peo-
ple deviate from that structure. One of its more attractive features is that the network
perspective provides an intermediate position between traditional trait and situationist
approaches, which both have longstanding traditions in personality psychology and which
both have contributed greatly to our current understanding of personality. The network
perspective takes the best of both worlds: it can explain how traits emerge out of the
network structure, but it can also accommodate situational influences as external nodes
that can activate individual components of the network (or connections among them).

Does adhering to the network perspective mean the end of factor analysis and other
techniques associated with the more traditional perspectives on personality? No. Within
the network perspective, factor analysis may become a useful technique for identifying
groups of closely connected components. In fact, in special cases, it may be possible to es-
timate certain network parameters through factor analysis because groups of reciprocally
connected components can behave exactly as predicted under a factor model (van der
Maas et al., 2006). As such, we do not object to latent variable modeling in which
conditional independencies implied by a statistical model are investigated and tested.
Also, we readily acknowledge that some of the hypotheses that follow from the network
perspective could in principle be tested with latent variable techniques (e.g., testing the
influence of genes on individual personality items with independent pathway models) nor
do we deny that if some relatively unexplored areas of the latent variable realm would be
more extensively cultivated in personality research (e.g., intra-individual factor modeling
over time and state-trait modeling within a latent variable framework; Steyer, Schmitt,
& Eid, 1999), the latent variable model might be equally capable of accommodating
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certain phenomena compared with the network perspective (e.g., accommodating both
inter-individual differences and day-to-day variation).

The question of which techniques are capable of doing what is in our opinion not
the one that should matter most in personality research. There is and should be no
arms race at the level of the (future) technical accomplishments of both models. What
matters most is which perspective provides the most plausible account of how personality
arises: do traits cause cognitive, affective and behavioral components or do traits emerge
from complex interactions between these components? How can future research help in
finding an answer to this pivotal question? Given the current lack of methodological
sophistication of the network models, the most likely frontrunner in terms of empirical
research will be time series analysis of intra-individual data. Such data can, for example,
be collected by assessing individuals’ current thoughts, feelings and behaviors at many
consecutive time points (for example by means of an experienced sampling protocol,
which has been developed in considerable detail in clinical psychology). If time series
analysis of such data would show that, within individuals, personality components have
a (bi)directional influence on one another, then this would be strong evidence in favor
of the network hypothesis and against the latent variable hypothesis. Another research
strategy might be an inter-individual approach, in which one would experimentally test
whether manipulating one personality component has an effect on another personality
component.

In our view, the reification of factors such as extraversion as causes of individual
behavior is unnecessary and unwarranted in the case of personality. That is, we do
not object to latent variable techniques but we do object to a latent variable theory in
which the measurement model with a common cause structure is interpreted as evidence
for latent causal entities that operate in the minds of individuals, causing all sorts of
cognitive, affective and behavioral patterns (see also Borsboom, 2008a). Human behavior
simply does not appear to work this way: it is not extraversion that causes party going,
liking people and enjoying conversations; it is liking parties, liking people and enjoying
conversation, and interactions between them, that makes one an extraverted person.
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Chapter 7

Measurable like temperature

or mereological like flocking?

On the nature of personality

traits

Abstract

This chapter was written in response to a set of commentaries (abstracts of these commentaries
available in Appendix B and full texts available at http://www.aojcramer.com), which were
written in response to the previous chapter. We thank these commentators for their suggestions
and critiques that have aided sculpting the ideas that are presented in this chapter. Some
commentators wholeheartedly disagreed with the central tenet of the network perspective on
personality, namely that traits are the result of mutual interactions between thoughts, feelings
and behaviors. In this rejoinder, we primarily focus on these commentaries by 1) clarifying the
main differences between the latent versus the network view on traits; 2) discussing some of
the arguments in favor of the latent trait view that were put forward by these commentators;
3) comparing the capacity of both views to explain thoughts, feelings and behaviors. Some
commentators were by and large positive about the network perspective, and we discuss their
excellent suggestions for defining components and linking these to genes and other biological
mechanisms. We conclude that no doors should be closed in the study of personality and that,
as such, alternative theories should be welcomed, formalized and tested.

Adapted from: Cramer, A. O. J., van der Sluis, S., Noordhof, A., Wichers, M., Geschwind,
N., Aggen, S. H., Kendler, K. S., & Borsboom, D. (2012). Measurable like temperature or
mereological like flocking? On the nature of personality traits. European Journal of Personality,
26, 451-459.
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“No doors should be closed in the study of personality”

(Allport, 1946)

What are traits? To this question, there are almost as many answers as there
are personality psychologists. The previous chapter was a first attempt at formulating
a novel theory of personality (and not, as Schimmack and Gere suggest, merely a new
analysis tool) in which traits do have a place. The difference with existing perspectives
is that we do not see traits as causes of thoughts, feelings and behaviors (i.e., personality
components)—the idea that has come to dominate personality psychology in the
past decades—but as consequence of the interactions between such thoughts, feelings
and behaviors. Thus, rather than reflective latent variables, personality traits are
better conceived of as formative variables: summaries of relevant cognitive, affective
and behavioral components that interact with one another in myriads of ways. We
hypothesized that clusters of more strongly correlated components, typically interpreted
as signs of underlying factors, in fact signal components that are particularly strongly
interconnected. The coordinated behavior of these components thus emerges from the
local interactions between them, just like flocking emerges from the local interactions
between birds.

The commentaries we received are dividable in two general response categories: the
first contains commentaries that were by and large positive, including very helpful sug-
gestions for improving the precision and scope of the network perspective (Costantini &

Perugini; Denissen, Wood & Penke; Furr, Fleeson, Anderson & Arnold; Read

& Miller). The second class consists of commentaries that were (sometimes wholeheart-
edly) dismissive of our proposal, mainly because of reluctance to let go of the idea that
personality traits are necessarily latent entities (e.g., Guillaume-Hanes, Morse &

Funder; Schimmack & Gere; Terracciano & McCrae). The primary focus of this
rejoinder pertains to this latter collection of commentaries. More specifically, we aim at
(1) clarifying the main differences between the latent versus the network view on traits;
(2) discussing some of the arguments in favor of the latent trait view that were put for-
ward by commentators; and (3) comparing the capacity of both the network view and
the latent trait view to explain thoughts, feelings and behaviors. Finally, we discuss some
of the commentators’ excellent suggestions for defining components and linking these to
genes and other biological mechanisms.

Temperature versus flocking

Why do some aspects of personality, such as party-going behavior and liking people, clus-
ter together? In the latent trait view, they do so because they are caused by the same
underlying trait (extraversion in this example). This definition of a personality trait,
as a cause of behaviors, thoughts and feelings, has come to permeate the field of per-
sonality psychology under many different names (source traits: Cattell, 1950; genotypic
traits: Eysenck, 1967; trait2: Wiggins, 1984) and is mathematically formalized in the
generic latent variable model. In such a latent variable model, a personality trait and its
items are associated with one another analogously to the relation between temperature
and thermometers (Borsboom, 2008a): differences in temperature cause differences on
thermometer readings via a well understood process by which particles exchange kinetic
energy. If multiple thermometers are used (in the personality case: extraversion causes
party-going behavior and liking people), thermometer readings are measurements of a
common latent variable, namely temperature (extraversion is measured by items such as
party-going behavior and liking people).

The hypothesized measurement relation between a trait and its items features promi-
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nently in the five-factor theory of personality, most vehemently advocated by Terrac-

ciano and McCrae. Importantly, this and comparable factor models come with the
assumption of local independence (Holland & Rosenbaum, 1986; Lord, 1953; McDonald,
1981): in the temperature analogy, a high correlation between the readings of two ther-
mometers at the same time can be (almost perfectly, depending on the reliability of both
thermometers) explained by the underlying cause of these readings, namely temperature.
That is, if differences in temperature function as the common cause of differences in the
thermometer readings, then there can be no direct relation between the two thermome-
ters (i.e., a change in the reading on one thermometer does not change the reading on
the other thermometer, and vice versa). In a measurement model, this is a highly sensi-
ble requirement. However, in our view, it is not a very plausible model for the relation
between, say, conscientiousness and being in time for appointments.

This neither implies that factor models are useless nor that the results of factor
analyses and related techniques cannot be reinterpreted along different lines. As such,
Ashton and Lee are free to advocate their own non-causal definition of a factor as
“a common element shared by its defining variables” (e.g., all birds have feathers), and
we agree with them that non-causal interpretations of factors are compatible with a
network perspective. For pragmatic reasons, it may also be useful to aggregate co-
varying individual differences into larger components and neglect the more stringent
assumptions of factor analysis. However, we do not see how the assumptions of factor
analysis sit with the idea that factors can be identified by common elements. The factor
model does not hypothesize that there is a common element among indicators but that
they share variance; moreover, that they share variance for a very special reason, that
is, because they depend on the same latent variable. And this is what the psychometric
model is consistent with, as the latent variable functions precisely as an unobserved
common cause (e.g., having feathers is what causes certain animals to be birds; Pearl,
2000).

When adhering to a latent variable model-based explanation of the clustering of
certain items, one cannot evade the local independence assumption: although it is tech-
nically not a problem to fit a one-factor model in which certain items are allowed to
correlate, in addition to and independent of the relation that they share via the latent
factor (i.e., to have a direct relation, a weaker form of the above-mentioned strict local
independence assumption), the more such correlations are allowed to exist in the model,
the less convincing is the case for an underlying trait that explains the majority of covari-
ance between the items. Thus, when Terracciano and McCrae argue, in defense of
the latent trait view, that liking parties is caused by both liking people and extraversion,
they actually shoot themselves in the foot by admitting the existence of direct relations
between the items of extraversion. If direct relations are allowed, factor analysis ceases
to be a credible tool for identifying unobserved causes because that interpretation is
crucially dependent on the assumption of local independence.

Naturally, other ways of tweaking this basic model of temperature are possible, and
we acknowledge (again) that we fitted the simple model without distinguishing between
first-order and second-order factors (e.g., Ashton & Lee; Terracciano & McCrae).
However, Terracciano and McCrae are not committed to these more complex models
either when they maintain their position that extraversion causes party-going: there is
no distinction between first-order and second-order factors in this statement. Certainly,
one may fit a much more complex model to the data with cross-loadings and lower order
latent causes. However, in our view, this implies that to meet the assumption of local
independence, one then introduces many extra, untested hypotheses. The alternative is
to drop the unlikely assumption of local independence. As shown by van der Maas and
colleagues (2006), a network of interdependent components can provide a valid alternative
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for a well-fitting complex factor model. We stress that, in practice, factor analysis merely
identifies clusters of items that correlate stronger with one another than with items
outside the cluster. Hence, items that load on the same factor may be taken to identify
networks of mutually reinforcing components (see van der Maas et al., 2006). In that
case, a factor is not a latent trait with causal power but a summary statistic for how a
set of items are influenced by one another (Cramer, 2012). This idea resembles Tellegen’s
(1991, p. 15) assertion that “A trait dimension is [...] a population concept representing
an orderly statistical structure of covariation”, as well as Mischel’s (1973) thesis that
traits are “summary terms [...] applied to observed behavior”.

Pertaining to the network perspective, some commentators were under the impression
that we dismiss traits or that we equate traits to a single item (e.g., Asendorpf). We
do not. Steyer is absolutely right when postulating that trait theory and the network
perspective are not incompatible. That is, if one is willing to let go of the idea that a
personality trait necessarily is a latent cause of thoughts, feelings and behaviors, then
traits and the network perspective are perfectly fit for marriage. We may have added to
the confusion by discussing individual personality components in which we endowed them
with state-like or trait-like properties. Importantly, we do not hypothesize that single
components/items are traits; we did want to argue that personality components can be
stable (i.e., trait-like) as well as being subject to change (i.e., state-like). In that respect,
there is indeed some overlap between the network perspective and the latent state-trait
model, as was noticed by several commentators (Costantini & Perugini; Rothmund,

Baumert & Schmitt; Steyer). However, contrary to the network perspective, the
latent state-trait model is a temperature model in which individual items are caused by a
latent state variable, which is, in turn, partially caused by a latent trait variable. In this
respect, it is useful to distinguish between factor analysis as a pragmatic tool to organize
data and the results of factor analysis as a model to explain data. Although it is unlikely
that factor analysis of personality items would result in a credible explanatory model, this
does not imply that it cannot be a useful statistical tool. As such, although we think the
explanatory power of the latent state-trait model is limited, we acknowledge its usefulness
as a statistical tool that can help in determining which personality components exhibit
more state-like properties compared with others.

In the network perspective on personality, there is ample space for traits such as
extraversion and neuroticism, if these are interpreted as clusters of mutually reinforcing
components. The main difference with current trait theories is that from this perspective,
traits do not function analogously to temperature nor do the items function analogous
to thermometers. Instead, we postulate that the constellations of components that we
designate as signs of underlying traits in fact result from the direct, local interactions
between personality components. These may or may not be equated to single items (a
subject we will return to in the final sections of this chapter). We used the flocking be-
havior of birds as an analogy, which needs, given some of the comments, some additional
clarification. It is important to stress here that we did not invent the idea that birds, and
other species, display flocking behavior because of local rules. Many simulation studies
have confirmed that from a set of simple rules—for example, steer towards average head-
ing of neighboring birds—a complex flocking pattern (e.g., a V-shape) can occur (e.g.,
C. Hartman & Benes, 2006). Thus, there is no underlying flocking instinct (Terracciano
& McCrae) or a latent ‘seasonal change’ variable (Schimmack & Gere) that explains
the flocking behavior of birds. Schimmack and Gere are right when they stress, in de-
fense of the latent trait view, that flocking behavior is not “...an independent entity that
exists apart from the individual birds...” but that is exactly the point: in our view, that
applies to personality traits as well. That is, extraversion is not an independent entity
that exists apart from the individual extraversion components: instead, just as flocking,
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personality traits emerge out of the interaction between personality components. As
such, from a network perspective, the relationship between a trait and its components is
not one of measurement but one of mereology : that is, extraversion components do not
measure extraversion; the interactions between these components are what constitute
extraversion.

What does this mean? For one, extraversion and other personality traits cannot
be understood by meticulously studying the inner workings of a single personality com-
ponent. We think that virtually all commentators would agree with this: we cannot,
for example, understand neuroticism by discovering all there is to know about a single
component such as feeling jittery. Yet that is exactly what the latent trait, temperature,
model implies: most of what we know about temperature (what it is and how it is related
to thermometers) can be discovered by precisely investigating how it is related to one
particular thermometer (a mercury thermometer for example).

The pragmatic, biological placeholder: Defending

the latent trait view

In defense of the latent trait view, some commentators deny the reification of latent traits.
That is, they adhere to a factor model-based temperature view of personality traits but
claim to refrain from endowing the latent variables with any realist connotation. When
having a temperature model in mind and when philosophizing about the nature of per-
sonality traits, is it unavoidable to reify the latent variable (see also Wilt, Condon,

Brown-Riddell & Revelle)? In principle, no. From a pragmatic point of view, it is
possible—as Lee points out in the case of mathematical ability—to work with latent vari-
able model without believing that the latent factor has a material referent. However, the
moment one searches for biological determinants that correlate with the latent variable,
or for heritability of the latent variable, one wades into the murky waters of reifying the
latent variable at least to some degree. Although not explicitly—the majority of com-
mentators would likely refrain from endorsing the statement that neuroticism resides in
a particular structure in the brains of individual people—many personality psychologists
implicitly reify the latent variable when claiming that neuroticism is highly heritable or
that gene X is associated with being extraverted. For what would be the use of searching
for genetic determinants of something one does not believe to exist in some shape or
form? One cannot pinpoint the location of temperature either, yet climatologists who
claim that a permanent increase in average temperature is associated with an upslope
tree line shift do believe that temperature is a real and causal phenomenon, although
they cannot directly observe or touch it. As such, although we agree with Steyer that
strong reification of the latent variable of the sort that personality traits are believed
to be in the minds of individual people might not be what the vast majority of person-
ality psychologists think when asked (although Allport and his followers do commit to
the hypothesis that traits are real, that they exist in our skins; Allport, 1968, p. 49;
Funder, 1991), when correlating latent variables (by their sum score proxy) with all sorts
of (non-)biological phenomena and by engaging in statements such as ‘women are more
extraverted than men’, however; they do grant the latent variable a status that comes
undeniably close to reification (see also Kievit et al., 2011).

In fact, that quest for biological and/or genetic mechanisms is often fueled by the
desire to endow the latent variable with some realist connotation. In this vein, Terrac-
ciano and McCrae defend the latent trait view with an argument along the following
lines: personality traits are heritable, they are thus biologically based mechanisms; and
because they are biologically based, personality traits exist. First, it is misguided to
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use heritability as evidence for the hypothesis that some aspect of human functioning
is reducible to specific underlying biological processes. Turkheimer (1998) contrasts the
silence of an ascetic monk and an aphasic individual as an example: both religiosity and
aphasia are heritable traits, but everyone will agree that in the case of the monk, his/her
silence, which is a ‘symptom’ of his/her religiosity, is not due to specific brain structures
or processes (e.g., religious silence is caused by a lesion in Brodmann areas 10 and 24),
whereas in the case of an individual with, say, Broca’s aphasia, we know that his/her
silence is caused by a lesion in Broca’s area. Thus, the fact that neuroticism is heri-
table does not imply that neuroticism is reducible to/associated with specific biological
mechanisms. Second, the more general statement that personality traits are biologically
based mechanisms without implicating any specific structure or process is utterly unin-
formative. Ultimately, all behavior is biologically caused in some sense (i.e., the result
of biological processes), and as such, biological reductionism of mental phenomena such
as personality traits is pointless unless one would want to maintain the hypothesis that
certain behaviors, thoughts and/or feelings are not ultimately grounded in the brain of
the individual who experiences or displays them (see also Greenberg & Bailey, 1993;
Kendler, 2005b).

For some commentators, it is not so much the supposed biological reality of personal-
ity traits that prompts them to defend the latent trait view. Rather, in what we call the
placeholder argument, personality traits cannot be something other than latent variables
because that is the only way to understand why certain behaviors/thoughts/feelings (1)
are present in some but not all humans (Terracciano & McCrae); and (2) that do
not appear to be causally related but are correlated (Guillaume-Hanes et al.). In
this view, the latent variable functions as a placeholder for everything we do not (yet)
understand (i.e., latent variable as an unknown phenomenon), which is notably different
from the interpretation of the latent variable as it figures in measurement and struc-
tural models (viz, as an unobserved phenomenon). What is wrong with the placeholder
argument? For example, Terracciano and McCrae argue that because some birds
display flocking behavior whereas others do not; it must be so that an underlying flock-

ing instinct exists that causes these behavioral differences between bird species. Let us
translate this hypothesis into an example that pertains to humans: some women prefer
high heels whereas others do not; thus, it must be so that an underlying instinct to wear

high heels exists that causes these behavioral differences between women. This obviously
makes no sense. Although it may well be that we do not (fully) understand why it is
that some women prefer high heels whereas others do not, the reasons we can think of
do not justify the need for an underlying instinct: high heels are not practical in cer-
tain jobs, some women wear high heels to look taller, high heels cause back problems in
some women, etc. Naturally, there are examples where the latent placeholder would be
more defensible, but the thesis that behavioral differences necessitate the existence of an
underlying instinct/tendency is, in our opinion, highly questionable.

Now, suppose we would find a positive correlation between wearing high heels and
working on the top floor of a skyscraper. According to Guillaume-Hanes and col-

leagues, this correlation can only be understood by introducing an underlying tendency,
in this example something such as elevation tendency, because there is no sensible way
in which one can justify a direct relation between the two behaviors. The latter part of
this argument is true. Likewise, in their own example, it is virtually impossible that ice
cream eating causes children to seek their teacher’s approval as well as the other way
around. Besides methodological reasons why ordinary correlations do not necessarily
imply a true relation between two variables (e.g., large sample size that causes low corre-
lations to become significant, partial correlation might reveal that correlation is caused
by a third (non-latent) party, etc.), Guillaume-Hanes et al. ignore another reason why
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two seemingly wildly removed phenomena are correlated, which does not involve latent
entities: for example, most women who work on the top floor of skyscrapers take the
elevator. And because they take the elevator, they are not bothered by the discomfort of
wearing high heels when climbing stairs. As a result, these women more readily wear high
heels than women who take the stairs to reach their lower floor offices or the other way
around: some women in highly successful companies with predominantly male employ-
ees like to accentuate their femininity by wearing high heels. And successful companies
often occupy the most expensive floors in skyscrapers, the top floors. As such, at the
inter-individual level, two behaviors can be related through a causal chain that involves
directly observable, non-latent variables.

Not as straight as an arrow: The real trouble for

the latent trait view

Interestingly, the potentially most compelling argument in defense of the latent trait
view was not once articulated by any of the commentators. That argument would have
been that it is known how latent traits influence behaviors, thoughts and feelings; that
is, that we know what the arrows in the measurement model signify. Consider again the
analogy with temperature: we know exactly what the arrow between temperature and a
measurement with a mercury thermometer means, namely, that an increase in ambient
temperature results in an increase in the temperature of the mercury, causing (in a linear
fashion) the mercury in the glass to expand. For personality traits, however, it is no
surprise that this argument was not articulated because no one really knows how, say,
neuroticism causes ‘feeling jittery’ and ‘worries easily’. As Mischel and Shoda (1994)
stated, if traits generate distinctive behavior, then evidence for this claim needs “... to
be stated explicitly and announced clearly”. Yet, to the best of our knowledge, this
evidence is not unannounced, it simply is not there. Naturally, there are theories of how
traits and behavior are linked, for example, the trait theory as postulated in McCrae and
Costa (1995). However, the meaning of the arrows in their model is shrouded in mystery:
they are not really discusses nor empirically verified and are endowed in the model with
the vague label ‘dynamical processes’. So, when Rothmund and colleagues state that
“...without theories about the nature of these causal links among components, it seems
premature to refuse the classical trait models”, they forget that for these very classical
trait models, not one empirically verified theoretical model about the causal links between
traits and concrete behaviors exists.

Thus, as Pervin (1994) rightly pointed out, personality traits are regarded as
explanatory concepts, yet “...explanations are not offered in other than trait terms”,
resulting in circular arguments such as extraversion causes party-going; John likes
to go to parties because he is extraverted. Why is it that trait theorists have not
searched for how personality traits exert their supposed causal powers onto lower level
behaviors, thoughts and feelings? There are probably many reasons—beyond the scope
of this chapter to discuss—but one reason might have to do with the manipulability of
the supposed latent traits. An important way of investigating the explanatory causal
power of a theory is to manipulate the hypothesized cause of a certain phenomenon
X after which one assesses the impact of that manipulation on X. One problem with
personality traits, besides the obvious ethical constraints on such a research design, is
that in order to manipulate a trait, one has to have a fairly good idea of what a trait
is. And, although regarded as a human universal (McCrae & Costa, 1997), we have
already argued in earlier sections that in current trait theory, there is no validated
hypothesis on the nature of personality traits. Also, trait theorists themselves strongly
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argue in favor of the stability of these traits (Terracciano, Costa, & McCrae, 2006).
That is, especially after age 30, personality traits are supposedly relatively stable and
thus relatively insensitive to external manipulation (if possible at all). On a final note,
when reviewing the literature, it also seems that trait theorists are generally not very
interested in answering the question of how traits cause behavior. In fact, McCrae
and Costa (1995), for example consider the causal link between traits and behavior as
self-evident and, as such, seem to obviate any need for formulating and testing explicit
hypotheses about this link:

“..., the causal argument is in principle clear: traits as underlying tendencies cause and

thus explain (in general and in part) the consistent pattern of thoughts, feelings, and actions

that one sees. This kind of argument is so consistent with philosophical construals of disposition

[...], with the theories of psychologists from Allport to Eysenck, with the assumptions underlying

classical psychometrics, and with common sense that it is hard to understand why it should be

problematic.”

In our view, future research into the network perspective on personality should
commit itself to the systematic identification and analysis of causal links between
personality components at both the inter-individual and intra-individual levels. In our
target paper, as Asendorpf rightly notes, we have only scratched the surface of the
many possible interaction between personality components and how one can go about
in analyzing possible causal mechanisms. For some relations at the inter-individual
level, the causal mechanism probably operates at a more psychological level (those
examples were most frequently discussed in the previous chapter): in general, liking
to meet new people causes some individuals to seek out events where new people can
be met, and therefore, these individuals frequent parties. And in these cases, there
is no need for reducing this mechanism to a more biological explanation (e.g., neuron
group X firing in region A causes neuron group Y in region B to fire). In other cases,
biological mechanisms will be more important (e.g., in psychopathology and how not
sleeping causes fatigue). And in these cases, we welcome the suggestions of Read and

Miller and of Wilt and colleagues for how to incorporate biological mechanisms into
the network model, for example, by positioning such mechanisms between genes and
personality components.

Between-subject generalizations do not necessarily correspond to causal mechanisms
that characterize within-person functioning. As Furr and colleagues show in the case of
borderline personality disorder, causal mechanisms for developing the disorder might be
very different for two people with the same diagnosis. Pertaining to normal personality,
it might well be, for example, that in general, party-going behavior is predominantly
caused by liking to meet new people, but that John likes to go to parties because he
wants to be in the centre of attention and that Chris frequents parties because he wants
to raise money for his next film (Asendorpf). So whenAsendorpf criticizes the network
perspective by arguing that people might vary in the causes of their party-going behavior,
he inadvertently mentions a phenomenon (i.e., intra-individual differences in why certain
behavior is present) that flows naturally from the basic premises of network theory. In
network theory, the personality networks of John and Chris can be structured entirely
different with the same end result: both men are extraverted. In John’s case, his party-
going behavior is caused by another personality component, wanting to be in the centre
of attention; in Chris’ network, his party-going behavior is caused by an external event
(an upcoming film). Thus, there may be as many sources of extraversion as there are
events that cause people to like parties or lead them to make friends easily. Importantly,
this is not readily explainable by the latent trait, temperature, view. For in this view,
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personality traits cause behavior in the same way in every individual, just as temperature
causes a reading on a mercury thermometer in exactly the same way regardless of whether
the temperature is measured in the Himalaya Mountains or in someone’s backyard.

The pieces that make up the personality puzzle

So, if traits are not the fundamental units of personality (Wilt and colleagues) what are
the basic pieces that make up the personality puzzle? We have suggested that personality
components might fulfill that role: behaviors, thoughts and feelings that are associated
with a unique causal system. Naturally, and as we have stressed, the definition of per-
sonality components is a first step; there is ample opportunity for refining this definition.
A good refinement would be to consider more than items from self-report questionnaires
(e.g., Guillaume-Hanes et al.; Rothmund et al.; Wilt et al.). For example, Denis-

sen, Wood and Penke suggest the inclusion of functionalist components such as the
reward value of social situations. With that said, it can be debated whether such func-
tionalist variables act as components in a personality system or, instead, function as
external forces that push the personality system towards a certain attractor (e.g., as a
moderator that influences strength between two personality components). Another po-
tential refinement of our original definition is to consider a component as consisting of
multiple items. For example, Costantini and Perugini suggest that personality com-
ponents might be better defined at the level of facets (i.e., sub-traits one level the Big
Five, for example assertiveness). We agree that in certain cases, multiple items might be
part of the same component, and in that sense, a component might be a facet, and the
resulting network might be considered to be a higher level sub-network. In that case,
one pragmatically chooses to study relations between sub-networks without assuming
them to be fundamental, just as one can study interactions between sub-systems in the
brain without phrenological assumptions. However, grouping multiple items would only
work when the assumption of local independence is warranted as in the case of multiple
thermometers. For example, sleep problems might be assessed by asking the individual ,
asking his/her spouse and by administering a polysomnography. As such, a measurement
temperature model applies, and in that case, a personality component might be a latent
variable. This approach would also effectively deal with the problem of incorporating
measurement error into the network model (Asendorpf).

Eat the pudding!

In the previous chapter and this one, we have articulated a network perspective on
personality in which traits result from the mutual interactions between personality com-
ponents. Additionally, particularly in this chapter, we have articulated many reasons
why the currently dominant latent trait view is in trouble: traits are probably not la-
tent entities nor do they appear to have explanatory power, rendering the status of the
latent trait view as the grand unifying theory of personality problematic. Naturally, crit-
icizing existing theories and suggesting new one necessarily generates critical responses.
However, the concern that Schimmack and Gere expressed over our “...suggestion
that network analysis provides an alternative account of classic personality constructs...”
does not make sense in our view, for science cannot progress without regularly ques-
tioning the basic assumptions on which research traditions are founded. That is, in a
healthy scientific field, no doors should be closed; indeed, alternative theories should be
welcomed, formalized and tested adequately. Regardless of which theory will in the end
paint the best picture of how human being develop unique and yet, in some way, similar
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personalities, one should not prematurely throw away the pudding without eating from
it first.



Chapter 8

A practical guide to network

analysis

Abstract

In network approaches to psychopathology, disorders result from the causal interplay between
symptoms (e.g., worry → insomnia → fatigue), possibly involving feedback loops (e.g., a person
may engage in substance abuse to forget the problems that arose due to substance abuse). The
present chapter examines methodologies suited to identify such symptom networks and discusses
network analysis techniques that may be used to extract clinically and scientifically useful infor-
mation from such networks (e.g., which symptom is most central in a person’s network). We also
show how network analysis techniques may be used to construct simulation models that mimic
symptom dynamics. Network approaches naturally explain the limited success of traditional
research strategies, which are typically based on the idea that symptoms are manifestations of
some common underlying factor, while offering promising methodological alternatives. In addi-
tion, these techniques may offer possibilities to guide and evaluate therapeutic interventions.

Adapted from: Borsboom, D., & Cramer, A. O. J. (in press). Network analysis: An inte-
grative approach to the structure of psychopathology. Annual Review of Clinical Psychology.
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Constructing and analyzing psychopathology net-

works

In recent decades, the construction and analysis of complex networks, which has its roots
in physics and mathematics (Erdös & Rényi, 1959; Ising, 1925), has become a thriving
enterprise in many fields that deal with complex organizations of mutually interacting
entities. The problem of finding a way to analyze such systems has culminated in a set of
powerful empirical research methods, generically known as network analysis, that can be
applied to many different domains (Barábasi, 2011). One of the first papers to generalize
the idea of marrying mathematical descriptions of network structures to diverse sets of
data-driven networks was the classic paper by Watts and Strogatz (1998), which led to an
avalanche of empirical and mathematical research on the structure and dynamics of com-
plex networks. A good introductory text on the resulting literature is Newman (2010),
while Kolaczyk (2009) and Barrat and colleagues (2008) provide excellent treatments of
the applications of network modeling in dynamic models. Grimmett (2010) provides a
technical introduction to more complicated probabilistic models, while Boccaletti and
colleagues (2006) give a reasonably comprehensive and readable treatment of network
approaches in different fields.

Table 8.1: Legend for Figures 8.1, 8.3, 8.5 and 8.6

Abbreviation Meaning Belongs to disorder
depr Depressed mood MD
inte Loss of interest MD
weig Weight problems MD
moto Psychomotor disturbances MD
repr Self-reproach MD
suic Suicidal ideation MD
mSle Sleep problems MD
mFat Fatigue MD
mCon Concentration problems MD
slee Sleep problems MD/GAD
conc Concentration problems MD/GAD
fati Fatigue MD/GAD
gSle Sleep problems GAD
gFat Fatigue GAD
gCon Concentration problems GAD
anxi Chronic anxiety/worry GAD
even Anxiety about > 1 event GAD
ctrl No control over anxiety GAD
irri Irritable GAD
musc Muscle tension GAD
edge Feeling on edge GAD

At its core, a network is simply a set of elements (nodes) that are connected through
a set of relations (edges). Nodes are usually visualized as circles and can represent
any conceivable variable (e.g., symptoms, persons, airports, neurons). Edges connect
these nodes and they can represent any conceivable sort of relationship (e.g., partial
correlations, odds ratios, neuronal connectivity). To build a network, one first identifies
the elements that will function as nodes. As an example, we use major depression
(MD) and generalized anxiety disorder (GAD) symptoms (see Figure 8.1). Second, one
determines what kind of relationship is represented by the edges. In panel A of Figure 8.1,
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we define the relation as ‘being part of the same disorder in DSM-IV’: Any two symptoms
that satisfy this relation are connected. These relations are coded in an adjacency matrix

with all symptoms as rows (i) and columns (j ). In this example, the matrix contains
a 1 at position i,j if symptom i and j are connected, and a 0 otherwise. This matrix
is subsequently used as input for visualizing the network. An alternative is shown in
panel B of Figure 8.1 where the edges represent empirical correlations. In that case,
the adjacency matrix equals the empirical correlation matrix. Thus, the construction
and analysis of networks is highly accessible in the sense that the application of network
models does not require extensive prior knowledge, as many other methodologies do: All
one needs is a set of elements and an idea of how these elements are connected.

Table 8.2: Adjacency matrix pertaining to Figure 8.1

depr inte weig moto repr suic slee conc fati anxi even ctrl irri musc edge
depr 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
inte 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
weig 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
moto 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
repr 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
suic 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
slee 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
conc 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fati 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
anxi 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
even 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
ctrl 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
irri 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
musc 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
edge 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Psychopathology networks can be constructed in several ways, each of which may
yield important information about the structure of disorders. For instance, as high-
lighted above, one can use the information diagnostic systems themselves, as these often
contain clues about the causal constitution of disorders. Second, one can use the assess-
ment of (causal) relations between symptoms, as rated by clinicians or patients. Third,
one may use data on symptom endorsement frequencies to extract empirical patterns
of association that can serve as input for network structures; for example, odds ratios,
(partial) correlations, or pathways detected through causal search algorithms (Spirtes,
Glymour, & Scheines, 2000). Below, we illustrate how such networks can be constructed
and analyzed with existing data.

Networks based on diagnostic systems

Diagnostic systems such as the DSM-IV or the ICD-10 can be considered to partly reflect
the structure of psychopathology through patterns of symptom overlap. A straightfor-
ward way of studying such patterns is by representing individual symptoms as nodes
in a network and connecting then whenever they feature as symptoms of the same dis-
order (see panel A of Figure 8.1). This type of network reveals the structure of the
diagnostic system itself. For instance, Borsboom and colleagues (Borsboom, Cramer,
Schmittmann, Epskamp, & Waldorp, 2011) used exactly the same procedure as was used
for this figure to analyze the full symptom space of the DSM-IV. Figure 8.2 shows the
resulting network, which represents patterns of symptom overlap in the DSM-IV. One
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Figure 8.1: Networks for symptoms of major depression (MD) and generalized anxiety disor-
der (GAD) based on (A) the fourth edition of the DSM-IV and (B) correlations based on the
National Comorbidity Survey Replication data. A: The symptoms of MD are placed at the top
of the graph, bridge symptoms (i.e., symptoms that feature in both disorders) are in the middle,
and GAD symptoms at the bottom. Symptoms are connected with a gray edge if they are part
of the same disorder. Such a connection is coded in the adjacency matrix as a 1; no connection
is coded as a 0 (see also Table 1). B: The edges represent correlations. The higher the correla-
tion, the thicker the edge. The position of the nodes in the network is based on an algorithm,
which causes strongly correlated symptoms to cluster in the middle, whereas symptoms with
weaker connections to other symptoms figure more in the periphery of the figure (Fruchterman
& Reingold, 1991).

striking feature of this network is the emergence of a giant component—a large group
of nodes that are all connected to one another, either directly or via intermediary nodes
(Newman, 2001b)—in which symptoms of mood (pink nodes), anxiety (orange nodes),
and substance abuse disorders (green nodes) predominantly feature.

The giant component in Figure 8.2 has the characteristics of what is known as a small
world in the network analysis literature (Watts & Strogatz, 1998); that is, on average,
paths from one node to another are short and there is a large degree of clustering (i.e., the
extent to which nodes tend to form a connected group). Most people are familiar with this
idea through the work of Milgram (1967), who was among the first to demonstrate the
small world phenomenon empirically. Milgram famously instructed people to send letters
to other people (i.e., targets) they did not know by giving the letters to acquaintances
they felt might know the target (or to somebody who might know somebody who...).
The people who received the letters then did the same. On average, it took six steps to
reach the target, a result that became famous as “six degrees of separation”. Thus, a
small world structure implies that, even though a network may be very large and feature
strong clustering, any node can be reached from any other node in only a few steps. For
the DSM-IV network, the small world property means that comorbidity appears to be,
at least partially and in particular for mood, anxiety, and substance abuse disorders,
encoded in the structure of the diagnostic criteria themselves (Borsboom, 2002).

How does one compute the two characteristics that determine whether a given binary
network displays small world features, average path lengths and clustering? The shortest
path length (SPL) between two nodes is the minimum number of edges that have to
be traversed to reach one node from the other; for example, the SPL between chronic
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Figure 8.2: The DSM-IV symptom space. Symptoms are represented as nodes and connected
by an edge whenever they figure in the same disorder. The color of the nodes represents the
DSM-IV chapter in which they occur most often.

anxiety (anxi) and fatigue (fati) in panel A of Figure 8.1 equals 1, whereas it is 2 for the
SPL between chronic anxiety (anxi) and depressed mood (depr) because they are not
directly connected. The average shortest path length (ASPL) is the average of SPLs of
all node-node pairs. In panel A of Figure 1 8.1, for instance, the ASPL is 1.253. Another
measure of network size is the diameter of a network: the maximum path length between
nodes in a graph. For the network in panel A of Figure 8.1, the diameter equals 2.
The clustering coefficient Ci can be computed as follows. Suppose that a node i has
ki neighbors (the number of nodes with which node i is connected); then the maximum
number of connections between these neighbors (MAX) equals ki(ki−1)/2: e.g., in panel
A of Figure 8.1, irritable (irri) has eight neighbors, so MAX = 28 whereas sleep problems
(slee) has 14 neighbors, so MAX = 91. Ci is the proportion of MAX that is actually
present in the network. In panel A in Figure 8.1, Ci for irritable (irri) is 1 (28/28) and
0.604 (55/91) for sleep problems (slee).

Although the network in Figure 8.2 directly represents the DSM-IV rather than the
structure of mental disorders, it is not entirely unreasonable to suspect that the net-
work may harbor relevant causal information. This is because the DSM itself frequently
mentions (or even requires) causal relations between symptoms of the same disorders.
For instance, for the diagnosis of panic disorder (PD), it is required that a person has
panic attacks, worries about the implications of these attacks, and changed his or her
behavior as a result of panic attacks. In this case, the latter symptoms clearly depend
causally on the presence of panic attacks themselves, so much so that this dependence is
required for the diagnosis (i.e., worry about something distinct from panic attacks does
not count as a symptom of PD). Similar constructions arise for the diagnosis substance
use disorder (SUD), in which it is required that the person experiences problems as a
result of substance abuse; post traumatic stress disorder, in which it is required that a
person reexperiences traumatic events (in this case, the traumatic events are among the
causes of reexperiencing them); and specific phobia, in which all other symptoms (e.g.,
enduring the phobic situation with intense anxiety) causally depend on the first symptom
of being excessively fearful of a particular object or situation. In addition, causal links
that are not explicated in the system may occasionally be highly likely. For instance,
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in obsessive-compulsive disorder, compulsions are considered to be a means of reducing
distress caused by obsessions (M. E. Franklin & Foa, 2011; e.g., a person washes his or
her hands compulsively to reduce the distress caused by the obsession with cleanliness).
Thus, at least for a subset of psychopathology symptoms, it is possible that their causal
connection is in fact the reason that they figure as symptoms of the same disorder.

As we view it, diagnostic systems like the DSM are thus not theoretically neutral, as
has been claimed to be the case from DSM-III onward (Maser, Kaelber, & Weise, 1991;
Wakefield, 1997). Rather, this diagnostic system is replete with clinically relevant causal
relations like the ones outlined above. At the level of causal relations, therefore, the DSM
does theorize and, at times, it does so to a great extent when it comes to the causal order
of symptom development. It is important to note that psychometric analyses of systems
like the DSM-IV with latent variable models that simply ignore such clinically relevant
causal relation, which are explicated in the system itself, should be viewed with caution.

Perceived causal relations

A second way of gaining insight into the causal organization of disorders is by asking
experts of patients to report causal relations between symptoms. To our knowledge,
the first researchers to ask experts about perceived causal relations between symptoms
were Kim and Ahn (2002). For disorders such as anorexia nervosa, antisocial personality
disorders, and major depression (MD), they asked clinicians to draw a line between
two symptoms whenever they thought these two symptoms were somehow related. The
clinicians were specifically told that such relations could mean anything (non)causal,
from “co-occurs with” to “causes”. Whenever clinicians drew a line between symptoms,
they were asked to indicate the strength of this perceived relationship on a three-point
scale. We asked 12 Dutch clinicians to do the same for MD, GAD, and Mania. The
results pertaining to MD are shown in Figure 8.3 in which we have used an algorithm
that positions strongly connected nodes in the middle of the graph and the more weakly
connected nodes in the periphery of the graph (Fruchterman & Reingold, 1991): for
example, according to the Dutch clinicians the symptom “depressed mood” is important
in the disorder because it has strong connections with most of the other symptoms in the
network. In contrast, the symptom “weight problems” is perceived to be less important
since the clinicians do not think it is strongly related to any of the other symptoms of
MD.

Recently, Frewen and colleagues (2012) have developed a systematic approach to
the investigation of causal relations between symptoms by means of questionnaires that
may be administered to clients. They call this methodology Perceived Causal Relations
scaling. In this method, a person first indicated which of a set of symptoms is present.
Second, each combination of presented symptoms (i, j) is combined in a question that
assesses whether i caused j (reciprocal causal relations are typically allowed). In this
way, one essentially builds a self-reported adjacency matrix for all symptom-symptom
relations. The matrix defines a network that represents the cognitive representation of
the causal structure of disorders. One could also see the network as a self-generated
hypothesis on the network structure of a patient’s disorder. The extent to which such
hypotheses are in fact accurate is an important question for further research. If they are,
then perceived causal relations scaling may offer a cheap and quick way to a rough assess-
ment of psychopathology networks that could be used to construct informed treatment
interventions.
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Figure 8.3: A network for MD based on the ratings of 12 Dutch clinicians. The nodes in
the network represent the nine symptoms of MD; the edges between these nodes represent the
mean connection strength between these symptoms as rated by the 12 Dutch clinicians (range:
0 = no connection; 3 = strong connection): The higher the mean rating, the thicker the edge.
The position of the nodes in the network is based on an algorithm, which causes strongly cor-
related symptoms to cluster in the middle, whereas symptoms with weaker connections to other
symptoms figure more in the periphery of the figure (Fruchterman & Reingold, 1991).

Extended psychopathology networks

Networks for psychopathology feature relations between symptoms. Typically, we see
these symptoms as interacting with one another at the level of the individual person.
However, in some cases, one person’s symptom may ‘infect’ another person. Perhaps the
most famous example of such a situation is the shared psychotic disorder or folie deux.
This disorder may involve the development of a delusion in one person, who then infects
another person through social communication. For instance, suppose that Bob becomes
convinced that a government agency is spying on him. As a result of this symptom, Bob
may keep the curtains closed, refuse to open the door, etc. Thus, Bob’s primary symptom
causes other symptoms, resulting in a network structure of psychopathology. Now imag-
ine that Bob succeeds in convincing his spouse, Alice, of the veracity of his suspicions.
As a result, Alice may also start withdrawing from social life and may develop symptoms
similar to Bob’s. Thus, the activation of Bob’s symptoms not only has produced other
symptoms within his own system, but has also produced symptoms in another person.
We propose to call such symptom networks extended psychopathology networks.

Extended psychopathology networks may be studied in more or less the same way as
ordinary psychopathology networks, but are especially useful when time information is
present, so that one can estimate person-specific networks (see section “The many roads
to disorder: individual networks) as well as the way they interact. Such methodology
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could be used to chart the interaction between symptoms of different people in various
social situations. This would be relevant for childhood psychopathology, for instance,
because it would allow one to study the interaction between parents and children as
problems develop over time. To give one example, in the study of developmental psy-
chopathology, reciprocal interactions may exist between sleep problems and behavioral
problems (Patzold, Richdale, & Tonge, 1998). Sleep problems of a child invariably lead
to sleep problems of the parents; in turn, prolonged periods of poor sleep and behavioral
problems in a child may lead to parental stress (Hoffman et al., 2008), which may result
in less adequate handling of the child at bedtime, and hence leading back to sleep prob-
lems. Thus, in this case we have a feedback cycle that runs over symptoms that belong
to various members of a family, and we see that the problems of neighboring individuals
become intertwined.

Extending this idea further, one quickly reaches the conclusion that, in almost any
mental disorder, significant social effects of this kind exist; in general, prolonged severe
problems lead to a greater degree of social isolation. This means that the way in which one
person’s symptom network interacts with other people’s networks leads to the alteration
of that person’s social network. Thus, carrying the idea of extended networks a little
further, one sees a Russian doll of networks that are nested within other networks. Note
that, even at this level, reciprocal influence is likely to be the norm rather than the
exception, for the development of social isolation due to a network of personal problems
may itself induce a further burden, thereby further enhancing the very problems that
caused the isolated state in the first place. Thus, the complexity of psychopathology not
only involves complex reciprocal relations between symptoms but also between networks
of symptoms and social networks.

In this view, one follows the ladder upward, from symptom networks to social net-
works. Naturally, one can also extend networks in a downward fashion. For instance,
one may unpack MD into a network of symptoms such as depressed mood and sleep
problems. However, if one unpacks the concept of a sleep problem itself, one concludes
that the symptoms themselves are complexly structured, with feedback cycles between
hormones, external cues, and behaviors that give rise to the circadian rhythm. Thus, the
reality of psychopathology involves a Russian doll of networks within networks in several
layers of complexity. The exploration of such layered network structures is within reach
given current data-gathering possibilities, and we think that the simultaneous analysis
of social, symptom, and physiological networks is one of the main research challenges for
the near future.

Association and concentration networks

Another way of exploring the causal organization of mental disorders is by studying em-
pirical associations of symptom reports in patient or community samples. For instance,
the matrix of correlations between symptoms is a symmetric symptom by symptom ma-
trix, and as such, it can be treated as a weighted adjacency matrix. Panel B of Figure
8.1 shows such a network for symptoms of MD and GAD, in which the edges represent
empirical correlations based on data of the National Comorbidity Survey Replication
(NCS-R). We interpreted missing values that arose from the skip structure of the ques-
tionnaire as absent symptoms and replaced these by zeroes, which seems a reasonable
course of action given the way the DSM-IV is set up. Naturally, other courses of action
are possible, but these fall outside the scope of this review.

Such association networks are very useful for seeing at first glance which clusters of
symptoms tend to be strongly connected or not. However, if one is interested in knowing
which of these symptoms are truly related (i.e., discovering the causal skeleton that gives
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rise to a particular correlational structure), then correlations may not provide optimal
information. That is because a high correlation between any two symptoms might be the
result of (1) a true direct (possibly reciprocal) relation between these two symptoms, or
(2) a third variable that causes both symptoms, or (3) selection on a common effect of the
symptoms (Pearl, 2000). An example of the first possibility is a high correlation between
decreased appetite and losing weight: Not only are we quite sure that a direct relation
exists between these symptoms of MD, we can also be confident about the directionality
of this relationship: decreased appetite → losing weight. This and other direct causal
relations between symptoms (e.g., insomnia → fatigue; self-reproach → suicidal ideation)
are likely to form the causal skeleton of MD. On the other hand, in the second case, for
instance, we might find a high correlation between avoiding a phobic situation/object
and feeling distress over having a specific phobia. Then it is possible (and perhaps
likely) that these two symptoms are not directly related (neither avoidance → distress
nor distress → avoidance) but that their association is caused by a third symptom of
specific phobia: exposure to the phobic situation/object provokes intense fear, as a result
of which a patient (1) avoids the phobic situation/object and (2) feels distressed about
the whole situation (thus exposure → avoidance and exposure → distress). As such, in
this example, a direct relation between avoidance and distress might not be part of the
causal skeleton of specific phobia. Compare this situation with smoking: Having yellow-
stained fingers and a nasty cough are—when sampled in a normal population—probably
highly correlated but not because they are directly related. Their association instead
arises because they are caused by the same phenomenon, namely, smoking.

How can one figure out which correlations are indicative of direct causal relations and
which are not? In a first step, one may obtain the matrix of partial correlations—that
is, the correlations between pairs of symptoms that remain when all other symptoms are
controlled for—which may be considered to provide clues about the causal skeleton of a
network (an undirected pattern of direct relations between variables). For example, one
computes the correlation between X (e.g., yellow-stained fingers) and Y (e.g., having a
nasty cough) given Z (e.g., smoking): If the resulting correlation approaches zero, then
one has a good indication that X and Y are not directly related. Figure 8.4 shows such a
partial correlation network (only partial correlations > 0.10 are depicted as edges in the
figure) for the five symptoms of specific phobia, in which each correlation was computed
when all other variables in the network are controlled for.

One sees, for example, that no substantial partial correlations remain between avoid-
ance (avoi) and distress (dist), whereas a rather large correlation remains between expo-
sure (expo) and avoidance (avoi). Such a partial correlation network is called a concentra-
tion graph (Cox & Wermuth, 1993). Note that partial correlations between dichotomous
variables are not statistically optimal and should be interpreted with some care; on the
other hand, in our experience, more elaborate statistical methods tend to paint a quali-
tatively similar structure —just like Pearson correlations between dichotomous variables
(point biserials) lead to roughly similar structures as more elaborate coefficients such as
log odds ratios or tetrachoric correlations. To the extent that this generalizes, network
structures may be reasonably recovered from such approximations even though point
estimates and standard errors for the relevant association coefficients may be inaccurate.
Further methodological investigations are needed to determine to what extent this is
true. Note that it is straightforward to lift this limitation by applying nonparametric
conditional independence tests.

In the traditional disease model (i.e., common cause model), the most interesting
individual differences are to be found at the level of risk factors/dysfunctions that cause
a particular disease, although, naturally, individual differences also exist at the level of
the symptoms. That is, for instance, cancer research is dedicated to elucidate (1) which
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Figure 8.4: A network for specific phobia based on NCS-R data. The nodes in the network
represent the symptoms of specific phobia; the edges between these nodes represent partial
correlations > 0.10: The thicker the edge, the higher the partial correlation. The value of
each partial correlation is placed on top of its corresponding edge. The position of the nodes
in the network is based on an algorithm that causes strongly correlated symptoms to cluster
in the middle while symptoms with weaker connections to other symptoms figure more in the
periphery of the figure (Fruchterman & Reingold, 1991). avoi : the phobic situation is avoided
or endured with intense anxiety or distress; dist : marked distress about having the phobia or
avoidance/anxious anticipation/distress in the feared situation interfered significantly with the
person’s life; expo: exposure to the feared situation almost invariably provokes anxiety, which may
take the form of a situationally bound or predisposed panic attack; fear : marked and persistent
fear that is excessive and unreasonable, cued by the presence or anticipation of a specific object
or situation; recg : the person recognizes that this fear is excessive or unreasonable.

risk factors predispose someone for developing, say, lung cancer (e.g., smoking, working
with asbestos) and (2) why when two people smoke, one does develop lung cancer and
the other does not (e.g., a genetic mutation). Such research is not aimed at elucidating
why one person with lung cancer does complain of chest pains (i.e., a symptom) while
another patient with the same disease does not.

From a network perspective, these assumptions about individual differences change
radically, because a network perspective predicts that relevant differences arise at the
level of the symptoms and the relations between them rather than at the level of the
disorder. Concentration graphs in particular are useful for an assessment of which path-
ways between symptoms appear to be common. That is, strong partial correlations in a
between-subjects weighted network (like the one in Figure 8.4 may indicate that these
pathways reflect real causal relations that are relatively common in the sample on which
the network representation is based. For MD, for instance, one may find that a common
trajectory runs via depressed mood, loss of interest, and fatigue (see Figure 8.3). This
formulation of common trajectories in terms of symptoms and relations between them
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deviates markedly from existing perspectives on pathways to disorder. Naturally, such
identified pathways would need to be validated in another independent sample.

In order to analyze such concentration (and association) graphs, the computation of
path lengths and clustering coefficients needs to be generalized for weighted adjacency
matrices. For computing shortest path lengths, Newman’s (2001a) and Brandes’ (2001)
implementation of Dijkstra’s (1959) algorithm minimizes the inverse of the distance be-
tween nodes i and j, formally defined as:

dw(i, j) = min(1/wih + ...+ 1/whj) (8.1)

dw(i, j) = distance between nodes i and j
wih = weight of the edge between nodes i and h

This makes sense when the weights are, for instance, correlations: the higher the
correlation (and thus the stronger the hypothesized connection) between two symptoms,
the smaller dw(i, j) and thus the shorter the distance. In Figure 8.4, for example, the
shortest path from fear to recg is not the direct path (1/0.14 = 7.142) but rather the
path via avoi : 1/0.26 + 1/0.31 = 7.071. In this definition of a shortest path, only the
weights are considered, not the number of edges. However, in some cases, it makes
sense to include both the weights as well as the number of edges in computing shortest
distances: for example, if one would be interested in the fastest and not so much the
shortest path from MD to GAD in a comorbidity network, then it might be useful
to take the number of edges (as a crude measure of speed) into account as well; so
that, for instance, a ‘faster’ path containing three edges with relatively small weights
would be preferred over a ‘slow’ path containing five edges with relatively large weights.
Therefore, Opsahl, Agneessens and Skvoretz (2010) generalized the above formula to
obtain:

dwα(i, j) = min(1/(wih)
α + ...+ 1/(whj)

α), (8.2)

in which α is a tuning parameter that determines to what extent the number and weights
of the edges count in computing the shortest paths between nodes. When α is 0, all
denominators become 1 and as such, only the number of edges is taken into account.
When α is 1, all denominators become the inverse of the weights (analogous to Dijkstra’s
algorithm) and in that case, only the weights of the edges are considered. For α < 1 a
path with fewer edges but with small weights would be favored over a path with more
edges but with large weights. For α > 1 the weights are more important than the number
of edges.

Directed networks

Association and concentration graphs provide clues about possible causal relations be-
tween variables, but they do not provide information about the direction of causal rela-
tions (if these relations are unidirectional in the first place). The use of directed causal
networks in statistical analysis has seen great developments in the past decades, espe-
cially in the work of Pearl (2000) and Spirtes et al. (2000). Unidirectional causal relations
between nodes are typically represented by arrows. Causal analysis is easiest when the
pattern of causal relations among variables creates a directed acyclic graph. In such
a graph, all connections between nodes are directed, and it not possible to visit any
node more than once when traversing the edges along the direction of the arrows in the
graph (this means that there are no feedback loops). Under a (strict) set of statistical
assumptions, the causal network structure can be deduced from a set of observational
data by exploiting the connection between causal relations and certain patterns of condi-
tional independence (a more detailed explanation is provided in Chapter 5). Danks and
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colleagues (2010) have suggested that such explorative approaches, like the one imple-
mented in the R package pcalg could be profitably used to build causal psychopathology
networks. Figure 8.5 provides a graphical representation of the result of applying the PC
algorithm (Spirtes & Glymour, 1991) to the NCS-R MD and GAD data with pcalg. The
resulting network accords well with the idea that the covariance between MD and GAD
is mainly a result of the bridge symptoms they share (Cramer et al., 2010), as the PC
algorithm does not detect any paths between MD and GAD symptoms that are not me-
diated through their common symptoms. Also, the MD network bears some resemblance
to the clinicians’ networks in Figure 8.3. For example, in both networks, depressed mood
(node number 1 in Figure 8.5) only has outgoing arrows, suggesting that this symptom
might come early on the road to developing MD by triggering the development of other
symptoms (although some caution is in order here, since in the NCS-R data, people are
interviewed about other MD symptoms only if either depressed mood or loss of interest is
present). On an additional cautionary note, the resulting graphs from search algorithms
such as pcalg cannot contain feedback loops (e.g., X → Y → Z → X); and yet, it is
exactly these feedback loops that we suspect have the potential to push a given network
into a disordered state (e.g., a depressed state).

The many roads to disorder: Individual networks

Between-subjects psychopathology networks are useful in, for instance, investigating the
general structure of psychiatric disorders as they can generate testable hypotheses about
trajectories toward developing a psychiatric disorder that are shared by individuals. How-
ever, such patterns of individual differences yield little insight when it comes to the ques-
tion of how and why individual people develop disorders; for example, why Bob developed
an episode of MD while Susan developed a phobic fear of spiders. In order to generate
statements about the initiation, maintenance, and treatment of disorders of individuals,
one needs to study the networks of individuals.

From a network perspective, each individual may have his or her own network, which
comes with specific vulnerabilities or risk factors. Figure 8.6 show two MD-GAD networks
for two fictitious persons, Alice and Bob. The figure shows that Alice and Bob differ quite
markedly in terms of how they can potentially develop MD and GAD. For example, in
Bob’s case, the strongest pathway from MD to GAD runs via weight problems (weig),
fatigue (fati), and feeling on edge (edge); in Alice’s network, the progression of MD to
GAD runs via depressed mood (depr), thoughts of suicide (suic) and irritability (irri).
Since these are mere hypothetical examples of the many ways in which people can develop
an episode of MD, what kind of data would we need to construct and analyze these
individual networks? And what can we infer from these networks in terms of individual
risk of developing a certain disorder?

Time series, time series, and time series

When the aim of network analysis is to construct disorder networks for individuals,
cross-sectional data will be of little use. That is, in the networks of individuals, an arrow
between any two symptoms—say insomnia → fatigue—is indicative of a process that
takes place over time (e.g., insomnia develops at time t whereas the fatigue is caused by
this insomnia at a later point in time, say, at time t+1). As such, querying a person about
his or her symptomatology at one point in time is simply not enough to extract the causal
information necessary to build a network of this person’s symptom space. As mentioned
in the previous section, it is possible to ask people to draw their own causal scheme, but
of course the success of such a method relies on the ability of people to accurately report
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Figure 8.5: The directed MD-GAD network, based on the NCS-R data. Each edge represents
a putative causal relation that remained after a search algorithm (pcalg) tracked all the pos-
sible conditional independence relations present in the data. If two symptoms are not directly
connected, this implies that they are independent conditional on a subset of other symptoms.
Double-headed arrows represent connections for which the algorithm cannot settle on a direc-
tion. 1 : depressed mood; 2 : loss of interest; 3 : weight problems; 4 : sleep problems (major
depression); 5 : psychomotor problems; 6 : fatigue (major depression); 7 : self-reproach; 8 : con-
centration problems (major depression); 9 : suicidal ideation; 10 : chronic anxiety/worry; 11 :
anxiety about more than one event; 12 : no control over anxiety; 13 : feeling on edge; 14 : fatigue
(generalized anxiety disorder); 15 : irritable; 16 : concentration problems (generalized anxiety
disorder); 17 : muscle tension; 18 : sleep problems (generalized anxiety disorder).

on their symptom development retrospectively, which may not be equally accurate in all
circumstances (Henry, Moffitt, Caspi, Langley, & Silva, 1994).

A viable alternative is to collect time series data (Hamaker, Dolan, & Molenaar,
2005). That is, one asks individuals to report on various aspects of their physiological
and psychological well-being at least once a day for many consecutive days. In one such
recent research protocol, the experience sampling method (see Aan het Rot, Hogenelst,
& Schoevers, 2012; Myin-Germeys et al., 2009, people are asked to report, during their
normal daily life, their thoughts, feelings, and symptoms as well as the context in which
these thoughts/feelings/symptoms take place and the appraisal of the context. One of
the major advances of using such a method is that one is able to collect not only time-
intensive data but also (1) data on the relation between events happening in a person’s
life and the subsequent ripple effects of that event in the symptomatology of this person,
and (2) data from people without psychopathology who might be progressing toward
developing a mental disorder. That is, in the latter case, one has excellent data to study
why some people develop mental disorders while others do not, which in our opinion is
the most pressing question in the entire realm of psychopathology.
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Figure 8.6: Hypothetical major depression (MD) and generalized anxiety disorder (GAD)
networks for two fictitious people, Bob and Alice. Red nodes represent MD symptoms, green
nodes represent bridge symptoms and blue nodes represent GAD symptoms. Thicker green edges
represent stronger causal relations. These networks show that there are many ways to develop
both MD and GAD.

Another possibility to learn about the intra-individual behavior displayed by a given
network structure is by simulating time-intensive intra-individual data. With such
simulated data, many of the interesting questions in psychopathology can be studied. For
example, based on simulated data, Borsboom et al. (2011) showed that the percentage
of “diagnoses” in simulated individual MD-GAD networks (in which comorbidity could
only arise via bridge symptoms; see panel A of Figure 8.1) could account for prevalence
rates for MD and GAD, comorbidity, and basic psychometric characteristics of the data
at the same time. Also, based on a method to simulate data freely available online in
the modeling environment NetLogo (Wilensky, 1999), one can study the known impact
of stressors (e.g., negative life events such as the loss of a loved one) on individual
symptoms of MD and relations between them (Cramer, Borsboom, et al., 2012; Keller
et al., 2007). We developed such a simulation model of MD that can be found at
http://ccl.northwestern.edu/netlogo/models/community/Symptom%20Spread%20Model
(van Borkulo et al., 2011). In this model, virtually anything—from symptom develop-
ment to stressors—can be manipulated by the user. It works as follows. At each time
point, the model computes the probability of each symptom i to become activated at
the next time point with the logistic function:

e
∑

(ax−b)/(1 + e
∑

(ax−b)) (8.3)

Here,
∑

(ax) is the activation sum of all symptoms at the previous time point (coded in a
vector x) times the weight of the relevant connections (collected in a vector a) and could
be seen as the total incoming effect for symptom i at that time point. b is a vector of
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symptom-specific thresholds derived from the item difficulties of empirical data (Aggen,
2005). Two of the parameters that directly affect the probability functions in this basic
setup and that can be altered by the user in real time are (1) number of connections (e.g.,
if all nine symptoms of MD are connected, then each symptom has eight neighbors) and
(2) connection strength: The stronger the connections, the more influence the activation
of symptoms has on other symptoms (thus directly affecting the a parameter vector in
the model). Naturally, it must be noted that through such exercises one primarily learns
something about what behavior is actually implied by one’s theory, but in the case of
network model this way of working can be quite revealing.

The analysis of time series

One can analyze time-intensive intra-individual data in a number of ways. The most
straightforward way is to define connections in the network of an individual as repre-
senting the lag-1 correlations. That is, for example, if the network of Alice in Figure
8.6 would be a lag-1 correlation network based on empirical data, then the arrow from
concentration problems (conc) to irritability (irri) means that concentration problems
at time t predict irritability at time t + 1. Likewise, in Bob’s network, the arrow from
weight issues (weig) to self-reproach (repr) would mean that weight issues at time t pre-
dict self-reproach at time t + 1. If t would be measured in days, then a lag-1 correlation
between feeling blue and eating more would probably be an appropriate time window;
that is, it is plausible that feeling blue one day can make one eat more the next day.
However, lag-1 correlations are probably not appropriate for other hypothesized rela-
tions between symptoms. For example, not sleeping for one night may not trigger fatigue
immediately. Rather, one would expect a gradual build-up of sleepless nights, say, five,
before true fatigue sets in. Thus, in this particular example, one would need to model
this relationship in terms of a process that builds up over time.

Another option is to look at the entire available time window and define the connec-
tions between symptoms not in terms of (lag-1) correlations but rather in terms of the
beta coefficients that result from a regression analysis through vector autoregressive mod-
eling (Hamaker et al., 2007). For example, one could follow Bob for a prolonged period
of time, assessing his depressive symptomatology every day on seven-point scales. Then,
one could compute partial correlations in order to get a rough idea of the causal skeleton
of Bob’s network. With this information, one subsequently determines the neighbors of
each symptom: All connections that represent a partial correlation of 0.10 or less (or
some other optimum at which all nodes are connected with a minimum number of edges)
are deleted. In Figure 8.4, for example, this procedure resulted in fear having two neigh-
bors; that is, fear is connected with two other nodes in the network, not with all four.
Next, one regresses each symptom at time t on its neighbors on t - 1 and calculates the
regression weights. These weights would then represent the strength of the connections
in Bob’s network. In a next step, one could attempt to determine directed acyclic graph
structures for this type of data (Eichler, 2007; Wild et al., 2007).

Thus, the analysis of time series could be executed in ways roughly similar to the
previously discussed between-subjects data, but in this case to determine the network
structure of the individual person. In general, a significant variety of models previ-
ously developed in econometrics and biometrics is available to construct network models
(Kolaczyk, 2009). This may offer genuinely new ways of charting intra-individual net-
work structures. Further developing methodology to do this in psychological applications
would greatly facilitate research in this area. In addition, intra-individual network struc-
tures could offer novel ways of planning treatment, for instance by targeting the most
important symptoms in a person’s network structure.
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Risk in individual networks

Regardless of how one defines the connections in the networks of individuals, what can
we say about risk in terms of these networks? As mentioned previously, in disease, risk
is defined at the level of the disease entity, which is not present in a network, at least
not as an entity that is separable from its symptoms. From a network perspective, there
are at least two ways in which a network can harbor risk of developing a certain mental
disorder.

First, the structure of a particular network might be risky. To illustrate this concept,
one may consider the symptoms of a disorder network to be domino tiles and view the
connections between the symptoms as the distances between the domino tiles. Then
relatively weak connections are analogous to domino tiles spaced rather widely apart
(see left panel of Figure 8.7). As such, if, for instance, the symptom X1 in Figure 8.7
were to arise, then the probability of that symptom causing the development of other
symptoms is relatively slim. In this case, the toppling of one domino tile will not likely
result in the toppling of others, because they have relatively large distances between
them. On the other hand, strong connections are analogous to domino tiles with short
distances between them (see right panel of Figure 8.7). In that case, if symptom X1
were to be developed, then its activation would likely spread through the network like
a virus spreads through a population: The toppling of that one domino tile will likely
topple the other dominoes as well because of the short distances between tiles. Thus,
suppose that Alex has had a drinking problem in the peat, which has caused all sorts of
problems (e.g., financial problems, divorce from his wife), but at the moment he is sober
after a successful intervention (see also Cramer et al., 2010). In that case, the structure of
Alex’s substance use network may still be risky, as there are only short distances between
the domino tiles. Then, if Alex, for whatever reason, would have one drink, this would
quickly culminate in other symptoms, such as financial consequences and problems with
the important people in Alex’s life. That is, a risky network structure might be the drive
behind relapse, an important and well-known phenomenon in clinical psychology.

X1 

X2 X3 

X4 

X1 X2 X3 X4 X1 X2 X3 X4 

X1 

X2 X3 

X4 

Figure 8.7: Two hypothetical networks of symptoms X1−X4 (analogous to the domino tiles
under the networks) that stand in certain relations toward one another (analogous to the distances
between the domino tiles). In the left panel, the symptoms X1 − X4 are weakly connected, so
in terms of the analogy, the distances between the domino tiles are relatively large. In the right
panel, the symptoms X1−X4 are strongly connected, so in terms of the analogy, the distances
between the domino tiles are relatively short.

Second, there might be symptoms that, when developed in a particular person, have a
stronger causal influence on the rest of the network compared to other symptoms. That
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is, in reality, different symptom pairs will have different connection strengths, which
determine the extent to which symptoms causally influence one another (as opposed to
the networks in Figure 8.7, in which al connections within one network were equally
strong). Consider, for example, the network depicted in Figure 8.8. In this network, X1
only has strong connections with the other symptoms in the network; that is, X1 is a
central symptom in this network. On the other hand, the other symptoms, for example
X3, have one strong connection but two weak connections; that is, X3 is a peripheral
symptom (as are X2 and X4). Now, in terms of risk, the central nodes in someone’s
network are the most dangerous: If a central symptom becomes activated in someone,
then the probability of that symptom causing the development of other symptoms is
high (because the central symptoms are strongly connected to the other symptoms in
the network); higher than when a peripheral symptom is activated.

X1 

X2 X3 

X4 

CENTRAL 

PERIPHERAL 

Figure 8.8: A hypothetical network of symptoms X1 − X4. Symptom X1 only has strong
connections with the other symptoms in the network; this is a central symptom in this network.
On the other hand, symptoms X2−X4 all have one strong connection and two weak connections.
These symptoms are thus more peripheral in the network.

There are multiple ways to compute the centrality of nodes in a network. One way
is by computing the closeness (Opsahl et al., 2010) of node i, which is defined as the
inverse of the total length of all SPLs between node i and all other nodes in the network;
formally defined as:

Cwα
C (i) =

[
N∑

j=0

dwα(i, j)

]−1

(8.4)

where dwα(i, j) is the shortest path length as explicated in equation 8.2;
N = total number of nodes in the network

For example, when one only considers the weights (i.e., α = 1) in Figure 8.4, the
closeness of avoidance (avoid) = (1/0.68

︸ ︷︷ ︸

SPL[4,1]

+ 1/0.26
︸ ︷︷ ︸

SPL[4,2]

+ 1/0.31
︸ ︷︷ ︸

SPL[4,3]

+1/0.31 + 1/0.40
︸ ︷︷ ︸

SPL[4,5]

)−1

where, for example, SPL[4,2] = shortest path from node 4 to node 2).

A downside of closeness centrality is that one cannot compute it when one or
more nodes are not connected (e.g., in Figure 8.2, nodes that are not part of the giant
component) because then the SPL between two nodes becomes infinitely large. Closeness
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is in particular suited as a measure of centrality if one is predominantly interested in
the capacity of, for example, a symptom to quickly activate a large number of other
symptoms. Another measure of centrality is betweenness that quantifies how many a
node i lies on the shortest paths between the other nodes in the network. Formally,
betweenness including a tuning parameter α for node i is defined as follows (Opsahl et
al., 2010):

Cw
B (i) =

∑ gwα
jk (i)

gwα
jk

(8.5)

gwα
jk = the number of shortest paths between two nodes1 ;
gwα
jk (i) = the number of those paths that go through node i

For example, in Figure 8.4, the betweenness of fear is 0, and 8 for avoi. This
centrality measure might be particularly suited when assessing how one can go from one
part of the network to another part, as might be interesting in the case of comorbidity
(which nodes predominantly lie on the shortest paths between MD and GAD)?

Finally, another measure for computing the centrality of nodes is the degree or node

strength which amounts to the the sum of the weights of the all edges incident in node i:

si = Cw
D(i) =

N∑

j

wij (8.6)

In terms of risk of developing psychopathology, both this measure as well as
closeness might be particularly suited as a means to determine which nodes in such
a psychopathology network are central. When degrees are computed for each node,
one can compute the relative frequencies of each degree in order to obtain a degree

distribution. Most of empirical degree distributions will be highly skewed to the right,
meaning that the majority of nodes in the network have a low degree, with a few
exceptions (called hubs) of nodes with a high degree. Some networks are called scale free

because their degree distribution approximately follows a power law: P (k) k−γ in which
k is the degree and γ a particular constant. The World Wide Web, social networks and
some biological networks appear to be real-world examples of scale free networks.

1 If bidirectional then both path j-k and k-j



Chapter 9

Discussion

The reality of psychological constructs such as mental disorders and normal personality
traits is not adequately captured by common cause models and their psychometric equiv-
alent, latent variable models. In this dissertation, I have outlined a novel perspective,
the network perspective, in which thoughts, feelings and behaviors directly interact with
one another. In the case of mental disorders, the network approach is promising in that
has the potential to explain many empirical phenomena such as comorbidity, the relation
between stressful life events and individual symptoms of major depression, and sponta-
neous recovery. In the case of normal personality traits, the network approach offers an
alternative theory of traits, in which they are a consequence of direct interactions between
thoughts, feelings and behaviors. Additionally, the network perspective on normal per-
sonality has shown promise in linking genes to specific personality components as well as
offering an alternative conceptualization of the relation between normal personality and
psychopathology. While introducing the network perspective and outlining its viability
for mental disorders and normal personality was the central aim of this dissertation, it is
now time to take a step back and consider (1) (other) psychological constructs for which
a network perspective might (not) be accurate and (2) some methodological obstacles
that need to be overcome in order for firmly establishing network models as part of the
psychometric toolbox.

Networks: Yes or no?

Future work will need to elucidate for exactly which disorders the network perspective
is the best explanation and for which it is not. Throughout this dissertation, major
depression was the prime example of a disorder for which we think a network model
might be accurate in explaining its pathogenesis. Other examples include panic disorder.
Panic disorder has four symptoms (APA, 1994): (1) recurrent unexpected panic attacks;
(2) at least one of the attacks has been followed by one month (or more) of one (or
more) of (2a) persistent concern about having additional attacks, or (2b) worry about
the implications of the attack or its consequences (e.g., losing control, having a heart
attack, “going crazy”); and (3) there is a significant change in behavior related to the
attacks (e.g., avoiding public places: agoraphobia). Here, as explicated in Borsboom

Partly adapted from: Cramer, A. O. J., & Borsboom, D. (under review). Problems attract
problems: The network perspective on mental disorders.
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(2008b), a possible causal chain leading up to the pathogenesis of panic disorder is easily
envisioned: 1 → 2a → 3 and 1 → 2b → 3. Another example of a disorder for which
the network model might paint a realistic picture of its pathogenesis is bipolar disorder,
especially the clinical manifestations in which patients switch between (hypo)mania and
(sub-threshold) depression. For example, empirical research suggests that sleep distur-
bances are intimately associated with both the onset of a manic phase (i.e., decreased
need for sleep is regularly observed before the mood switch to mania: e.g., Bauer et
al., 2006; Leibenluft, Albert, Rosenthal, & Wehr, 1996; Plante & Winkelman, 2008) as
well as with reducing depressive symptoms (i.e., sleep deprivation has antidepressant ef-
fects: e.g., Bunney & Bunney, 2012; J. Gillin, 1983; Hemmeter, Hemmeter-Spernal, &
Krieg, 2010; Kuhs & Tölle, 1991; Landsness, Goldstein, Peterson, Tononi, & Benca, 2011;
Wirz-Justice & van den Hoofdakker, 1999; Wu & Bunney, 1990). That is, a symptom

(i.e. sleep disturbances) might be an important bridge between manic and depressive
states, an observation that sits well with network models, as was shown in Chapter 2.

The origins of other disorders might not be predominantly founded upon symptom-
symptom interactions. For example, in the case of development of affective symptoms
after traumatic brain injury, it might be so that the symptoms are caused by the brain
injury. That is, especially when the traumatic brain injury is located in the left anterior
region, the injury itself might be the common cause of affective symptoms, which might
culminate into an episode of major depression (Ownsworth & Oei, 1998). This is notably
different from the situation in which affective symptoms are developed because of an
inability to cope with the consequences of the traumatic brain injury (e.g., a person
cannot adjust to the fact that the injury has resulted in the inability to return to work).
In that case, the traumatic brain injury is a stressful life event for which we have evidence
(see Chapter 4) that they can influence individual affective symptoms. In other disorders,
it might be the case that symptom-symptom interactions are crucial in maintaining a
pathological condition such as addiction (e.g., substance use → being broke → stealing
from sister to buy substance → legal problems → substance use) but that the initiation of
repeated substance use has its roots in an imbalance between dopaminergic circuits that
underlie reward and conditioning and those that underlie executive functioning (Volkow,
Wang, Fowler, Tomasi, & Telang, 2011).

Mental disorders, as we have portrayed them in our network models, are instances
where an otherwise normal functioning system shows pathological behavior. That is,
the nodes themselves are not pathological—not sleeping and feeling blue from time to
time is normal and happens to virtually everyone—but for some ranges of parameter
values (e.g., strong connections between symptoms) the behavior of the system becomes
pathological. This is in line with how Mackey and Glass (1977) define a ‘dynamical dis-
ease’: “...characterized by the operation of a basically normal control system in a region
of physiological parameters that produces pathological behavior”. There are, however,
probably disorders for which this definition of a disorder is inaccurate. Take, for example,
psychopathy (e.g. Hare, 2003): psychopathy is a personality disorder that is character-
ized by symptoms such as pathological lying, manipulative, grandiose sense of self-worth
and superficial charm. Now, for these types of symptoms, it is hard to argue that the
symptoms are themselves normal and that it is the behavior of the system that is patho-
logical in the case of psychopaths. To the contrary, in this case, it appears to make more
sense to say that the symptoms themselves are pathological: most people are not manip-
ulative and do not have a grandiose sense of self-worth. Another example is psychosis:
a person who suffers from psychosis might have hallucinations (e.g., hearing the voice
of your dead grandmother) or delusions (e.g., being convinced that your apartment is
bugged by the CIA), both of which are symptoms that, as in the case of psychopathy, are
themselves not normal: most healthy people will not have ‘hallucinations’ or ‘delusions’
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in their psychopathology networks (although the prevalence for hearing voices, for ex-
ample, is higher—around 10%—than the prevalence of schizophrenia —around 1% van
Os, Hanssen, Bijl, & Vollebergh, 2001). For these and similar disorders, the way we
conceptualize and mathematically formalize corresponding network models might be in-
accurate. Because the symptoms themselves are pathological, a network model for these
disorders should, for instance, incorporate nodes that are continuous. For such nodes,
we would subsequently have to show that, for example, simulation models in which the
connection weights are equal across networks, activated nodes in the extreme range of
the continuum (i.e., in the pathological range) are capable of producing pathological
behavior of the system as a whole. On the other hand, one might question whether a
network perspective, even if the weights are assumed to be equal for everyone, makes
sense in the first place: if psychosis, psychopathy and similar disorders are pathological
just because their respective symptoms are pathological and as a result, make it hard to
function normally in our society, regardless of whether these symptoms interact with one
another; then why the interactions? And without interactions, there is no network.

Methodological issues

One key issue for network theory to advance is the validation of techniques that are now
in use to construct and analyze networks. We need to make sure, for example, that
constructing networks in which the edges represent partial correlations and regression
weights, are unaffected by, for example sample size and variance of the nodes. Getting
this right is particularly important for future research endeavors aimed at elucidating
differences in architecture between healthy people and people burdened with a particular
mental disorder: what makes networks vulnerable to end up in a pathological state?
When, for example, comparing the network of a healthy group with the network of a
patient group (and the sample sizes of these groups are unequal), it is important to
verify that differences between these networks are due to true differences in architecture
instead of being the result of differences in, say, sample size: when defining an edge to
be drawn whenever a (partial) correlation is significant, the network based on the larger
sample size will contain more edges than the network based on the smaller sample size;
but not necessarily because the architecture of these networks truly differs but because
the larger the sample size, the more correlations are significant. Considering variance of
the nodes, when for example comparing networks at multiple time points in which the
edges are based on correlations, one could observe that correlations are increasing over
time. This might be an indication that the connections between symptoms are truly
becoming stronger. However, alternatively, it might also be an indication of restriction
of range: when the variance of nodes is decreasing over time, this results in stronger
correlations over time, which, in the case of restriction of range, have nothing to do with
a true increase of connectivity between nodes.

Additionally, the adequacy of other techniques for determining the connectivity of
a network should be investigated. For example, a common way of determining whether
or not a causal relation exists between variables in econometrics is (non)linear Granger
causality (Diks & Panchenko, 2005, 2006; Granger, 1969; Hiemstra & Jones, 1994).
When considering a strictly stationary and weakly dependent bivariate time series process
{
(Xt, Yt)

}
, t ∈ Z {Xt} is said to Granger cause {Yt} if F (Yt|It−1) ≁ F (Yt|It−1 −Xt−1)

where F denotes a conditional probability distribution and It−1 denotes a vector contain-
ing past values of X and Y (length of vector I depends on the length of the lag). Thus,
Granger causality denotes the situation where the conditional probability distribution
of Yt−1 given past values of X and Y is not equivalent to the conditional probability
distribution of Yt−1 given only past values of Y : past values of X contain additional
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information about current and future values of Y . In the linear multivariate Gaussian
case, Granger causality can be relatively easily determined based on the significance of
the coefficients of, for example, a vector autoregressive model. As such, when assuming
linearity in the case that one has intensive time series data, one can use this technique
to determine which nodes in a network might be causally related. In the non-linear (i.e.,
non-parametric) case, it is, at present, not possible to determine Granger causality for
more than two time series.

Another important issue is the correspondence between inter- and intra-individual
networks. While I have emphasized throughout the dissertation that collecting time-
intensive data is the key to elucidating pathological mechanisms in individuals, the reality
is that we still often deal with cross-sectional, inter-individual data. When estimating net-
work parameters for such inter-individual data, is there anything one can conclude about
the collection of intra-individual networks that underly the between-subjects network?
For example, one might find in a large sample that the connection between depressed
mood and thoughts of suicide is particularly strong. Does this finding reveal anything
about the networks of the individuals that make up the sample: does it mean, for ex-
ample, that, on average, most individuals in the sample also have a strong connection
between depressed mood and thoughts of suicide in their network? It is probably too
simple to, for instance, assume that individuals, in the binary case, who have a “1” for
both symptoms necessarily have a strong connection between these symptoms. In future
efforts, we will need to search for models with which we can estimate the likelihood of a
response pattern (e.g., “1” for both depressed mood and thoughts of suicide) given a cer-
tain between-subjects network architecture. As such, we would be able to determine what
intra-individual response patterns correspond to between-subjects connectivity (e.g., a
“0” “1” response pattern is most likely for the connection between insomnia and fatigue
with regression coefficient 1.2) and accordingly.

A final key issue concerns developing ways of quantifying the similarity of networks.
For example, when one has constructed between-subjects networks for various time points
during a clinical trial with an antidepressant, it might be interesting to determine whether
the drug promotes actual change in the networks’ architecture. When the connections
are unweighted, the Jaccard index might be a likely candidate (Levandowsky & Winter,
1971), which is defined as the intersection of two sets, A and B, divided by their union:

J = (A∩B)
(A∪B)

. So for example, when both network A and B have 10 edges in total and

they have five of them in common, J = 5/15=1/3. For weighted connections, J is not
suited since, for example, J would be one if two networks are completely similar in
terms of which connections are present, but this could obscure the fact that in network
A, these connections are much stronger. A solution might be to weigh the union and
intersection with the adjacency matrices of both networks (Gamallo, Gasperin, Agustini,
& Lopes, 2001). In the case of two (or more) different and independent samples, for
example when one wants to know whether the major depression architecture differs for
men and women, other options exist. For example, one might construct a multi-group
analysis in which the relative fit of a model in which network parameters (e.g., regression
weights) are constrained to be equal across samples is compared to a model in which
these parameters are estimated separately in both samples.

A final note

Humans are complex as are their thoughts, feelings and behaviors. In order to come
to understand a small part of this complexity, it is necessary to construct models that
reduce this complexity to such a level that it enables us to understand the essential pro-
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cesses that result in certain behaviors without oversimplifying reality. As I have argued
throughout this dissertation, current models of personality and of psychopathology are
oversimplifying reality: while convenient in that such models are relatively easy to under-
stand, they defy reality by designating traits and disorders, for the existence of which we
have no evidence whatsoever, to be the ultimate glue that holds together behaviors such
as liking people and liking parties; or symptoms such as hypersomnia and fatigue. If we
really want to know why people with certain personality features struggle more in daily
life and why some of these people develop psychopathology as a result, I do not think
that current (trait) theories will prove crucial in finding the answers. A network perspec-
tive, with its emphasis on direct interactions between thoughts, feelings and behaviors
that result in certain equilibria, might be helpful; especially when, for personality, we
further develop our intuitions about what thoughts, feelings and behaviors are suitable
components for personality networks.

Whichever theory of mental disorders one adheres to, they all share a deep desire to
understand the inner workings of mental disorders. We all agree that finding out why
some people are more vulnerable to developing mental disorders than others, how we
can protect vulnerable people from harm, and how we can effectively treat people who
have already fallen into the abyss of mental dysfunction are among the most pressing
questions in the fields of clinical psychology and psychiatry. A disease model of mental
disorders likely will not bring us any closer to finding answers to these questions. The
network perspective, for some disorders, very well might.
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Abstracts commentaries in

response to Chapter 2

Belzung, C., Billette de Villemeur, E., Lemoine, M., & Camus, V. (2010). Latent

variables and the network perspective. Behavioral and Brain Sciences, 33, 150-151.

We discuss the latent variables construct, particularly in regard to the following:
that latent variables are considered as the sole explanatory factor of a disorder; that
pragmatic concerns are ignored; and the relationship of these variables to biological
markers is not addressed. Further, we comment on the relationship between bridge
symptoms and causality, and discuss the proposal in relationship to other constructs
(endophenotypes, connectionist-inspired networks).

Bornstein, R. F. (2010). The rocky road from Axis I to Axis II: Extending

the network model of diagnostic comorbidity to personality pathology. Behavioral

and Brain Sciences, 33, 151-152.

Although the network model represents a promising new approach to conceptual-
izing comorbidity in psychiatric diagnosis, the model applies most directly to Axis I
symptom disorders; the degree to which the model generalizes to Axis II disorders re-
mains open to question. This commentary addresses that issue, discussing opportunities
and challenges in applying the network model to DSM-diagnosed personality pathology.

Cervone, D. (2010). Aligning psychological assessment with psychological

science. Behavioral and Brain Sciences, 33, 152-153.

Network analysis is a promising step forward in efforts to align psychological as-
sessment with explanatory theory in psychological science. The implications of Cramer
et al.’s analysis are quite general. Network analysis may illuminate functional relations
not only among observable behaviors that comprise psychological disorders, but among
cognitive and affective processes that causally contribute to everyday experience and
action.

Danks, D., Fancsali, S., Glymour, C., & Scheines, R. (2010). Comorbid sci-

ence? Behavioral and Brain Sciences, 33,153-154.

139
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We agree with Cramer et al.’s goal of the discovery of causal relationships, but
we argue that the authors’ characterization of latent variable models (as deployed for
such purposes) overlooks a wealth of extant possibilities. We provide a preliminary
analysis of their data, using existing algorithms for causal inference and for the
specification of latent variable models.

Davis, O. S. P., & Plomin (2010). Visualizing genetic similarity at the symptom

level: The example of learning disabilities. Behavioral and Brain Sciences, 33,

155-156.

Psychological traits and disorders are often interrelated through shared genetic
influences. A combination of maximum-likelihood structural equation modeling and
multidimensional scaling enables us to open a window onto the genetic architecture at
the symptom level, rather than at the level of latent genetic factors. We illustrate this
approach using a study of cognitive abilities involving over 5000 pairs of twins.

Fleeson, W., Furr, M., & Mayfield Arnold, E. (2010). An agenda for symptom-

based research. Behavioral and Brain Sciences, 33, 157.

The network approach proposed by Cramer et al. suggests fascinating new direc-
tions of research on mental disorders. Research is needed to find evidence for the
causal power of symptoms, to examine symptoms thoroughly, to investigate individual
differences in edge strength, to discover etiological processes for each symptom, and to
determine whether and why symptoms cohere into distinct mental disorders.

Haig, B. D., & Vertue, F. M. (2010). Extending the network perspective on

comorbidity. Behavioral and Brain Sciences, 33, 158.

Cramer et al. make a good case for reconceptualizing comorbid psychopatholo-
gies in terms of complex network theory. We suggest the need for an extension of
their network model to include reference to latent causes. We also draw attention to
a neglected approach to theory appraisal that might be usefully incorporated into the
methodology of network theory.

Haslam, N. (2010). Symptom networks and psychiatric categories. Behav-

ioral and Brain Sciences, 33, 158-159.

The network approach to psychiatric phenomena has the potential to clarify and
enhance psychiatric diagnosis and classification. However, its generally well-justified
anti-essentialism view psychiatric disorders as inevitably fuzzy and arbitrary, and
overlooks the likelihood that the domain includes some latent categories. Network
models misrepresent these categories, and fail to recognize that some comorbidity may
represent valid co-occurrence of discrete conditions.

Hood, S. B., & Lovett, B. J. (2010). Network models of psychopathology

and comorbidity: Philosophical and pragmatic considerations. Behavioral and Brain

Sciences, 33, 159-160.

Cramer et al.’s account of comorbidity comes with a substantive philosophical
view concerning the nature of psychological disorders. Although the network account is
responsive to problems with extant approaches, it faces several practical and conceptual
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challenges of its own, especially in cases where the individual differences in network
structures require the analysis of intra-individual time-series data.

Humphry, S. M., & McGrane, J. A. (2010). Is there a contradiction between the

network and latent variable perspectives? Behavioral and Brain Sciences, 33, 160-161.

First, we question whether Cramer et al.’s proposed network model can provide
a viable scientific foundation for investigating comorbidity without invoking latent
variables in some form. Second, the authors’ claim that the network perspective is
radically different from a latent variable perspective rests upon an undemonstrated
premise. Without being demonstrated, we think the premise is potentially misleading.

Hyland, M. E. (2010). Network origins of anxiety and depression. Behav-

ioral and Brain Sciences, 33, 161-162.

Cramer et al. contrast two possible explanations for psychological symptoms: la-
tent variables (i.e., specific cause) versus a network of causality between symptoms.
There is a third explanation: The reason for comorbidity and the reported network
structure of psychological symptoms is that the underlying biological cause is a
psychoneuroimmunoendocrine information network which, when dysregulated, leads to
several maladaptive psychological and somatic symptoms.

Johnson, W., & Penke, L. (2010). The network perspective will help, but is

comorbidity the question? Behavioral and Brain Sciences, 33, 162-163.

Latent variable modeling has revealed important conundrums in the DSM classifi-
cation system. We agree that the network perspective has potential to inspire new
insights and resolve some of these conundrums. We note, however, that alone it cannot
really help us understand etiology. Etiology, not comorbidity, is the fundamental
question.

Krueger, R. F., DeYoung, C. G., & Markon, K. E. (2010). Toward scien-

tifically useful quantitative models of psychopathology: The importance of a

comparative approach. Behavioral and Brain Sciences, 33, 163-164.

Cramer et al. articulate a novel perspective on comorbidity. However, their net-
work models must be compared with more parsimonious latent variable models before
conclusions can be drawn about network models as plausible accounts of comorbidity.
Latent variable models have proven generative in studying psychopathology and its ex-
ternal correlates, and we doubt network models will prove as useful for psychopathology
research.

Markus, K. A. (2010). Questions about networks, measurement, and causa-

tion. Behavioral and Brain Sciences, 33, 164-165.

Cramer et al. present a thoughtful application of network analysis to symptoms,
but certain questions remain open. These questions involve the intended causal
interpretation, the critique of latent variables, individual variation in causal networks,
Borsboom’s idea of networks as measurement models, and how well the data support
the stability of the network results.
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McFarland, D. J., & Malta, L. S. (2010). Symptoms as latent variables. Be-

havioral and Brain Sciences, 33, 165-166.

In the target article, Cramer et al. suggest that diagnostic classification is im-
proved by modeling the relationship between manifest variables (i.e., symptoms)
rather than modeling unobservable latent variables (i.e., diagnostic categories such as
Generalized Anxiety Disorder). This commentary discusses whether symptoms represent
manifest or latent variables and the implications of this distinction for diagnosis and
treatment.

Molenaar, P. C. M. (2010). Latent variable models are network models. Be-

havioral and Brain Sciences, 33, 166.

Cramer et al. present an original and interesting network perspective on comorbidity and
contrast this perspective with a more traditional interpretation of comorbidity in terms
of latent variable theory. My commentary focuses on the relationship between the two
perspectives; that is, it aims to qualify the presumed contrast between interpretations
in terms of networks and latent variables.

Ross, D. (2010). Some mental disorders are based on networks, others on

latent variables. Behavioral and Brain Sciences, 33, 166-167.

Cramer et al. persuasively conceptualize major depressive disorder (MDD) and
generalized anxiety disorder (GAD) as network disorders, rejecting latent variable
accounts. But how does their radical picture generalize across the suite of mental and
personality disorders? Addictions are Axis I disorders that may be better characterized
by latent variables. Their comorbidity relationships could be captured by inserting them
as nodes in a super-network of Axis I conditions.

Rothenberger, A., Banaschewski, T., Becker, A., & Roessner, V. (2010).

Comorbidity: The case of developmental psychopathology. Behavioral and Brain

Sciences, 33, 167-168.

In developmental psychopathology, differentiating between the coexistence and
the clinical entity of two problem areas is of utmost importance. So far, logistic regres-
sion analysis has already provided helpful answers, as shown in studies on comorbidity of
tic disorders. While the concept of bridging symptoms may be investigated adequately
by both logistic regression and the network approach, the former (latent variable)
seems to be of advantage with regard to the problems of multiple comorbidities and
development.

Rubinsten, O., & Henik, A. (2010). Comorbidity: Cognition and biology

count! Behavioral and Brain Sciences, 33, 168-170.

We agree with Cramer et al. that pure cases of behavioral disorders with no
symptom overlaps are rare. However, we argue that disorders do exist and the network
idea is limited and limiting. Networks of symptoms are observed mainly at behavioral
levels. The core deficit is commonly at the cognitive or brain levels, and there the story
is completely different.

Staniloiu, A., & Markowitsch, H. J. (2010). Looking at comorbidity through
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the glasses of neuroscientific memory research: A brain-network perspective.

Behavioral and Brain Sciences, 33, 170-171.

As psychiatric illnesses have correlates in the brain, it is surprising that Cramer
et al. make almost no reference to the brain’s network character when proposing a
network approach to comorbidity of psychiatric diseases. We illustrate how data from
combined neuropsychological and functional and structural brain-imaging investiga-
tions could inform theoretical models about the role played by overlapping symptoms
in the etiology of psychiatric comorbidity and the pathways from one disorder to another.

Tzur-Bitan, D., Meiran, N., & Shahar, G. (2010). The importance of mod-

eling comorbidity using an intra-individual, time-series approach. Behavioral and

Brain Sciences, 33, 172-173.

We suggest that the network approach to comorbidity (Cramer et al.) is best ex-
amined by using longitudinal, multi-measurement, intra-individual data. Employment
of time-series analysis to the examination of the generalized anxiety and major depres-
sive disorder comorbidity enables a detailed appreciation of fluctuations and causal
trajectories in terms of both symptoms and cognitive vulnerability.

van der Sluis, S., Kan, K. -J., & Dolan, C. V. (2010). Consequences of a

network view for genetic association studies. Behavioral and Brain Sciences, 33,

173-174.

Cramer et al.’s proposal to view mental disorders as the outcome of network dynamics
among symptoms obviates the need to invoke latent traits to explain co-occurrence
of symptoms and syndromes. This commentary considers the consequences of such a
network view for genetic association studies.

van Geert, P. L. C., & Steenbeek, H. W. (2010). Networks as complex dy-

namical systems: Applications to clinical and developmental psychology and

psychopathology. Behavioral and Brain Sciences, 33, 174-175.

Cramer et al.’s article is an example of the fruitful application of complex dy-
namic systems theory. We extend their approach with examples from our own work
on development and developmental psychopathology and address three issues: (1) the
level of aggregation of the network, (2) the required research methodology, and (3) the
clinical and educational application of dynamic network thinking.

Wass, S., & Karmiloff-Smith, A. (2010). The missing developmental dimen-

sion in the network perspective. Behavioral and Brain Sciences, 33, 175-176.

We welcome network theory as a tool for modeling the multidimensional interac-
tions that characterize disease. However, we feel that Cramer et al. have neglected one
important aspect: how diseases change over developmental time. We discuss principles
such as fan in, fan out, bottlenecks, and common pathways, argue that modeling these
developmental aspects can be vital, particularly in deriving properly targeted treatments.

Yordanova, J., Kolev, V., Kirov, R., & Rothenberger, A. (2010). Comorbidity in

the context of neural network properties. Behavioral and Brain Sciences, 33, 176-177.
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Cramer et al.’s network approach reconceptualizes mental comorbidity on the ba-
sis of symptom space originating from psychometric signatures. We argue that the
advantages of this approach need to be regarded in the context of the multi-level func-
tional organization of the neural substrate, ranging from neurogenetic to psychometric.
Neuroelectric oscillations are proposed as a level-integrating principle.

Zachar, P. (2010). The abandonment of latent variables: Philosophical con-

siderations. Behavioral and Brain Sciences, 33, 177-178.

Cramer et al.’s critique of latent variables implicitly advocates a type of scientific
anti-realism which can be extended to many dispositional constructs in scientific
psychology. However, generalizing Cramer et al.’s network model in this way raises
concerns about its applicability to psychopathology. The model could be improved by
articulating why a given cluster of symptoms should be considered disordered.
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Asendorpf, J. B. (2012). What do the items and their associations refer to in a

network approach to personality? European Journal of Personality, 26, 432-433.

It is hard to judge the potential usefulness of a network approach to personality
research because Cramer et al. (2012) mix up applications to one individual, inter-
individual differences and intra-individual processes. From each perspective, the network
units, their associations and causal interpretations of such associations have a completely
different meaning, and it depends on the particular perspective, the level of aggregation
and whether one wants to model measurement error whether latent variables have a
place in network models in personality research.

Ashton, M. C., & Lee, K. (2012). On models of personality structure. Eu-

ropean Journal of Personality, 26, 433-434.

We suggest that the description by Cramer et al. (2012) of traditional models of
personality structure does not perfectly reflect the models actually endorsed by
researchers. Personality researchers assume that many variables will have considerable
secondary loadings and that the major personality factors will not account for all of the
covariation among those variables. A model that includes common factors provides a
more parsimonious explanation of covariation among personality variables than does a
model consisting of network links only.

Costantini, G., & Perugini, M. (2012). The definition of components and

the use of formal indexes are key steps for a successful application of network

analysis in personality psychology. European Journal of Personality, 26, 434-435.

Conceiving personality as a network provides an interesting theoretical framework
and a promising methodological perspective. The application of network analysis to
personality psychology however is not straightforward, and some issues require careful
consideration. We argue that the definition of components within networks cannot be
limited to single items, and more work is needed to reflect the inherently hierarchical and
indefinite nature of components. Additionally, we argue that formal empirical indexes
must be clearly defined and consistently used to describe properties of personality

145
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networks.

Denissen, J. J. A., Wood, D., & Penke, L. (2012). Passing to the function-

alists instead of passing them by. European Journal of Personality, 26, 436-437.

The paper by Cramer and colleagues illustrates how a network approach can
model personality systems without positing causal latent factors such as the Big Five.
We applaud this effort but argue that nodes should be distinguished on more than quan-
titative grounds (e.g., displayed centrality or connectivity). To realistically model the
affects, cognitions and behaviors that constitute real personalities, organizing constructs
such as needs and comparators seems necessary. Incorporating them requires greater
consideration of functionalist personality theories that link together environmental
features and adaptive behavior in meaningful and stable ways.

Furr, R. M., Fleeson, W., Anderson, M., & Mayfield Arnold, E. (2012). On

the contributions of a network approach to personality theory and research.

European Journal of Personality, 26, 437-439.

Understanding personality structure and processes is one of the most fundamen-
tal goals in personality psychology. The network approach presented by Cramer et
al. represents a useful path towards this goal, and we address two facets of their
approach. First, we examine the possibility that it solves the problem of breadth, which
has inhibited the integration of trait theory with social cognitive theory. Second, we
evaluate the value and usability of their proposed method (qgraph), doing so by con-
ducting idiographic analyses of the symptom structure of borderline personality disorder.

Guillaume-Hanes, E., Morse, P., & Funder, D. (2012). Network models in

the organization of personality. European Journal of Personality, 26, 439-440.

The network perspective illustrates an important cautionary point concerning the
interpretation of inter-item relationships. However, its complexity comes at a prices,
including a possible lack of robustness and replicability, and difficulties in interpretation
and achieving psychological insight. The most interesting and important manifestations
of personality are diverse and consequential behaviors that are related because they
really do reflect common underlying traits. Thus, the target article can serve as a
reminder of the importance of ranging beyond self-report questionnaires to the much
more difficult, expensive and important world of behavior.

Lee, J. J. (2012). Common factors and causal networks. European Journal of

Personality, 26, 441-442.

The target article touches upon some of the most difficult and essential questions
in personality psychology. Questioning the notion of a common factor as an as-yet-
unobserved common cause of a behavior domain’s exemplars, the authors propose using
graphical representations to inspire hypotheses of more complex causal structures. I do
not find the case for the de-emphasis of the common factor model to be compelling for
those behavior domains (cognitive abilities) with which I am most familiar. It behoves
all personality psychologists, however, to question the foundations of their favored tools.

Read, S. J., & Miller, L. C. (2012). Sources of constraint on network equi-

librium. European Journal of Personality, 26, 442-443.
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We agree with the authors’ key point that the standard trait approach to person-
ality does not provide a method for understanding the causal structure of personality.
Furthermore, their new technique for visualizing structure shows promise. However,
although genetic analyses are important, we think that they are, by themselves,
inadequate as a source of information/constraint for understanding causal structure.
Close attention must also be paid to the biological systems they they influence, the
structure of social situation and the dynamics of the interactions among them. We
outline one possible approach to these issues.

Rothmund, T., Baumert, A., & Schmitt, M. (2012). Can network models

represent personality structure and processes better than trait models do? Euro-

pean Journal of Personality, 26, 444-445.

We argue that replacing the trait model with the network model proposed in the
target article would be immature for three reasons. (i) If properly specified and
grounded in substantive theories, the classic state-trait model provides a flexible frame-
work for the description and explanation of person x situation transactions. (ii) Without
additional substantive theories, the network model cannot guide the identification of
personality components. (iii) Without assumptions about psychological processes that
account for causal links among personality components, the concept of equilibrium has
merely descriptive value and lack explanatory power.

Schimmack, U., & Gere, J. (2012). The utility of network analysis for per-

sonality psychology. European Journal of Personality, 26, 446-447.

We note that network analysis provides some new opportunities but also has
some limitations: (i) network analysis relies on observed measures such as single
items or scale scores; (ii) it is a descriptive method and, as such, cannot test causal
hypotheses; and (iii) it does not test the influence of outside forces on the network, such
as dispositional influences on behavior. We recommend structural equation modeling as
a superior method that overcomes limitations of exploratory factor analysis and network
analysis.

Steyer, R. (2012). Does network theory contradict trait theory? European

Journal of Personality, 26, 447-448.

I argue that the trait and network theories of personality are not necessarily con-
tradictory. If appropriately formalized, it may turn out that network theory incorporates
traits as part of the theory. I object the opinion that if a trait is a cause of behavior,
then it is necessarily an entity operating in the minds of individuals. Finally, I argue
that liking parties can be a label for a random variable (item), a stochastic process (a
family of items at different time points) and a latent variable (trait). In our colloquial
language, we do not make these distinctions, which leads often to confusions.

Terracciano, A., & McCrae, R. R. (2012). Why do (some) birds flock? Causality

and the structure of characteristic adaptations. European Journal of Personality, 26,

441-442.

Characteristic adaptations often cluster in mutually reinforcing networks. Evi-
dence of stability and heritability suggests that the development of such networks is due
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in part to the causal influence of enduring dispositions or traits. Many different genetic
models are consistent with this hypothesis, and the quest for genes can be pursued at
many levels; of these, the intermediate level of specific facets may be the most promising.
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Where are the genes?

Abstract

This commentary was written in response to a target article by Johnson, Penke and Spinath

(2011, published in the same issue of the European Journal of Personality) in which the missing

heritability problem was discussed from many different angles. In this commentary, we present

another reason for the apparent discrepancy between heritability estimates and gene-hunting

results in psychopathological research (i.e., the missing heritability problem): if syndromes are

networks of causally related symptoms in which both symptoms and relations between them

are driven by different sets of genetic polymorphisms, then gene hunting based on a phenotypic

sumscore might be ill-advised because it will only capture genetic variance that is shared among

those symptoms and their relations.

Depressed parents predispose their children to become depressed as well. This
phenomenon is not so much attributable to a depressogenic environment (inadvertently
created by the parents) as it is due to the fact that major depression is a moderately her-
itable syndrome, with heritability estimates ranging between 37% and 60% (Boomsma et
al., 2002; Kendler, Gatz, Gardner, & Pedersen, 2006; P. F. Sullivan, Neale, & Kendler,
2000). Combined with the high heritability of other mental disorders (Boomsma et
al., 2002), it is surprising that despite many efforts, the genetic culprits have not been
identified (see e.g., Sklar, 2002). For psychological traits in general, identified genetic
polymorphisms typically account for less than 2% of the genetic variance (Levinson,
2006; Mitchell & Porteus, 2009).

The apparent discrepancy between high heritability and the inability to identify the
responsible genetic polymorphisms has been termed the missing heritability problem and
is pervasive in the realm of psychopathology (Manolio et al., 2009). In the same issue,
Johnson et al. propose various plausible mechanisms that contribute to the missing
heritability problem, ranging from methodological factors that might result in inflated
heritability estimates to problems with the specific research strategies employed in gene
hunting. Pertaining to the latter, in this commentary, we elaborate on a potential problem
on which Johnson et al. did not reflect: what if the way we define a syndrome in current
gene-hunting efforts is incorrect?

In psychopathological research, the most commonly used proxy for a phenotype is

Adapted from: Cramer, A. O. J., Kendler, K. S., & Borsboom, D. (2011). Where are the
genes? The implications of a network perspective on gene hunting in psychopathology. European
Journal of Personality, 25, 270-271.

149



150 C WHERE ARE THE GENES?

the typical operationalization of a syndrome, that is, a sumscore (i.e., the total number
of symptoms of a disorder present) that can be further dichotomized, using, for exam-
ple, criteria as specified by the Diagnostic and Statistical Manual of Mental Disorders
Fourth Edition (DSM-IV), to reflect the presence/absence of a particular disorder. In its
most rudimentary from, genetic association studies identify genes or genetic variants as
predisposing to a mental disorder if they predict the dependent variable in the design,
that is, the (dichotomized) sumscore (van der Sluis, Kan, & Dolan, 2010). So far, this
strategy has not been very successful at identifying the important genetic polymorphisms
in the onset of mental disorders. In our view, this may be partly due to the fact that
one of its most important assumptions—that a sumscore forms a valid representation of
a syndrome—is fundamentally flawed.

Current approaches to gene hunting rely on the assumption that the relation between
a phenotype, for example, major depression—and its observable attributes—for example,
the A criterion in DSM-IV is one of measurement : a psychological phenomenon causes its
observable attributes (e.g., extraversion causes party-going behavior: McCrae & Costa,
2008, p. 288). One of the far-reaching consequences of such a common cause view is that
correlations among the observed attributes themselves are deemed spurious; they only
exist because they share a common cause: mental rotation skills and verbal intelligence
are only correlated because they share a common cause, namely general intelligence. In
terms of searching for genes that are implicated in the onset of a syndrome, this view
translates into the following chain of events: genes, via a host of hypothesized endophe-
notypes, result in a syndrome and that syndrome, because of a measurement relationship,
causes a set of observable symptoms. But as we have argued elsewhere (Cramer et al.,
2010), relations between symptoms might not only be non-spurious in nature but might
also the very essence of what constitutes a syndrome (similar arguments have been made
for general intelligence: van der Maas et al., 2006). For example, consider the corre-
lation between two symptoms of major depression: insomnia and fatigue. Under the
assumption of a common cause, the correlation between these two symptoms is spurious;
it only arises because insomnia and fatigue share a common cause, major depression.
It is, however, more likely to assume that this correlation exists because there is a real,
straightforward causal relation between these two symptoms: if you do not sleep, you will
become tired. Similar arguments can be made for a host of other psychological phenom-
ena—for example, consider feeling comfortable around people and party-going behavior:
do we need an overarching ‘extraversion’ trait to explain why these observed behaviors
tend to covary?—and as such, it is premature to dismiss direct relations between ob-
served attributes as being mere spurious by-products of an overarching construct. What
does this mean for gene hunting efforts?

If constructs are indeed networks of causally related observables, individual differ-
ences are most likely to arise as differences in the strength of those relations: when Alice
suffers from depressed mood, she fairly easily develops suicidal thoughts (i.e., strong re-
lation between the observe symptoms ‘depressed mood’ and ‘suicidal ideation’), whereas
Bob does not ever contemplate suicide while feeling depressed (i.e., relatively weak rela-
tion). Furthermore, it is likely that the strength of such relations stands at least partly
under genetic control. Now, it is not likely that each relation is influenced by the same
set of genes for the sheer number of relations (k2 - k in a network containing k ob-
servables/symptoms) in any given network greatly diminishes this possibility and the
relations probably differ in terms of the endophenotypes (and thus genes) involved (e.g,.
the more physiological homeostatic processes that are likely to govern relations between
sleep van fatigue versus the more cognitive processes that are probably invoked in the
relation between depressed mood and suicidal thoughts).

Hence, when trying to relate genetic polymorphisms to a sumscore, one only cap-
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tures the genetic variance that is shared among those individual symptoms (including
their relations); the different genetic polymorphisms that are responsible for individual
differences in the strength of the relations between those symptoms are completely left
unaccounted for. As such, the network approach may explain at least partly why current
approaches cannot find the genetic culprits of mental disorders. By properly modeling
their etiology, we increase our power to detect risk variants. It is, after all, the relations
between symptoms that glue them together into a syndrome.
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Appendix D

A constructionist account of

emotional disorders

Abstract

This commentary was written in response to a target article by Lindquist, Wager, Kober,

Bliss-Moreau and Feldman-Barrett (2012, published in the same issue of Behavioral and Brain

Sciences) in which the brain basis of emotion was reviewed. Lindquist et al. present a strong

case for a constructionist account of emotion. In this commentary, we first elaborate on the

ramifications that a constructionist account of emotions might have for psychiatric disorders

with emotional disturbances as core elements. Second, we reflect on similarities between

Lindquist et al.’s model and recent attempts at formulating psychiatric disorders as networks of

causally related symptoms.

Fear is not localized in the amygdala, nor does sadness exclusively arise in the
anterior cingulate cortex. Unfortunately for Gall (Gall & Spurzheim, 1835), and more
recent proponents, who hypothesized that single brain areas (later referred to as “partic-
ular circuits”; see Kandel & Squire, 1992) correspond to single functions (e.g., arithmetic
skills), feelings (e.g., pride) or attitudes (e.g., religiosity); locationist perspectives on
such functions, feelings, and attitudes and their hypothesized unique “signature” in
the brain increasingly turn out to be wrong (e.g., Bartholomew2004,Poldrack2006 ).
Likewise, as Lindquist et al. convincingly argue, emotions are not recognized by the
brain as separate entities and, as such, do not each have their own seat and unique
activation signature in the brain. Instead, Lindquist et al. present a strong case for
a constructionist perspective in which emotions are comprised of multiple, more basic
processes, which are each associated with their own location and activation signature in
the brain. The combined outcomes of these processes result in the individual experience
of a particular emotion.

If Lindquist et al.’s constructionist perspective is an accurate representation of the
relation between emotions and the brain, what ramifications might this have for those
psychiatric disorders that have emotional disturbances as core elements? Among other
processes, Lindquist et al. distinguish between core affect (i.e., mental representation of
bodily representations) and conceptualization (i.e., sensations from the body or external

Adapted from: Cramer, A. O. J., Kendler, K. S. & Borsboom, D. (2012). A constructionist
account of emotional disorders. Behavioral and Brain Sciences, 35, 146-147.
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world that are made meaningful). Major depression (MD) is a psychiatric disorder with
“sadness” as one of the core elements, and it is well known that, in many cases, an
episode of MD is preceded by stressful life events such as marital of health problems
(e.g., Kendler et al., 1999). Although such life events are potentially quite aversive in
nature, most people do not develop an episode of MD after experiencing them: So why
are some people so severe affected by a stressful life event whereas most others are not?
One explanation could be that in people who develop an episode of MD after a stressful
life event the conceptualization process is dysfunctional; most people would respond with
some sadness after a quarrel with a spouse (i.e., “normal” core affect), but in people
with MD, this event is overly negatively conceptualized (“See, even my husband does not
love me”). Such a hypothesis is consistent with clinical observations that patients with
MD often engage in excessive rumination about past events (Roelofs, Huibers, Peeters,
& Arntz, 2008; Roelofs, Huibers, Peeters, Arntz, & van Os, 2008).

On the other hand, in disorders with “fear” as a core element, the core affect process
might have gone awry. Patients with a specific phobia are extremely fearful of certain
objects (e.g., hypodermic needles), situations (e.g., flying an airplane), or animals (e.g.,
spiders) that do not elicit the same response in most other people. When confronted with,
for example, a spider, patients with a phobia for that animal will respond with various
bodily sensations (e.g., profuse sweating, heart palpitations) to that animal, whereas
people without the phobia will not experience such bodily sensations; in terms of the
Lindquist et al. perspective, specific phobia patents react with excessive core affect to
phobic objects compared to non-phobic patients.

Distinguishing emotional disorders in terms of Lindquist et al.’s proposed processes
might implicate a shift in clinical neuroscience from searching for the dysfunctional brain
area causing a particular disorder to searching which brain areas do not optimally work

together in perceiving and interpreting external stimuli (e.g., will we find that the concep-
tualization network is overly active in patents with MD?). This implication of Lindquist
et al.’s work, that psychiatric disorders are not likely to be explained in terms of one
dysfunctional brain area, bears a striking resemblance to recent attempts at formulat-
ing psychiatric disorders as networks of causally related symptoms (Borsboom, 2008b;
Cramer et al., 2010; Kendler et al., 2011). In the network approach, psychiatric disorders
are hypothesized to stem from direct interactions between symptoms (e.g., feeling tired
→ sleeping a lot → concentration problems) instead of from one underlying biological
dysfunction (e.g., serotonin depletion causes all symptoms of MD). As such, each symp-
tom is an autonomous causal entity and it is unlikely that such entities share the exact
same etiological mechanisms. For example, symptoms such as insomnia and fatigue are
likely governed by homeostatic processes, whereas symptoms such as guilty feelings and
depressed mood are more likely regulated by cognitive processes (e.g., rumination). This
hypothesis also lies at the heart of a theory in which psychiatric disorders are mecha-

nistic property clusters (MPCs): mutually reinforcing networks of causal mechanisms at
multiple levels of explanation (e.g., symptoms, brain). Each of these conceptualizations
suggests that there are no hard delineations between disorders, as the processes that
carry forward disturbances in a network are unlikely to be confined to a single set of
symptoms (i.e., have a transdiagnostic character).

Thus, Lindquist et al.’s constructionist account is suggestive mutually reinforcing
networks at the brain level that, when working optimally, result in the subjective expe-
rience of an appropriate particular emotion (e.g., fear when confronted with an angry
grizzly bear). However, if one or more of those networks do not optimally work together,
the result can be an inappropriate emotion (e.g., excessive fear when confronted with a
spider). Subsequently, the network approach (i.e., mutually reinforcing networks at the
symptom level) explains why, for example, a dysfunctional core affect process does not
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result in a specific phobia (i.e., the entire syndrome) but results in excessive fear of a
particular object or situation: other symptoms of a specific phobia, for example avoid-
ing the feared object or situation, are a result of the excessive fear (i.e., one symptom
causing the other). One way to investigate this hypothesis is by gathering intensive time
series data with which one can accurately monitor the development of symptoms (and
interactions among them) over time. This approach can be combined with frequent fMRI
scans in order to link, for example, excessive activation of the conceptualization network,
to the subsequent development of MD symptoms.
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Appendix E

Validity from a network

perspective

Abstract

This commentary was written in response to a target article by Newton (2012, published in the

same issue of Measurement) that provided a comprehensive review of the history of validity as

well as a proposal for a clearer and more precise definition of validity. In this commentary, I

elaborate on how the definition of validity might change, more dramatically than proposed by

Newton, when adopting a network stance towards certain psychological phenomena.

What is validity? A simple question but apparently one with many answers, as
Newton highlights in his review of the history of validity. The current definition of
validity, as entertained in the 1999 Standards for Educational and Psychological Testing

is indeed a consensus, one between the classical notion of attributes, and measures
thereof, and Cronbach and Meehl’s (1955) proposition that validity should be concerned
with interpretations of test scores and not with the tests themselves. Newton is
certainly right when striving for a clearer and more precise definition of validity than
the Standards’ definition; and in many ways Newton succeeds in achieving this goal.

In both Newton’s proposed clarification as well as the current Standards’ definition,
validity is closely associated withmeasurement of certain attributes. For many researchers
in psychology, these terms are intimately associated with the measurement model that
underlies the generic latent variable model: for example, insomnia (inso), fatigue (fati),
concentration problems (conc) and depressed mood (mood) are caused by the latent
attribute major depression (MD). Likewise, intelligence is hypothesized to be the common

cause of people’s responses to the items of an intelligence test. As such, when assessing
the validity of a particular instrument that purportedly measures a single attribute, a
confirmatory one-factor model is often part of the methodological toolkit: if the model
fits, this is taken as evidence for the construct validity of that particular instrument (e.g.,
physiological hyperarousal: Joiner et al., 1999; psychopathy: Patrick, Edens, Poythress,
Lilienfeld, & Benning, 2006). Importantly, for quite a few scholars in applied psychology
research, these latent attributes—which, in a latent variable model, are nothing more
than mathematical abstractions in a set of equations—are (implicitly) endowed with a

Adapted from: Cramer, A. O. J. (2012). Why the item “23 + 1” is not in a depression
questionnaire: Validity from a network perspective. Measurement, 10, 50-54.
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realist meaning: for example, personality psychologists who believe that the Extraversion
factor in the Big Five factor model exists in the minds of individual people and causes
behavior (McCrae & Costa, 2008).

In earlier work, we have postulated a new theoretical framework in which psycho-
logical phenomena like MD are networks in which the symptoms are not caused by a
latent attribute but, instead, are directly related (Borsboom, 2008b; Cramer, Borsboom,
et al., 2012; Cramer et al., 2010). That is, for example, the symptoms insomnia and
fatigue are not caused by the latent “MD” attribute but, instead, are directly linked:
insomnia → fatigue. Direct links need not be causal, they can be bidirectional as well
(e.g., a bidirectional relation between depressed mood and concentration problems: de-
pressed mood ↔ concentration problems). Such causal/bidirectional relations between
symptoms make more sense: Why would one need a latent attribute to explain why not
sleeping and being tired are highly correlated? A similar argument was made for intelli-
gence, in which, for example, verbal and arithmetic skills are strongly correlated because
these skills mutually influence one another, and not because both skills are caused by the
same underlying intelligence attribute (van der Maas et al., 2006). Finally, why would
one need a latent “extraversion” attribute to explain why people who like parties often
like to be in the centre of attention (Cramer, van der Sluis, et al., 2012).

In a classic measurement model, the probability of a symptom to be present depends
on the latent attribute: the more depressed one is, the higher the probability that depres-
sion symptoms will be endorsed. In a network of symptoms, the probability of symptom
x to be present depends on whether the symptoms that are directly linked to symptom
x were present at an earlier point in time: for example, the probability of having con-
centration problems at t = 1 depends on whether sleep problems, fatigue, and worrying
were present at t = 0. Or, in the case of extraversion, the probability of liking parties
depends on whether one likes people and likes being in the center of attention.

Now, suppose the network perspective paints an accurate picture of at least some
psychological phenomena. What does this mean for current definitions of validity as
defined in terms of attributes and measurement? There is no attribute, at least not
an attribute as defined in the classic measurement model. This does, however, not
invalidate current definitions of validity. Take the network in Figure E.1 as an example
and suppose we want to know the probability of being tired (fati). As mentioned earlier,
this probability depends on whether the other symptoms with which fatigue is linked
are present in an earlier point in time: the more depressed mood (mood), insomnia
(inso), and concentration problems (conc), the higher the probability of fatigue to become
present later in time. As such, it makes sense to say that fatigue in this network is
caused by depressed mood, insomnia, and concentration problems; likewise, it makes
sense to say that insomnia, in this network, is caused by depressed mood, fatigue, and
concentration problems and so on. That is, each symptom in this network is caused
by the total activation of the other symptoms; and it makes perfect sense to define the
total activation summed over all symptoms to be an attribute —not an attribute in
the classical measurement sense (with realist connotation), but one that is a summary
statistic for how symptoms are influenced by one another.

So, from a network perspective, an intelligence test does not measure latent g but it
assesses the extent to which cognitive processes such as verbal abilities and arithmetic
skills are activated/present. Likewise, a depression questionnaire does not measure a
latent depression attribute, but it assesses the total amount of activation of symptoms in
a depression network. But to what does this total activation amount? In other work, we
have formulated the hypothesis that psychological disorders are complex systems that,
governed by a set of (non)linear differential equations, move towards one or more at-
tractors (Schmittmann et al., 2013). For example, the MD network moves towards one
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mood 

conc fati 

inso 

t = 1 

t = 0 

Figure E.1: A network of four symptoms. The probability of fati to be present at t = 1 depends
on whether inso, mood and conc are present at an earlier point in time. inso = insomnia; fati
= fatigue; mood = depressed mood; conc = concentration problems.

of two attractors: a “depressed” and a “non-depressed” attractor. Whenever the MD
network is, for example, in the “depressed” attractor, we say that the MD network is in a
depressed state. And what we do when administering a depression questionnaire to some-
one is assess the state of the depression network: the more symptoms are present/active,
the more the MD network is pushed towards a depressed state.

Does this novel formulation of attributes and measurements mean that validity can
no longer be assessed with, for example, fitting a confirmatory factor model? No. One
can fit a one-factor model to investigate a questionnaire that consists of, say, extraversion
items. However, when the model fits, the interpretation should be different: no longer
should one speak of “construct validity” in the sense that the fit is evidence of an ex-
traversion construct (with a possible realist connotation) and measurable by the items
in that particular questionnaire. Rather, from a network perspective, the interpretation
should be that the fit provides evidence that these particular items have direct nontriv-
ial links with one another: apparently, endorsing an item depends on endorsing other
items. As such, the latent factor serves as the summary statistic of the summed total
activation/presence of these items.

So what is validity then, when adhering to a network perspective? Departing from
Newton’s as well as the Standards’ definition, validity should be about the degree to which
an instrument measures what it purports to measure (Ruch, 1924; see also Borsboom,
Cramer, et al., 2009). And, then, what do instruments generally purport to measure?
From a network perspective, instruments are designed to assess whether a particular set
of items form a network, that is, whether they are directly connected with one another.
Although it might seem to be so, this perspective on validity does not radically depart
from existing formulations. In fact, in many cases the outcome of a validation study will
be the same - take for instance the items “23 + 1” and “feeling blue”. No matter the
shape of the looking glass, “classic measurement”, or “network”, the conclusion will be
that an instrument containing these two items is not a valid instrument for measuring
MD.

However, the question of why this is so has different answers. From a classic measure-
ment perspective, the instrument is not valid because there is no latent attribute that
can explain the majority of covariation (if any, for the correlation between these items
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will be low) between the two items. That is, “23 + 1” does not measure MD. From a
network perspective, the instrument is not valid because the two items are not directly
linked: the probability of correctly answering “23 + 1”does not depend on endorsing
“feeling blue” and vice versa. One will conclude that the item “23 + 1” is not part of the
MD network. That is, the interpretational difference between the two perspectives lies
in assuming a measurement (i.e., classic measurement: the items measure an attribute),
versus a mereological relationship, between attributes and items: from a network per-
spective, the items are what constitutes an attribute. Thus, in sum, feeling blue and
thinking about suicide are not measurements of depression; feeling blue and thinking
about suicide is what being depressed is.
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T. P., Heikkinen, M. E., & Isometsä, E. T. (2004). Life events, social support,
and onset of major depressive episode in finnish patients. Journal of Nervous



174 References

and Mental Disease, 192 , 373-381.
Levandowsky, M., & Winter, D. (1971). Distance between sets. Nature, 234 ,

34-35.
Levinson, D. F. (2006). The genetics of depression: A review. Biological Psychi-

atry , 60 , 84-92.
Lewis, A. J. (1934). Melancholia: A clinical survey of depressive states. British

Journal of Psychiatry , 80 , 277-378.
Lilienfeld, S. O., & Marino, L. (1999). Essentialism revisited: Evolutionary theory

and the concept of mental disorder. Journal of Abnormal Psychology , 108 ,
400-411.

Loehlin, J. C. (1992). Genes and environment in personality development. Sage.
Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. L.

(2006). Global and regional burden of disease and risk factors, 2001: sys-
tematic analysis of population health data. The Lancet , 367 , 1747-1757.

Lord, F. M. (1953). The relation of test score to the trait underlying the test.
Educational and Psychological Measurement , 13 , 517-549.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores.
Addison-Wesley.

Low, N. C. P., Cui, L., & Merikangas, K. R. (2008). Specificity of familial trans-
mission of anxiety and comorbid disorders. Journal of Psychiatric Research,
42 , 596-604.

Ma, S. H., & Teasdale, J. D. (2004). Mindfulness-based cognitive therapy for
depression: Replication and exploration of differential relapse prevention
effects. Journal of Consulting and Clinical Psychology , 72 , 31-40.

Maciejewski, P. K., Prigerson, H. G., & Mazure, C. M. (2000). Self-efficacy as a
mediator between stressful life events and depressive symptoms: Differences
based on history of prior depression. British Journal of Psychiatry , 176 ,
373-378.

Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control
systems. Science, 197 , 287-289.

MacQueen, G., Campbell, S., McEwen, B. S., Macdonald, K., Amano, S., Joffe,
R. T., . . . Young, L. T. (2003). Course of illness, hippocampal function,
and hippocampal volume in major depression. Proceedings of the National
Academy of Sciences USA, 100 , 1387-1392.

MacQueen, G., & Frodl, T. (2011). The hippocampus in major depression: evi-
dence for the convergence of the bench and bedside in psychiatric research?
Molecular Psychiatry , 16 , 252-264.

Maes, H. H., Neale, M. C., Chen, X., Chen, J., Prescott, C. A., & Kendler, K. S.
(2011). A twin association study of nicotine dependence with markers in the
chrna3 and chrna5 genes. Behavior Genetics, 41 , 680-690.

Maher, B. (2008). Personal genomes: the case of the missing heritability. Nature,
456 , 18-21.
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Wat is een psychische stoornis? Als we de populaire media en sommige stromingen in de
gedragswetenschappen moeten geloven, dan is het antwoord op deze vraag vrij simpel.
Psychische stoornissen zijn het beste te vergelijken met medische ziekten. Neem longkan-
ker, een pathologische toestand in iemands lichaam die een set waarneembare symptomen
- in het geval van longkanker bijvoorbeeld gewichtsverlies en een hardnekkige hoestprikkel
- veroorzaakt. Zo wordt soms ook wel gedacht over bijvoorbeeld depressie: een patholo-
gische toestand in iemands brein die een set waarneembare symptomen veroorzaakt zoals
een sombere stemming, niet in slaap kunnen vallen ’s nachts en vermoeid zijn. Dit klinkt
aannemelijk, of toch niet?

Aan dit proefschrift ligt de opvatting ten grondslag dat het niet aannemelijk is dat
de symptomen van een psychische stoornis als depressie op ongeveer dezelfde manier
ontstaan als de symptomen van longkanker; of van het syndroom van Down. Voor deze
stelling zijn twee hoofdredenen aan te voeren. De eerste betreft het feit dat in het geval
van de longtumor en het syndroom van Down het volstrekt helder is wat de pathologische
toestand is die de symptomen van deze ziekten veroorzaakt: in het geval van longkanker
is dat een kwaadaardige tumor in de longen, in het geval van het syndroom van Down
is dat een extra (gedeeltelijke) kopie van chromosoom 21. Voor psychische stoornissen
is dit niet het geval: er is geen enkele pathologische toestand waarvan we, bijvoorbeeld,
met zekerheid kunnen stellen dat dat de oorzaak is van depressieve symptomen. Zeker,
er zijn diverse pathologische toestanden in het brein van (sommige) depressieve men-
sen aangetroffen, bijvoorbeeld een tekort aan serotonine (antidepressiva vullen dit tekort
aan); echter, deze pathologie wordt bijvoorbeeld ook regelmatig aangetroffen bij patiënten
met andere psychische stoornissen zoals verslaving en angststoornissen. In het geval van
medische ziekten zou dit betekenen dat bijvoorbeeld een extra (gedeeltelijke) kopie van
chromosoom 21 zowel het syndroom van Down zou kunnen veroorzaken als chronische
verkoudheid. Juist het feit dat die extra chromosomale kopie een uniek effect sorteert -
namelijk: het syndroom van Down - maakt dat we dat een afgebakende ziekte kunnen
noemen, met een unieke ontstaansgeschiedenis en een unieke set symptomen. Dit is voor
psychische stoornissen zeker niet het geval. Een tweede belangrijke reden om te twijfe-
len aan de aannemelijkheid van het medische model voor psychische stoornissen is dat
in het geval van veel medische ziekten zoals longkanker geen directe verbanden bestaan
tussen de symptomen zelf: gewichtsverlies (symptoom 1) veroorzaakt geen hardnekkige
hoestprikkel (symptoom 2), of andersom. Het is de kwaadaardige tumor in de longen
waardoor een patiënt gewicht verliest en last heeft van een hardnekkige hoestprikkel. In
dit proefschrift betoog ik het tegenovergestelde: symptomen van psychische stoornissen
hebben juist wel directe interacties met elkaar. Sterker nog, het zijn juist deze interac-
ties die maken dat iemand een stoornis kan krijgen. Neem bijvoorbeeld niet slapen en
vermoeid zijn, twee symptomen van depressie. Hoe zou het komen dat niet slapen en
vermoeid zijn vaak samen ervaren worden door mensen? Doordat, zoals het medische
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model voorschrijft, de stoornis ‘depressie’ deze klachten veroorzaakt? Of, omdat, wat in
dit proefschrift betoogd wordt, moe zijn de consequentie is van niet slapen?

In de hoofdstukken 2 en 3 zet ik deze nieuwe netwerkbenadering van psychische stoor-
nissen uiteen. Ieder persoon heeft zijn/haar eigen netwerk van symptomen en het is
aannemelijk dat deze persoonsnetwerken van elkaar verschillen. Zo kan het bijvoorbeeld
zijn dat bij de ene persoon een depressieve stemming sterk verbonden is met slecht in
slaap kunnen komen ’s nachts (depressieve stemming → slaapproblemen) maar dat dat
voor een andere persoon helemaal niet geldt. Een depressieve stoornis ontwikkelen in een
netwerkbenadering is dan geen kwestie van, zoals in het medische model, een abnorma-
liteit in het brein die bij iedereen op dezelfde manier symptomen veroorzaakt; maar een
kwestie van symptomen die elkaar blijven ‘aansteken’ door directe interacties en er zo
voor zorgen dat de persoon in kwestie in een vicieuze cirkel terecht kan komen die niet
zonder hulp te doorbreken valt: bijvoorbeeld een persoon die eerst slecht slaapt waardoor
vermoeidheid en concentratieproblemen op het werk ontstaan; als gevolg waarvan deze
persoon zich schuldig voelt over het onderpresteren op het werk en daardoor een sombere
stemming ontwikkelt waardoor die persoon vervolgens ’s nachts wakker ligt van het pie-
keren. Zo ontstaat een kettingreactie of vicieuze cirkel, slaapproblemen → vermoeidheid
en concentratieproblemen → schuldgevoelens → depressieve stemming → slaapproble-
men, die zichzelf in stand houdt doordat aan het einde van de ketting de slaapproblemen
weer het begin van een nieuwe kettingreactie vormen. Op verschillende plekken in het
proefschrift wordt betoogd dat het aanhangen van een netwerkbenadering van psychische
stoornissen mogelijk omvangrijke implicaties kan hebben voor hoe mensen in de klinische
praktijk gediagnosticeerd en behandeld worden. Bijvoorbeeld, als er geen pathologische
toestand, een gemeenschappelijke oorzaak, van depressiesymptomen is, dan heeft het ook
weinig zin om deze te behandelen. Vanuit een netwerkbenadering zou het vooral zinnig
zijn om individuele symptomen en de relaties tussen deze symptomen te behandelen.

Evidentie die consistent is met een netwerkbenadering van psychische stoornissen
wordt behandeld in de hoofdstukken 4 en 5. In Hoofdstuk 4 laat ik zien dat verschillende
stressvolle gebeurtenissen, zoals bijvoorbeeld een beëindigde liefdesrelatie, een verschil-
lende invloed hebben op de individuele symptomen van depressie. Zo leiden gezondheids-
problemen tot meer süıcidale gedachten en een somberdere stemming in vergelijking met
bijvoorbeeld een beëindigde liefdesrelatie. Dit is in overeenstemming met de netwerkbe-
nadering maar strijdig met het medische model: immers, als de symptomen van depressie
een gemeenschappelijke oorzaak zouden hebben (bijvoorbeeld een serotoninetekort) dan
zouden stressvolle gebeurtenissen invloed moeten hebben op die gemeenschappelijke oor-
zaak, die dan vervolgens weer een set symptomen veroorzaakt. Andere evidentie in lijn
met een netwerkbenadering van psychische stoornissen bespreek ik in Hoofdstuk 5 waarin
ik laat zien dat depressiedata, gesimuleerd onder een netwerkmodel, allerlei kenmerken
vertonen die karakteristiek zijn voor depressie. Het is bijvoorbeeld een bekend fenomeen
dat een substantieel deel van de mensen met een depressie spontaan weer van deze de-
pressie herstelt, dat wil zeggen zonder interventie van een therapeut of het gebruik van
medicatie. Dit is precies wat ook gevonden wordt in de gesimuleerde data.

In de hoofdstukken 6 en 7 pleit ik ook voor een netwerkbenadering van persoonlijk-
heid. De Big Five is een welbekende karakterisering van de normale persoonlijkheid aan
de hand van vijf trekken; extraversie, goedaardigheid, zorgvuldigheid, emotionele stabi-
liteit en openheid voor ervaringen. De theorie stelt dat iemand bijvoorbeeld extravert is
en dat deze trek vervolgens allerlei waarneembaar gedrag veroorzaakt dat wij allemaal
herkennen als zijnde extravert; bijvoorbeeld graag naar feestjes gaan en belangstelling
hebben voor het ontmoeten van nieuwe mensen. Ik betoog dat ook deze trekken, net als
psychische stoornissen, geen entiteiten zijn die ergens in iemands hoofd zitten, maar dat
het hebben van een bepaalde trek, extravert, het gevolg is van directe interacties tussen
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cognities, emoties en gedrag: iemand heeft belangstelling voor het ontmoeten van nieuwe
mensen en gaat daardoor graag naar feestjes (nieuwe mensen ontmoeten → graag naar
feestjes gaan).

Hoofdstuk 8 is een vrij praktisch hoofdstuk waarin diverse methoden worden uitgelegd
en gedemonstreerd waarmee netwerken geconstrueerd en geanalyseerd kunnen worden.
Een van deze methodes behelst het detecteren van causale relaties tussen symptomen;
en ik laat met deze methode zien dat de comorbiditeit tussen depressie en gegenerali-
seerde angst, dat wil zeggen het gelijktijdig te lijden hebben van deze twee stoornissen,
voornamelijk verklaard kan worden door de symptomen die deze stoornissen met elkaar
gemeenschappelijk hebben; zoals bijvoorbeeld slaapproblemen en vermoeidheid.

In dit proefschrift is een nieuwe benadering, de netwerkbenadering, voorgesteld die,
zo wordt betoogd, meer recht doet aan de complexe realiteit van psychische stoornissen
en persoonlijkheidstrekken. De mens is in zijn gedrag en gevoelens een complex wezen,
en het is de opdracht van de gedragswetenschappen om deze complexiteit in kaart te
brengen en, waar mogelijk, te begrijpen.
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Dankwoord

Als iemand me aan het begin van mijn studie Psychologie had verteld dat ik ooit AiO
zou worden bij Methodenleer, dan had ik die persoon hartelijk uitgelachen. Tijdens het
grootste gedeelte van mijn studie wilde ik AiO worden bij Klinische Psychologie: het
liefste wilde ik werken met forensische patiënten, en ik had daartoe al stage gelopen in
de Van der Hoevenkliniek in Utrecht. Maar in de laatste fase van de research master
raakte ik steeds meer gëınteresseerd in theoretische en methodologische vraagstukken.
Precies op dat moment kreeg Denny een Vidi beurs voor een onderzoeksproject naar
psychologische fenomenen als netwerken. Ik had stiekem nog nooit van Denny gehoord
maar Eric-Jan - wiens onderwijsassistent ik op dat moment was - vond dat ik maar
eens bij Denny moest binnenstappen en dirigeerde mij op een gegeven middag resoluut
Denny’s kamer in. Dankzij die welhaast letterlijke duw van EJ nam mijn beginnende
leven in academia een totaal andere wending dan ik ooit voor mogelijk had gehouden; en
het is de beste wending geweest die ik me maar had kunnen wensen.

Ik vind het moeilijk om de precieze woorden te vinden om je te bedanken Denny,
want wat je voor me hebt betekend, gaat een stuk verder dan dat je mijn AiO tijd
fijn begeleid hebt: je bent niet zozeer mijn begeleider geweest als wel mijn mentor,
inspirator en grote voorbeeld. Je kan als geen ander iets opmerken of een vraag stellen,
ogenschijnlijk terloops, waarvan ik de diepere betekenis of significantie pas begreep nadat
ik er minimaal een week in totale vertwijfeling en ontreddering over had nagedacht. Dat
soort opmerkingen en vragen hebben me zo enorm gëınspireerd om de grenzen van wat
ik dacht dat ik kon op te zoeken; en deze grenzen een klein stukje te verleggen. En die
grenzen kon ik ook verleggen omdat je me altijd de ruimte hebt gegeven om mijn eigen
ideeën te ontwikkelen en me alle mogelijkheden hebt geboden om mijn methodologische
kennis te verdiepen. Al zal ik nooit, echt nooit, een verwassen t-shirt van de Math Psych
conferentie uit 1996 dragen, dankzij jou ben en voel ik me nu een methodoloog. Ik dank
je ook zeer voor wat je me hebt geleerd op het menselijke vlak: niet alleen herinner ik
me hoe meelevend en begripvol je was op momenten dat ik het moeilijk had, maar ook
heb je me laten zien hoe belangrijk het is om de kwaliteiten van een ieder te herkennen
en te waarderen. Ik zal het nauw samenwerken met jou enorm missen.

Als Han “nog een klein dingetje”heeft over een paper dat je van plan bent om op
te sturen, dan kan je er gevoeglijk van uit gaan dat je minimaal een week bezig bent
met het reviseren van dat paper. Ik dank je, Han, voor al die ‘kleine’ dingetjes die me
altijd scherp hielden en me dwongen om een nog beter paper te schrijven. Ook ben
ik je bijzonder dankbaar voor de manier waarop je leiding geeft aan onze vakgroep: je
hebt oog voor ieders belangen, en je weet als geen ander hoe je mensen in stelling moet
brengen voor verdere posities in academia. Ik heb mijn huidige baan voor een belangrijk
deel aan jou te danken.

Ik dank alle overige leden van de promotiecommissie zeer voor het lezen en beoorde-
len van mijn proefschrift. Marten, ik koester mooie herinneringen aan de legendarische
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‘Orchard sessions’. EJ, ik ben heel blij dat je me bijna in Denny’s kamer geduwd hebt in
2007, en ik denk met veel plezier terug aan al onze gezellige borrels en etentjes. Sophie,
je maakt me ontzettend aan het lachen; dank voor alle gezellige theekransjes, ik hoop
dat er nog vele gaan volgen.

Het was een voorrecht om te mogen werken met een keur aan interessante, inspire-
rende en gezellige collega’s. In het bijzonder denk ik met een grote glimlach terug aan
mijn oude ‘roomies’: Dylan (mijn Breezer-partner-in-crime en de gezelligste psychometri-
cus die ik ken), Don (“That’s gooood” en andere Peanut gekkigheid op de vrijdagmiddag,
en de bedenker van een passende bijnaam voor ondergetekende), en Ruud (de minst luid-
ruchtige van A5.02, staat altijd garant voor diepgaande discussies en flauwe grappen, en
geneerde zich totaal niet om een koptelefoon op te zetten om te ontsnappen aan geklets
van ondergetekende). Mariska, dank je wel dat je me gëınspireerd hebt om een goede
docent te willen zijn; en ik mis je groenten, stijlvolle pumps, warmte en agenda op vier
A4-tjes nog zeer regelmatig. Marjan, dank je voor je vriendschap: onze urenlange ge-
sprekken over werk maar ook over onze kinderen zijn me zeer veel waard; en samen met
Josine heb je me door de laatste zware maanden van mijn AiO tijd gesleept.

I owe a great deal to all the wonderful people that I met and worked with during my
stay at VATSPUD in Richmond, Virginia. Dear Dawn, Shaunna, Brad, Liz, Ananda,
Daniel, Mike, and many others: thank you for all your kindness, manicures, great eve-
nings with loads of laughter and good food, cupcakes, champaign cocktails and dancing;
thanks to you Richmond is one of the few places that I call home. Steve, thank you for
the numerous times that you helped me out (from airport pick ups to fitting complex
factor models) and for the many - sometimes pretty fierce - discussions about the nature
of psychological phenomena. Ken, most of what I think I know about psychiatry, I know
it because you taught me. I’m so thankful for the many hours we spent in your office
during which you shared not only your knowledge and experience with me; but also your
passion for the twin study, you reminded me of the significance of the individual people
behind the numbers in my data file. I also have fond memories of the wonderful Thanks-
giving dinner I shared with you and your family, and of the afternoon we spent in the
movie theater during the French film festival. Thank you.

Ik heb fantastische vrienden: veel dank voor alle gesprekken, feestjes, uithuilschou-
ders, kaufrausches, grappen en grollen. Over twee vrienden in het bijzonder wil ik nog
iets meer zeggen, mijn paranimfen Eveline en Rogier. Eveline, je bent een van mijn
allerliefste vriendinnetjes: je hebt mij door diepe dalen geholpen maar ook op de pieken
ben je er altijd bij (ik zeg bijvoorbeeld Naughty by Night en laat het daar verder bij). Je
maakt me vrolijk, je bent een prachtmens, van buiten en van binnen. Rogier, je bent een
ontzettend grappige, slimme, gezellige maar bovenal buitengewoon goede vriend; ik denk
bijvoorbeeld aan ons gezamenlijke tripje naar Washington waar jij mij, net zwanger en
vreselijk misselijk, middels taxi’s en tussenstops in winkels waar mannen niet van hou-
den, door de stad heen hebt geloodst. Maar ook zal ik nooit vergeten hoe je me gesteund
hebt toen ik aan huis was gekluisterd door mijn rug. Ik heb jou, Anne-Laura en Flynn
voor altijd in mijn hart gesloten.

Lieve mama, jij hebt me geleerd om onbaatzuchtig te zijn, om het goede in mensen
te zien en wat het betekent om je echt met hart en ziel ergens voor in te zetten. Ik was
niet waar ik nu ben zonder jou. En ik geef toe dat je toch gelijk had: Wijsheid komt met de jaren.
Ik hoop nog heel lang van je te mogen leren: je t’aime. Casper: liefde van mijn leven en
mijn allerbeste vriend. Dank voor onze liefde, gezelligheid, en voor al die avonden dat je
me mijn gang hebt laten gaan op mijn laptop; en voor alle momenten dat je me van deze
zelfde laptop hebt weten los te weken. Het leven is een feest met jou. Liefste Isa Nora,
het leven is zoveel mooier sinds ik door jouw bril mag meekijken naar de wereld; het is
een voorrecht om jouw moeder te zijn.
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Allerliefste papa, wat ben ik verdrietig omdat je nooit zal weten dat het me gelukt
is, dat ik een proefschrift heb afgeleverd. Ik ben een athëıst in hart en nieren maar soms,
op dit soort momenten, hoop ik vurig dat jij op een of andere manier mee kan kijken;
zodat je kan zien dat ik, ondanks dat ik je nog iedere dag vreselijk mis, mijn dromen
probeer te verwezenlijken. Ik draag dit proefschrift aan je op en dank je voor alles wat
je me gegeven hebt. Aye aye, sir.

Angélique
Amsterdam, juli 2013


