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1 Introduction

The spectrum of the SU(3) gauge theory in 3+1 dimensions is of interest for both phe-
nomenological and theoretical reasons. On the phenomenological side it may inform us
about the approximate location of glueballs in QCD if the mixing with qq̄ states is as
modest as suggested by the OZI rule. Here it is the lighter glueballs, with masses below
say 3GeV, that are of greatest interest given the experimental constraints in observing
and identifying glueballs. The masses of such glueballs, some 4 or 5 in total, have been
reasonably well determined for a long time: see for example [1]. Subsequent calculations,
for example [3–6], have remained consistent with these earlier estimates, albeit with much
reduced errors, indicating that this part of the spectrum is well understood. Slight shifts
in the mass estimates are mostly due to differences in importing the physical ‘GeV’ scale
into the unphysical pure gauge theory. Since the two theories are not the same this reflects
an intrinsic ambiguity.
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On the theoretical side the spectrum represents the obvious challenge for attempts to
obtain an analytic control of the gauge theory. (This is also of indirect phenomenological
importance since much of the difficulty in obtaining analytic control of the long distance
physics of QCD arises from the non-perturbative physics of the underlying gauge theory.)
To use the glueball spectrum as a test of theoretical approaches it is important to have a
substantial number of states for a variety of spins J , parities P and charge conjugations
C, with excited as well as ground states. Many of these states will be quite heavy and
calculating their masses on the lattice is more challenging. Moreover here we need accu-
rate mass estimates, since the errors cannot be hidden within the uncertainty associated
with importing a physical ‘GeV’ scale. Such calculations are still open to considerable
improvement and the purpose of the present paper is to take some further steps in that
direction.

The first step is to try to improve the reliability of our calculation of lattice masses.
Since the usual way to calculate masses on the lattice is from the time decay of correlators
of lattice operators, we use a large basis of operators so as to decrease the probability that
we miss intermediate states in the spectrum. To improve our extrapolation of these masses
to the continuum limit we perform calculations over a wide range of lattice spacings, a,
down to a

√
σ ∼ 0.10 where σ is the confining string tension (which we also calculate).

We also perform a finite volume comparison at one of our smaller lattice spacings so as to
identify any finite volume corrections to our calculations. The calculations at the smallest
values of a are of course the most important, and here one needs to be concerned about
the ergodicity of the Monte Carlo and in particular about the possible freezing of the
fields into sectors of unchanging topological charge Q. To investigate this we calculate the
decorrelation of Q for all our values of a. In the process we need to demonstrate that our
method of calculating Q is reliable and this also allows us to provide a precise estimate of
the continuum topological susceptibility χt.

The glueball states that we calculate will belong to the representations R of the sub-
group of rotations that leave the cubic lattice invariant. That is to say, they are labelled
by RPC rather than the continuum JPC . Since one knows how the 2J + 1 dimensional
vector space associated with a glueball of spin J is partitioned amongst the various cubic
representations R, and since these 2J + 1 states should be nearly degenerate at small a,
one can attempt to identify the value of J through the observation of the appropriate near-
degeneracies. This is limited by the accuracy of our calculation of enough excited states
as well as the ground states but we are still able to identify J for a substantial number
of states. It is however worth emphasising that if one wants to compare the predicted
spectrum of a theoretical approach or model to our lattice data, it may make sense to
convert the predictions from those for JPC to those for RPC . This is simple to do using
the conversion that we will present later in this paper.

Our paper is as follows. In the next section we give a brief overview of our lattice
setup and how we calculate energies. We then move on to present our calculations of the
confining string tension σ which we shall use as our scale for the calculated glueball masses
in our extrapolation of the latter to the continuum limit. We then turn to the calculation
of the glueball masses mG on our cubic lattices. Here we discuss the representations of
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the cubic group and present the relation between these and the continuum rotation group.
We also provide a detailed discussion and check of finite volume effects. In the following
section we present our extrapolations to the continuum limit of the dimensionless ratios
mG/

√
σ and the conversion of the masses into ‘GeV’ units. Where possible we also identify

the continuum spin J of the states. We follow this section with a comparison of our results
to those of some of the most comprehensive earlier spectrum calculations. We then return
to the issue of the freezing of the topological charge at the smallest lattice spacings. We
calculate Q on large ensembles of lattice fields, to check for ergodicity, and as a byproduct
obtain a value for the topological susceptibility in the continuum limit. We then turn to
pinpointing the ways in which our calculations need to be improved. We summarise our
findings in the concluding section.

2 Calculating on a lattice

Our lattice setup is entirely standard. We work on hypercubic lattices of size L3
sLt with

lattice spacing a and with periodic boundary conditions on the fields. Our fields are SU(3)
matrices, Ul, assigned to the links l of the lattice, The Euclidean path integral is

Z =
∫
DU exp{−βS[U ]}, (2.1)

where DU is the Haar measure and we use the standard plaquette action,

βS = β
∑
p

{
1− 1

3ReTrUp
}

; β = 6
g2 . (2.2)

Here Up is the ordered product of link matrices around the plaquette p. We write β = 6/g2,
where g2 is the bare coupling and this provides a definition of the running coupling on the
length scale a. Since the theory is asymptotically free g2 → 0 and hence β →∞ as a→ 0.
Monte Carlo calculations are performed using a mixture of standard Cabibbo-Marinari
heat bath and over-relaxation sweeps through the lattice in the ratio 1:4. We typically
perform 2 × 106 sweeps at each value of β at each lattice size, and we typically calculate
correlators every 25 sweeps.

We calculate masses M and energies E from the exponential decay of appropriate
correlation functions. For example, the energy Egs of the lightest state with the quantum
numbers of the operator φ is given by

C(t = ant) = 〈φ†(t)φ(0)〉 =
∑
n

|〈vac|φ†|n〉|2e−Ent t→∞∝ e−Egsant . (2.3)

These masses and energies are obtained in lattice units, i.e. as aEgs, and are relative to
the vacuum once Lt is large enough, so that the vacuum energy is zero. If φ has the
quantum numbers of the vacuum then the lightest state of interest is the first excited state
above the vacuum. In this case it can be convenient to use the vacuum-subtracted operator
φ− 〈φ〉, which will remove the contribution of the vacuum in eq. (2.3), so that the lightest
non-trivial state appears as the leading term in the expansion of states.
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The accuracy of such a calculation of aEgs is constrained by the fact that the statistical
errors are roughly independent of t (for pure gauge theories) while the desired ‘signal’ is
decreasing exponentially with t. So if the overlap of the desired state onto our basis is
small, the relevant correlator will disappear into the statistical ‘noise’ before we get to
large enough t for the correlator to be dominated by the simple exponential from which we
can extract the ground state energy. Similarly the correlator of a more massive state will
disappear into the ‘noise’ at smaller t = ant and this may make ambiguous the judgement
of whether it is dominated by a single exponential. All this may provide an important
source of systematic error.

The glueball masses calculated using eq. (2.3) are in lattice units, i.e. aM , and to
remove this factor of a we can take a ratio of masses or energies. For this purpose we
simultaneously calculate the confining string tension, a2σ, and form the dimensionless
ratio aM/a

√
σ = M/

√
σ from which the lattice scale has disappeared. The leading lattice

corrections to such a ratio are O(a2) so we extrapolate to the continuum limit using

M√
σ

∣∣∣∣
a

= M√
σ

∣∣∣∣
a=0

+ c1a
2σ + c2(a2σ)2 + . . . (2.4)

We will usually only need the leading correction. In reality the coefficients ci are power
series in g2 but this dependence on a is too weak (logarithmic) to be visible in our data,
so we follow common practice in treating the ci as constants.

The values of β we use are listed in table 1. The lattice sizes next to these β values are
the ones we use for our string tension and glueball mass calculations. The lattices listed
on the right are used for calculating topology and also, in some cases, to check for finite
volume corrections. We also show the average plaquette at each value of β as well as the
string tension (see section 3) and the mass gap (see section 4).

3 String tension

We calculate the string tension by calculating the ground state energy E(l) of a flux tube
of length l that closes on itself by winding once around a spatial torus of size l. We
use eq. (2.3) where the operator φ is the product of SU(3) link matrices taken around a
non-contractible closed path that winds once around the spatial torus. The simplest such
operator is the spatial Polyakov loop

φ(nt) = lp(nt) =
∑
ny ,nz

Tr


Lx∏
nx=1

Ux(nx, ny, nz, nt)

 (3.1)

where we take the product of the link matrices in the x-direction around the x-torus of
length l = aLx. Here (x, y, z, t) = (anx, any, anz, ant), and the sum over ny and nz produces
an operator and hence a state with zero transverse momentum, py = pz = 0. Since φ is
clearly invariant under translations in x, the state also possesses px = 0. We do the same
for loops over the y and z spatial tori and average over all three. We do the same replacing
the link matrices by blocked link matrices, which is the essential step in obtaining a useful
overlap onto the ground state. This provides a vector space of operators on which we
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perform a variational calculation to extract the operator that is our best approximation to
the ground state wavefunctional. From the correlator of this operator we extract a value
for E(l).

We extract the string tension σ from E(l) using the ‘Nambu-Goto’ formula

E(l) NG= σl

(
1− 2π

3σl2
)1/2

, (3.2)

which arises from the light-cone quantisation of the bosonic string and is known to provide
an excellent approximation to the lattice calculations [7] for reasons that have now become
well understood. (See for example [8, 9].)

To extract the ground state energy of the flux tube using eq. (2.3) we need to be
confident that we have gone to large enough t = nt that the correlator is dominated by a
single exponential within errors, and moreover that these errors are small enough for this
observation to be significant. A useful way to test for a single exponential is to extract an
effective energy

aEeff(nt) = − ln C(nt)
C(nt − 1) . (3.3)

If a single exponential dominates C(nt) for nt ≥ ñt, then Eeff(nt) should become indepen-
dent of nt for nt ≥ ñt, and in that case Eeff(ñt) provides an estimate of the energy E(l).
(In practice we extract our E from a fit over a range of nt.) That is to say, we search
for a ‘plateau’ in the values of Eeff(nt) against nt. An important point is that as long
as our operators are entirely spacelike, the reflection positivity of our action ensures that
Eeff(nt) ≥ E(l) for any nt, up to statistical errors, and indeed that the value of Eeff(nt)
must be monotonically decreasing with increasing nt.

In figure 1 we plot the values of aEeff(t) for each of our β values together with the
±1σ error band for our best estimate of the energy E(l). At our smallest value of β, a
and hence aE are large and the exponential disappears into the statistical errors before
we see an unambiguous effective energy plateau — hence the very wide error band around
our estimate of E(l). At other values of β there is little ambiguity and the error bands are
correspondingly narrow. We also note that the asymptotic exponential typically begins at
t = a at smaller β and at t = 2a at larger β. Since we expect that our space of multiply
blocked operators will have an overlap onto the ground state that is weakly dependent on
a(β), this is as expected. It is also the reason that for our lowest value of β, where no
effective energy plateau apears, we are confident in choosing a value of E that encompasses,
within errors, the values of aEeff(t) for t = a and t = 2a.

4 Glueball spectrum

We calculate glueball masses from Euclidean correlators as in eq. (2.3). Since only states |n〉
such that 〈vac|φ†|n〉 6= 0 will contribute to the correlator, we can restrict the contributing
states to have particular quantum numbers by choosing operators φ with those quantum
numbers. Since the error to signal ratio of such a correlator increases exponentially in
t = ant, we can only hope to identify an effective mass plateau using eq. (3.3) if the overlap
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of the state onto the operator φ is large enough. So in order to avoid missing intermediate
states in the spectrum one needs a sufficiently large basis of operators.

In this paper we employ a basis of 27 different operators. The operators are contractible
closed loops of links, and we take their traces. We include all loops of length 4 and length
6 as well as fifteen of length 8 and eight of length 10, with all their rotations and parity
inverses. In addition to constructing the loops out of elementary links we also construct
them out of link matrices that have been ‘blocked’ [10, 11] using the algorithm described
for example in [12]. The length of a blocked link is 2nba, where nb is the blocking level, and
we use all blocked link matrices up to a maximum level that depends on the lattice size and
is 6 for our largest 384 lattice which corresponds to blocked links of length 32a. Our loops
are of length 4, 6, 8, 10 in units of the blocked links being employed in their construction.

As we increase β, and hence decrease a(β), we increase the spatial lattice size Ls
so that the lattice volume is approximately constant in physical units. We choose for our
physical units our calculated values of the string tension, σ, so that we keep a

√
σLs roughly

constant. Since our blocked operators cover all length scales on such a lattice, we expect
that their overlap onto the desired glueball states will only change weakly with β and this
indeed appears to be the case.

We calculate all the cross-correlators, Cij(t = ant) = 〈φ†i (t)φj(0)〉, of all the operators
φi, φj with given quantum numbers (see below) and this means that we can calculate the
correlator of any linear combination in the vector space generated by the {φi} and so we
can perform a variational calculation to find the linear combination Φ0 that minimises the
energy (and hence maximises exp{−Et}). We then look for an effective mass plateau in
the correlator of Φ0 to provide our best estimate of the ground state energy. We now take
the subspace of {φi} that is orthogonal to Φ0 and repeat the variational procedure to find
the linear combination Φ1 that minimises the energy in this subspace and hence provides,
from its correlator, our best estimate of the mass of the first excited state. And so on.
Note that one needs to ensure that the φi one keeps are linearly independent so as to avoid
singularities in the standard variational procedure.

The number of our operators φi in a given quantum number sector can be very large
(up to nearly 800) and we sometimes do not use all of our operators where doing so would
make the analysis very unwieldy. In a few quantum number sectors the number is not
large, but in any case the minimum is 30 operators, which should be large enough for the
lightest couple of states, which is all we need in those cases.

In this section we start by describing the rotational quantum numbers of our lattice
states and how these relate to the continuum spins. We then address the important issue
of corrections due to the finite volume of our lattice. Finally we provide our results for the
glueball spectrum with some demonstrations of how reliable are our mass estimates.

4.1 Quantum numbers

In the continuum theory the relevant quantum numbers of glueballs are their spin J , parity
P and their sign under charge conjugation, C. (They also have momentum but since we
are interested in the masses we choose to calculate states with zero momentum.)
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On a cubic lattice the rotational symmetry is restricted to the octahedral subgroup of
the full rotation group and there are only five irreducible representations which we shall
label generically as R. These five representations are often labelled as A1, A2, E, T1, T2 or
A1, A2, E, T1, T2. The dimensions of these are 1, 1, 2, 3, 3 respectively. The states that
we calculate will belong to one of these representations and we will generically label them
by RPC or more specifically as APC1 etc. As a(β) → 0 the glueball size diverges in lattice
units and we recover the full rotational invariance where the states fall into the 2J + 1
multiplets labelled by J . Thus the lattice states can also be labelled by the continuum
spin J to which they tend continuously as a(β) → 0. (Ignoring ambiguities due to level
crossing, which should be appropriate once we are close enough to the continuum limit.)
Of course at non-zero a the energy degeneracy will be broken except for that part of it
that is enforced by the dimensionality of the lattice representations.

The way that the states labelled by the spin J of the full rotation group are partitioned
amongst the representations of the subgroup of the symmetry rotations of the cube is well-
known (see for example section 9.4 and table 9.4 of [13]) and we reproduce the result for
the lowest spins in table 2. One can readily check that for each J the total number of
states in the corresponding cubic representations, taking into account their degeneracies,
is indeed 2J + 1. Where these states fall into different cubic representations they will not
be degenerate, but one expects that the breaking of the degeneracy will be small once a(β)
is small. Thus one can try to identify the spin J of a lattice state by seeing if there are a
set of near-degenerate states in the corresponding cubic represntations listed in table 2. In
practice this works well for the lightest states, but breaks down for heavier states where
the spectrum of states becomes sufficiently dense that an apparent near-degeneracy (within
errors) is increasingly likely to be accidental. This method has been used to good effect,
within its limitations, in for example [5], and it is the method we will employ in the
present paper. There also exists a more powerful method which consists in ascertaining
the approximate rotational properties of the states using an appropriate variation of a
Fourier transform. This approach has been used successfully in [6, 16] and more recently
in [14] but requires a dedicated calculation of a kind that is beyong the scope of the present
paper.

4.2 Finite volume corrections

The finite volume dependence of the glueball spectrum has two main components. The first
is due to self-energy corrections that are modified by the periodic boundary conditions [15].
For example when a glueball emits a virtual glueball, one of the loop propagators can
wind around the spatial torus before being reabsorbed. These corrections are typically
exponentially suppressed in mGls wheremG is the mass gap and ls is the spatial periodicity,
and since in our typical calculations mGls ∼ 10 the resulting mass shift will be invisible
within our statistical errors.

The second finite volume influence on the glueball spectrum consists of extra states
whose energy → ∞ as ls → ∞, so that they disappear in the thermodynamic limit, but
can have the same quantum numbers as glueballs and so can mix with the latter and be
mistaken for them in a finite volume. These states are composed of flux tubes that wind
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around a spatial torus, and are generically called torelons. A single flux tube has non-
trivial quantum numbers under a certain centre group transformation under which glueballs
tranform trivially, and hence has zero overlap with contractible glueball operators and so
is irrelevant here. (Although it is of course relevant to calculating the string tension as in
section 3.) The simplest non-trivial such finite volume state will consist of a torelon with
a conjugate torelon closed around the same spatial torus. If the ground state energy of the
torelon is ET , then the minimum energy of such a state will be ET T̄ ∼ 2ET ∼ 2σls and it will
in principle appear as an extra state in our glueball correlator. Such a ‘ditorelon’ state may
be a bound state or a scattering state. There will be a set of scattering states where each of
the two torelons has an equal and opposite momentum (since our glueball operators have
zero total momentum). One can estimate their energies using the allowed lattice momenta,
e.g. apx = 2πn/Lx, although the actual momenta may have substantial shifts from these
values due to the interactions. (It is only the total momentum of the state that has these
quantised values.) Since the ditorelon states correspond to double trace operators while
our glueball operators are single trace, we expect the overlap of the ditorelons onto our
glueball operator basis to have some ‘large-N ’ suppression which may mean that some
of these finite volume states may become invisible in our actual calculations. However it
has long been known that the lightest of these ditorelon states will certainly appear as
the lightest glueball states in the A++

1 and E++ representations once the volume is small
enough. (See e.g. [17].) Since this simplest ditorelon operator is real, invariant under
reflections and also invariant under rotations of π, it will only contribute to the A++

1 and
E++ representations. Nonetheless this poses a potential problem since the glueball states
that are lightest and hence of greatest phenomenological interest are the JPC = 0++, 2++

ground states and these fall into the A++
1 and E++ representations respectively. So it will

be important to make sure that the spatial volume is large enough for the ditorelon not to
influence these mass estimates. For the JPC = 2++ state 2 of the 2J+1 = 5 components are
in the E++ and 3 are in the T++

2 and since the ditorelon does not contribute to the latter
this provides a useful crosscheck. However the 0++ only appears in the A++

1 . Since the
ditorelon mass is ∝ ls one can make the spatial volume large enough for the ditorelon not
to influence these important mass estimates. Then by comparing calculations on different
volumes we can identify the location of any such ditorelon states in the glueball spectra.
If we keep ls roughly constant in units of σ as we vary β we can keep such a state in the
same location in the ordered spectrum and so obtain reliable continuum limits of the other
‘true’ glueballs.

In addition to the ditorelon one can form a tritorelon composed of three winding flux
tubes. In SU(3) this has trivial centre symmetry quantum numbers and so can mix with
local glueball states. The operator has an imaginary part and so it can contribute to some
C = − states. However its energy is ∼ 3σls and so it will not influence the lightest states
given that we will work on lattices where the ditorelons are much heavier than the lightest
states. Moreover this is a triple trace operator whose overlap onto the single trace operators
we use in our glueball calculations is likely to be small enough that these states make no
impact on our spectrum.
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We also note that the above ditorelon is the simplest of a larger family of ditorelon
states. A winding flux tube has a spectrum of excitations [7] and one can have a ditorelon
consisting of an excited torelon as well as a ground state (conjugate) torelon, or indeed
both torelons being excited. Such states may contribute to various RPC representations
but will be heavier and will be less easy to identify since their volume dependence is much
weaker at intermediate volumes. It is however not clear that they will have a large enough
overlap onto our glueball operator basis to be relevant and we do not attempt to identify
them explicitly in the present work.

To establish some explicit control over these finite volume ambiguities we have per-
formed calculations on three different volumes at β = 6.235. This corresponds to one of
our smaller values of a(β) and that enables us to obtain reasonably reliable mass estimates
for our heavier states as well as our lightest states. In addition to the 26326 lattice, which
corresponds to the standard physical volume that we will use in our glueball calculations
below, we also perform calculations on a smaller 18326 lattice and a larger 34326 lattice.
In this comparison we will normally extract the masses from the same range of nt in the
correlators on these three lattices so as to minimise enhancing the statistical fluctuations
betweeen the calculations. This means that some of these masses may differ slightly from
those presented in the following section.

We begin with the P,C = +,+ sector of states, our mass estimates being listed in
table 3. The states are ordered by the effective mass aMeff(t) of the corresponding correlator
at t = a, which will normally, but not always, correspond to being ordered in the value
of the mass taken from the effective mass ‘plateau’. To make the comparison clearer we
have left gaps where a state on a smaller lattice has no partners on the larger lattices.
At the bottom of the table is listed the energy of a pair of non-interacting torelons on
each lattice; presumably the mass of a ditorelon would be close to this. In the A++

1 sector
of the 18326 lattice we clearly see a state at aM ' 0.70 which does not appear in the
spectra of the larger lattices. This has a mass close to twice that of the torelon and is
undoubtedly a ditorelon. Similarly it is clear that the spectrum on the 26326 lattice has
an extra state: between the very well defined first excited state at aM ' 0.86 and the well
defined states at aM ' 1.23 and aM ' 1.33 there are 4 states on the 26326 lattice but
only 3 states on the 34326 lattice. Which of these states is the extra one is ambiguous
since all 4 states have quite similar masses. We note that the third of these four states on
the 26326 lattice has a lower mass, aM ' 1.054, than the preceeding two; this is because
it has a smaller overlap so that there is a larger gap between the value of the mass and
the value of aMeff(t = a). We have chosen this to be the extra state, mainly because we
expect the ditorelon to have a reduced overlap onto the single trace operators of our basis.
However from a purely matching point of view, we could equally well have chosen the next
higher state at aM ' 1.19. In both cases this extra state has a mass close to twice that
of that lattice’s torelon, as expected. In the E representation on the 18326 lattice it is the
ground state with aM ' 0.66 that is definitely an extra state and hence the candidate for a
ditorelon, and on the 26326 lattice it is the excited state with aM ' 1.206 that appears to
be the extra state and hence a ditorelon. If we now compare the other states from the 34326
and 26326 lattices we see that they agree well with each other: there are no differences
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that are greater than 2 standard deviations, except 2.6σ for the A2 ground state. More
surprisingly, the same is true for most (but not all) states on the small 18326 lattice.

We perform a similar comparison for the other values of P and C. In table 4 we do
so for the P,C = −,+ sector of states. We see that all the masses on the 26326 and 34326
lattices are within 2σ of each other, with most differences much less than that. So that it
appears that the 26326 lattice is large enough within our statistics. This is not the case
for the 18326 lattice which shows large differences for a number of states. The conclusion
is the same for the P,C = +,− and P,C = −,− sectors of states, as we seefrom table 5
and table 6 respectively.

While we can provide a plausible identification of the ditorelon contribution to the
spectrum, as we have done above, it would be useful to complement that with an alternative
calculation. One way to do this is to include operators that are explicitly ditorelon. We shall
now provide a first limited step in that direction at β = 6.235 where we have performed our
above finite volume comparison. We take operators that are a product of a zero momentum
Polyakov loop times its conjugate. (Note that in so far as the torelons interact with each
other this mometum is not conserved so this operator should couple to ditorelons with
non-zero relative momenta.) We include only the three largest blocking levels since, as we
have checked, it is these that provide essentially the whole of the flux tube ground state
wave function at this value of β. These ditorelon operators should contribute primarily
to the A1++ and E++ representations. Taking into account the fact that the two torelon
operators in the ditorelon can have different blocking levels this means that we have 6
distinct double trace operators in the A1++ representation and 12 in the E++ (since it
has dimension two). Note that to contribute efficiently to other representations we would
need to include Polyakov loop operators with non-trivial quantum numbers, employing
suitable transverse deformations, and with non-zero momenta (equal and opposite so as to
give zero total momentum). This would also give a more complete basis for the A1++ and
E++ representations, but would go well beyond the scope of the present work. In the same
exploratory spirit of this calculation we include only 12 different loops in our glueball basis,
rather than the 27 used in most of our other calculations, and we have lower statistics (by
a factor of two) and we restrict ourselves to the three largest blocking levels. That is to
say, we have 36 and 108 single trace glueball operators for A1++ and E++ respectively.
We perform the calculations on our smaller 18326 lattice as well as on our standard 26326
lattice. We begin by showing in figure 2 the effective mass plots for the lightest three A1++

and E++ states that we obtain on the 18326 lattice using only our ditorelon operators. We
compare these to the lightest three states obtained with two free torelons on the same
lattice. (We also indicate the lightest free tritorelon energy, although its relevance is not
clear given that it should have a reduced overlap onto our ditorelon basis.) In interpreting
this plot one must bear in mind that these ditorelon operators should have a non-trivial
projection onto glueball states, and where these are lighter they will drive the behaviour
of the effective masses at larger t. We begin by noting that the E++ ground state has the
same energy as the free ditorelon suggesting a negligible interaction energy. And it is the
lightest E++ state overall. By contrast the lightest A1++ ditorelon shows a nice plateau
at intermediate t but one which is about 15% below the free ditorelon energy, indicating
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a significant interaction energy in this representation: presumably a genuine bound state.
At larger t the effective energy appears to drift lower, presumably towards the mass of the
lightest A1++ glueball. Finally we remark that while the excited ditorelon states begin
roughly within striking range of the corresponding free ditorelon energies, they appear to
be drifting rapidly lower, presumably driven by their overlaps onto the lighter glueball
states, and there is no evidence that they harbour any bound states. We turn next to
figure 3 where we show effective mass plots for our lightest four A1++ states on the 18326
lattice. We show the results using our basis of 36 single trace operators and also when
this basis is augmented by the 6 ditorelon operators. We see that the ground state and
the third excited state are unaffected by the ditorelon operators; presumably because they
are far enough from the energy of the free ditorelon. In contrast, the overlaps of the first
and second excited states onto the operator basis are both significantly increased when
the ditorelon operators are included. This is consistent with our earlier conclusion that
the first excited state is the extra ditorelon state when compared to the spectra on larger
volumes, but is not so specific. In figure 4 we repeat the plot for the four lightest E++

states, and the picture is very similar. The overlap of the two lightest states is increased by
the inclusion of the ditorelon operators, but the higher states, which are much further in
energy from the free ditorelon energy, are unaffected. Again while this is consistent with our
earlier conclusion that the lightest E++ state is in fact a ditorelon, it is more ambiguous.
The ambiguity is due to the fact that the ditorelon state, if any, already appears in the
spectrum obtained with our single trace glueball operators. That is to say there is a strong
mixing between the single and double trace operators, at least on this smaller volume.
The corresponding spectra obtained on the larger 26326 lattice are shown in figure 5 and
figure 6. The picture here is quite different in two main ways. The first and trivial difference
is that the individual flux tubes are longer and more massive, so that the ditorelon is much
more massive and appears amongst the higher excited states. This should, in principle,
make its identification more difficult. The second and more interesting difference is that
the inclusion of the ditorelon operators appears to lead to an extra state in both the A1++

and E++ representations, i.e. the second excited state when using the ditorelon extended
operator basis, and these states are close in energy to that of a free ditorelon. There thus
appears to be little ambiguity in identifying these as ditorelon states. Since we use the
same single trace basis on the 18326 and 26326 lattices the fact that these states appear
with that basis on the former lattice but not on the latter suggests that the overlap of the
ditorelon onto the conventional glueball basis decreases as its length increases. This means
that the value of Eeff(t = a) will increase relative to the ditorelon energy, so that it will
appear higher in the spectrum and with larger errors. If we make the single trace operator
basis much larger, then the overlap should increase, perhaps sufficiently for the ditorelon
states to reappear as low-lying states in that spectrum. This is indeed what appears to
happen: our finite volume comparison between the 26326 and 34326 lattices used a much
larger basis and this appears to resurrect the ditorelon states in the conventional glueball
spectrum. We can conclude that even though these ditorelon calculations are intended to be
exploratory, they already reveal some usefulness in complementing our earlier comparison
of spectra across different volumes.
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We conclude that the important finite volume effects on a lattice that has the physical
spatial volume of a 263 lattice at β = 6.235 are the extra ditorelon states in the A++

1 and
E++ representation. As we see in table 3 this is probably the 5’th A++

1 state and the
5’th E++ state. We will work on lattices at other values of β which are chosen so as to
be roughly the same physical size (in units of the string tension) and so provided there is
no strong lattice correction to the level ordering, we can assume that the location of the
ditorelons in the spectrum of these extra states is the same. When we come to perform
continuum extrapolations of our lattice masses we shall limit ourselves to the lightest 4
A++

1 states and the lightest 4 E++ states, which means that if our identification of the
ditorelon states in table 3 is correct, then we should not have any contamination from
these ditorelon states in our final results. This is not guaranteed of course: there are
several states close together in the relevant energy range which may enhance mixing and
changes in level ordering on slightly different volumes. Nonetheless, by the same token this
means that our energy estimates of the genuine glueball states should be quite accurate.

4.3 Glueball masses

We calculate a number of the lightest glueball masses for each set of RPC quantum numbers.
Since our mass estimates becomes less reliable as the mass becomes larger, our first task is
to provide some evidence for their reliability. This we do by providing effective mass plots
for all the states to which we will eventually assign a cotinuum spin J , i.e. those states that
are of greatest phenomenological interest. We do so for our β = 6.50 calculation on a 384

lattice, because it has the smallest lattice spacing and so is the closest to the continuum
limit and has the finest resolution of the glueball correlators.

We begin, in figure 7, with the lightest and first excited JPC = 0++, 2++ glueballs.
The 0++ ground state is the lightest of all the glueballs and constitutes the theory’s mass
gap. We show also, as horizontal lines, our best estimates of the various masses. We see
that we have well defined effective mass plateaux in all cases and that these begin from
either t = a or from t = 2a. In the case of the 0++ ground state we see a noticeable
increase in the aMeff(t) at larger values of t, but since we know that the exact value of
aMeff(t) must be monotonically decreasing as t increases this rise must be a statistical
fluctuation. In general the effecive masses do show fluctuations up or down at large t
which is presumably due to the incompleteness of our straightforward error analyses. In
addition for excited states the incompleteness of our variational basis means that our best
operator for an excited state may contain components of lower mass states. When these
components are small, which we try to achieve with our operator basis being large, one will
see the desired effective mass plateau over an intermediate t range followed by a slow drift
at larger t to a secondary plateau (and so on). So sometimes a downward drift at large t
will be real rather than a fluctuation. In any case our interest is in the initial effective mass
plateau. Returning to figure 7 what we see is that in the cases shown the mass estimates
are robust. It is also clear that the T2 and E states that make up the five components of
the J = 2 state are degenerate within errors as we would expect once a(β) is small enough
and the spatial volume is large enough.
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Note that since the states of T1 and T2 come in degenerate triples and those of E in
doublets, we shall average the corresponding correlators to produce single values for the
masses. That is to say, whenever in this paper we refer to a state of one these representations
we are actually referring to an average of the 3 or 2 states that would be exactly degenerate
with infinite statistics. This is what we have done in figure 7 for the E and T2 masses. So
the former state actually represents two states and the latter three giving a total of five as
needed for J = 2.

In figure 8 we display the effective masses of some P,C = −,+ states. The lightest and
first excited 0−+ have well defined plateaux starting at around t = 2a. As do the ground
and first excited 2−+, with a near-degeneracy between the E and T2 components. The
lightest three T−+

1 triplets are heavier and have worse overlaps: for two of the states there
is evidence for a plateau starting near t = 2a but less evidence for the third. We assign
all three to J = 1 (see section 5.3) but with modest confidence for some. In figure 9 we
display the effective masses of some P,C = +,− states. The lightest and first excited 1+−

have well defined plateaux starting at around t = 2a. The 2+− are reasonably convincing.
The near degeneracies needed to identify the J = 3 state are convincing, and the effective
mass plateau is quite plausible. Finally in figure 10 we display the 1−− and 2−− effective
masses and it is clear that here we can only make an estimate by assuming that, as in the
previous states, the plateau starts from t = 2a.

The message here is that our lighter states are robust but that as the mass becomes
higher the extraction of a mass will typically become more ambiguous. In addition we have
seen that for most states the effective mass plateau begins at t = 2a, or even t = a, in this
calculation at β = 6.50. Since our operator basis is designed so that the correlators scale
approximately with the physical mass scale, this implies that for β ≤ 6.0 the effective mass
plateau will usually begin at t = a. Since at our smaller β values the lattice spacing a and
hence the lattice mass aM are considerably larger, an effective mass plateau is harder to
establish except for the lightest states, and in these cases the fact that we can assume the
plateau typically begins from t = a becomes useful.

We list our resulting mass estimates in tables 7 to 13.

5 Continuum limit

We take the masses in tables 7 to 13 and express them as M/
√
σ in units of the string

tension that we have already calculated. It is this dimensionless ratio that we extrapolate to
the continuum limit in section 5.1 using eq. (2.4). However while expressing the continuum
masses in terms of the string tension is theoretically elegant it is not ideal if we are thinking
of phenomenological applications where we want to express masses in GeV units. For this
purpose one typically expresses masses in units of the r0 scale [18] and hence into ‘GeV’
units, as discussed in section 5.2. Of course this still involves some ambiguity because the
SU(3) gauge theory and QCD are two different theories and there can be no single rescaling
that will match their physics. In addition to expressing the masses in physical units we
will obviously want to identify the continuum spins of as many states as possible, which
we do in section 5.3.
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5.1 Continuum mass ratios

We use eq. (2.4) to extrapolate our mass ratios, M/
√
σ, to the continuum limit. We choose

to use just the leading O(a2σ) correction and where necessary we drop masses at the largest
values of β in order to obtain acceptable fits. We list in table 14 the resulting continuum
extrapolations for states with various quantum numbers. Some of the entries in table 14
are starred, indicating particularly poor fits where the χ2 per degree of freedom is greater
than 2.5. How good the fits are is cleary an important issue. This involves not only the χ2

per degree of freedom but also the range fitted. So to provide evidence for the reliability
of these continuum extrapolations we shall show explicitly a number of them below. Since
the most important states are those whose continuum spin we are able to identify, these
are the ones we shall show.

Note that by deliberately limiting ourselves in table 14 to the lightest four A++
1 and

E++ states we expect to exclude from our spectra the finite-volume ditorelon states that
were discussed in section 4.2.

We begin by showing in figure 11 two extrapolations of the very lightest glueball mass,
the A++

1 ground state which has J = 0. One extrapolation keeps just the leading O(a2σ)
correction, while the other includes an additional O(a4σ2) correction. As is well known
this state has a deep dip around β ∼ 5.5 where one has a crossover between the regimes of
weak and strong bare coupling. This dip is a reason for attempting to improve the linear
fit with a higher order correction. However, since our calculations go to quite large β the
continuum limits obtained with these two extrapolations turn out to be identical within
errors: M0++/

√
σ = 3.405(21) and 3.391(23) respectively. We shall employ the first value,

primarily because it makes no difference, but also because the strong to weak coupling
transition involves a change in the functional form of the expansion in β, and there is no
guarantee that simply including a higher order term derived in weak-coupling is the right
way to parametrise it.

In figure 12 we display the continuum extrapolations of the lightest four A++
1 states.

The lightest two have J = 0; and the very lightest has already been shown in figure 11.
The third state probably belongs to J = 4 (see below) and we have no J assignment for the
fourth state. As we see, the continuum limits appear to be quite unambiguous in all cases.

In figure 13 we move on to the lightest and first excited E++ and T++
2 states. Recall

that since the states in the E come in degenerate pairs (up to fluctuations), we average
the correlators to produce a single mass. Similarly for the triply degenerate T2 (and T1).
So, for example, the lightest T2 mass corresponds to the lightest three states and the first
excited T2 mass corresponds to the next three states. This labelling of the states is used
throughout the paper. Returning to figure 13 we see that for these states, which we shall
see below correspond to J = 2, there is remarkably little lattice dependence over our whole
range of β, leading to continuum extrapolations that are unambiguous.

Some heavier states with P = + and C = + are displayed in figure 14 and figure 15.
Here one sometimes sees a scatter of points indicating worse fits, and this is presumably
due to the increasing uncertainty in extracting the masses of heavier states. Nonetheless
the extrapolations are plausible within the errors quoted in table 14.
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Moving now to states with P = − and C = +. The lightest two A−+
1 states plotted

in figure 16 show small O(a2) corrections and are simple to extrapolate to the continuum.
The lightest two E−+ and T−+

2 states, plotted in figure 17, also show small corrections and
hence easy extrapolations. In figure 18 we plot the lightest three T−+

1 states (each triply
degenerate) which have very similar masses.

Turning to the C = − states, we plot in figures 19, 20, 21 and 22 a number of states
with P = +. Those in the first three figures have well defined extrapolations, but the
heaviest states in the last figure are increasingly uncertain. Some states with P = − are
shown in figures 23, 24 and while the extrapolations of the E−− and T−−1 ground states
are unambiguous, that of the T−−2 ground state is only plausible.

5.2 Physical units

We have used the string tension as the energy scale for our continuum extrapolation of the
glueball masses both because it is a quantity that is of fundamental dynamical significance
in the theory and because one can calculate it very accurately in our lattice calculation,
as described in section 3. However for phenomenological applications one would like to
present the spectrum in ‘GeV’ units. Strictly speaking this is of course not possible: the
pure gauge theory and QCD, with its various quark masses at their physical values, are two
different theories. Nonetheless phenomena such as the OZI rule and lattice calculations
showing that SU(3) is ‘close to’ SU(∞), both for the pure gauge theory [19] and also when
quarks are added [20], motivates attempting a translation into GeV units, something which
has traditionally been done in past lattice calculations.

One possibility is to use the QCD value for the string tension σ. Since the QCD
string will contain virtual qq̄ pairs — which eventually cause it to break — this is not
unambiguous. For a rough estimate one might look to the long-distance linearly rising piece
of the potential describing heavy quarkonia, but since the dynamics of these heavy states
is primarily determined by the interactions at short distances this is not very constraining.
The traditional approach is to take the slope of the observed Regge trajectories and to use
a simple asymptotic rotating string model, and this gives something like

√
σ ∼ 440MeV.

How good this interpretation is for the relatively low J states that in practice determine
these Regge trajectories is of course uncertain.

An alternative scale that has been widely used is to determine the distance r at which
the slope of the static (heavy) quark potential, the force F (r), has some value. For example
r2F (r)|r=r0 = 1.65 determines the scale r0 [18] and there are arguments that this should
be relatively insensitive to the inclusion of quarks. An analysis of various lattice QCD
calculations with at least 3 light quarks leads to the estimate [21]

r0 = 0.472(5) fm = 1
418(5)MeV . (5.1)

We have not attempted to calculate r0/a in our calculations but there are calculations
covering our range of β in [22, 23] which provide interpolating formulae for r0/a|β . We
have used these formulae to interpolate to our values of β and have extrapolated the
resulting values of r0

√
σ to the continuum limit. We find good fits which agree within
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errors and give us
√
σ = 1.160(6)

r0
= 485(6)MeV (5.2)

using the value for r0 in eq. (5.1). Using this scale we can convert the continuum mass
ratios in table 14 to GeV units and this results in the masses listed in table 15.

5.3 Continuum glueball spins

In the continuum theory a glueball transforms according to an irreducible representation
of the (proper) rotation group SO(3) and so will possess some continuum spin J , and it
will be part of a set of 2J+1 degenerate states. All such states will in principle be included
in the set of states we have obtained by extrapolating our lattice calculations, albeit with
the obvious caveats arising from the limitations of our basis, our statistics etc. However
our calculated states are all labelled by the irreducible representations A1, A2, E, T1, T2 of
the octahedral subgroup O of SO(3), so we need to map back from these to the multiplets
corresponding to a given J . The mapping can be readily derived (see section 9.4 of [13]),
and is summarised for the lowest values of J in table 2. (There is a simple relation
allowing one to calculate the mapping for any J once one has the mappings for J ≤ 5, as
explained in section 9.4 of [13]). Taking into account the triple degeneracy of the T1 and
T2 representations, and the double degeneracy of E, we can see that the sum of states is
indeed 2J + 1 in each case, as it should be. We have, optimistically included the mapping
up to J = 8 although, as we will see, we are not able to calculate masses beyond J = 4.

In a calculation with infinite statistics identifying states of spin J from our continuum
calculations would be unambiguous: we would simply search for 2J + 1 degenerate states
located in the towers of states in each of the appropriate cubic representations listed in
table 2. In practice, with finite statistical and systematic errors and with the energy gaps
between neighbouring states in each tower decreasing with increasing energy, this strategy
has severe limitations. An alternative approach would be to exploit the fact that even
on a cubic lattice the full SO(3) rotational invariance becomes a better approximation on
physical length scales as a → 0. Once one calculates the variationally selected glueball
wave-functional at each β one can analyse its approximate rotational properties so as to
determine the probable continuum spin and see if it approaches the corresponding contin-
uum angular wave-function as a(β) decreases. A pioneering calculation of this type [6, 16]
in D = 3 + 1 gauge theories appears promising. Moreover in D = 2 + 1, where the rotation
group is Abelian so that there is no J-dependent degeneracy to exploit, this technique
has proved quite powerful in recent work [14] that builds upon the earlier exploratory
studies [6].

In the present paper we attempt to identify states of various spin J using the decom-
position in table 2 applied to our results in table 14. The arguments will be as follows,
leading to the identifications presented in table 16. We will also find it useful to refer to
the spectra obtained at various values of a, on the assumption that lattice corrections are
small, as appears to be the case for most states.

We begin with the P,C = +,+ sector of states. First we note that the lightest two
masses in RPC = A++

1 are very much lighter (as always, compared to errors) than any
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states in other R++. So these are, unambiguously, the ground and first excited JPC = 0++

states. The lightest two E++ states (each doubly degenerate) are nearly degenerate with
the lightest two T++

2 states (each triply degenerate) but not with any other states (by a
large margin). Moreover this near-degeneracy is the case at all values of β as we see in
figure 13. So these are unambiguously, the ground and first excited JPC = 2++ states.
One might wonder if the lightest T++

1 state in table 14 is J = 1? We note however that
it is essentially degenerate with the first excited T++

1 and also with the lightest A++
2 and

with either the second ot third excited T++
1 state, which are nearly degenerate. In addition

the second excited A++
1 and E++ have similar masses. This suggests that we have a 3++

ground state and a 4++ ground state as in table 16, which happen to have very similar
masses. If we look at the states as a function of β, with the 3++ in figure 14 and the 4++

in figure 15, then the assignments look plausible, particularly in the former case. However
it is clear that these choices are no more than plausible, because all the states shown in
figure 14 and figure 15 are very close in mass. An alternative interpretation could be that
the lightest T++

1 is J = 1 and that the remaining states listed above make up the J = 6++

ground state. However this would mean that the J = 6 ground state is lighter than the
J = 4 ground state, which appears less likely to us. Hence our choice. However this
discussion illustrates the limitations of our approach.

We now turn to the P,C = −,+ sector of states. The lightest two A−+
1 states have no

partners in other representations and so are unambiguously the ground and first excited
0−+ states. The lightest two E−+ states are nearly degenerate with the lightest two T−+

2
states but not with any other states, so it is unambiguous that they are the ground and
first excited 2−+ states. Again this is reinforced by noting the near-degeneracy at all values
of β as shown in figure 13. The lightest three T−+

1 states (each triply degenerate) have
no obvious partners in other representations, so we have labelled all of them as being 1−+

states. We do so with some unease: why the apparent degeneracy of these three states?
(See also figure 18.) Perhaps only one is truly 1−+ and the other two are nearly degenerate
because they appear together as components of a higher spin state? Unfortunately we have
no plausible partners in other representations to realise this suggestion.

In the P,C = +,− sector of states the lightest glueball is the T+−
1 and it has no

partners elsewhere: hence it is unambigously the 1+− ground state. The second excited
T+−

1 has no partners elsewhere so we are confident that it is the first excited 1+− glueball.
Both their continuum limits are robust as we see from figure 20. The A+−

2 ground state is
nearly degenerate with the T+−

2 ground state and with the first excited T+−
1 , with no nearby

states elsewhere. And, as we see in figure 21, this is so at all β. Hence we are confident that
this is the 3+− ground state. There appears to be little ambiguity in identifying the 3+−

ground state with the A+−
2 and T+−

2 ground states and the first excited T+−
1 , since these

states are not very heavy and it is clear that there are no partner states elsewhere. We
further note that the ground state E+− and the first excited T+−

2 are nearly degenerate and
so we assign them to the 2+− ground state. This is also the case throughout our range of
β as we see in figure 19. However the mass and errors are large, and there are other states
with masses about 2σ away, so the assignment has some uncertainty. However looking
at the corresponding spectra at β = 6.50, 6.338, 6.235 does increases the evidence for no
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partner states elsewhere. Finally we can speculate that the A+−
1 ground state partners

the first excited E+−, the second excited T+−
2 and the third excited T+−

1 to form the 4+−

ground state. This claim is slightly weakened by what we observe in the spectra at smaller
β, as shown in figure 22 and is somewhat flimsy.

Finally, in the P,C = −,− sector the states are all heavy making it difficult to calculate
much of the spectrum with sufficient accuracy to be able to search for near-degeneracies.
The lightest three states are the E−−, T−−1 and T−−2 ground states and there are no
potential partners to these. Given the possibilies listed in table 2, there is no ambiguity
in assigning the E−− and T−−2 ground states to give the 2−− ground state, and the T−−1
ground state to be the 1−− ground state.

Having made these identifications we average the masses of the states in table 14
that correspond to a state of given JPC , taking some account of any splittings between the
masses in the different cubic representations. This leads to the masses listed in table 17, for
a number of continuum states with various values of JPC . Where we have some hesitation
about the spin assignment, as discussed above, we qualify the value with a single star. Two
stars indicate a speculation.

Our predictions for the glueball masses are given in terms of the string tension. If
one wishes one may express the masses in units of the mass gap, the mass of the lightest
0++ glueball, simply by multiplying the various mass ratios by the inverse of m0++/

√
σ.

Since many of these states may be of phenomenological interest it is useful to provide an
estimate in physical GeV units and this we do in table 18 using the value of

√
σ estimated

in section 5.2.

6 Comparisons

It is clearly useful to compare our calculations to earlier ones. Since the number of these
is too large to attempt a comprehensive comparison, we shall choose a few representative
calculations (within which one may find references to other calculations).

One of the earlier realistic attempts to calculate the ground states of all the repre-
sentations of the cubic group was in [1], and this was extended to a smaller value of a(β)
in [3]. The values for the masses of the states of greatest phenomenological interest, i.e.
those that have masses < 3 GeV, are consistent with ours (within two standard deviations)
albeit with statistical errors at least ten times larger than ours. The point here is that the
approximate masses of these states, and their level ordering, have been established for a
very long time.

When one reduces the statistical errors, one also needs to reduce the systematic errors
so that they do not become the dominant error. An important example is the need to
improve the extrapolation to the continuum limit: in [1] the mass ratios were consistent
within errors with being independent of β, so that a constant extrapolation was justified,
but with smaller errors a variation with β becomes visible and one needs to include at least
an O(a2σ) correction. One also needs to go to smaller values of a(β) to better control the
continuum extrapolation, as for example in [3].
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Another systematic error arises in the calculation of heavier glueballs. One needs the
mass in lattice units, aM , to be not too large if one is to observe some kind of effective mass
plateau in the correlation function. One way to achieve this is to go to small enough a(β).
(At the same time reaping benefits in the continuum extrapolation.) An alternative is to
note that it is the temporal lattice spacing at that appears in the correlator, so if one works
on lattices where the spatial, as, and temporal lattice spacings differ with at � as one can
achieve modest values for atM even if M is large, while working on L3

sLt lattices with
Ls � Lt which are of a manageable size. This technique proved invaluable in some of the
earliest calculations of the lightest scalar and tensor glueballs [24] in providing evidence for
effective mass plateaux. It has been used subsequently to good effect in a comprehensive
calculation of the mass spectrum that includes many heavy glueball states [4, 5]. One
weakness with such calculations is that they typically involve larger spatial lattice spacings
as than those on symmetric lattices, and hence risk larger sytematic errors in the continuum
extrapolation where the leading correction is O(a2

s). So, for example, the smallest value of
as in [4, 5] is asMg ' 3atMg ' 0.84, where Mg is the mass gap, whereas the calculations in
the present paper go down to asMg ' 0.35. A second issue is that it is difficult to estimate
the corrections to the inputted tree level value of as/at, and the introduction of a physical
scale such as r0 or

√
σ will depend on this ratio. While the resulting uncertainty may be

only at the (few) percent level, this becomes significant in precise calculations.
A further important systematic error arises once one is more ambitious and wishes

to calculate some significant number of excited states in each RPC sector. The problem
arises from the finite size of one’s operator basis: one will completely miss states which do
not have a substantial overlap onto the basis. Such missing states can lead to problems in
a comparison with theoretical predictions and in the identification of the near degenerate
multiplets associated with a given continuum spin J . Here the best one can do is to make
the operator basis as large as practical, as we have done in the present work.

If one is interested in the spin J that a lattice state extrapolates to, the identification
of the 2J + 1 nearly degenerate states in the appropriate cubic representations becomes
rapidly problematic as the mass increases. Typically the density of states increases with
increasing mass, and with finite errors that also increase with the mass, any apparent
degeneracies are likely to be accidental. An alternative approach to determining J is to
use sets of loop operators that are approximate rotations of each other by angles that are
some fraction of π/2. Since the important operators have an extension that is constant
in physical units, the approximate rotation invariance becomes better as a(β) deacreases,
and one can resolve higher spins. This method has been used to good effect in [6] where
the spins of an extensive set of states in various RPC representations were determined.

We now turn to a comparison with the specific results of [5, 6]. In our calculations
we have a large basis of 27 loops, with each typically constructed out of 5 or 6 different
levels of blocked links, which is a considerably larger basis of operators than that used in
the earlier calculations we have discussed above. This has enabled us to calculate more
excited states within each quantum number sector. Having these extra states also helps in
the identification of their continuum J using the 2J + 1 degeneracy partitioned amongst
the lattice states as in table 2. In practice we are able to so identify more states than
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in [5]. However apart from that we do broadly agree: for the 12 states listed in table XXI
of [5] we agree with the spin assignment and mass (within errors) of 10 and only have
serious doubts about 2 of the heaviest states, the JPC = 0+− and the 3−−. The former
state is based on the very heavy A1+− state which is quite possibly nearly degenerate
with excited E+−, T1+− and T2+− states making it 4+− rather than 0+−. The claimed
3−− is based on the A2−− ground state and we do not see an excited T1+− with a mass
that is plausibly degenerate. But only better calculations will be able to tell. As for
the lightest phenomologically interesting states, our masses agree remarkably well except
for a significant discrepancy for the 0++ ground state. (Which is slightly increased by
the fact that the scale used in [5] is r−1

0 = 410MeV while we use a later determination,
r−1

0 = 418MeV.) Since this state has large lattice spacing corrections, we put this down to
our better control of the O(a2

s) corrections in taking the continuum limit.
The very different method used in [6] for determining the spin J of lattice states is more

powerful and allows more states to be categorised than we are able to do. This despite our
much higher statistics and larger range of β which lead to much smaller statistical errors
as well as a better control of the continuum limit. Within these large errors we are in
agreement for most spins and masses, as we see by comparing our table 14 to tables 7.10,
7.11 in [6]. There are some differences: in the PC = ++ sector our candidate for the J = 4
ground state seems too light; in the PC = −+ sector two of our three nearly degenerate
T1 states might be part of the J = 5 ground state according to [6]. We note that with this
method one could identify states with spin up to J = 6 in the now rather old calculations
of [6], something we could not hope to do despite our statistical errors being a factor of 3
or 4 smaller and our range of a(β) being significantly larger.

7 Topological fluctuations

An interesting property of Euclidean non-Abelian gauge fields is that they possess non-
trivial topological properties, characterised by a topological charge Q which is integer-
valued in a space-time volume with periodic boundary conditions. This charge can be
expressed as the integral over Euclidean space-time of a topological charge density, Q(x),
where

Q(x) = 1
32π2 εµνρσTr{Fµν(x)Fρσ(x)}. (7.1)

Recalling that the plaquette matrix Uµν(x) = 1+a2Fµν(x)+ . . . . on smooth fields, one can
write a lattice topological charge density QL(x) as

QL(x) ≡ 1
32π2 εµνρσTr{Uµν(x)Uρσ(x)} = a4Q(x) +O(a6). (7.2)

While this definition is adequate for sufficiently smooth fields, it lacks the explicit reflection
properties of the continuum operator in eq. (7.1), since all the plaquettes Uµν(x) are defined
as forward going in terms of our coordinate basis. So it needs to be extended to include
terms with backward going plaquettes as well, if it is to be used on the ‘rough’ Monte Carlo
generated fields, and so we employ the version of this operator that is antisymmetrised with
respect to forward and backward directions [25].
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The fluctuations of realistic lattice gauge fields affect the observed value of QL(x) in two
important ways. Firstly we note that the fluctuations of QL(x) are related to expectation
value of the composite operator Q2

L(x) whose operator product expansion contains the unit
operator [25]. So these fluctuations are powerlike in β while the average of QL(x) is O(a4)
and hence exponentially suppressed in β. Thus as β increases the fluctuations around
QL(x) and QL =

∑
xQL(x) diverge compared to the physically interesting mean values.

In addition the lattice composite operator also receives a multiplicative renormalisation
Z(β) such that Z(β →∞) = 1 but which at accessible values of β strongly suppresses the
charge [26].

In practice all this means that one cannot extract the topological charge of a typical
lattice gauge field by directly calculating QL =

∑
xQL(x) on that gauge field. However

we note that the fluctuations obscuring the value of Q are ultraviolet, while the physically
relevant topological charge is on physical length scales. Thus if we perform a very limited
local smoothening of the fields to suppress the ultraviolet fluctuations, this should not
affect physics on long distance scales, and the value of QL =

∑
xQL(x) calculated on these

smoothened fields should provide a reliable estimate of Q. Moreover, recalling that the
total topological charge of a gauge field is unchanged under smooth deformations, we can
expect that even under a moderately large amount of continued smoothening the value
of QL will not change, even though QL(x) itself does gradually change. One convenient
way to smoothen the gauge fields is to locally minimise the action. Such a ‘cooling’ of
the original ‘hot’ lattice gauge field [27] involves sweeping through the lattice one link
at a time, precisely like the Monte Carlo except that one chooses the link matrix that
minimises the total action of the plaquettes containing that link matrix. This is a standard
technique that one can find described in more detail in, for example, [28]. An alternative
and attractive smoothing method with purturbatively proven renormalisation properties is
the gradient flow [29–31] which has been shown to be numerically equivalent to cooling [32–
34]. Cooling appears to perform nearly two orders of magnitude faster than the gradient
flow and since we are aiming for large statistics we adopted cooling. After the first couple
of cooling sweeps the fields are already quite smooth, as we shall see below. Since we
are minimising the action and since in the continuum the minimum action field with a
given Q is a multi-instanton field, we expect that under systematic cooling the lattice field
will be driven to become some multi-instanton field, which one can see by calculating the
distribution QL(x) on such a field. Of course, because of the discretisation of space-time
the topological properties of lattice fields are only approximately like those of a continuum
field. One can deform a large instanton by gradually shrinking its non-trivial core and on a
lattice this core can shrink to within a hypercube. At this point what was an instanton has
been transformed into a gauge singularity and the value of Q will now differ from its original
value by one unit. (Equally, one can gradually grow an instanton out of a hypercube.) This
process can occur during cooling but it can equally occur during the course of our Monte
Carlo. In the latter case, it is these changes in Q that allow us to sample all possible values
of Q and hence maintain the ergodicity in Q of our Markov process. As β ↑ the distance
between physical and ultraviolet scales grows and these changes in Q become increasingly
suppressed — in fact more strongly than the usual critical slowing down (see below).
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One of our reasons for studying the topology of our SU(3) gauge fields is to establish
that in our range of β we have not in fact lost ergodicity in the topology Q of the fields.
In the process we shall provide some insights into how reliable is the cooling method for
establishing the topological charge of the lattice gauge fields. As a side-product we will
also provide an accurate calculation of the topological susceptibility, which has been much
studied because of its appearance in sum rules for the lightest pseudoscalars in QCD. For
a more detailed discussion of these issues we refer to, for example, [28].

7.1 Topology on the lattice

Since we calculate the topological charge Q by cooling the lattice gauge fields, it is relevant
to ask how (un)ambiguous is the identification of Q on those cooled fields. (Note that from
now on we will use the labels Q and QL interchangeably unless specified otherwise.) The
answer will depend on the value of β and since the intrinsic ambiguity in defining topology
is a lattice artifact we might expect that any ambiguity is greatest at the smallest values
of β where the lattice spacing is largest. We therefore look at our smallest value of β,
β = 5.6924, an intermediate value, β = 6.0625, and our largest value, β = 6.50. We note
that the final values of Q that we shall quote are those that are obtained after 20 cooling
sweeps.

We begin with β = 5.6924, which we expect to be our ‘worst’ case. In figure 25 we show
the distributions of Q obtained after 4, 8 and 20 cooling sweeps on a total of 96000 8316
lattice gauge fields. We see that after 20 cooling sweeps any ambiguity in identifying Q —
arising from the overlap of the tails between the peaks — is at most at the percent level.
The peaks are shifted away from integer values due to the fact that the typical instanton
size, ρ/a in units of the lattice spacing, is not large at this β. (One can calibrate the shifts
using classical instanton solutions discretised on a lattice.) However, while the value of Q
is well defined after 20 cooling sweeps, it is clearly quite ambiguous after 8 cooling sweeps,
and totally invisible after 4 cooling sweeps.

We turn now to β = 6.0625 where we calculate Q on a total of 40000 14320 lattice
gauge fields. In figure 26 we show the distributions of Q obtained after 4 and 20 cooling
sweeps. It is clear that after 20 cooling sweeps any ambiguity in identifying the value of Q
is totally negligible. More interestingly, the value after only 4 cooling sweeps is reasonably
well defined with only a minor ambiguity. We also note that the peaks have moved closer
to integer values, as should be the case since we expect the instanton sizes to be larger in
lattice units at this larger β.

Finally we show in figure 27 the distributions of Q obtained after 4 and 20 cooling
sweeps on 44000 26338 lattice gauge fields generated at β = 6.50. Now any ambiguity is
completely negligible even after only 4 cooling sweeps.

We see from the above that after 20 cooling sweeps the value of Q is very well defined
over our whole range of β. Now, although it is plausible that the value of Q after 20
cools reflects the value of Q of the original ‘hot’ field configuration, it is worth asking how
well that expectation holds up. The first obvious comment is that the smaller the number
of cooling sweeps, the more convincing is the calculated value of Q. This is because the
cooling is a local process to the same extent as the Monte Carlo heat bath, so a few
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cooling sweeps will deform the original fields only on correspondingly small distance scales.
However one can ask if the fields with a certain value of Q after a very few cooling sweeps
have the same value of Q after 20 cooling sweeps. To address this kind of question better
we have taken a sample of 2750 fields generated at β = 6.50 and measured the value of
Q for 1, 2, 3, 4, 5, 10, 15, . . . , 50 cooling sweeps. In figure 28 we plot the values of Q after
2 and after 20 cooling sweeps. We see that even after only 2 cooling sweeps the values
of Q are peaked around near-integer values with little overlap so that we can assign each
value of Q to an integer, QI , with a high level of confidence. And since 2 cooling sweeps
can only deform the fields over the shortest distance scales we can be confident that this
topological charge provides a very accurate representation of the topological charge of the
original lattice gauge fields. The interesting question now is whether the fields with a given
QI after 2 cooling sweeps maintain that same value when we continue cooling the lattice
gauge fields to, say, 20 cooling sweeps. The answer is yes to a very good approximation.
As an example we show in figure 29 the values of Q obtained after 2 cooling sweeps which
lie between the minima that define the peak near Q = 1, as in figure 28, and which we
therefore label by QI = 1. We follow these same fields to 20 cooling sweeps and plot their
values of Q in the figure. They nearly all have Q ' 1. In fact of the 665 lattice fields that
we assigned to QI = 1 at 2 cooling sweeps, 658 had Q ' 1 after 20 cooling sweeps with
4 at Q ' 0 and 3 at Q ' 2. Moreover, we observe at intermediate cooling sweeps that
the 7 fields that end up with QI 6= 1 migrate gradually from QI = 1 to QI 6= 1 through
intermediate values of Q in a way that is consistent with a narrow (anti)instanton shrinking
out of the lattice with increased cooling.

We have given the fields with QI = 1 as an example. In table 19 we show what happens
to those fields possessing other values of QI at 2 cooling sweeps when one continues to cool
these fields to a total of 50 cooling sweeps. We indicate the range of Q that we assign to
each integer QI . That such a assignment should possess little ambiguity should be evident
from the histogram of Q after 2 cooling sweeps in figure 28. We observe that the value of
QI is almost completely unchanged between 2 and 50 cooling sweeps in all cases.

One might ask why we start with fields after 2 cooling sweeps rather than after just 1
cooling sweep. The answer is indicated in figure 29 where we take the fields that we assign
to QI = 1 after 2 cooling sweeps and we display the values of Q for those same fields after
only one cooling sweep. While we do indeed observe a distribution of values that has a
mean not too far from what one might expect, the width of the distribution is so large that
it will clearly overlap heavily with fields that belong to neighbouring values of QI (and
which are not shown). So after one cooling sweep we cannot make a plausible estimate of
QI unless we run more highly cooled fields backwards as we have done here. This is even
more so if we consider the fields prior to any cooling at all.

What this study demonstrates is that calculating Q after 20 cooling sweeps provides
a reliable method for calculating the true integer-valued topological charge of our Monte
Carlo generated lattice fields — at least once β is not too small.

The shift of the value of Q as calculated after 20 cooling sweeps from the integer value
that it would have in the continuum limit is primarily due to the finite size in lattice units
of the typical instanton in the cooled fields. That is to say, it is a lattice artifact. So if we
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assign the corresponding integer QI to a given field — an assignment which we have seen is
essentially unambiguous over our range of β — we can think of it as partially compensating
for the lattice artifacts. Of course since different lattice artifacts may mutually cancel,
there is no guarantee that this will hasten the overall approach to the continuum limit.
Nonetheless this integer-valued topological charge QI has at least as much validity as the
measured charge Q and we shall present results for both.

The possibility of assigning an integer QI to a lattice field depends on there being
a clear multi-peak structure in the histogram of values of Q with a very small overlap
between neighboring peaks. As we see from figure 26 and figure 27 this is the case not
only after 20 cooling sweeps but even after only 4 cooling sweeps for these values of β.
So we also calculate an integer QI for all cooling sweeps where a reliable assignment is
possible. (Variations in how one does this will make a negligible difference as long as one
more-or-less assigns fields between neighbouring minima in the histogram of Q to the same
value of QI .) Examples of such an assignment for β = 6.0625 and β = 6.50 are shown
in table 20 where we compare the values of 〈Q2〉 and 〈Q2

I〉 against the number of cooling
sweeps. As we see, a property of 〈Q2

I〉 is that it is essentially independent of the number
of cooling sweeps, unlike the value of 〈Q2〉. (Note that the statistical errors shown are
almost completely correlated when cooling, which is why we display them separately at
the bottom of the table.) This is a consequence of the fact that, as we have seen above, to
a very good approximation the topological charge does not change with cooling. Beyond a
very few cooling sweeps the topological charge only changes through an instanton shrinking
out of the lattice (or the unlikely reverse), a process which becomes rapidly much rarer as
β increases for any given number of cooling sweeps.

Note that the fact that 〈Q2
I〉 does not vary with the number of cooling sweeps means

that we can evaluate it at some fixed number of cooling sweeps for any of our values of β.
We shall choose to use 20 cooling sweeps unless otherwise stated.

As an aside, it is interesting to see how the average value of the lattice topological
charge Qhot on the lattice fields prior to cooling, is related to the true (cooled) QI . We show
the result of the comparison in figure 30. We see that the relation is a simple multiplicative
constant to a good approximation, i.e. Qhot = Z(β)QI . Here we have indicated that we
expect this constant to vary with the coupling β. Such a linear dependence is expected if one
performs a perturbative calculation of Z(β) which at 1 loop leads to Z1-loop(β) = 1−5.451/β
in SU(3) [26]. Note that the correction is O(1/β) in our range of β which means that we
expect Qhot � QI and this is certainly what we observe in figure 30. We have repeated
this analysis for our other values of β and we list the values obtained for Z(β) in table 21,
together with the 1 loop perturbative predictions. We note that the latter are, given the
large size of the leading correction, surprisingly close to our values.

As we remarked earlier, the fluctuations of the topological charge in the pure gauge
theory are of particular interest since they are related, through the UA(1) anomaly to
the masses of the lightest pseudoscalars, up to 1/Ncolour corrections [35, 36]. In table 22
we list our values for both 〈Q2〉 and 〈Q2

I〉 at our values of β. The interesting quantities
are these values divided by the lattice volumes, i.e. the topological susceptibility a4χt =
〈Q2〉/L3

sLt, where L3
sLt is the lattice volume, and the susceptibility expressed in physical
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units, e.g. χ1/4
t /
√
σ where a2σ is the string tension at that β. These values are also shown

in table 22. We extrapolate these values to the continuum limit with a leading O(a2σ)
correction obtaining the continuum values given in the table. The best fits are displayed
in figure 31. Not surprisingly the fits deviate from our measurements at the two coarsest
lattice spacings. At the largest β value we are beginning to lose ergodicity in topology (see
below) so that our errors may be underestimates, but the overall fits are still statistically
acceptable. In table 22 we show the result of fitting to two different ranges of β. The results
are consistent within errors as are the continuum limits using Q and QI . If we take the
most concervative value, based on the integer valued charge in the range 5.99 ≤ β ≤ 6.50,
we obtain the continuum limit

χ
1
4
t√
σ

= 0.4187± 0.0053 . (7.3)

To convert the scale from
√
σ to r0 one can use the conversion factor given in table 17

giving
r0χ

1
4
t = 0.4857± 0.0067. (7.4)

We note that this agrees, within errors, with the value r0χ
1
4
t = 0.4928(62) obtained in [37]

where the calculation of Q is performed by the very different method of calculating the
number of exact fermionic zero-modes using the Neuberger overlap-Dirac operator [38, 39].
One can now use eq. (5.1) to convert to ‘MeV’ units. If we do so we obtain

χ
1
4
t = 203± 4MeV (7.5)

which agrees with the value χ
1
4
t = 208(6)MeV obtained in [40] using the gradient (Wilson)

flow technique. (Note that this value has been rescaled from that in the paper using the
more recent value of r0 given in eq. (5.1). Note also that true systematic error in obtaining
these physical ‘MeV’ units is no doubt underestimated.)

Our above calculation assumes that finite volume corrections to the topological sus-
ceptibility are negligible when working on the lattice volumes shown in table 22. To check
that this is so we have calculated the susceptibility on different lattice sizes at β = 5.8941,
β = 5.99 and β = 6.235. When expressed in units of the string tension the lattice vol-
umes in table 22 are spanned by the volumes 10316 and 12316 at β = 5.8941, by 14320
at β = 5.99 and by 18326 at β = 6.235. So we have performed calculations of the integer
valued topological charge on somewhat larger lattices at these three β values to see if there
are any pronounced changes with the volume. The results are shown in table 23 and we
see that there are no significant finite volume corrections within our small errors.

7.2 Critical slowing down

Since our Monte Carlo exploration of the phase space of all fields proceeds through local
steps, by changing one link matrix at a time, the value of Q only changes when the core
of a topological charge shrinks down to the scale of a lattice hypercube where it becomes
nothing more than a gauge singularity. (Or the reverse process.) Once the lattice spacing
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a is small enough, a topological charge whose core is a few lattice spacings across will be
embedded in a background gauge field that is relatively smooth, and one can calculate its
weight in the path integral using standard semiclassical methods. To be specific the weight
of an instanton of size ρ is

D(ρ)dρ ∝ dρ

ρ

1
ρ4 e
− 8π2
g2(ρ) , (7.6)

where we omit factors varying weakly with ρ. We note the scale-invariant integration
measure, a factor to account for the fact that a ball of volume ρ4 can be placed in 1/ρ4

different ways in a unit volume; and a factor arising from the classical instanton action,
SI = 8π2/g2(ρ), where g2(ρ) is the running coupling on the scale ρ. When we insert the
asymptotically free form of the coupling, we obtain

D(ρ) ∝
(
ρ

ξ

)6
, (7.7)

where ξ is a physical length scale of the theory, such as r0, or
√
σ, or ΛMOM. This formula

should be reliable as long as ρ � ξ. On the lattice it will also break down once ρ ∼ a

in a way that depends on the particular lattice action, but it should be accurate once
ρ & few×a. In order for Q to change on the lattice, an instanton will have to pass through
sizes ρ ∼ few×a and as we see from eq. (7.8) such fields are suppressed by a factor ∼ (a/ξ)6.
That is to say, our sequence of Monte Carlo generated lattice fields will be locked into given
values of Q once we are at large enough β and we will have lost ergodicity in Q. Whether
any such loss of ergodicity in Q would have a significant impact on the physics that we are
interested in is not clear. (In QCD the situation is quite different due to the associated
zero-modes of the Dirac operator.) Nonetheless it is worth monitoring this potential loss
of ergodicity, as we shall now do.

We focus on two quantities. The first is to calculate directly the number of Monte
Carlo sweeps, ξQ, that it takes to ‘decorrelate’ the value of Q, as defined by

〈Q(is)Q(is+ ξQ)〉
〈Q2〉

= e−1 , (7.8)

where is and is + ξQ label the number of MC sweeps and is is averaged over. This is
of course not a physical quantity: it depends on our particular implementation of the
Monte Carlo algorithm. However by comparing the value of ξQ(β) to the total number
of sweeps at a given β we can judge how ergodic is our calculation. The values of ξQ(β)
that we obtain in our calculations are plotted in figure 32. (We restrict our calculation
to β ≥ 5.99 since we only calculate Q every 25 sweeps and so our determination of ξQ
can only be reliable once ξQ � 25.) Given that our calculations are typically based on
∼ 106 sweeps it is clear that we do not have a serious breakdown of ergodicity at any β

although it is also clear that at β = 6.50 we are at the borderline given that our sequences
of field configurations are generated with 40000 prior thermalisation sweeps beginning from
a Q = 0 ‘frozen’ starting configuration. It is interesting to note that, as shown in figure 32,
the dependence of ξQ(β) on a(β) can be fitted by ξQ ∝ {a

√
σ}−6. This is what one would

naively expect using eq. (7.7) with ρ ∼ a, about which value one expects a shrinking
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instanton to become a dislocation and then a Q = 0 gauge singularity. (Or the reverse.)
However it is also possible that a tunnelling process is involved in the topology change, as
discussed in [41, 42], in which case one would expect an exponential dependence on the free
energy. Since the relevant length scale is ∼ 1/a and the typical dynamical energy scale is
∼
√
σ, this would suggest a correlation length ξQ ∝ exp{const./a

√
σ}. Fitting such a form

to our calculated values we obtain the dashed curve in figure 32. This is an acceptable
fit given the quality of the data; the overshoot of the β = 6.50 value cannot be taken too
seriously given the large error on that value (and, no doubt, the even larger relative error
on the value of that error estimate). Nonetheless, while our calculated values of ξQ are not
precise enough to discriminate between these different pictures of topology change, they
serve their main purpose which is to confirm that the ‘freezing’ of the topological charge
is not severe enough to raise doubts concerning our mass and string tension calculations.

The second quantity we calculate is the number of sweeps, τ|∆Q|=1, that is takes to
change Q by one unit. We list our calculated values in table 24. Clearly the probability of
producing or annihilating an instanton as described above will be proportional to the space-
time volume, so it is useful to give its value for a standard physical volume which we choose
to be V = (3/

√
σ)4, which is very close to the volumes we actually used for calculating Q.

The resulting values, labelled τ̃|∆Q|=1, are also listed in table 32 and, not surprisingly, they
are close to the values of τ|∆Q|=1. Now, since these changes in Q are randomly ±1 it takes
roughly Q2 such changes to disorder a charge of Q. On our lattices we have 〈Q2〉 ∼ 3 so the
number of sweeps to disorder the lattice charge is ∼ 〈Q2〉τ̃|∆Q|=1 ∼ 3τ̃|∆Q|=1. This comes
to about ∼ 4×103 for β = 6.50, which is not very far from our other measure, displayed in
figure 32. We note that since 〈Q2〉 ∝ V and since τ|∆Q|=1 ∝ 1/V , we expect this measure
of decorrelation to be approximately volume independent. In any case we confirm that our
calculations in this paper are reasonably ergodic in Q.

8 Possible improvements

The calculations in this paper cover a large enough range of a(β) for the continuum ex-
trapolations to be under reasonable control. And our large basis of loop operators means
that it is unlikely that we are missing any glueball states in the part of the mass spectrum
that we have presented. In addition we have checked that even at our largest values of β
we maintain reasonable ergodicity as far as the topology of the gauge fields is concerned.

In this section we briefly reflect upon the main ways in which our calculations can be
improved.

While our calculation of the lightest states is adequate, the calculation of heavier states
is less so. Here using lattices with an asymmetric discretisation, at � as can be very useful.
However since the glueball masses are calculated as atM while the physical scale, whether
provided by σ or r0, also involves the value of as, we need to know the value of the ratio
ξ = as/at to form dimensionless ratios such as M0++/

√
σ or M0++r0. To overcome any

issues with the shift in the value of the asymmetry ξ = as/at from its inputted tree-level
value, one can perform two calculations in parallel. The first is with as = at and is much
like the one presented in this paper but one that can be done with a much smaller basis
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of loop operators. It would be designed to calculate the lightest 0++, 2++ and 0−+ states
as well as the string tension. (And perhaps r0 and the spectrum of string excitations.)
This would give us accurate values of the continuum limit of ratios such as M0++/

√
σ and

M2++/
√
σ. Our second calculation would be with some well chosen value of ξ = as/at > 1

with a large basis of loop operators and would be designed to provide accurate values of the
heavy as well as the light glueball masses. This latter calculation would give the continuum
limit of, for example, MG/M0++ for the glueball G. Then one can, for example, multiply
it by the value of M0++/

√
σ obtained in the first calculation to obtain MG/

√
σ.

The main reason to calculate the heavier states is to provide a target for theoretical
and model calculations. However with only 5 rotational representations on the lattice, each
will typically end up having a densely packed set of excited states making the challenge
ambiguous. So it is (almost) essential to be able to identify the spin, J , towards which
each lattice state tends as a → 0, and also its 2J + 1 (near) degenerate partners. Doing
so by simply identifying nearly degenerate states partitioned appropriately amongst the
5 rotational representations of the lattice is not an option once the states become dense
enough. This means incorporating something like the approach in [6] into the glueball
calculations. Doing so could in addition have the benefit of identifying the lightest high
spin glueballs and hence the leading glueball Regge trajectory and so test the old idea that
this trajectory is the Pomeron.

Amongst the more massive states will be multiglueball scattering states and we need
to know if any of our supposed single glueball states are in fact of this type. (This is closely
related to the issue of the decay widths of heavier glueballs.) While one expects there to
be some suppression of the overlap between our single trace operators and the multi-trace
operators that are the natural wave-functionals for multiglueball states, this is something
that needs to be examined explicitly. A way to do this is to include some appropriate
multi-trace operators in our basis. For example we can take our variationally selected
lightest 0++ glueball operator, give it a non-zero momentum, then take a product of two
such operators with equal and opposite momenta to give a zero-momentum state. Do so
for various momenta and possibly different glueballs. States in the resulting spectrum that
have a small overlap onto such multi-glueball states can be identified with more confidence
as being single glueballs. For a first step in this direction see for example section 7.2.3
of [6] where small overlaps are found indicating that the multi-glueball states are likely
to be invisible to current glueball calculations. However this needs to be studied more
systematically and should form part of an improved calculation.

The above discussion also extends to the question of identifying ditorelon states. For
the lightest such states their large variation with the lattice volume makes them easy
to detect. However when such states are heavier and are located in the dense part of
the spectrum, identifying finite volume shifts becomes ambiguous and a direct study of
overlaps, as for multiglueball states, becomes useful and should be one of the incorporated
improvements.

While do not claim the above improvements to be exhaustive, they would represent a
major qualitative improvement to this and earlier glueball spectrum calculations.
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9 Discussion

In this paper we provide a new calculation of the glueball spectrum of SU(3) gauge theories
which is designed to improve upon some limitations of earlier calculations. We have a very
large basis of glueball operators which gives us confidence that we are not missing any states
in the important low-lying part of the spectrum. We perform high statistics calculations
out to lattice spacings as small as a(β = 6.50) ' 0.042 fm, which both improves our
control of our extrapolations to the continuum limit and gives us a finer resolution of the
glueball correlators, which is particularly useful for the heavier glueballs. We perform a
high statistics calculation to check that our spatial volume is large enough and identify
the most important multi-torelon states so that we can exclude them from the spectrum.
We perform a high statistics study of the topological fluctuations of the gauge fields, with
particular care in establishing the reliability of our measure of topology, so as to establish
the ergodicity of our Monte Carlo sequences throughout our calculations. Given our cubic
lattice, our glueball states fall into representations of the octahedral subgroup of the full
rotation group, but using the observed near-degeneracies of various states we are able to
assign a continuum spin to more states than previous calculations. At the same time,
such an extensive calculation highlights important areas where improvements are needed:
a parallel calculation with a lattice asymmetry allowing a much finer discretisation of the
correlators [5, 24] would be useful for the massive states; to systematically establish the
continuum spins of the glueball states one needs to incorporate methods such as those
used in [6]; to be sure one that one can distinguish multiglueball scattering states in the
spectrum one needs to include the relevant operators into the calculations; and the same
applies in controlling the contribution of the finite volume multi-torelon states.

Our results for the glueball spectrum of the continuum theory are listed in tables 14, 15
and 18. Table 14 lists the masses in units of the confining string tension, and labels them
by their parity P , charge conjugation C, and the irreducible representation of the rotation
group of our cubic lattice. Table 15 translates these masses into ‘GeV’ units as explained
in section 5.2. In table 18 we list those glueballs whose continuum spins J we can identify.

If we assume that the phenomenologically relevant states are those with masses .
3GeV then our calculations in table 18 confirm what has been established for a long
time: these are the 0++, 2++, 0−+, 2−+, 1+− ground states and the first excited 0++.
Of course our calculations are much more accurate than those early calculations, and
improve significantly upon the more recent ones as well, but at this stage the greatest
phenomenological uncertainty lies in the translation of the masses into GeV units and that
is something that a calculation in the pure gauge theory cannot deal with by itself; here
we need glueball calculations in full QCD to be further pursued.

We have emphasised that an important role for the glueball spectrum lies in providing
a benchmark challenge for theoretical and model approaches that attempt to understand
the non-perturbative physics of the SU(3) gauge theory and hence of QCD, usually in some
approximation. For this purpose our excited states in table 18 are useful, as indeed is the
more extensive set of states listed in table 14 since a calculation in the continuum theory
can always project the states into the representations of the octahedral subgroup of the
full rotation group.
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β lattice 1
3ReTr〈Up〉 a

√
σ amG lattices

5.6924 10316 0.5475112(71) 0.3999(58) 0.987(9) 8316
5.80 12316 0.5676412(36) 0.31666(66) 0.908(12) 10316

5.8941 14316 0.5810697(18) 0.26118(37) 0.7991(92) 12316, 10316
5.99 184 0.5925636(11) 0.21982(77) 0.7045(65) 14320

6.0625 204 0.6003336(10) 0.19472(54) 0.6365(43) 14320
6.235 264 0.6167723(6) 0.15003(30) 0.4969(29) 34326, 18326
6.3380 304 0.6255952(4) 0.12928(27) 0.4276(37) 22330
6.50 384 0.6383531(3) 0.10383(24) 0.3474(22) 26338

Table 1. Parameters of the SU(3) calculations as well as the string tension, σ, and the mass gap,
mG. On the right are shown other lattice sizes used for finite volume studies and for calculations
of the topological charge.

continuum J ∼ cubic R
J cubic R
0 ∼ A1
1 ∼ T1
2 ∼ E + T2
3 ∼ A2 + T1 + T2
4 ∼ A1 + E + T1 + T2
5 ∼ E + 2T1 + T2
6 ∼ A1 +A2 + E + T1 + 2T2
7 ∼ A2 + E + 2T1 + 2T2
8 ∼ A1 + 2E + 2T1 + 2T2

Table 2. Projection of continuum spin J states onto the cubic representations R.
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aM , β = 6.235, PC = ++
R 34326 26326 18326
A1 0.4965(41) 0.4969(29) 0.4773(53)

0.7002(73)
0.8566(70) 0.8626(52) 0.842(18)
1.130(15) 1.096(10) 1.050(9)
1.129(14) 1.134(11)

1.054(27)
1.144(13) 1.193(12)
1.238(16) 1.226(17)
1.329(22) 1.322(18)

A2 1.166(12) 1.127(9) 1.100(11)
1.31(9) 1.25(6) 1.13(6)
1.456(22) 1.429(16) 1.455(22)

E 0.6627(50)
0.7354(26) 0.7342(45) 0.742(9)
1.013(9) 1.013(6) 0.974(19)
1.088(17) 1.067(25) 1.054(23)
1.127(12) 1.122(8) 1.054(26)

1.206(11)
1.242(15) 1.243(15)
1.376(25) 1.332(17)

T1 1.111(19) 1.148(7) 1.160(24)
1.116(23) 1.137(23) 1.194(9)
1.392(12) 1.407(12) 1.38(5)
1.423(13) 1.392(51)

T2 0.7439(35) 0.7374(31) 0.728(7)
1.021(6) 1.025(6) 1.036(7)
1.106(19) 1.096(18) 1.100(21)
1.158(7) 1.152(8) 1.166(7)

2aE(l) 1.479(12) 1.087(5) 0.674(5)

Table 3. Finite volume check on glueball masses with P = + and C = + at β = 6.235 on the
lattices shown. The masses are extracted from the same initial time and are not always the same
as our best mass estimates listed in other tables. Intemediate gaps appear where there is a clear
extra state on a smaller lattice. Last line gives twice the energy of a winding flux tube.
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aM , β = 6.235, PC = −+
R 34326 26326 18326
A1 0.806(13) 0.781(13) 0.772(12)

1.08(5) 1.12(4) 0.924(23)
1.408(25) 1.437(20) 1.216(13)
1.507(25) 1.485(22) 1.456(19)

A2 1.420(24) 1.404(21) 1.519(21)
1.62(5) 1.60(3) 1.84(4)

E 0.970(10) 0.958(5) 0.963(5)
1.224(12) 1.249(8) 1.257(10)
1.394(18) 1.422(15) 1.423(15)

T1 1.277(52) 1.226(30) 1.258(33)
1.303(11) 1.302(11) 1.322(10)
1.335(11) 1.337(10) 1.398(11)
1.43(7) 1.46(7) 1.59(8)

T2 0.958(7) 0.962(5) 0.971(6)
1.234(9) 1.219(6) 1.251(8)
1.29(4) 1.23(4) 1.256(32)

Table 4. Finite volume check on glueball masses with P = − and C = + at β = 6.235 on the
lattices shown. Where possible the masses are extracted from the same initial time and so are not
always the same as our best mass estimates listed in other tables.
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aM , β = 6.235, PC = +−
R 34326 26326 18326
A1 1.397(22) 1.431(20) 1.486(30)
A2 1.101(13) 1.095(9) 1.117(10)

1.304(20) 1.307(18) 1.37(2)
1.395(33) 1.395(19) 1.62(3)

E 1.324(14) 1.306(10) 1.383(12)
1.397(18) 1.416(13) 1.445(15)
1.453(20) 1.455(16) 1.539(17)

T1 0.910(10) 0.897(10) 0.928(11)
1.063(21) 1.071(18) 1.067(16)
1.175(8) 1.169(8) 1.156(7)
1.301(24) 1.307(33) 1.26(3)

T2 1.107(8) 1.109(7) 1.104(9)
1.290(12) 1.258(27) 1.285(37)
1.337(9) 1.333(12) 1.331(9)

Table 5. Finite volume check on glueball masses with P = + and C = − at β = 6.235 on the
lattices shown. Where possible the masses are extracted from the same initial time and so are not
always the same as our best mass estimates listed in other tables.
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aM , β = 6.235, PC = −−
R 34326 26326 18326
A1 1.507(18) 1.512(21) 1.523(24)

1.50(2) 1.59(3) 1.53(3)
A2 1.313(17) 1.340(18) 1.357(21)

1.59(3) 1.57(3) 1.60(3)
E 1.203(10) 1.186(10) 1.213(8)

1.34(9) 1.38(6) 1.48(7)
1.39(10) 1.41(8) 1.566(20)

T1 1.191(31) 1.163(24) 1.233(22)
1.283(40) 1.305(31) 1.351(11)
1.479(16) 1.490(12) 1.458(12)

T2 1.184(24) 1.200(28) 1.221(9)
1.268(42) 1.283(25) 1.31(4)
1.41(7) 1.50(6) 1.25(3)

Table 6. Finite volume check on glueball masses with P = − and C = − at β = 6.235 on the
lattices shown. Where possible the masses are extracted from the same initial time and so are not
always the same as our best mass estimates listed in other tables.

aM

RPC β = 5.6924 β = 5.80
A++

1 0.987(9) 0.908(12)
1.89(8) 1.632(38)

1.94(8)
E++ 1.95(5) 1.550(17)

2.09(7)
T++

2 2.02(5) 1.586(23)
A−+

1 2.36(14) 1.764(49)
E−+ 2.09(7)
T−+

2 2.03(5)
T+−

1 1.938(32)
aEl 1.491(47) 1.1126(50)

Table 7. Glueball masses at β = 5.6924 and β = 5.80 on a 10316 and 12316 lattices respectively,
for all octahedral representations R, and for both values of parity, P , and charge conjugation, C.
Also the energy El of a winding flux tube.
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aM , β = 5.8941
R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 0.799(10) 1.440(25) 2.67(25) 2.74(51)

1.345(14) 1.98(9)
1.72(4)
1.83(5)

A2 1.933(60) 2.62(25) 1.95(8) 2.10(12)
E 1.280(15) 1.661(33) 2.27(8) 2.22(8)

1.747(24) 2.07(8)
1.814(36)
1.976(48)

T1 1.924(40) 2.20(6) 1.591(18) 2.07(5)
1.976(56) 2.17(8) 1.86(6) 2.22(12)
2.35(11) 2.19(10) 2.05(5)

T2 1.276(11) 1.669(29) 1.907(23) 2.18(8)
1.796(28) 2.05(5) 2.14(6)
1.913(24)
1.988(40)

aEl = 0.8770(27)

Table 8. Glueball masses at β = 5.8941 on a 14316 lattice for all octahedral representations, R, and
for both values of parity, P , and charge conjugation, C. Also the energy El of a winding flux tube.
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aM , β = 5.99
R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 0.7045(65) 1.169(15) 2.14(11) 2.37(13)

1.234(13) 1.69(5)
1.543(27) 1.93(8)
1.651(28) 1.82(8)
1.729(41)

A2 1.674(40) 1.94(12) 1.601(38) 2.00(7)
1.79(6) 2.21(14) 1.88(5)

2.04(7)
E 1.082(8) 1.442(20) 1.904(42) 1.771(26)

1.490(16) 1.790(35) 2.17(7) 2.02(6)
1.611(27) 2.12(6) 2.21(10)
1.627(28)

T1 1.713(22) 1.983(43) 1.345(13) 1.747(37)
1.715(25) 2.02(5) 1.634(21) 2.09(5)
1.97(6) 1.98(4) 1.736(24) 2.15(7)
2.02(5) 2.16(5) 1.94(4)

T2 1.083(6) 1.411(12) 1.597(21) 1.792(30)
1.459(16) 1.767(25) 1.871(36) 1.935(47)
1.669(21) 1.849(38) 1.90(5) 2.103(53)
1.657(24) 1.934(37)
1.756(24) 1.994(46)

aEl = 0.8095(61)

Table 9. Glueball masses at β = 5.99 on a 184 lattice for all octahedral representations, R, and
for both values of parity, P , and charge conjugation, C. Also the energy El of a winding flux tube.
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aM , β = 6.0625
R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 0.6365(43) 1.001(32) 1.98(7) 1.93(8)

1.111(11) 1.419(26) 2.13(8) 1.99(9)
1.384(28) 1.83(7) 2.05(7) 2.15(12)
1.467(17) 1.75(6)
1.482(31)
1.54(3)

A2 1.476(31) 1.85(7) 1.433(21) 1.667(38)
1.649(29) 1.94(8) 1.68(4) 1.888(78)
1.81(6) 1.85(6) 2.05(9)

E 0.9623(61) 1.213(33) 1.710(33) 1.558(19)
1.298(8) 1.60(3) 1.891(40) 1.824(32)
1.432(15) 1.81(5) 1.845(42) 1.98(5)
1.465(11)
1.514(19)

T1 1.518(15) 1.689(21) 1.194(8) 1.588(22)
1.54(2) 1.727(23) 1.435(8) 1.81(3)
1.74(3) 1.754(20) 1.547(16) 1.86(4)

1.91(4) 1.695(17)
T2 0.948(13) 1.270(15) 1.418(11) 1.47(9)

1.335(10) 1.575(16) 1.701(29) 1.58(14)
1.487(13) 1.56(9) 1.656(25) 1.81(3)
1.482(11) 1.83(3) 1.98(5)
1.567(17)

aEl = 0.7040(42)

Table 10. Glueball masses at β = 6.0625 on a 204 lattice for all representations, R, of the cube,
and for both values of parity, P , and charge conjugation, C. Also the energy El of a winding
flux tube.
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aM , β = 6.235
R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 0.4969(29) 0.781(13) 1.431(20) 1.512(21)

0.8626(52) 1.132(11) 1.482(25) 1.588(27)
1.096(10) 1.437(20) 1.77(4)
1.134(11) 1.485(22)
1.054(27) 1.597(33)
1.161(36)

A2 1.082(32) 1.404(21) 1.095(9) 1.340(18)
1.25(6) 1.45(13) 1.307(18) 1.57(3)

1.429(16) 1.395(19) 1.67(4)
E 0.7342(45) 0.926(13) 1.306(10) 1.186(10)

1.013(6) 1.249(8) 1.416(13) 1.38(6)
1.067(25) 1.422(15) 1.455(16) 1.41(8)
1.122(8) 1.39(7) 1.49(8)
1.206(11) 1.587(21)

T1 1.148(7) 1.226(30) 0.897(10) 1.163(24)
1.137(23) 1.302(11) 1.071(18) 1.305(31)
1.407(12) 1.337(10) 1.169(8) 1.490(12)
1.392(51) 1.463(65) 1.307(33) 1.541(16)
1.436(13)

T2 0.7374(31) 0.962(5) 1.087(22) 1.200(28)
1.0247(52) 1.219(6) 1.258(27) 1.283(25)
1.096(18) 1.233(36) 1.333(12) 1.50(6)
1.152(8) 1.333(11) 1.357(13) 1.557(17)
1.145(25) 1.450(13) 1.54(7)

aEl = 0.5435(23)

Table 11. Glueball masses at β = 6.235 on a 264 lattice for all octahedral representations, R, and
for both values of parity, P , and charge conjugation, C. Also the energy El of a winding flux tube.
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aM , β = 6.3380
R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 0.4276(37) 0.688(8) 1.234(46) 1.327(17)

0.7452(45) 0.956(22) 1.318(62) 1.277(50)
0.9386(88) 1.16(5) 1.38(9) 1.39(6)
0.939(18) 1.19(5)
0.974(17)
0.971(18)

A2 0.992(8) 1.239(15) 0.963(10) 1.140(32)
1.084(41) 1.411(20) 1.161(11) 1.335(70)
1.232(44) 1.43(9) 1.152(33)
1.191(47) 1.28(6)

E 0.6356(27) 0.8099(63) 1.111(29) 1.008(21)
0.8634(84) 1.061(17) 1.238(28) 1.193(32)
0.934(14) 1.179(32) 1.261(38) 1.280(38)
0.961(13) 1.230(39) 1.243(35) 1.33(4)
0.967(16) 1.30(6)

T1 0.995(13) 1.108(18) 0.7797(60) 1.062(15)
0.995(14) 1.119(20) 0.923(13) 1.165(17)
1.263(7) 1.110(20) 1.020(5) 1.254(26)
1.264(30) 1.25(4) 1.158(9) 1.288(32)

1.34(6) 1.201(22)
T2 0.6369(29) 0.8207(86) 0.952(11) 1.056(14)

0.8856(39) 1.031(15) 1.131(22) 1.110(16)
0.963(12) 1.169(19) 1.157(7) 1.296(37)
0.968(10) 1.142(22) 1.202(22) 1.255(30)
0.974(12 1.164(21) 1.269(28) 1.29(4)

aEl = 0.4652(21)

Table 12. Glueball masses at β = 6.3380 on a 304 lattice for all octahedral representations, R, and
for both values of parity, P , and charge conjugation, C. Also the energy El of a winding flux tube.
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aM , β = 6.50
R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 0.3474(22) 0.5568(50) 0.992(24) 1.016(47)

0.6036(36) 0.761(12) 1.150(11) 1.034(36)
0.7629(52) 0.948(21) 1.092(21) 1.037(74)
0.768(10) 0.948(17) 1.169(34) 1.136(25)
0.815(6)
0.842(6)

A2 0.795(10) 1.012(26) 0.763(11) 0.915(13)
0.894(17) 1.081(33) 0.913(8) 1.055(10)
1.058(27) 1.088(26) 0.932(18) 1.067(34)
1.004(16) 1.234(49) 1.054(22) 1.215(13)

E 0.5054(32) 0.657(8) 0.916(11) 0.839(9)
0.6971(70) 0.837(9) 0.908(37) 0.975(13)
0.779(9) 0.984(14) 1.058(15) 1.083(16)
0.785(6) 1.004(19) 1.040(14) 1.121(24)
0.810(9)

T1 0.813(8) 0.894(9) 0.636(5) 0.859(10)
0.806(12) 0.914(12) 0.758(7) 0.987(12)
0.943(9) 0.910(27) 0.811(6) 0.993(13)
0.951(8) 0.996(27) 0.911(10) 1.058(18)

0.997(35) 0.959(9) 1.034(18)
T2 0.5057(19) 0.6638(63) 0.734(11) 0.854(7)

0.6959(44) 0.840(8) 0.897(10) 0.945(9)
0.8083(73) 0.939(10) 0.921(8) 0.998(10)
0.806(9) 0.952(8) 0.955(10) 1.051(9)
0.859(8) 0.976(7) 1.000(15) 1.125(8)

aEl = 0.3811(19)

Table 13. Glueball masses at β = 6.50 on a 384 lattice for all octahedral representations, R, and
for both values of parity, P , and charge conjugation, C. Also the energy El of a winding flux tube.
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MG/
√
σ continuum limit

R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 3.405(21) 5.276(45) 9.32(28) 9.78(46)

5.855(41) 7.29(13) 10.39(37)
7.515(50) 9.18(26)
7.38(11) 9.37(22)

A2 7.705(85) 9.80(22) 7.384(90) 8.96(15)
8.61(20) 11.17(30) 8.94(10) 10.21(20)

8.90(21)
E 4.904(20) 6.211(56) 8.77(12) 7.91(10)

6.728(47) 8.23(9) 9.03(23) 9.39(18)
7.49(9) 9.47(16) 10.39(21) 10.40(22)

7.531(60)
T1 7.694(81) 8.48(12) 6.065(40) 8.31(10)

7.72(11) 8.57(13) 7.21(8) 9.30(14)*
8.66(15) 7.82(6) 9.72(15)
9.56(28) 8.92(10)

T2 4.884(19) 6.393(45) 7.22(9) 8.198(80)
6.814(31) 8.15(7) 8.72(11) 8.99(11)*
7.716(70)* 9.23(12)* 9.06(8) 9.69(13)
7.677(71)

Table 14. Continuum limit of glueball masses in units of the string tension, for all representations,
R, of the rotation symmetry of a cube, for both values of parity, P , and charge conjugation, C.
Ground states and some ecited states. Stars indicate poor fits (χ2 per degree of freedom greater
than 2.5).
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R P = +, C = + P = −, C = + P = +, C = − P = −, C = −
A1 1.651(23) 2.599(39) 4.52(15) 4.74(23)

2.840(40) 3.54(8) 5.04(19)
3.65(6) 4.45(14)
3.58(15) 4.54(12)

A2 3.74(7) 4.75(13) 3.58(7) 4.35(9)
4.18(11) 5.42(16) 4.34(8) 4.95(12)

4.32(12)
E 2.378(31) 3.012(46) 4.25(8) 3.84(7)

3.26(5) 3.99(7) 4.38(13) 4.55(11)
3.63(7) 4.59(10) 5.04(12) 5.04(13)
3.65(6)

T1 3.73(6) 4.11(8) 2.942(41) 4.03(17)
3.74(7) 4.16(8) 3.50(6) 4.51(9)*

4.20(9) 3.79(6) 4.71(10)
4.64(15) 4.33(8)

T2 2.369(31) 3.101(44) 3.50(6) 3.98(7)
3.30(5) 3.95(6) 4.23(8) 4.36(8)*
3.74(6)* 4.48(8)* 4.39(7) 4.70(9)
3.72(6)

Table 15. Continuum glueball masses in GeV units using the value r0 = 472(5) fm from [21] to set
the scale. Errors are statistical only.
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continuum JPC from cubic R
JPC cubic RPC

0++ gs ∼ A1++ gs
0++ ex1 ∼ A1++ ex1
2++ gs ∼ E++ gs + T2++ gs
2++ ex1 ∼ E++ ex1 + T2++ ex1
3++ gs ∼* A2++ gs + T1++ gs (ex1) + T2++ ex3 (ex2)
4++ gs ∼* A1++ ex2 + E++ ex2 +T1++ ex1 (gs) + T2++ ex2 (ex3)
0−+ gs ∼ A1−+ gs
0−+ ex1 ∼ A1−+ ex1
2−+ gs ∼ E−+ gs + T2−+ gs
2−+ ex1 ∼ E−+ ex1 + T2−+ ex1
1−+ gs ∼ T1−+ gs
1−+ ex1 ∼* T1−+ ex1
1−+ ex2 ∼* T1−+ ex2
2+− gs ∼* E+− gs + T2+− ex1
1+− gs ∼ T1+− gs
1+− ex1 ∼ T1+− ex2
3+− gs ∼ A2+− gs + T1+− ex1 + T2+− gs
4+− gs ∼** A1+− gs + E+− ex1 +T1+− ex3 + T2+− ex2
2−− gs ∼ E−− gs + T2−− gs
1−− gs ∼ T1−− gs

Table 16. Identification of continuum JP C states from the results for the cubic representations in
table 14. Ground state denoted by gs, i’th excited state by exi. Where there is some ambiguity, a
single star denotes ‘likely’ while two stars indicate ‘significant uncertainty’.
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MG/
√
σ continuum limit

J P = +, C = + P = −, C = + P = +, C = − P = −, C = −
0 gs 3.405(21) 5.276(45)
0 ex1 5.855(41) 7.29(13)
2 gs 4.894(22) 6.32(9) 8.74(12)* 8.08(15)
2 ex1 6.788(40) 8.18(8)
1 gs 8.48(12) 6.065(40) 8.31(10)
1 ex1 8.57(13)* 7.82(6)
1 ex2 8.66(15)*
3 gs 7.71(9)* 7.27(12)
4 gs 7.60(12)* 9.02(10)**

r0
√
σ = 1.160(6)

Table 17. Continuum limit of glueball masses, in units of the string tension, for those JP C

representations we can identify. Ground state denoted by gs, i’th excited state by exi. Stars
denote uncertainties. To change scale from

√
σ to r0 use value indicated.

MGGeV
J P = +, C = + P = −, C = + P = +, C = − P = −, C = −
0 gs 1.653(26) 2.561(40)
0 ex1 2.842(40) 3.54(8)
2 gs 2.376(32) 3.07(6) 4.24(8)* 3.92(9)
2 ex1 3.30(5) 3.97(7)
1 gs 4.12(8) 2.944(42) 4.03(7)
1 ex1 4.16(8)* 3.80(6)
1 ex2 4.20(9)*
3 gs 3.74(7)* 3.53(8)
4 gs 3.69(8)* 4.38(8)**

Table 18. Glueball masses in physical GeV units using r0 = 0.472(5) fm. For those glueballs
whose JP C we can identify. Ground state denoted by gs, i’th excited state by exi. Stars denote a
level of uncertainty as in table 2. Errors are statistical only.
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QI(2 cools) num conf with QI(50 cools)
QI Q ∈ num conf −2 −1 0 1 2 3
−2 [−2.20,−1.25] 176 170 6 0 0 0 0
−1 [−1.25,−0.40] 474 0 472 2 0 0 0
0 [−0.40, 0.40] 741 0 1 739 1 0 0
1 [0.40, 1.25] 658 0 0 5 653 0 0
2 [1.25, 2.20] 330 0 0 0 4 325 1
3 [2.20, 3.10] 225 0 0 0 0 1 224

Table 19. Number fields with topological charge QI after 50 cooling sweeps of fields with the
specified topological charge after 2 cooling sweeps. On a 26338 lattice at β = 6.50. Charges QI at
2 cools assigned when lattice charge Q lies in the intervals shown.

β = 6.50 β = 6.0625 β = 6.50
cools 〈Q2〉 〈Q2

I〉 〈Q2〉 〈Q2
I〉 cools 〈Q2〉 〈Q2

I〉
4 1.804 2.139 2.002 2.679 1 1.518
8 1.931 2.137 2.192 2.684 2 1.845 2.543
12 1.975 2.136 2.257 2.669 3 2.054 2.555
16 1.998 2.135 2.290 2.657 4 2.158 2.555
20 2.012 2.135 2.312 2.649 5 2.218 2.555

10 2.336 2.548
20 2.400 2.548
30 2.424 2.547
40 2.437 2.547
50 2.444 2.544

error 0.20 0.21 0.022 0.026 error 0.46 0.48

Table 20. Topological susceptibility versus number of cooling sweeps, using the lattice Q and the
integer-valued projection, QI . For two values of β with a separate calculation at β = 6.50 for a
wider range of cooling sweeps. The statistical errors are highly correlated between cooling sweeps.
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〈Qhot〉 = Z(β)QI
β Z(β) Z1-loop(β)
5.6924 0.0636(18) 0.0266
5.800 0.0869(30) 0.0447
5.990 0.130(18) 0.0750
6.0625 0.147(7) 0.0861
6.235 0.178(13) 0.1113
6.3380 0.207(15) 0.1258
6.500 0.236(23) 0.1476

Table 21. Multiplicative renormalisation factor, Z(β), relating the average lattice topological
charge, Qhot, calculated on the rough Monte Carlo fields and the integer valued topological charge
QI calculated after 20 ‘cooling’ sweeps of those fields. Also the 1-loop perturbative prediction. At
the values of β shown.

β lattice 〈Q2
I〉 〈Q2〉 χ

1/4
I /
√
σ χ1/4/

√
σ

5.6924 8316 5.452(29) 4.034(21) 0.4016(59) 0.3725(54)
5.80 10316 5.111(16) 4.021(13) 0.4222(10) 0.3976(9)
5.8941 12316 4.352(43) 3.570(35) 0.4289(13) 0.4081(12)
5.99 14320 4.428(56) 3.790(48) 0.4312(21) 0.4147(20)
6.0625 14320 2.649(26) 2.312(22) 0.4281(16) 0.4138(15)
6.235 18326 2.55(13) 2.32(12) 0.4268(54) 0.4169(54)
6.3380 22330 2.94(14) 2.72(13) 0.4261(51)) 0.4178(50)
6.50 26338 2.14(23) 2.01(22) 0.4075(106) 0.4011(97)
∞ β ≥ 5.8941 0.4259(28) 0.4203(26)

β ≥ 5.99 0.4187(53) 0.4125(47)

Table 22. Fluctuations of the topological charge after 20 cooling sweeps. Q is the lattice value
while QI is the corresponding integer value. Also the corresponding susceptibilities in units of the
string tension, and their continuum limits where the fits cover the range of β indicated.

aχ
1/4
I

β = 5.8941 β = 5.99 β = 6.235
10316 0.11258(25) 14320 0.09478(30) 18326 0.0640(9)
12316 0.11201(28) 184 0.09435(17) 264 0.0632(8)
14316 0.11203(23)

Table 23. The topological susceptibility, χI , on different space-time volumes at the values of β
shown.
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β lattice τ|∆Q|=1 τ̃|∆Q|=1

6.0625 14320 36(2) 37(2)
6.235 18326 123(2) 130(2)
6.3380 22330 255(4) 231(4)
6.50 26338 1323(50) 1382(52)

Table 24. Average number of sweeps between changes in the topological charge by one unit,
τ|∆Q|=1, on lattice volumes shown; τ̃|∆Q|=1 is corresponding value scaled to a standard lattice
volume V = (3/

√
σ)4 at each value of β.

t/a

aEeff(t)

1211109876543210

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 1. Effective energy of the ground state of the winding flux tube from which we extract the
string tension. For β = 6.50, 6.338, 6.235, 6.0625, 5.99, 5.80, 5.6924 in ascending order. Pairs of lines
represent ±1σ error bands for the best estimates of the energies.
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Figure 2. Effective energies of the lightest 3 states from our ditorelon basis of operators for the
A1++, •, and E++, ◦, representations. On a 18326 lattice at β = 6.235. Horizontal lines are
estimated energies of lightest ditorelon states neglecting interactions between the torelons; dashed
line for the lightest tritorelon state.
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Figure 3. Effective energies of the lightest A1++ states from the basis of the usual single loop
operators, •, and from the same basis but extended with our ditorelon operators, ◦. Horizontal
line is the energy of the lightest ditorelon state neglecting interactions between the torelons. On a
18326 lattice at β = 6.235.
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Figure 4. Effective energies of the lightest E++ states from the basis of the usual single loop
operators, •, and from the same basis but extended with our ditorelon operators, ◦. Horizontal
line is the energy of the lightest ditorelon state neglecting interactions between the torelons. On a
18326 lattice at β = 6.235.
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Figure 5. Effective energies of the lightest A1++ states from the basis of the usual single loop
operators (filled points) and from the same basis but extended with our ditorelon operators (unfilled
points). Horizontal line is the energy of the lightest ditorelon state neglecting interactions between
the torelons. On a 26326 lattice at β = 6.235.
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Figure 6. Effective energies of the lightest E++ states from the basis of the usual single loop
operators (filled points) and from the same basis but extended with our ditorelon operators (unfilled
points). Horizontal line is the energy of the lightest ditorelon state neglecting interactions between
the torelons. On a 26326 lattice at β = 6.235.
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Figure 7. Effective masses for the ground (•) and first excited (◦) JP C = 0++ states. Also the
ground and first excited JP C = 2++ states: 2 of the 5 components from the E representation (�,N)
and the other 3 from the T2 representation (�,M). Some points shifted for clarity. Horizontal lines
are our best mass estimates. On the 384 lattice at β = 6.50.

– 54 –



J
H
E
P
1
1
(
2
0
2
0
)
1
7
2

t/a

aMeff(t)

876543210

1.2

1

0.8

0.6

0.4

Figure 8. Effective masses for the ground (•) and first excited (◦) JP C = 0−+ states. Also the
ground and first excited JP C = 2−+ states: 2 of the 5 components from the E representation
(�,N) and the other 3 from the T2 representation (�,M). And the lightest three JP C = 1−+ states
(?,×,+), each triply degenerate. Some points shifted for clarity. Horizontal lines are our best mass
estimates. On the 384 lattice at β = 6.50.
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Figure 9. Effective masses for the ground (•) and for the first excited (◦) JP C = 1+− states. Also
the JP C = 2+− ground state: 2 of the 5 components from the ground state E (�) and the other 3
from the first excited T2 state (�). And the JP C = 3+− ground state: one component from the A2
ground state (?), three from the T2 ground state (+), and three from the first excited T1 state (×).
Some points shifted for clarity. Horizontal lines are our best mass estimates. On the 384 lattice
at β = 6.50.
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Figure 10. Effective masses for the JP C = 2−− ground state; 2 of the 5 components from the
E representation (�) and the other 3 from the T2 representation (�). Also the triply degenerate
JP C = 1−− ground state (?). Some points shifted for clarity. Horizontal lines are our best mass
estimates. On the 384 lattice at β = 6.50.
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Figure 11. The lightest JP C = 0++ glueball with linear and quadratic extrapolations to the
continuum limit.
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Figure 12. Continuum extrapolations of the lightest two JP C = 0++ glueballs, • and ◦, as well as
the next two heavier A1++ glueballs.
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Figure 13. Continuum extrapolations of the lightest two JP C = 2++ glueballs, as obtained from
the lightest two E++ states (•, each doubly degenerate) and the lightest two T2++ states (◦, each
triply degenerate). Hence the five components of each of the two J = 2 states.
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Figure 14. Continuum extrapolation of the lightest JP C = 3++ glueball. Obtained from the
lightest A2++ state (•), the lightest T1++ state (◦, triply degenerate) and the third excited T2++

states (?, triply degenerate): hence the seven components of the J = 3 ground state.
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Figure 15. Continuum extrapolation of the lightest JP C = 4++ glueball. Obtained from the
second excited A1++ (•), the doubly degenerate second excited E++ (◦), the triply degenerate first
excited T1++ (♦), and the triply degenerate second excited T2++ (?): hence the nine components
of the J = 4 ground state.
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Figure 16. Continuum extrapolation of the two lightest JP C = 0−+ glueballs as obtained from
the lightest two states of the A1−+ representation.
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Figure 17. Continuum extrapolations of the lightest two JP C = 2−+ glueballs, as obtained from
the lightest two E−+ states (•, each doubly degenerate) and the lightest two T2−+ states (◦, each
triply degenerate). Hence the five components of each of the two J = 2 states.
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Figure 18. Continuum extrapolation of the masses of the lightest three JP C = 1−+ glueballs
which appear to be (nearly) degenerate. They correspond to the lightest three T1−+ states, each
of which is triply degenerate (corresponding to the three components of each of these three J = 1
states).
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Figure 19. Continuum extrapolation of the masses of the lightest JP C = 2+− glueball, composed
of the lightest (doubly degenerate) E+− state, •, and the first excited (triply degenerate) T2+−

state, ◦.
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Figure 20. Continuum extrapolation of the masses of the lightest and first excited JP C = 1+−

glueball states corresponding to the ground and second excited (triply degenerate) T1+− states.
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Figure 21. Continuum extrapolation of the lightest JP C = 3+− glueball as obtained from the
lightest A2+− state (•), the first excited T1+− state (◦ and triply degenerate) and the lightest
T2+− states (? and triply degenerate). Hence the seven components of the J = 3 ground state.
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Figure 22. Continuum extrapolation of the lightest JP C = 4+− glueball as obtained from the
lightest A1+− (•), the doubly degenerate first excited E+− (◦), the triply degenerate third excited
T1+− (♦), and the triply degenerate second excited T2+− (?). Hence the nine components of this
J = 4 state. This assignment is uncertain.
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Figure 23. Continuum extrapolation of the lightest JP C = 2−− glueball, as obtained from the
lightest E−− state (•, doubly degenerate) and the lightest T2−− state (◦, triply degenerate). Hence
the five components of the two J = 2 state.
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Figure 24. Continuum extrapolation of the mass of the lightest JP C = 1−− glueball state corre-
sponding to the (triply degenerate) T1+− ground state.
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Figure 25. Histogram of lattice Q after 4 cooling sweeps, ◦, 8 cooling sweeps, ?, and after 20
cooling sweeps, • on a 8316 lattice at β = 5.6924.
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Figure 26. Histogram of lattice Q after 4 cooling sweeps, ◦, and after 20 cooling sweeps, • on a
14320 lattice at β = 6.0625.
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Figure 27. Histogram of lattice Q after 4 cooling sweeps, ◦, and after 20 cooling sweeps, •.
From 40000 measurements at β = 6.50 on a 26338 lattice. Points corresponding to N(Q) = 0 are
suppressed.
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Figure 28. Histogram of lattice Q on fields after 2 cooling sweeps, ◦, and after 20 cooling sweeps,
•. From 2500 measurements at β = 6.50 on a 26338 lattice. Points corresponding to N(Q) = 0 are
suppressed.
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Figure 29. Histogram of Q for fields with Q ∈ [−0.40, 1.35] after 2 cooling sweeps, •. For the
same fields a histogram for Q after 1 cooling sweep, ◦, and after 20 cooling sweeps, �. Points
corresponding to N(Q) = 0 are suppressed.
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Figure 30. Average topological charge on lattice fields which have an integer-valued charge Q after
20 cools; on 26338 lattices at β = 6.5.
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Figure 31. Topological susceptibility in units of the string tension. Continuum extropolation using
raw Q, ◦, and integer valued Q, •, both after 20 cooling sweeps.
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Figure 32. Correlation length ξQ for the SU(3) lattice topological charge defined by the relation
〈Q(is)Q(is + ξQ)〉/〈Q2〉 = e−1 where is and is + ξQ label the number of MC sweeps. Solid line is
ξQ ∝ 1/(a

√
σ)6, dashed line is ξQ ∝ exp{c/a
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σ}. Calculations are for β ∈ [5.99, 6.50].
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