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Abstract 

Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting 

directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-

transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known 

as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen 

species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are 

essential for the optimal functioning of the immune system in general and T cell activation and 

differentiation in particular. GSH is an ubiquitous regulator of the cell cycle per se. GSH also has 

crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter and enabler of 

neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative 

stress, hyper-nitrosylation, increased levels of proinflammatory mediators and inflammatory 

potential, dysfunctions of intracellular signaling networks, e.g. p53, nuclear factor-κB and Janus 

kinases, decreased cell proliferation and DNA synthesis, inactivation of complex I of the electron 

transport chain, activation of cytochrome c and the apoptotic machinery, blockade of the methionine 

cycle and compromised epigenetic regulation of gene expression. As such, GSH depletion has 

marked consequences for the homeostatic control of the immune system, O&NS pathways, 

regulation of energy production and mitochondrial survival as well. GSH depletion and concomitant 

increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse 

neuro-immune disorders, including depression, Myalgic Encephalomyelitis / chronic fatigue 

syndrome and Parkinson’s disease, suggesting that depleted GSH is an integral part of these 

diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-

acetyl-cysteine, Nrf-2 activation via hyperbaric oxygen therapy, dimethyl fumarate, phytochemicals, 

including curcumin, resveratrol and cinnamon, and folate supplementation. 
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1. Introduction 

-L-glutamyl-L-cysteinyl-glycine or glutathione is a tripeptide with multiple cellular 

functions. There are two forms of glutathione; the oxidized form (glutathione disulfide or GSSG) 

and the reduced form (GSH). Glutathione is a key antioxidant, either by reacting with reactive 

nitrogen species (RNS), reactive oxygen species (ROS), hypochlorous acid (HOCL), hydroxyl 

radicals (HO ), and other reactive species, or via its role as an indispensable cofactor for numerous 

enzymes including the glutathione peroxidases and glutathione S-transferases [1]. 

Glutathione has several key functions in diverse cellular populations. The GSH / GSSG 

redox couple acts as a vital cellular redox buffer enabling the optimum performance of a myriad of 

redox sensitive biochemical and biophysical processes [1]. Glutathione is a key component of the 

antioxidant defenses in the cell and the detoxification of ROS and RNS [2]. S-Glutathionylation, i.e. 

the posttranscriptional addition of glutathione to protein cysteine, modifies the activity of many 

proteins, including intracellular signaling molecules, and inhibits the activity of many important 

enzymes. The glutathione-related redox state of cells plays an important role in the regulation of 

pro-inflammatory cytokines, including tumor necrosis factor-α (TNFα), interleukin (IL)-1β and IL-

6, and the activity of intracellular signaling pathways [3]. Glutathione has antiviral effects and can 

inhibit the replication of many viruses. Glutathione modulates the function of T cells and natural 

killer cells and regulates the processes enabling cellular proliferation, division and apoptosis [2]. 

Glutathione plays a role in DNA synthesis, repair and expression [4]. The function and survival of 

mitochondria is dependent on the glutathione system. Glutathione has important functions in the 

brain as an antioxidant and neuromodulator and promoter of neuronal survival. Glutathione acts as a 

neuromodulator of the glutamate ionotropic receptors, interacts with N-methyl-D-aspartate (NMDA) 

receptors and protects against glutamate excitotoxicity [5]. These key functions explain why 

depletion of glutathione may be accompanied by dysfunctions in many organs and cell functions 
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that are associated with the onset of neuro-immune disorders, including depression, Myalgic 

Encephalomyelitis / chronic fatigue syndrome (ME/CFS) and Parkinson’s disease. 

This paper aims to discuss the numerous functions of glutathione in health and disease as 

well as to review the evidence for disorganization of the glutathione system in depression, ME/CFS 

and Parkinson’s disease, before finally considering treatment approaches for restoring the normal 

function of the glutathione systems. 

 

2. The glutathione system 

2.1. Synthesis and basic biochemistry 

The synthesis of glutathione is a two stage process with each stage being dependent on the 

energy provided by the hydrolysis of ATP [6]. The first and rate limiting step is catalyzed by -

glutamylcysteine synthase (glutamate cysteine ligase) and involves the formation of a peptide bond 

between L-glutamic acid and the N terminal of L-cysteine. The second step involves the addition of 

glycine and is catalyzed by glutathione synthetase. Glutathione is mostly synthesized in the cytosol 

of the cells where its concentration is some two orders of magnitude higher than in the extracellular 

environment [7]. Cytosolic glutathione is transported into mitochondria, the endoplasmatic 

reticulum and the nucleus where it exists in independent pools. The reduced form dominates in most 

cells or compartments but in the endoplasmatic reticulum the oxidized (GSSG) form is predominant 

[8,9]. A schematic representation of pathways involved in glutathione synthesis can be seen in 

Figure 1. 

 

2.2. Glutathione peroxidases (GPX) 

Glutathione may also serve as a co substrate for glutathione peroxidases which are part of the 

cellular enzymatic antioxidant network responsible for scavenging organic and inorganic peroxides 
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[10]. GSSG formed by these reactions (and others) may either be excreted or reduced to glutathione 

via the action of NAD(P)H-dependent glutathione reductase. For a detailed review of the 

biochemistry relating to the 6 isoforms of the selenium dependent glutathione peroxidases the reader 

is referred to the work of Sheehan et al. [11]. Conjugation with electrophiles is a major cause of 

glutathione depletion as is the export of GSH, GSSG and GSH-conjugates into the intracellular 

environment. Glycine and glutamate may be salvaged and reabsorbed following hydrolysis [12] but 

cysteine is lost and glutathione-S conjugates are metabolized to mercapturic acids before being 

excreted in bile and urine [13]. 

 

2.3. Glutathione S-transferases and glutaredoxins 

Glutathione S-transferases are enzymes that catalyse the biotransformation of otherwise 

genotoxic or carcinogenic molecules of endogenous or exogenous origin by conjugation with 

glutathione [2]. Two families of supergenes encode glutathione S-transferases: sixteen genes code 

for soluble glutathione S-transferases and six genes code for microsomal glutathione S-transferases 

[14]. These enzymes are divided into eight classes based on sequence homology: Alpha (GSTA), 

Theta (GSTT), Mu (GSTM), Omega (GSTO), Kappa (GSTK), Zeta (GSTZ), Sigma (GSTS), and Pi 

GSTP [15]. 

Glutaredoxins (GRXs) are glutathione-dependent redox enzymes that utilize glutathione’s 

reducing power to catalyze disulfide reductions in the presence of glutathione reductase [16]. They 

are highly specific in their actions and enable the displacement of glutathione from mixed disulfides 

according to the reaction GSH + protein-SSG = GSSG + protein-SH [17]. Glutaredoxins GRX 1 and 

GRX2 are located in the cytosol [18] and the intermembrane space of mitochondria [19]. 

 

3. Glutathione and O&NS detoxification 
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Glutathione plays a major role in the detoxification of RNS and ROS and as such is an 

indispensible component of the cellular anti-oxidant defenses [2]. Cellular glutathione is consumed 

by oxidation conjugation and hydrolysis [7,11,20]. Glutathione can react with ROS/RNS and radical 

molecules, such as RO , HOCL and HO . Glutathione may be directly oxidized by HO  and 

peroxinitrite (ONOO ) producing thiyl radicals [21-23]. Glutathione plays a pivotal role in the 

detoxification of NO and products of ROS-induced lipid peroxidation, such as 4-hydroxynonenal 

(4HNE) and malondialdehyde (MDA) [24,25]. The GSH / GSSG redox couple together with the 

NAD(P) / NAD(P)H and FAD / FADH redox couples are responsible for maintaining the redox state 

of the cell [26,27]. Glutathione in the nucleus is responsible for maintaining the required redox state 

of thiol proteins involved in DNA synthesis and repair [28]. 

Glutathione and glutathione S-transferases via their role as electrophile scavengers can act as 

indirect regulators of biochemical pathways modulated by these molecular entities. One of the 

pathways so regulated is the stress mediated pathway whose performance is governed by 4HNE 

levels, a preferred substrate for one of the alpha class glutathione S-transferases [29]. These 

enzymes thus have a crucial role in protecting cells by enabling the elimination of toxic chemicals, 

e.g. byproducts of oxidative stress [30,31], including oxidized DNA and catechols. They do so by 

promoting electrophile conjugates with glutathione and directly inhibiting hydrogen peroxide 

(H2O2) induced lipid peroxidation [31]. 

Perhaps unsurprisingly polymorphisms in glutathione S-transferases are prime suspects in 

the cause of many diseases, as is the case with GSTTi and GSTMi where polymorphisms stemming 

from deletions results in loss of enzyme activity [15,32]. Downregulation or inactivated GSTPi as a 

result of polymorphisms likely increases genomic damage when an individual with this genotype 

exposed to carcinogens due to reduced detoxification capacity [15,33]. These polymorphisms are 

implicated in the development of autoimmune disorders, including systemic lupus erythematosus 
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stemming from prolonged exposure to toxins in the environment [34], as well as psychiatric 

disorders such as schizophrenia, autism and bipolar disorder [35-38]. 

Glutathione and glutathione S-transferases are important players in xenobiotic detoxification 

which may be usefully considered as consisting of three interrelated phases. The first is 

biotransformation or bioactivation mediated via cytochrome P450 and other monooxygenases, 

predictably known as phase 1 enzymes. Six cytochrome p450 enzymes (with CYP3A4 and CYP2D6 

being the most important) are responsible for metabolizing ninety percent of prescription drugs and 

this class of enzymes may be inhibited or induced by xenobiotics leading to adverse reactions or 

failure of therapy [39]. The first step of the detoxification process can paradoxically generate 

electrophiles or nucleophiles that are often carcinogenic or toxic [40]. The major metabolic role of 

glutathione S-transferases is the detoxification of these reactive electrophiles by catalyzing their 

conjugation (second phase) with glutathione [41,42]. This process usually results in a reduction of 

electrophile reactivity and increases the water solubility of the compounds favoring their elimination 

(third phase) thereby greatly reducing the potential of damaging interactions between these chemical 

entities and nucleic acids and proteins.  

 

4. Glutathione and post transcriptional modification of proteins 

Prolonged elevation of oxidative stress leads to the chemical modification of protein thiols 

either by the addition of NO motieties in a process described as nitrosylation (protein-SNO or 

protein-NO) or the transferase enzyme driven addition of glutathione to sulphydril or sulfenic acid 

groups termed glutathionylation (protein-SSG). Both processes are important examples of post 

translational modification and have a wide range of effects on protein structure and function as well 

as conferring resistance to further perhaps irreversible oxidative damage. We now consider these 

processes in more detail. 
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4.1. Response of cysteine to elevated O&NS 

Production of thiyl (or thiol or mercapto radicals) radicals (RS) may follow exposure of 

cysteine groups to ROS and RNS. These are very short-lived derivatives that react with protein–SH 

molecules to form protein–SSG. Exposure of cysteine to ROS and RNS also results in the genesis of 

sulfenic acids (RSOH), which are highly unstable entities that rapidly undergo further oxidation to 

sulfinic or dulphonic acids, or react with glutathione to produce protein–SSG [43,44]. Sulfenic acid 

is readily reduced by a favorable change in the redox state of the cell or via the action of a wide 

range of reductases [45]. The oxidation of cysteine residues may in some circumstances be 

beneficial in that the reaction may act as a redox sensor but the normal outcome is the inactivation 

of a thiol protein especially if the cysteine group is integral to its function. 

 

4.2. Glutathionylation 

An alternative to the action of reductases in reversing oxidative damage to protein thiols is 

the addition of glutathione in a process known as S-glutathionylation [46,47]. The glutathyolation 

process is enabled by a ROS induced elevation of two forms of glutaredoxins, GRX1 and GRX2 of 

the pi class of glutathione S-transferases, which catalyze the conjugation of glutathione to cysteine, 

sulfenic acid or other sulfhydryl moieties [48]. Glutaredoxins catalyze both glutathionylation and 

deglutathionylation because GRX catalytic mechanisms are bidirectional with resultant direction 

being decided by the levels of GSG, GSSG, protein-SH and protein–SSG. 

The activities of a wide range of proteins may be up or downregulated by S-

glutathionylation. Cytoskeletal thiol proteins are particularly susceptible to glutathionylation and 

other susceptible protein clusters include kinases and other cellular signaling proteins and proteins 

involved in energy production and calcium homeostasis [49]. S-glutathionylation inhibits the 
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activity of many enzymes and functional proteins, for example phospho-fructokinase [50], 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [51], creatine kinase [52]; nuclear factor 

kappa B (NF-κB) [53]; IκB Kinase (IKK) [54]; protein phosphatase 2A [55]; mitochondrial complex 

I [56]; mitochondrial complex II [57]; protein kinase A [58]; and matrix metalloproteinase [59]. 

The glutathionylation status of a protein-SH ultimately depends on the ratio of GSH / GSSG 

concentrations [47]. The presence of chronic oxidative stress leads to the glutathionylation of a wide 

range of proteins and this reaction may promote or impair their function [60]. However, overall 

glutathionylation is a mechanism aimed at preventing irreversible damage of thiol proteins as a 

result of elevated ROS [2]. Glutathionylation of proteins containing cysteine in complex I of the 

electron transfer chain is a signaling mechanism that may dampen aerobic metabolism during 

periods of low antioxidant status. This leads to inhibition of complex I which in turn impairs 

electron flow ultimately decreasing downstream ROS formation [61]. 

 

4.3. Nitrosylation 

Another process of posttranscriptional modification of thiol proteins is the addition of a NO 

group, known as nitrosylation [62]. Cysteine sulfhydryl groups located on glutathione and proteins 

become nitrosylated in physiological and pathological conditions forming protein-GSNO and 

protein-SNOs, respectively [63,64]. Various reactions between ROS and RNS produce a range of 

metabolites of which N2O3 is the main nitrosylating species [65]. The ready reversibility of any 

reaction involving NO (nitrosylation and denitrosylation) by virtue of dative bond formation 

underpins the molecules role as a classical second messenger [66]. The development of GSNO-

induced glutathionylation versus nitrosylation is probably dependent on the localized redox 

environment of the transformed cysteine (Cys) residues [67].  
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4.4. Glutathionylation versus nitrosylation 

Glutathionylated and nitrosylated proteins coexist in an environment of oxidative stress and 

an exchange of these modifications between proteins occurs with reasonable frequency. There are 

major differences between proteins in susceptibility to each modification [68]. On some occasions 

both modifications will impair protein function but on others different affinities of protein thiols for 

each modification leads to highly specific consequences. Glutathionylation or nitrosylation reactions 

tend to occur in different cellular compartments with nitrosylation being more dominant where ROS 

and RNS are created such as in mitochondria and the endoplasmatic reticulum. In fact, 

mitochondrial ROS generation may be important for the nitrosylation reaction to occur [69]. 

Transcription factors such as p53 and NF-κB are redox sensitive due to the presence of 

cysteine residues which are vulnerable to glutathionylation. The effects of this process on the 

function of these transcription factors are quite subtle and varied. For example, glutathionylation 

does not impede the activation of NF-κB or its translocation to the nucleus but glutaredoxin-

mediated glutathionylation of cysteine residues on the p65 and p50 subunits inhibits their binding to 

DNA and hence disable the ability to instigate the transcription of survival genes [70,71]. 

Glutathionylation of p53 and NF-κB has serious consequences as both transcription factors are 

important components in energy metabolism and immune homeostasis [72,73]. Nitrosylation of the 

p50 and p65 subunits of NF-κB suppresses the binding of the transcription factor to DNA causing its 

inactivation [74,75]. Nitrosylation of cysteine groups also impairs multiple steps involved in NF-κB 

activation [76]. 

 

5. Glutathione in immune-inflammatory pathways and cytokine signalling 

5.1. Glutathione and cytokines  
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The redox state of cells plays a cardinal role in the regulation of IL-1β, IL-6, and TNFα – 

transcription and in the modulation of the signaling pathways activated by these cytokines [77]. 

MAPK-dependent cytokine expression and signaling is under redox control and glutathione 

depletion enhances both the transcription and deleterious effects of cytokines and conversely 

elevated levels of glutathione and cysteine have been shown to suppress transcription of pro-

inflammatory cytokines [77,78]. The GSH / GSSG ratio regulates the transcription of IL-6, IL-8, IL-

4 and TNFα [79-81]. On the other hand, pro-inflammatory cytokines reduce glutathione synthesis 

transport and recycling [82,83]. 

An examination of IL-1β transduction serves to illustrate the pleiotropic effects of 

glutathione on proinflammatory signaling. IL-1 signalling consists of three phases involving initial 

complex formation with NF-κB followed by its activation and finally its translocation to the nucleus 

ultimately provoking gene transcription [76]. A range of thiol-oxidizing compounds have the 

capability of inhibiting all three phases but their oppressive actions would normally be neutralized 

by glutathione [84]. However, glutathione is clearly not the sole enabler of NF-κB activation as this 

transcription factor is also activated by oxidative stress [84]. In a highly oxidative environment, 

however, NF-κB transcription is enhanced by hyperexpression of glutathione peroxidases, indicating 

an overall inhibitory role for glutathione. As discussed, glutathione also modulates NF-κB-instigated 

signaling via glutathionylation thereby impeding DNA binding [84]. All in all, the evidence 

indicates that the precise redox state is crucial in promoting or inhibiting the activation of NF-κB 

activation. Glutathione depletion is thus likely to produce a number of different modulating 

influences on the activation of this transcription factor. 

 

5.2. Glutathione and regulation of the immune response 

5.2.1. Glutathione and viral replication 
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Glutathione, selenium and glutathione-dependent enzymes are all involved in antiviral 

defenses. Glutathione can inhibit the replication of Lenti retroviruses [85], Delta retroviruses [86], 

Gamma retroviruses [87], Influenza viruses [88] and Herpes simplex type 1 [89]. Glutathione 

inhibits HIV by repressing the production of the p24 gag protein and by doing so inhibits budding, 

infectivity and viral release. Glutathione also inactivates the Gp120 envelope protein, which is very 

vulnerable to glutathione attack because it is rich in structural disulphide bonds [85,90]. The 

inhibition of viral envelope proteins is one of the mechanism by which glutathione inhibits the 

production of Influenza or Sendai virus [85,88,89]. Dengue virus infection directly depletes 

glutathione and this ability is a conserved evolutionary mechanism favoring its replication. Elevated 

levels of glutathione inhibit the replication of this virus [91,92]. 

 

5.2.2. Glutathione and T cell activation 

The activation and proliferation of T cells requires the existence of a strong intracellular and 

extracellular reducing environment [93,94], which is mainly engineered by antigen-presenting cells, 

especially dendritic cells [92,95,96]. When dendritic cells are stimulated by T cells they increase 

their uptake of cystine by deploying xc
− cystine transporter receptors and extrude cysteine (the 

reduced form of cystine) into the environment. Although extracellular cystine is abundant, naïve T 

lymphocytes lack the machinery to transport cystine, with any degree of efficiency and hence 

depend on cysteine derived from dendritic cells to meet their metabolic needs [97-99]. Cysteine 

derived from dendritic cells is required by T cells for synthesis of glutathione, ultimately providing 

the reducing power enabling DNA synthesis [100] and allowing progression from G1 to the S phase 

[101,102]. By controlling cystine/cysteine levels, dendritic cells are able to affect intracellular 

glutathione levels and subsequent redox signaling pathways in T cells [98]. 
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Redox modulation is also part of the immunosuppressive armory deployed by T regulatory 

(Treg) lymphocytes in mediating their effects when activated. Tregs impair the synthesis of 

glutathione in dendritic cells by inhibiting the expression of gamma-glutamyl transpeptidase ( GT), 

the rate limiting enzyme for glutathione synthesis. Tregs also successfully compete for and 

ultimately oxidize cysteine depriving effector T cells their major source of essential cysteine. Tregs 

also appear to block the redistribution of glutathione from the nucleus to the cytoplasm in effector T 

lymphocytes which is an essential step in their proliferation [103]. 

 

5.2.3. Glutathione and T cell differentiation patterns 

Glutathione levels in antigen-presenting cells govern which pattern of differentiation 

predominates [104,105]. Glutathione plays a crucial part in enabling the growth-promoting 

properties of IL-2 [106] by regulating the internalization, binding and degradation, of this cytokine 

as well as IL-2-driven T-cell proliferation. The weight of evidence suggests that immune responses 

are optimally at intermediate glutathione concentrations that support efficient DNA synthesis and do 

not inhibit IL-2 production [107]. For example, IL-2-activated natural killer (NK) cells need a 

reducing environment, provided by de novo synthesis of glutathione, in order to proliferate and 

perform their normal functions [108]. Intracellular glutathione concentrations largely govern the 

replication, differentiation and growth of IL-2-reactive cytotoxic T-lymphocytes [109,110].  

 

5.2.4. Glutathione and cell proliferation 

 During normal physiology, glutathione becomes localized to the nucleus when cells are 

actively dividing [111,112]. The activity of nuclear proteins especially telomerase is dependent on 

GSH / GSSG. Changes in telomerase activity lead to changes in the activity of crucial cell cycle 

proteins id2 and E2F4 [111]. Glutathione has a key role as a redox sensor at the commencement of 



16 

 

DNA synthesis and glutathione levels play a crucial role in maintaining nuclear architecture by 

ensuring the requisite redox environment for ensuring DNA integrity prior to replication. 

Glutathione also influences proteosomal protein degradation in the nucleus and exerts epigenetic 

control on histone function and chromatin structure prior to replication by reducing the number of 

disulphide bonds on nuclear proteins and hence generating a reducing environment [111-113]. 

Glutathionylation and oxidation of nuclear proteins form the basis of reversible mechanisms for 

regulating cell proliferation repair and state of DNA compaction [112]. Chromatin by virtue of the 

cysteine motif on histone 3(H3) is redox sensitive. The level of glutathionylation increases during 

cell division resulting in loss of nucleosomic stability and the formation of a more lax decompacted 

chromatin structure [114]. 

In general the cell cycle involves a change from a reduced environment during proliferation 

and differentiation to a more oxidized milieu when cells undergo apoptoptic cell death [115]. 

Glutathione has multiple means of influencing cell proliferation. Elevated levels of glutathione lead 

to the inhibition of p38 MAP and Janus kinases [116]. ROS, mainly in the form of hydrogen 

peroxide, and glutathione both play an important part in regulating the cell cycle. High hydrogen 

peroxide levels activate MAP kinases and NF-κB leading to cell necrosis or apoptosis but at a lower 

dose hydrogen peroxide activates transcriptors such as nuclear factor (erythroid-derived 2)-like 2 

(Nfr-2), which is a key regulator of glutathione synthesis. So, when ROS is produced at low 

concentrations, glutathione is synthesized and cellular proliferation occurs [117]. Given the 

influence of glutathione and glutathionylation on the activity of immune-inflammatory pathways it 

is perhaps not surprising that the GSH / GSSG ratio and glutathionylation of proteins are key 

regulators of apoptosis [118,119]. 

 

6. Glutathione and mitochondria 
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6.1 Glutathione, redox homeostasis and mitochondrial survival 

The function and survival of mitochondria is dependent on the glutathione system. 

Mitochondria are a major site of cellular ROS generation in spite of the presence of a broad wide 

array detoxifying enzymes and antioxidants. Mitochondria produce over ninety percent of total 

cellular ROS in some cells [120]. Mitochondria are thus the organelles with the greatest 

vulnerability to corrosive damage by free radical species such as hydrogen peroxide and superoxide 

[121,122]. There are other mitochondrial sources of ROS apart from the electron transport chain. 

These sources include glycerol 3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, 

mitochondrial NADPH oxidase (NOX4), monoamine oxidase, etc. [123-128]. Hydrogen peroxide is 

being continually produced by the electron transport chain. When conditions are in a state of redox 

balance the amount of hydrogen peroxide exported into the cytoplasm is restrained by the action of 

matrix peroxidases [129] and glutathione peroxidases [130]. However, both the mitochondrial and 

cytoplasmic redox environments make an important contribution to maintaining redox homeostasis 

and the net rate of ROS accumulation within the cell is dependent on the interaction between the 

GSH / GSSG in the cytoplasm and the regeneration of glutathione in the mitochondrial matrix [130]. 

The optimum function and indeed the very survival of mitochondria are wholly dependent on 

the coordinated activity of the glutathione, glutaredoxin and thioredoxin systems which act 

cooperatively to ensure continual maintenance and repair [131]. Redox sensors located in the cell 

and mitochondria have the capability of detecting dynamic perturbations in ROS concentrations and 

act to adjust antioxidant defenses in the face of intracellular or intercellular stressors which threaten 

to disrupt the redox balance in the mitochondria or cytosol [130-133]. 

 

6.2. The glutathione system and other redox couples in mitochondria 
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The mitochondrial matrix, the inner membrane space and the cytosol contain pools of 

segregated but interactive redox couples, e.g. NADPH / NADP, NADH / NAD, GSH / GSSG and 

thioredoxin (Trx) / TrxSS [134,135]. The thioredoxin and glutathione systems are the main 

hydrogen peroxide scavengers in all mitochondria. The protective properties of the glutathione 

system are conferred by the actions of glutathione-S-transferase and glutathione peroxidase GPX-4. 

The concentration of glutathione (GSH + GSSG) is 100- to 1,000-times higher in comparison to any 

other redox buffering system including thioredoxin so that the intracellular GSH / GSSG pool 

dominates the redox environment [136]. As such, the glutathione system is the primary protector of 

mitochondrial membranes against oxidative damage. The glutathione and glutaredoxin systems 

function cooperatively to reduce protein disulphides formed as a result of increased GSSG formed 

as a result of a chronic oxidative environment. Glutaredoxin acts to reduce protein disulfides and 

restore their conformation and function [137]. The thioredoxin system also plays an important part 

in reducing a range of protein disulphides [138] and also supplies hydrogen atoms used in the 

reduction of hydrogen peroxides and lipid peroxidases [139]. Figure 2 depicts the role of the 

glutathione antioxidant system in protecting mitochondria against the ravages of ROS. 

 

7. Role of glutathione in the central nervous system 

7.1. Glutathione, a glutamate receptor modulator 

Glutathione is the most plentiful peptide in the brain and spinal cord and is present in glial 

cells and neurons as well as and in intracellular spaces [140,141]. Glutathione in its oxidized and 

reduced forms exerts the majority of its effects in the central nervous system (CNS) by interacting 

directly or indirectly with glutamate receptors. There are two families of glutamate receptors; 

metabotropic and ionotropic receptors [142]. The latter receptors are classified as N-methyl-D-

aspartate (NMDA), 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), or kainate 
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receptors [142,143]. These receptors are gated ion channels which open in response to the binding of 

a suitable ligand molecule such as the amino acid glutamate to allow passage of sodium or calcium 

ions. This flow of ions causes depolarisation of the plasma membrane and the genesis of an 

electrical current. Chronic hyperstimulation of ionotropic receptors induces pathology by mediating 

the development of excitotoxicity through calcium and O&NS mediated processes [144,145]. 

Each of the three amino acids contained in glutathione is able to interfere with glutamate-

mediated neurotransmission through both direct and indirect receptor modulation. The glutamate 

group can bind to all types of glutamate receptor. The cysteine based thiol group affects the redox 

state of those receptors, while glycine is actually an NDMA receptor agonist. 

GSH and GSSG at physiologically normal concentrations both inhibit the glutamate binding 

to synaptic membranes [5,146,147]. Glutathione acts as a neuromodulator by displacing ligands of 

the glutamate ionotropic receptors from their binding sites and modulating the entry of calcium ions 

into ionophores regulated by NMDA receptors [148]. Glutathione, at millimolar concentrations, may 

interact with the redox sensitive site of NMDA receptors [149,150] and such binding likely plays an 

important role in modulating neuroplasticity [151]. Glutathione displaces glutamate, via its glutamyl 

moiety, largely from AMPA receptors. GSH and GSSG, depending on their concentrations, can also 

displace AMPA and kainate from their respective receptors [152,153]. Glutathione appears to confer 

neuroprotection against exitotoxicity and maintains intracellular Ca2+ homeostasis [154,155]. GSH 

and GSSG ameliorate neuronal damage resulting from chronic NMDA receptor activation [156]. 

 

7.2. Glutathione and the cystine / glutamate antiporter system in the brain. 

There are two main types of glutamate transports in the CNS. The first is the excitatory 

amino acid transporter and the second is the xc- cystine / glutamate antiporter system. We will now 

discuss these in a little more detail in order to better highlight the adverse effects of low glutathione 
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on the integrity and functioning of the brain. The excitatory amino acid transporters enable the 

uptake of glutamate against a concentration gradient [157] and prevent excessive glutamate receptor 

activation, which can lead to prolonged exitotoxicity and ultimately neuronal cell death. The 

excitatory amino acid transporters (EAAT1 and EAAT2) are mainly astrocytic transporters 

responsible for maintaining intracellular glutamate below neurotoxic levels [158]. The excitatory 

amino acid transporter EAAT2 is held to be responsible for some ninety percent of glutamate uptake 

under normal conditions [159,160]. Astrocyte excitatory amino acid transporter activity is much 

higher compared to that of microglia [161]. The xc- cystine / glutamate antiporter allows the uptake 

of extracellular cystine (for glutathione synthesis) in exchange of intracellular glutamate [162]. The 

optimum function of this system is crucial for the homeostatic control of cysteine and glutamate 

levels [163]. The expression of the xc- cystine / glutamate antiporters in the CNS is confined to 

astrocytes [164] and microglia [165]. Through astrocytic glutamate efflux the xc- antiporter may 

allow the targeting of glutamate to neuronal sites, allowing glutathione synthesis to modulate 

neuronal activity. Microglial xc-antiporter expression is important in the uptake of cystine for 

glutathione synthesis particularly during activation by lipopolysaccharide (LPS) where the density 

of xc-antiporters is increased on the surface of activated microglia [166]. This may damage 

surrounding neurons by secreting glutamate at the same time as importing cystine to bolster the cells 

antioxidant defenses. 

 

8. Depleted glutathione: consequences and clinical relevance 

8.1. Consequences of depleted glutathione 

Given the key roles of glutathione discussed in the previous sections it is not surprising that 

glutathione depletion causes many perturbations in cell and organ functioning and is associated with 

the onset of neuro-immune disorders such as depression and ME/CFS. We will now review some of 
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the effects of glutathione depletion before reviewing the evidence alluding to the existence of 

O&NS and a dysregulated glutathione system in neuro-immune disorders. 

As mentioned above, the glutathione system is the most important protectant in the 

detoxification of ROS and RNS and as such is a vital component of the cellular anti-oxidant 

defenses [2,167]. Glutathione reacts directly with different radical molecules and may be directly 

oxidized by HO  [168,169] and peroxinitrite [170,171]. Glutathione is involved in the detoxification 

of NO. and products of ROS-induced lipid peroxidation, such as 4HNE and MDA [172,173] and a 

range of other metabolites produced by oxidative damage [174,175]. A compromised glutathione 

system therefore leads to the development of chronic O&NS occurring in neuro-immune diseases 

[167,176,177]. 

The consequences of glutathione depletion on immune-inflammatory responses heavily 

depend on the nature of the pro-inflammatory mediators dominant in any given cellular 

environment. Cytokine regulation and reduced glutathione are intimately interlinked. The GSH / 

GSSG ratio determines the activation level of the JNK and MAPK pathways and thus the 

transcription of pro-inflammatory cytokines [178]. The redox state of the cell and the GSH / GSSG 

ratio govern the transcription of pro-inflammatory cytokines, such as IL-1, IL-6, IL-8 and TNF  

also plays a major part in the modulation of the signaling pathways activated by these cytokines 

[3,79,179]. Thus, glutathione depletion not only enhances the transcription, but also the deleterious 

effects of these cytokines [78]. The weight of evidence suggests that lowered levels of glutathione 

may suppress immune responses [180-183].  

Depleted glutathione levels dramatically impair proliferation, DNA synthesis and cytotoxic 

activity of T lymphocytes and may lead to a Th2 polarized immune system [101,111,167,184,185]. 

Glutathione peroxidase depletion additionally inhibits Th2 and Th17 differentiation of activated 

naive T cells [186]. Glutathione depletion also contributes to increased blood brain barrier 
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permeability observed in neuro-immune disorders [187], thereby further increasing central immune-

inflammatory processes by potentiating immune cell extravasation over a compromised blood brain 

barrier. 

As described above, many transcription factors are also redox sensitive including 

inactivation of p53 [188] and NF-κB [189]. NF-κB and p53 are vital players in the regulation of the 

immune response and energy production [72]. Glutathione levels also modulate signal transduction 

pathways within T lymphocytes involving AP-1 and tyrosine phosphorylation [190]. Glutathione 

depletion can also modulate inflammatory cascades by affecting the Janus kinase and STAT3 

pathways [191]. In a depleted glutathione environment, glutaredoxin dissociates from signal-

regulating kinase resulting in c-Jun N-terminal kinase activation leading to cyclo-oxygenase-2 

induction and the production of prostaglandin E2 [192-194]. 

 The consequences of glutathione depletion reflect how redox mechanisms regulate DNA 

synthesis in G1 phase and mitosis [195] and how glutathione depletion impairs the proliferation of 

all cell types [196,197]. Reduced glutathione levels prevent the shift from G1 to the S phase in the 

cell cycle, thereby decreasing cell proliferation [198]. Glutathione levels are high in cells preparing 

to divide or entering the mitotic phase but much lower in cells in the Go / G1phase [199]. 

Glutathione depletion impairs mitochondrial function and ATP production by inhibiting 

complex I of the electron transport chain [200]. Since glutathione biosynthesis is an energy-

dependent process [2] mitochondrial dysfunction significantly depletes glutathione production 

thereby further exacerbating oxidative damage which further impairs electron transport chain 

activity. Hence, glutathione depletion is almost certainly a major contributing factor to the 

progressive nature of mitochondrial diseases [200-202]. Glutathione levels in those with confirmed 

syndromic and non-syndromic mitochondrial diseases are dramatically lower than those observed in 

healthy controls [203-205] even to the point of being undetectable [200]. The weight of evidence 
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indicates that glutathionylation impairs complex I activity compromising energy production 

[206,207]. Glutathione depletion also impairs the function of proteins regulating calcium 

homeostasis and energy generation [208]. 

Glutathione depletion may ultimately drive cytochrome c release and mitochondrial death 

[209]. In healthy neurons, cytochrome c is held inactive by increased glutathione [210]. ROS-

independent glutathione depletion leads to the inhibition of sphingomyelin synthase activity, the 

activation of caspases and ceramide generation [211,212]. Additionally glutathione loss impairs the 

canonical NF-κB signaling pathway resulting in the sensitization of cells to apoptosis [213,214]. 

Glutaredoxins also regulate the function of numerous proteins which play critical roles in the 

regulation of apoptosis by catalyzing deglutathionylation and glutathionylation, such as NF-κB, 

procaspase-3, Fas and ASK1. Prolonged elevation of O&NS causes oxidative modifications of 

crucial Cys residues located in these apoptotic mediators, provoking protein-SSG generation and 

hence altering protein activity and apoptotic signaling [215]. Mitochondria form the central hub of 

cellular energetics and apoptotic processes, with the intimate bidirectional relationship between the 

glutathione system and mitochondria crucial to cellular functioning. 

Depletion of glutathione can invoke the apoptotic machinery even in the absence of elevated 

O&NS [119,216]. In different cell types, glutathione depletion participates in the onset of 

programmed cell death following numerous apoptotic signals [118,216]. Prolonged glutathione 

depletion leads to JNK activation and an increase in expression of programmed death receptor 5 

[217,218] and Fas mediated increase in mitochondrial membrane permeability [219]. Glutathione 

depletion may also trigger cell death directly by increasing mitochondrial permeability transition 

pore formation, leading to cytochrome c release and the activation of death inducing mitochondrial 

caspases [220,221], even in the absence of programmed death receptor ligation. There is also some 

evidence that glutathione depletion is an indispensable step in the assembly of the apoptosome 
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[222]. Decreased glutathione levels lead to the oxidation dependent dimerization and subsequent 

activation of Bax, and initiation of the intrinsic apoptopic pathway [223]. Glutathione loss leads to 

Bax translocation, from its bound state in the cytoplasm by 14-3-3 [224], into mitochondria leading 

to loss of mitochondrial membrane potential delta psi(m), dramatically increasing O&NS and 

leading to dysregulated calcium ion homeostasis and ultimately capase-3/9 activation and cellular 

apoptosis [225-227].  

The optimum functioning of the NDMA receptor is dependent on the redox environment, 

with prolonged glutathione depletion compromising synaptic plasticity, memory and learning [228, 

229]. Astrocyte glutathione depletion has serious consequences for the integrity and function of 

neurons [230]. Prolonged conditions of oxidative stress are deleterious in part by reducing the 

capacity of astrocytes to uptake glutamate [231]. Raised levels of extracellular glutamate are a 

common observation in many neurological diseases, increasing excitotoxicity or oxidative glutamate 

toxicity. This state is created by the oxidative stress related inhibition of cystine uptake by the xc- 

antiporter system leading to glutathione depletion [232]. Astrocyte glutathione release is well 

documented and is important to neuronal anti-oxidant defenses [233,234]. As glutathione cannot be 

directly taken up by neurons, astrocyte released glutathione is co-ordinated with the upregulation of 

gamma-glutamyl transpeptidase, which cleaves glutathione to products which neurons can uptake, 

including cysteine [235,236] which is imported by neuronal EAAT3 receptors [237]. 

 Various states, including elevated O&NS, resulting in glutathione depletion have been 

shown to impair DNA methylation [238-240]. Therefore, elevated O&NS is considered to alter the 

methylation of DNA, which leads to changes in the gene expression [241]. There are a number of 

different overlapping mechanisms involved. ROS-induced DNA lesions, such as 8-OHdG, may 

inhibit the activity DNA methyltransferase at the adjacent cytosine base and subsequently prevent 

methylation at that site [242]. An unfixed 8-OHdG can lead to the introduction of a G-T transversion 
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leading to a loss of CpG dinucleotides [243]. In a state of chronic O&NS, homeostatic mechanisms 

promote an increase in the resynthesis of glutathione in response to glutathione depletion via the 

methionine cycle. The synthesis of glutathione via the increase in the rate of one carbon metabolism 

requires S-adenosylmethionine as a substrate for synthesizing the homocysteine ultimately to be 

used for the glutathione synthesis. This leads to a diminished availability of S-adenosylmethionine 

for the purpose of DNA methylation [244]. Oxidative stress additionally increases the demand for 

SAMe but concomitantly decreases its synthesis resulting in sub optimal methylation of DNA [245, 

246]. 

 

8.2. Glutathione depletion in depression 

Glutathione depletion and concomitant increase in O&NS, mitochondrial dysfunctions and 

impaired DNA methylation play a role in the pathophysiology of neuro-immune disorders, including 

depression and ME/CFS. There are several reports of a dysregulated glutathione system with 

lowered glutathione levels and lowered levels of its related enzymes in individuals with depression 

and ME/CFS. Already in 1934 it was reported that glutathione may be lowered in the blood of 

schizophrenic patients [247]. 

Serum glutathione levels in depression have been directly measured. One study reports 

serum levels from individuals with recurrent depressive disorder. When compared to controls, those 

with depression had significantly lower glutathione levels. In parallel, decreased levels of 

glutathione peroxidase-1 are also reported. Interestingly, an increase in glutathione reductase was 

reported, that may reflect the upregulation of glutathione cycling in response to depletion. Increased 

markers of oxidative stress were also observed, with increased MDA and hydrogen peroxide levels 

reported [248]. Maes et al. [249] reported lower glutathione peroxidase activity in whole blood 

samples taken from depressed patients compared to healthy controls. These authors reported a 
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significant negative correlation between glutathione peroxidase and the severity of depression and 

the range and severity of autonomic symptoms. When comparing those considered to be having 

‘active’ depression to those in ‘remission’, Kaddurah-Daouk et al [250] reported no difference in 

CSF glutathione levels either in remitted or currently depressed individuals, when compared to 

controls. However, there was a trend to indicate those with remitted depression had a lower level of 

CSF glutathione when compared to controls. This is reflected in the change in ratio between 

methionine and glutathione which is decreased in remitted depressed individuals when compared 

both the controls and also to those with current depression. It may be postulated that the three week 

washout out criterion for inclusion into the study, in the currently depressed group, may account for 

some of the differences with the remitted group, where participants had to have at least 3 months 

without medication to be included [250]. 

In congruence with previous reports, serum superoxide dismutase and glutathione peroxidase 

levels are decreased and lipid peroxidation increased in those with depression compared to controls 

[251]. Moreover, when comparing those with first episode depression to those with chronic 

depression, superoxide dismutase levels were reduced in both groups, but further reduced in the 

recurrent group. This pattern was also seen in glutathione peroxidase and MDA levels with 

respective decreased and increased levels reported in the recurrent group compared to the first-

episode group. In a study of matched controls, fibroblast cultures were investigated to compare 

oxidative stress and glutathione levels in those with major depression to healthy controls. Results 

showed increased protein carbonylation, while no changes in fibroblast glutathione levels were 

reported [252]. Similar to the work of Kaddurah-Douk et al. [250], these authors also found an 

increase in glutathione reductase. When investigating postmortem tissue, studies have found 

decreased levels of both oxidized and reduced glutathione when compared to controls in the anterior 

cingulate cortex. Glutathione reductase and glutathione peroxidase levels were not found to be 
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statistically altered, however there was an indication that they were decreased in the depression 

group [253]. In post-mortem prefrontal cortex, glutathione S-transferase levels (Mu isoform) were 

significantly lower in depressed and bipolar patients [254]. Reduced glutathione in postmortem 

brain has also been reported in autism [255]. 

 The use of 1H magnetic resonance spectroscopy in treatment free patients demonstrated 

lower glutathione levels compared to non-depressed controls [256]. Do et al. [257] reported lowered 

glutathione measured both by spectroscopy and in CSF in patients with schizophrenia. There is a 

possible correlation between reduced glutathione and negative symptoms of schizophrenia, a signal 

that is reinforced by the results of clinical trials of glutathione replenishment strategies with N-

acetyl cysteine, discussed later [258]. Biomarker studies such as those outlined above are further 

supported by genetic studies also showing perturbations in the glutathione pathway. In a study taken 

from one of the largest epidemiological samples available, the HUNT study, researchers have found 

increased polymorphisms in both the CGLM (3 SNPs) and GCLC (9 SNPs) and a trinucleotide 

repeat [259]. These enzymes are responsible for the production of glutathione.  

The pathophysiology of depression also appears to involve disturbed erythron and iron 

homeostasis likely as a result of inflammation and depleted glutathione. Changes in the erythron and 

iron metabolism are reported, such as decreased serum iron, number of erythrocytes, hemoglobin 

and hematocrit and increased serum ferritin [260] and depleted polyunsaturated fatty acid levels in 

the erythrocyte membrane [261, 262]. 

Erythrocytes play a major role as free radical scavengers [263]. They are continuously 

exposed to ROS in the systemic circulation and the autoxidation of hemoglobin in the cytosol [264]. 

Erythrocytes are at high risk of oxidative stress due to high ferrous iron load largely stemming from 

ferryl-hemoglobin formation and hydroxyl radical production via the Fenton reaction between H2O2 

and Fe2+ [265]. The plasma membranes of erythrocytes are very sensitive to damage by oxidative 
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stress because of the very high percentage of unsaturated lipids which underlie their considerable 

flexibility [263]. Progressively increasing oxidative stress causes changes in the primary structure 

and functions of hemoglobin, which may lead to hemolysis [266]. 

Glutathione is the primary defense against oxidative stress in erythrocytes and adequate 

levels are essential for maintaining the natural conformation of hemoglobin [266]. Optimum 

erythrocyte glutathione levels are therefore critical in minimizing the damaging effects of ROS and 

autoxidation of hemoglobin in the cytosol [265]. In conditions of chronic oxidative stress, GSSH is 

expelled from the cell by virtue of membrane transporters and increased membrane permeability [2, 

266]. Hence in this context glutathione is quite literally a life enabling molecule. A visual 

representation of the relationship between iron, hemoglobin and glutathione in erythrocytes may be 

viewed in Figure 3. Given the role of erythrocytes as ROS scavengers, depleted numbers of these 

cells could contribute to the elevated levels of ROS seen in major depression [263]. 

 

8.3. Glutathione depletion in ME/CFS 

The plethora of different unvalidated diagnostic criteria for ME and CFS makes 

comparison between research findings produced by different authors sometimes difficult [267]. 

Using proton NMR spectroscopy, Shungu et al. [268] reported depleted levels of glutathione in the 

CSF and cerebral cortex of people with ME/CFS which correlated inversely with several measures 

of physical function. This was in contrast with earlier work which did not detect any abnormalities 

in the brain or CFS of patients albeit using inferior technology [269]. These authors cited the small 

sample size as the likely reason that the depletion in glutathione did not reach statistical 

significance. Kennedy et al. [270] reported low glutathione levels in erythrocytes in patients with 

ME/CFS echoing an earlier finding [271]. Increased glutathione peroxidase activity in skeletal 

muscle extracted from patients with this illness has also been reported in people carrying the same 



29 

 

diagnosis [272]. Logan and Wong [273] reported an improvement in disability levels in patients 

with ME/CFS following supplementation with glutathione or N-acetyl cysteine. Other workers have 

suggested the presence of low glutathione in patients with ME/CFS and it has been suggested that 

low glutathione and the consequent increase in blood brain barrier permeability may be a critical 

element in the etiopathology of ME/CFS [274,275]. A number of authors have reported depleted 

glutathione levels in CFS and an improvement in fatigue following supplementation with ginsing or 

moxibustion [276,277]. Several research teams using rat models of ME/CFS have reported depleted 

levels of glutathione peroxidase in their animals [278,279]. This may complement the finding 

reported by Maes et al [249] who found that serum glutathione peroxidase levels were not altered in 

people with ME/CFS. Several authors have reported findings of low glutathione in studies using 

mouse models of ME/CFS where fatigue has been induced mechanically or by immunological 

means and relieved by the use of certain dietary supplements or acupuncture [280-285]. 

 

8.4. Implication of the glutathione system in the pathophysiology of depression and ME/CFS  

 Recently, we have reviewed that depression and ME/CFS are accompanied by similarly 

dysregulated immune-inflammatory and O&NS pathways, including increased levels of pro-

inflammatory cytokines, intracellular signaling pathways, oxidative damage of fatty acids and lipids 

(as indicated by increased 4-HNE and MDA), oxidative damage to DNA (as demonstrated by 

increased 8-OHdG levels), autoimmune reactions directed towards neoepitopes produced by the 

corrosive actions of ROS on fatty acids located in cellular membranes), and autoimmune reactions 

against oxidative specific epitopes and nitrosatively modified proteins [249,286]. We also reviewed 

that mitochondrial dysfunctions are heavily involved in the pathophysiology of these three disorders, 

including lowered ATP production, impaired oxidative phosphorylation and dysfunctions in the 

mitochondrial respiratory chain [259,286,287]. Epigenetic changes are now acknowledged to take 
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part in the pathophysiology of depression and a chronic fatigue-related condition, such as 

fibromyalgia [288-290]. Induction of apoptotic pathways and alterations in glutamate metabolism 

are observed in depression and ME/CFS [72,276,288,291-293]. It is therefore not difficult to 

appreciate that depletion of glutathione and its related enzymes may contribute to the 

abovementioned pathways in depression and ME/CFS. Treatments targeting the glutathione system 

in depression and ME/CFS further underscore the important role of glutathione and related enzymes 

in the pathophysiology of these neuro-immune disorders (see section 9). 

 

8.5. Glutathione depletion in Parkinson’s disease 

 The interplay between depleted levels of glutathione, mitochondrial dysfunction, elevated 

oxidative stress and apoptosis is also evidenced in the pathophysiology of Parkinson’s disease [294]. 

Depletion of glutathione (GSH + GSSH) in the substantia nigra of the brain is an early biochemical 

occurrence in the development of this illness and is detected prior to the inhibition of complex I 

activity [295]. Complex I deficiency is seen in the substantia nigra and the frontal cortex in patients 

with Parkinson’s disease but it is also evident in peripheral mononuclear blood cells, platelets and 

skeletal muscle, indicating that impaired mitochondrial complex I activity is a global phenomenon 

in Parkinson’s disease [294]. Glutathione depletion leads to impaired development of iron sulphur 

proteins and leads to iron buildup in cells [296]. Hence glutathione depletion is likely driver of the 

elevated iron levels seen in the substantia nigra in Parkinson’s disease patients [297]. Impaired iron 

homeostasis is a source of cellular toxicity via the generation of superoxide and hydroxyl radicals 

via the Fenton reaction and these species are the effector molecules by which excess iron levels 

contribute to the pathogenesis of this disease [298, 299]. In these conditions the damage caused by 

hydroxyl radicals is exacerbated as the loss of glutathione inactivates the main mechanism enabling 

their clearance from the cell [2]. While some authors argue that inhibition of mitochondrial complex 
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I and subsequent mitochondrial dysfunction in Parkinson disease substantia nigra cells is mediated 

by glutathionylation, the loss of GSH and GSSH argues for inhibition by nitric oxide in this case and 

not GSSH [297, 295]. As previously discussed, glutathione biosynthesis is an energy-dependent 

process [2] and mitochondrial dysfunction significantly depletes glutathione production thereby 

further exacerbating oxidative damage which further impairs electron transport chain activity which 

in turn leads to elevated levels of ROS and RNS [300]. 

 In the case of Parkinson’s disease, mitochondrial dysfunction driven by spiraling increases in 

O&NS and glutathione depletion may become self-sustaining via a feedback loop leading to futher 

compromised electron transport chain inhibition at complex III, exacerbated macromolecule 

damage, failure of the ubiquitin proteome system and, ultimately, neuronal apoptosis involving all 

the mechanisms discussed above [294]. 

 

9. Treatments targeting the glutathione system 

9.1. Glutathione 

Glutathione supplementation would obviously be an attractive option but its absorption and 

effectiveness in blood is low [301]. Oral glutathione is readily hydrolyzed by dipeptidases in the 

gastrointestinal tract and hence this form of administration is not a suitable vehicle for raising 

glutathione levels in cells. Glutathione administered as an infusion also suffers from serious defects. 

It is rapidly eliminated by gamma-glutamyl transpeptidase in the circulation and has a fleetingly 

short half life of 7 to 10 minutes [302]. Glutathione supplementation in any shape or form cannot 

replenish diminished levels of glutathione in the central nervous system as the molecule does not 

cross the blood brain barrier to any significant extent [303,304]. One study demonstrated that only 

0.5% of glutathione injected into the carotid space of rats could later be detected in brain tissue 

[302]. 
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9.2. N-acetyl Cysteine 

Administration of the cysteine prodrug N-acetyl-cysteine restores intracellular glutathione 

levels. N-acetyl-cysteine increases glutathione levels in vivo and vitro [305-307]. N-acetyl-cysteine 

is a well-tolerated treatment for glutathione deficiency with an excellent safety record and has been 

used successfully to increase glutathione levels in a wide range of metabolic and neuro-immune 

illnesses as well as in infections, including HIV. In excess of sixty five % of forty six placebo-

controlled clinical trials with N-acetyl-cysteine have reported benefits measured empirically or by 

self reported improvement in quality of life parameters [308]. For a detailed review of its chemistry 

and biological activity see Samuni et al. [309]. 

There is evidence that N-acetyl-cysteine may boost immune function directly [310] and that 

N-acetyl-cysteine possesses heavy metal chelating capacity [311]. The studies repost a range of 

results which appear to vary in accordance with the dose and duration of N-acetyl-cysteine 

treatment. De Quay et al. [312] reported that markedly depleted glutathione and cysteine levels in 

plasma and T-lymphocytes normalized following a single dose of N-acetyl-cysteine at 30 mg/kg, 

whereas no changes were reported using 800 mg a day [313]. Herzenberg et al. [314] reported that 

in HIV patients N-acetyl-cysteine at a maximum dose of 8 g a day for 8 weeks increased glutathione 

levels by 113% and that the N-acetyl-cysteine group had a higher chance of survival after 24 months 

than the control group. Chen et al. [315] noted that N-acetyl cysteine at a concentration of 10−4 

Moles/L significantly increased glutathione levels and the GSH / GSSG ratio in HIV positive 

patients whereas N-acetyl-cysteine at 10−7 Moles/L did not. 

N-acetyl-cysteine has been used with some efficacy as an adjunctive treatment for 

depression. Randomized controlled trials of N-acetyl cysteine have shown benefit following 6 

months of treatment at 2000 mg/day in people with bipolar disorder [316]. When specifically 
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investigating depression, the researchers have shown that those who were currently experiencing a 

depressive episode at the commencement of the study had significant reductions in depressive 

symptoms at the 6 month timepoint [317]. In a larger, maintenance designed trial, participants were 

reported to have large decreases in depression severity scores following 8 weeks of open-label N-

acetyl cysteine treatment [318]. Following this, participants were randomized to continued N-acetyl 

cysteine treatment or placebo. Results showed no statistical differences between N-acetyl cysteine 

and placebo groups at the six-month time point [318]. In a RCT investigating 2000 mg/day of NAC 

(compared with placebo and in addition to treatment as usual) for major depressive disorder, results 

showed no improvement at the 12-week treatment cut-off between N-acetyl cysteine and placebo 

groups. However, when exploring the effects of including the post-discontinuation visit, depressive 

scores were reduced in the N-acetyl-cysteine group. There was a suggestion of efficacy in 

individuals with more severe depression, defined as a Montomery Asberg Depression Rating score 

above 25, but with no efficacy evident below that cut-off. Other functional outcomes were found to 

be significant at week 12. Taken together, these data provides some support for the use of N-acetyl 

cysteine as an adjunctive antidepressant (Berk et al., in press). 

In a study of N-acetyl cysteine in schizophrenia, beneficial effects were seen across 

symptom domains including akathisia, but with highest effect sizes in negative symptoms [316,318].  

This pattern mirrors the spectroscopy finding that lowered glutathione appears linked to negative 

symptoms of schizophrenia. This finding has recently been replicated [319]. N-acetyl cysteine has 

also shown efficacy in two studies in autism, particularly in symptoms of irritability [320]. 

 

9.3. Folate, lipoic acid and coenzyme Q10 

Oral folate supplementation is a proven approach for increasing the levels of glutathione 

[321], glutathione S-transferase, glutathione peroxidase and glutathione reductase [322]. 
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Methylfolate is the only form of folate capable of crossing the blood brain barrier due to the 

presence of a methylfolate active transport system within that structure [323,324]. 

A dose of 15mg of methylfolate a day has proven to be an effective treatment for people with 

depression who are resistant to antidepressants [323]. Folate supplementation is an effective 

adjuvant to SSRIs in treatment resistant depression even when folate levels are normal [325,326]. 

The lowest effective dose of methylfolate capable of augmenting antidepressants is 7.5 mg, which is 

approximately equivalent to 52 mg of folic acid [327]. By binding to folate transport receptors, 

methylfolate precursors may compete with folate derived methylfolate for uptake into the central 

nervous system. This obviously limits the amount of methylfolate that can enter the brain [328]. 

Thus, high doses of methylfolate which don’t involve the synthesis of precursor molecules can 

provide significantly more active methylfolate than high doses of folic acid [328]. 

Alpha-lipoic acid is a mitochondrial nutrient that improves age-associated mitochondrial and 

cognitive dysfunction, which is at least partly mediated by its antioxidant effects [329]. In non-

alcoholic steatosis, alpha-lipoic acid affords protection by doubling glutathione peroxidase levels 

with associated increases in sirtuins, further enhancing mitochondrial functioning [330]. 

Coenzyme Q10 is a robust anti-oxidant and mitochondria regulator that affords protection 

against O&NS [331]. Coenzyme Q10 is significantly decreased in depression and ME/CFS and in 

many other conditions, where it often associates with fatigue [332,286]. Coenzyme Q10, in a 

concentration dependent manner, prevents stress induced decreases in glutathione peroxidise and 

glutathione [333]. Coenzyme Q10 shows possible benefits on depressive symptoms in an elderly 

depressed population [334]. 

Supplementation with garlic extracts from fresh raw garlic, aged black garlic and aged red 

garlic could be also as a protection against the loss of glutathione as the extracts reduce ROS 

production and increase glutathione levels [335]. Exposition to dietary acrylamide is very frequent 
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during lifetime, and there is evidence that acrylamide reduces glutathione concentrations. The effect 

is counteracted by procyanidin B2 and cacao polyphenolic extract [336]. An important strategy to 

increase glutathione is the use of glutathione-esters as the esters can restore mitochondrial levels of 

glutathione. For example, central administration with one of these glutathione esters, monoethyl 

(GEE), results in increased glutathione, providing neuroprotection against O&NS or mitochondrial 

impairment. 

 

9.4. Treatments targeting Nrf-2 

 Nrf-2 is redox-sensitive and orchestrates cellular cytoprotective responses to increased 

oxidative stress by regulating cellular antioxidant defenses [337]. It moderates a plethora of genes 

by interacting with the antioxidant response element (ARE) [338]. Nrf-2 is normally confined to the 

cytoplasm by being bound to an inhibitor molecule, i.e. Keap-1 [337]. The latter molecule likely acts 

as a redox sensor [337] and oxidative stress leads to the dissociation of the molecular complex 

releasing Nrf-2 which consequently translocates to the nucleus [339]. The dissociation of the Nrf-2 / 

Keap-1 complex largely follows the modification of Keap-1 cysteine residues via direct oxidation or 

conjugation [339,340]. Numerous studies have demonstrated that Nrf-2 is critical for the activation 

of the cellular glutathione system and maintaining the redox state [341]. Nrf-2 regulates the de novo 

glutathione synthesis, glutathione peroxidase (GPX2), glutathione S-transferases, glutathione 

reductase, the synthesis of enzymes that mediate glutathione synthesis, i.e. glutathione cysteine 

ligase modifier subunit and glutathione cysteine ligase catalytic subunit, and the xc-cysteine / 

glutamate antiporter system and consequently determines cellular glutathione levels [341]. For 

example, Nrf-2 activation restores glutathione levels in neutrophils taken form patients with chronic 

peridontitis [342,343]. In the next sections we discuss different treatment modalities that may 

upregulate Nrf-2. 
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9.4.1. Hyperbaric Oxygen Therapy (HBOT) 

The Nrf-2-mediated oxidative stress response is activated by hyperbaric oxygen therapy 

(HBOT) [344]. HBOT induces significant changes in Nrf-2-induced antioxidant pathways, while 

only minimal changes were observed following treatment with 100% O2 [345]. At normal pressure, 

HBOT does not appear to increase the transcription of Nrf-2, but likely acts to free Nrf-2 and enable 

its translocation to the nucleus [344, 346]. A number of studies report increased glutathione 

following HBOT [347-349]. HBOT has also been shown to provoke transcription of the 

cytoprotective protein heme oxygenase-1, another mechanism by which HBOT expression may 

protect cells against the corrosive effects of O&NS [350-352]. 

 

9.4.2. Phytochemicals 

Many phytochemicals upregulate the Nrf-2 / Keap1 system [353] and have been 

demonstrated to upregulate glutathione levels [354,355]. Curcumin, for example, upregulates the 

transcription of genes coding for antioxidant and phase II enzymes [356-358]. This induced 

transcription is modulated via ROS-induced activation of Nrf-2, which proceeds through 

phosphorylation of MAP kinases and PKC [359,360]. The efficacy of curcumin as a treatment has 

been demonstrated in a number of studies involving animal models of depression [361-363]. In a 

recent randomized trial, curcumin, 1000 mg/day, was shown to be as effective as fluoxetine, 20 

mg/day [361]. Gupta et al. [363] demonstrated the efficacy of curcumin in ameliorating fatigue and 

oxidative stress in mice with immunologically-induced fatigue, which is perhaps the closest animal 

model of ME/CFS. 

Carnosol [364], resveratrol [365] and cinnamaldehyde [366] stimulate antioxidant enzymes 

via the same mechanism. Reservatrol has demonstrated efficacy in mouse models of ME/CFS at 
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least as far as reducing hippocampal atrophy is concerned [367]. However, as with direct glutathione 

intake, the efficacy of curcumin and resveratrol are limited by their metabolism in the gastro-

intestinal tract. 

Green tea’s epigallocatechin gallate (EGCG) is another compound with ubiquitous benefits, 

including affording protection against depression [368]. This is mediated partly via EGCG 

improving mitochondrial functioning, but also by EGCG increasing Nrf-2 and endogenous anti-

oxidants, including glutathione and glutathione peroxidase [369]. In addition, glutathione levels are 

dose-dependently increased after use of sulforaphane, followed by lipoic acid, resveratrol and 

Polygonum multiflorum. All four compounds potently induce glutathione levels via activation of the 

Nrf2-ARE pathway [370]. As such the efficacy of many phytochemicals across a range of 

conditions is intimately associated with the regulation and availability of glutathione. 

 

9.4.3. Dimethyl fumarate 

Dimethyl fumarate is approved as a treatment for psoriasis in some European countries. 

Dimethyl fumarate has antiproliferative effects on lymphocytes, diminishes inflammatory gene 

expression (e.g. microglial and astroglial IL-1, IL-6 and TNFα), increases anti-inflammatory gene 

expression (e.g. IL-10), suppresses NF- B nuclear transport and dependent transcription (in 

astroglia) and consequently reduces NO synthase gene expression, and has antioxidative and 

neuroprotective effects [371]. Dimethyl fumarate activates the Nrf-2 pathway leading to a 

significant stimulation of the glutathione system [371,372]. Thus, in astrocytes, dimethyl fumarate 

increases Nrf-2 levels (after an initial decrease), reverses LPS-induced decreases in mRNA of 

glutathione reductase, c-glutamylcysteine and glutathione synthetase, reduces nitrite levels and 

increases mRNA of the anti-inflammatory haem oxygenase-1 [371]. Dimethyl fumarate is also used 

as a treatment of multiple sclerosis following the demonstration of the disease modifying ability in 
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those patients and in experimental autoimmune encephalomyelitis [373, 374]. A Phase 2 trial with 

dimethyl fumarate in relapsing remitting multiple sclerosis showed significant reductions in new 

gadolinium enhancing lesions [375]. 

 

9.5. Psychiatric Medications 

It should be noted that antidepressants, mood stabilizers and many antipsychotic medications 

increase glutathione and Nrf-2 levels [338]. As such, many of their multi-targeted effects, which 

seem necessary for their efficacy [293], may be mediated via the important cellular and intercellular 

functions of glutathione and its interactions with, and regulation of, factors known to be altered in 

psychosis and mood disorders [376]. 

 

Conclusions 

The glutathione-related redox state of cells plays an important role in the regulation of pro-

inflammatory cytokines, including TNFα, IL-1β and IL-6, and the activity of intracellular signaling 

pathways. Glutathione depletion enhances the transcription and damaging effects of these cytokines 

and predisposes to a pro inflammatory environment. Glutathione also has antiviral effects and can 

inhibit the replication of many viruses, hence depletion of glutathione can have serious 

consequences and compromise an effective immune response against invading viruses. Glutathione 

modulates the function of T cells and NKCs with depletion in glutathione levels leading to 

compromised NK function, T cell activation and proliferation and a predisposition to a Th2 biased 

immune response. 

Glutathione is a crucial component of cellular antioxidant defenses and hence a vital player 

in detoxification of ROS and RNS and their toxic metabolites such as lipid peroxides. The 

glutathione system as a whole enables the detoxification of xenobiotics and polymorphisms in 
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glutathione enzymes are a major source of pathology and drug resistance. S-Glutathionylation, i.e. 

the posttranscriptional addition of glutathione to protein cysteine, modifies the activity of many 

proteins include kinases and other cellular signaling proteins and proteins involved in energy 

production and calcium homeostasis and inhibits the activity of many important enzymes such as 

phospho-fructokinase and creatine kinase. The activities of a wide range of other proteins may be up 

or downregulated by S-glutathionylation. 

The GSH / GSSH ratio and the level of glutathionylation regulate the mechanisms enabling 

cellular proliferation, DNA synthesis and repair, division and apoptosis with a depletion of GSH 

leading to impaired cellular division and proliferation and increased levels of apoptosis. 

Mitochondrial survival and function is dependent on the glutathione system. Glutathione depletion 

and increased glutathionylation leads to inhibition of the electron transport chain diminishing ATP 

production increasing the production of ROS and inhibiting the de novo synthesis of glutathione 

from its amino acid precursors. This situation ultimately leads to loss of mitochondrial membrane 

potential, the release of cytochrome c and mitochondrial apoptosis. 

Glutathione has important functions in the brain as an antioxidant and neuromodulator and 

promoter of neuronal survival. Glutathione synthesis acts as a neuromodulator of the glutamate 

ionotropic receptors, interacts with NMDA receptors and protects against glutamate excitotoxicity. 

The optimum functioning of the NDMA receptor is dependent on the redox environment, with 

prolonged glutathione depletion compromising synaptic plasticity, memory and learning. 

Glutathione may also be a neurotransmitter in its own right and its depletion impairs the activity of 

the methionine cycle leading to impaired DNA methylation and epigenetic regulation of gene 

expression. 

Lowered activity of the glutathione system is observed in neuro-immune disorders, including 

depression, ME/CFS and Parkinson’s disease. The abovementioned functions of the glutathione 
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system and the consequences of glutathione depletion explain that lowered activity of the 

glutathione system plays a role in the immune-inflammatory and O&NS pathophysiology of these 

diseases. A number of approaches show promise in raising glutathione levels and combatting the 

elevated levels of O&NS which has a causative role in the development of many neuro-immune 

diseases. Although direct glutathione supplementation appears to be ineffective, the use of N-acetyl 

cysteine, phytochemicals, HBOT and dimethyl fumarate shows considerable promise. 
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Figure 1 

Glutathione (GSH) is normally produced de novo via a two-step reaction. In the first step γ-

glutamylcysteine is the product of a reaction between cysteine and glutamate enabled by the enzyme 

glutamate cysteine ligase (GCL). Glycine is then added to produce GSH through glutathione 

synthetase. GCL activity and cysteine levels are the two rate-limiting factors in GSH synthesis. The 

activity and expression of GCL is regulated by GSH or more accurately the GSH/GSSG ratio via a 

number of redox sensitive pathways in response to a GSH shortage or oxidative stress. Other 

mechanisms exist to maximize the regeneration of GSH and minimize the concentration of GSSG. 

Such mechanisms involve the regulation of cysteine importation and the exportation of GSH. 

Another mechanism involves the up-regulation of γ-glutamyl transpeptidase (GGT). This enzyme 

located on the outer membrane of cells transfers the glutamate from GSH to an amino acid acceptor 

molecule. The synthesis of GSH is also associated with the trans-sulfuration pathway, which 

synthesizes cystathionine from homocysteine and serine and leads to the formation of cysteine. The 

S-adenosylmethionine (SAM) / S-adenosylhomocysteine (SAH) ratio acts as sensor mechanism 

which results in the diversion of homocysteine into the trans-sulfuration pathway resulting in 

increased GSH synthesis. The reaction from 5-methyltetrahydrofolate (5-methyl-THF) to 

tetrahydrofolate (THF) transfers a methyl group to homocysteine theraby forming methionine.  
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Figure 2  

Glutathione (GSH) and antioxidant enzymes, including superoxide dismutase (SOD), glutathione 

peroxidase, catalase may reduce the reactive oxygen species (ROS), which are produced through 

activity of the respiratory chain in the mitochondria. Loss of glutathione in mitochondria 

predisposes to pathology as the glutathione peroxidase enzymes require GSH as a cofactor. GSH is 

also unique in its ability to detoxify hydroxyl radicals. In an environment of low GSH, ROS levels 

rise and the loss of glutathione peroxidase activity is relatively more important in mitochondria 

which normally lack catalase. Ultimately, the excessive production of hydrogen peroxide and 

hydroxyl radicals in mitochondria will lead to damaged mitochondrial DNA, lipids and proteins 

compromising mitochondrial function and ultimately necrotic cell death. 
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Figure 3. 

Methemoglobin (MetHb) is a conformationally abnormal hemoglobin (Hb) continually produced in 

the body where the iron molecule is in the higher oxidation ferric state, rather than the normal 

ferrous state, which inhibits its oxygen-binding properties. Red blood cells can combat the 

development of oxidative stress, which would otherwise lead to inactivation of hemoglobin and 

disruption of red blood cell membranes by a number of mechanisms. The most important is reliant 

on nicotinamide adenine dinucleotide phosphate (NADPH), which is produced by the pathway often 

called the hexose monophosphate shunt. This NADPH reduces oxidized glutathione to glutathione 

(GSH) maintaining high levels of GSH even when ROS concentrations are high. GSH acts as an 

essential cofactor for glutathione peroxidase, resulting in the reduction or elimination of ROS and 

minimizing the formation of methemoglobin. 
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