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The glymphatic system (GS) is a novel defined brain-wide perivascular transit network

between cerebrospinal fluid (CSF) and interstitial solutes that facilitates the clearance of

brain metabolic wastes. The complicated network of the GS consists of the periarterial

CSF influx pathway, astrocytes-mediated convective transport of fluid and solutes

supported by AQP4 water channels, and perivenous efflux pathway. Recent researches

indicate that the GS dysfunction is associated with various neurological disorders,

including traumatic brain injury, hydrocephalus, epilepsy, migraine, and Alzheimer’s

disease (AD). Meanwhile, the GS also plays a pivotal role in the pathophysiological

process of stroke, including brain edema, blood–brain barrier (BBB) disruption, immune

cell infiltration, neuroinflammation, and neuronal apoptosis. In this review, we illustrated

the key anatomical structures of the GS, the relationship between the GS and the

meningeal lymphatic system, the interaction between the GS and the BBB, and

the crosstalk between astrocytes and other GS cellular components. In addition, we

contributed to the current knowledge about the role of the GS in the pathology of stroke

and the role of AQP4 in stroke. We further discussed the potential use of the GS in early

risk assessment, diagnostics, prognostics, and therapeutics of stroke.
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INTRODUCTION

Clearing the metabolic wastes and maintaining the fluid homeostasis are important for brain
function. In most organs, the lymphatic network is responsible for the wastes clearance and fluid
drainage (Ikomi et al., 2012). However, a hallmark of the brain is the absence of typical lymphatic
structures. Due to the presence of blood–brain barrier (BBB), the movement of solutes and ions in
the brain is strictly restricted. Cerebrospinal fluid (CSF) has been considered to be important for
the exchange of water-soluble metabolites; however, its mechanisms remain largely unknown. Iliff
et al. (2012) reported the existence of the glymphatic system (GS) in the central nervous system
(CNS), which is an alternative clearance system located in the perivascular space and aquaporin-4
(AQP4) dependent (Iliff et al., 2012). Emerging evidence from human studies and rodent models
suggests that the GS is crucial for maintaining brain health, and dysfunction of GS is closely
associated with various neurological disorders, including aging, neurodegeneration, and acute brain
injury (de Leon et al., 2017; Ringstad et al., 2017). In parallel, the meningeal lymphatic vessels
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were discovered and demonstrated to participate in solutes
transport and in immune surveillance (Aspelund et al., 2015;
Louveau et al., 2015, 2016; Antila and Karaman, 2017).

Stroke, a major cause of death and disability, affects over
800,000 individuals annually (Coutts, 2017). It has been well-
recognized that the GS plays a crucial role in the pathophysiology
of stroke, including brain edema, blood–brain barrier (BBB)
disruption, immune cell infiltration, neuroinflammation, and
neuronal apoptosis (Ji et al., 2021). Targeting the GS, therefore,
has provided potential for the early risk assessment, diagnosis,
prognosis, and therapeutic of stroke. In this review, we
summarize the latest research progress in the GS, including
the anatomy and function, the interaction with the meningeal
lymphatic systems and the BBB, and the communication between
astrocytes and other GS cellular components. We emphasize the
role of the GS in pathophysiology of different stroke subtypes,
especially the role of AQP4 in the pathophysiology of stroke. In
the end, we summarize the concerns and give some perspectives
for future research.

THE ANATOMY AND FUNCTION OF GS

The anatomy of the GS and its precise roles in fluid movement
and drainage in the brain are complex. The GS is a glial-
dependent fluid exchange and drainage system that comprises
the entire perivascular space (PVS) network surrounding arteries,
arterioles, capillaries, venules, and veins within the brain
parenchyma. The PVS is constructed as a coaxial system
where the inner cylinder is the cerebral vascular wall and
the outer cylinder is the glial limitans that ensheathes the
penetrating arterioles or perivascular astrocytic end-feet around
the capillaries (Mathiisen et al., 2010). The GS mainly consists of
periarterial CSF-inflow channel, perivenous ISF-outflow channel,
and astrocytes-mediated convective transport of fluid and solutes
supported by AQP4 water channels polarized on astrocytic end-
feet (Benveniste et al., 2019). The patterns of fluid movement in
the GS are similar to the classical Starling principle (Figure 1A),
CSF from the subarachnoid space is propelled into the brain
parenchyma via the PVS of penetrating arteries, also called
Virchow–Robin space (Hannocks et al., 2018; Pizzo et al., 2018).
CSF exchange with ISF then occurs through the glial basement
membrane and astrocytic end-feet (Kress et al., 2014). From
the interstitium, interstitial solutes and brain metabolic wastes
flow into perivenous space and ultimately drain into lymph
vessels existing in the meninges and perineural sheaths of cranial
and spinal nerves to transport out of the CNS (Ma et al.,
2017; Klarica et al., 2019). Currently, the glymphatic mechanism
of solutes transport and wastes clearance is still unclear. The
convective solutes transport and parenchymal diffusion transport
are accepted by the majority of researchers (Smith et al., 2017;
Smith and Verkman, 2018). What is particularly noteworthy is
that the gap between astrocytic end-feet (gap width, 20–30 nm)
traps larger molecular weight (MW) solutes and wastes during
parenchymal CSF transport and drainage (Iliff et al., 2012).
In addition, the GS is regulated by multiple factors, including
arterial pulsations, respiratory pulsations, body position, and

level of consciousness (Xie et al., 2013; Lee et al., 2015; Kiviniemi
et al., 2016; Bedussi et al., 2018; Plog et al., 2019). However, there
are limited investigations focusing on molecular mechanism that
drives glymphatic fluid flow; more further studies are needed.

Furthermore, there is evidence for the crucial role of AQP4
in the GS. AQP4 is located in chromosome 18 (18q11.2–
q12.1), and there is growing consensus that AQP4 polarized at
the perivascular astrocytic end-feet facilitates glymphatic fluid
transport and amyloid-β (Aβ) export in rodents. Iliff et al.
(2012) indicated that glymphatic clearance was significantly
reduced in AQP4 knockout mice compared with that in
normal littermates. Several independent groups have replicated
the initial finding of AQP4-dependent glymphatic clearance
and the crucial role of AQP4 in facilitating Aβ clearance
(Xia et al., 2017; Mestre and Hablitz, 2018). Recent study
confirmed that altered localization of AQP4 in aged rodent
brain resulted in significantly increased parenchymal retention
of adeno-associated viruses (AAV) vectors, which supported the
importance of AQP4 in facilitating efficient glymphatic transport
and clearance (Murlidharan et al., 2016). However, Smith et al.
(2017) observed glymphatic clearance in AQP4 knockout rodent
brain parenchyma and questioned the importance of AQP4
in the GS. Currently, except AQP4, no other astrocytic ion
channels have been reported to be involved in the functional
regulation of GS.

Another controversial topic is the drainage routes out of the
CNS. Previous studies have found that perineural sheaths of
the olfactory nerve passing through the cribriform plate and
ultimately flowing into the cervical lymphatic vessels are primary
solutes and wastes egress routes in both rodents and humans
(Ma et al., 2017). Previous studies found that surgical blockade
of the perineural cribriform pathway contributed to a rapid and
sustained increase in intracranial pressure (Mollanji et al., 2002).
Over the past few years, emerging studies have shown that the
meningeal lymphatic systems are involved in the drainage of
glymphatic fluid, and the anatomy and function of this drainage
pathway are being defined (Aspelund et al., 2015; Louveau et al.,
2015; Antila and Karaman, 2017; Da Mesquita et al., 2018; Ahn
et al., 2019; Esposito et al., 2019; Song et al., 2020). Therefore, we
will discuss its association with the GS in the following sections.

GLYMPHATICS–MENINGEAL
LYMPHATICS CONNECTION

The meninges are composed of three layers: pia, arachnoid,
and dura. Initially, similar to brain parenchyma, the meninges
were long suggested to be devoid of lymphatic vessels. Aspelund
et al. (2015) first described the structural and functional features
of meningeal lymphatics and demonstrated that meningeal
lymphatic vessels were mainly in the dura mater and well
developed around the venous sinuses. Over the past decade,
emerging evidence suggests that the meningeal lymphatics play
a crucial role in macromolecular clearance, immune surveillance,
and export of CSF/ISF from the CNS (Ahn et al., 2019; Alvesx de
Lima et al., 2020; Song et al., 2020; Wojciechowski et al., 2020;
Ding et al., 2021; Graham and Mellinghoff, 2021). Malfunction
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FIGURE 1 | The anatomy and function of the GS in physiological and pathological conditions. (A) The GS mainly consists of periarterial CSF-inflow channel,

perivenous ISF-outflow channel, and astrocytes-mediated convective transport of fluid and solutes. AQP4 polarized on astrocytic end-feet facilitates fluid and solutes

exchange between the CSF and the brain interstitium. In physiological condition, CSF from the subarachnoid space is propelled into the brain parenchyma via the

PVS of penetrating arteries. Then, CSF exchange with ISF in the extracellular space. Afterward, ISF and solutes move toward the perivenous space, ultimately drain

out of the CNS via meningeal lymphatics. (B) After SAH, blood components invade the PVS rapidly, resulting in PVS occlusion and reduced CSF influx and ISF

clearance. Furthermore, the perivascular polarity of AQP4 decreases after SAH, which resulted in accumulation of proinflammatory cytokines and neurotoxic solutes.

In addition, AQP4 in the influx routes is upregulated markedly, while that in the efflux routes changes slightly. (C) In models of ICH, PVS is enlarged and responsible

for brain edema. EPVS is also an independent risk factor for ICH recurrence. Moreover, glymphatic clearance rate is reduced, which contributes to the accumulation

of proinflammatory cytokines and neurotoxic solutes. (D) In models of ischemic stroke, the ischemic spreading depolarizations along with subsequent

vasoconstriction result in EPVS and doubled glymphatic inflow speeds. The increased influx of CSF in the GS contributes to poststroke edema. Additionally, the GS

dysfunction after ischemic stroke impedes the clearance of neurotoxic solutes, proinflammation cytokines, and tau, which results in tissue damage and PSD. GS,

glymphatic system; CSF, cerebrospinal fluid; ISF, interstitial fluid; PVS, perivascular space; CNS, central nervous system; SAH, subarachnoid hemorrhage; ICH,

intracerebral hemorrhage; PSD, poststroke dementia.
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TABLE 1 | The researches focused on the role of the GS in stroke.

Article Model Species Key details of study

SAH

Gaberel et al., 2014 Autologous arterial blood

injection in the

prechiasmatic cistern

Mice • PVS was occluded by fibrin clots and the GS was severely impaired.

Luo et al., 2016 Autologous arterial blood

injection in the cisterna

magna

Mice • Blood components invaded brain parenchyma along the PVS.

• Blood components in the PVS induced neuroinflammation of perivascular parenchyma.

• The CSF circulation in brain parenchyma was severely impaired.

Golanov et al., 2018 Endovascular perforation Rats • CSF flow along the GS was interrupted for up to 30 days after SAH

Goulay et al., 2017 Autologous arterial blood

injection in the optic cistern

Non-human

primate

• The fibrin and fibrinogen were deposited in the PVS.

• The CSF circulation in brain parenchyma was severely impaired.

Pu et al., 2019 Autologous arterial blood

injection in the cisterna

magna

Mice • The polarization of astrocytic AQP4 and the GS were impaired, which resulted in

accumulation of Tau proteins and CD3+, CD4+, and CD8+ cells in brain parenchyma.

Liu et al., 2020b Endovascular perforation Rats • AQP4 knockout aggravated brain edema, BBB disruption and neuronal apoptosis.

• SAH induction in AQP4 deficit rat significantly impaired ISF transportation.

Liu et al., 2020a Endovascular perforation Rats • The inflow of CSF into the brain and the clearance of ISF from the brain were both

markedly decreased.

• The expression level of AQP4 around the artery was higher than that around the vein after

SAH.

• AQP4 knockout aggravated the GS damage after SAH.

Garland et al., 2021 / Human • The GS dysfunction following SAH resulted in accumulation of neurofilament light.

ICH

Duperron et al., 2019 / Human • The increased EPVS burden was associated with incidence of ICH.

Raposo et al., 2019 / Human • The increased EPVS burden in the centrum semiovale was linked to vascular amyloid

burden after acute ICH.

Raposo and

Viswanathan, 2020

/ Human • EPVS was associated with recurrence of ICH.

Best et al., 2020 / Human • EPVS was an independent risk factor for symptomatic ICH in patients receiving OAC.

Ischemic stroke

Gaberel et al., 2014 MCAO Mice • Glymphatic perfusion poststroke was markedly impaired.

Wang et al., 2017 Intraarterial injection of

cholesterol crystals

Mice • The GS around microinfarcts was focally disrupted.

•The impairment of glymphatic clearance led to neuroinflammation and neuronal apoptosis.

Zbesko et al., 2018 MCAO Mice • Neurotoxic solutes and proinflammation cytokines were trapped in infarct core.

• The extracellular fluid in infarct core was long-lasting toxic due to the impairment of

glymphatic clearance.

Back et al., 2020 MCAO + BCCAO Rats • Astrocytic AQP4 distribution changed from perivascular to brain parenchyma.

• The GS dysfunction resulted in impairment of tau clearance and PSD.

He et al., 2020 Laser-evoked arteriole

occlusion

Mice • Slit2 facilitated glymphatic clearance and improved cognition in microinfarct model.

Lin et al., 2020 MCAO Rats • The influx of CSF was slow even 7 days after ischemic stroke.

Mestre and Du, 2020 MCAO Mice • The influx of CSF increased rapidly within minutes after ischemic stroke.

Zhang et al., 2020d / Human • The increased EPVS burden was associated with a higher risk of ischemic stroke.

Bu et al., 2021 / Human • The increased EPVS burden was associated with a higher risk of ischemic stroke.

BCCAO, bilateral common carotid artery occlusion; EPVS, enlarged PVS; GS, glymphatic system; ICH, intracerebral hemorrhage; MCAO, middle cerebral artery occlusion;

OAC, oral anticoagulant; PSD, poststroke dementia; PVS, perivascular space; SAH, subarachnoid hemorrhage; Slit2, slit homolog 2.

of meningeal lymphatics may cause the accumulation of toxic
Aβ, cellular debris, inflammatory mediators, and immune cells,
eventually resulting in neurological dysfunction and impacting
neurological disease progression such as AD, traumatic brain
injury, and subarachnoid hemorrhage (Da Mesquita et al., 2018;
Bolte andDutta, 2020; Chen andWang, 2020;Mentis et al., 2021).

To elucidate the connection between the meningeal
lymphatics and the GS, Louveau et al. (2015) administered
fluorescent tracers into brain parenchyma and ventricles and
observed tracers primarily along the meningeal lymphatic
vessels that ultimately flowed into deep cervical lymph nodes

(dcLNs). Furthermore, surgical ligation of the cervical lymphatic
vessels enhanced tracers accumulation into the meningeal
lymphatic network and prevented tracers from retention in
dcLNs. These findings are supported by multiple studies using
MRI and diffusion of radiolabeled tracers (Eide and Vatnehol,
2018; Alvesx de Lima et al., 2020; Zhou et al., 2020; Wu et al.,
2021). These observations further indicate that meningeal
lymphatics are the major efflux route for macromolecules,
immune cells, and CSF/ISF. However, the exact proportions of
different downstream routes of the GS, including meningeal
lymphatics, perineural cribriform, and rostral migratory stream,
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are unknown (Goldmann et al., 2006; Kaminski et al., 2012;
Ratnam et al., 2019). Hence, further investigation is required
to elucidate the contribution and function of the different
paths under both physiological and pathological statuses and to
eventually understand how the GS links to downstream routes to
maintain cerebral homeostasis.

In brain parenchyma clearance systems, besides the GS,
other clearance mechanisms also have been observed, such as
endocytosis and phagocytosis by pericytes, and transvascular
clearance modulated by low-density lipoprotein receptor-related
protein 1 (LRP1) (Kanekiyo and Bu, 2014). Indeed, studies have
reported that BBB-associated pericytes could acquire a microglial
phenotype following ischemic stroke (Özen et al., 2014). Ischemic
brain injury increased the expression of microglial markers:
IBA1, CD11b, and CD68 enhanced phagocytosis ability of
pericytes to clear compromised cells (Özen et al., 2014). Pericytes
also facilitate the clearance of soluble Aβ mediated by LRP1
(Ma et al., 2018). Moreover, it has been confirmed that brain
endothelium enhanced the clearance of soluble brain Aβ in an
LRP1-dependent manner (Storck et al., 2016). It is essential
for these clearance systems to work in symbiosis to ensure
the proper transport of solutes and brain homeostasis. In the
future, further investigations should address the precise role of
each clearance system in physiological and pathophysiological
conditions and focus on the association of clearance systems with
the meningeal lymphatics.

INTERACTION BETWEEN THE GS AND
THE BBB

The GS is anatomically and functionally interconnected with the
BBB, and together, they regulate the transport and exchange of
fluid and solutes throughout the brain, thus maintaining brain
homeostasis (Braun and Iliff, 2020).

The BBB is a multicellular vascular structure that insulates
the neural tissue from the peripheral blood circulation. The
BBB is composed of capillary endothelial cells, tight junctions
between the adjacent endothelial cells, basement membrane,
mural cells including pericytes and smooth muscle cells (SMCs),
and astrocytes (Figure 2; Abbott et al., 2010). As mentioned
above, the GS is a coaxial system that comprises the entire PVS
network surrounding cerebral vessels. The inner cylinder of the
GS is the cerebral vascular wall, while the outer cylinder is the glial
limitans that ensheathes the penetrating arterioles or perivascular
astrocytic end-feet around capillaries (Figure 2). Hence, there
is some overlap in anatomical structures between the BBB and
the GS. It is worth noting that BBB is a lateral physiological
structure and places more emphasis on the selective permeability
of substances, while the GS is a longitudinal physiological
structure and places more emphasis on influx and efflux of CSF
(Troili et al., 2020). Additionally, astrocytes play an essential
role in both the BBB and the GS. Astrocytes take part in BBB
maturation and maintenance by providing additional support
such as perivascular astrocytic end-feet around capillaries and
glial limitans around penetrating arterioles (Sweeney et al.,
2019). In addition, astrocytes strengthen the tight junctions by

regulating gene expression in endothelial cells via astrocyte–
endothelial SHH pathway (Abbott et al., 2006). Astrocytes also
enhance the basement membrane by producing laminin and
stabilize pericytes via apolipoprotein E (ApoE) and low-density
lipoprotein receptor-related protein 1 (LRP1) pathway (Bell
et al., 2012). In the GS, astrocytes comprise the outer cylinder
by astrocytic end-feet and glial limitans. Furthermore, AQP4-
polarized astrocytes are necessary for the CSF/ISF exchange.

The BBB regulates molecules in blood transported into and
out of the brain tissue and prevents blood cells, neurotoxic plasma
components, and pathogens from entering the brain tissue.
Currently, several kinds of transport system presented in the BBB
have been identified, such as carbohydrate transporters, amino
acid transporters, monocarboxylate transporters, hormone
transporters, fatty acid transporters, nucleotide transporters, and
organic anion and cation transporters (Sweeney et al., 2019).
These transport systems are regulated mainly based on brain
endothelial cells and vascular pericytes. The GS also regulates
the exchange of solutes, but this mainly occurs between CSF and
brain tissue. The transport and exchange of molecules in the GS
are mainly dependent on the gap between astrocytic end-feet
and AQP4 polarized on astrocytic end-feet (Iliff et al., 2012).
Meanwhile, both the BBB and the GS are critical for the clearance
of metabolic wastes in the brain (Ueno et al., 2019). Metabolic
wastes or neurotoxic substances in the brain parenchyma
could be eliminated by flowing into the blood through efflux
transporters at the BBB to the blood or ISF bulk flow clearance
of the GS through PVS to the cervical lymph nodes (Ueno et al.,
2019). The BBB and the GS may cooperatively play a significant
role in the maintenance of cerebral homeostasis (Braun and Iliff,
2020). BBB breakdown will cause alteration of cell polarity and
change in transport mechanisms, ultimately aggravating the GS
dysfunction. Disruption in the GS will lead to the obstruction of
drainage space, metabolite imbalance, and accumulation of toxic
substances, which, in turn, deteriorates the BBB structurally and
functionally. One recent study enrolled 109 participants with
cerebral small vessel disease (cSVD) and explored the association
of the GS dysfunction with BBB integrity (Li et al., 2019). The
results demonstrated that high-grade enlarged PVS (EPVS)
and the GS dysfunction were associated with a higher BBB
leakage rate, supporting the hypothesis that the GS dysfunction
is part of the pathological processes of compromised BBB
integrity. Collectively, further studies are needed to verify the
causal relationship between the increased BBB permeability and
the GS dysfunction.

COMMUNICATION BETWEEN THE GS
CELLULAR COMPONENTS

The major cellular components of the GS are astrocytes but
also include other cells, such as neurons, microglia, and
pericytes. Astrocytes constitute the physical barrier of the GS
with their end-feet processes in the PVS (Filosa et al., 2016)
and regulate the exchange and clearance of solutes between
CSF and ISF through AQP4 localized on its end-feet. Up
to 50% of the brain AQP4 is expressed on the astrocytic
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FIGURE 2 | Interaction between the GS and the BBB. The GS is anatomically and functionally interconnected with the BBB. There is some overlap in anatomical

structures between the BBB and the GS. At the arterial level (left inset), endothelial cells form the inner layer of the vascular wall. The basement membrane separates

endothelium from SMCs. The basement membrane and SMCs are enveloped by the pia. The PVS is between the pia and the glia limitans formed by astrocytic

end-feet. At the capillary level (right inset), pericytes and endothelial cells share a basement membrane. The PVS is between the basement membrane and astrocytic

end-feet. The BBB regulates the exchange of molecules between the blood and the brain tissue via multiple transport systems. The GS regulates the exchange of

fluid and solutes between the CSF and the ISF. GS, glymphatic system; BBB, blood–brain barrier; PVS, perivascular space; SMCs, smooth muscle cells.

end-feet, which supported the key role of astrocytes in the GS
(Hubbard et al., 2018; Plog and Nedergaard, 2018; Yin et al.,
2018). Through communicating with neurons, microglia, and
pericytes, astrocytes regulate synaptic transmission, modulate
microglial phenotypes, and control fluid and ion homeostasis in
physiological and pathological conditions of the CNS.

Astrocytes and Neurons Interactions
Astrocytes communicate closely with neurons. Previously,
astrocytes were considered simply as a supportive function for
neurons. Astrocytes protect neurons by releasing neurotrophic
factors and antioxidants and by eliminating neuronal wastes
(Wang et al., 2006). Astrocytes play a crucial role in synaptic
transmission. It is estimated that a single astrocyte interacts
with over 100,000 synapses, suggesting the close association
between astrocytes and neurons (Bunney et al., 2017). Astrocytes
also modulate neurotransmitter homeostasis through wrapping
around presynapses and postsynapses to form a tripartite synapse
(Allen and Barres, 2009; Sultan et al., 2015). Astrocytes also
promote the neurogenesis via secreting D-serine (Sultan et al.,
2013; MacKay et al., 2019), lactate (Zhou et al., 2019), interleukin-
6 (IL-6) (Erta et al., 2015), interleukin-1 beta (IL-1β) (Jones et al.,
2018), and growth factors, such as brain-derived neurotrophic
factor (BDNF), fibroblast growth factor 2 (FGF-2), glial cell line-
derived neurotrophic factor (GDNF), and vascular endothelial

growth factor (VEGF) (Araki and Ikegaya, 2020). A recent
research from rodent middle cerebral artery occlusion (MCAO)
models demonstrates that, although astrocytes are not as mobile
as microglia, they are able to polarize their distal processes
without migration of cell body and phagocytose apoptotic
bodies derived from dendrites of dying neurons in the infarct
core (Damisah and Hill, 2020). What is more, a recent study
demonstrated that decreased expression of astrocytic AQP4
accelerated deposition of α-synuclein and aggravated the loss of
dopamine neurons via impairment of the GS (Cui et al., 2021).
The decreased expression of astrocytic AQP4 is also associated
with reduced dendritic spine density of cortical neurons (Venkat
et al., 2017). Moreover, it has been proven that the depolarization
of astrocytic AQP4 contributed to motor neuron degeneration
(Dai et al., 2017).

In turn, astrocytes respond to the stimulation from neurons.
Neurons, as a pacemaker of the neurovascular unit, detect very
slight variations in nutrients and oxygen and then translate these
changes into electrical signals and chemical messages to adjacent
astrocytes (Figley and Stroman, 2011). It has been reported
that astrocytic end-feet covered more than the 99% surface of
cerebral blood vessels (Filosa et al., 2016). Neurons communicate
with vessels via astrocytes, thus impacting the vascular tone
and adjusting regional cerebral blood flow to provide proper
supply of oxygen and nutrients (Muoio et al., 2014). Recent
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researches demonstrated that a high prevalence of pathological
mitochondria in neurons increased the degree of astrogliosis and
reduced the perivascular expression of AQP4 (Hasan-Olive et al.,
2019). In general, further investigations that report the effect of
neuron damage on the polarization of astrocytic AQP4 and the
role of astrocytes in the GS are necessary.

Astrocytes and Microglia Interactions
Microglia comprise 5–10% of the brain cells and act as
resident immune cells in the CNS (Frost and Schafer, 2016).
There are two phenotypes being identified for microglia: M1
phenotype characterized by producing inflammatory mediators,
including tumor necrosis factor (TNF), IL-1β, and reactive
oxygen species (ROS), and M2 phenotype characterized by
secreting anti-inflammatory mediators, including interleukin IL-
10, transforming growth factor beta (TGFβ), and glucocorticoids
(Orihuela et al., 2016). It has been reported that the interaction
between activated microglia and reactive astrocytes plays an
important role in neuroinflammation following stroke (Magaki
et al., 2018). Microglia are activated via responding to pathogens
and secreting cytokines, such as interleukin-1 alpha (IL-1α),
TNF-α, and the complement component subunit 1q (C1q),
thus triggering astrocyte reactions (Liddelow et al., 2017; Yun
et al., 2018). In the intracerebral hemorrhage (ICH) mice model,
microglial activation in the perihematomal region is found within
1 h after ICH was induced. Molecular signals produced by M1
phenotype, such as IL-1β, TNF, and IL-6, and inducible nitric
oxide synthase (iNOS) are amplified both in human and rodent
perihematomal brain tissues (Clausen et al., 2008;Wu et al., 2010;
Liesz et al., 2011; Takaoka et al., 2016). Similarly, in the MCAO
mice model, microglia are activated and invade the infarct core,
simultaneously secreting cytokines IL-1β, TNF, and IL-1 receptor
antagonist (IL-1Ra) (Clausen et al., 2008, 2016; Michelucci et al.,
2009). In addition, microglia enhance astrocytes responses via
Toll-like receptor 4 (TLR4) activation under insults, injury, or
inflammation in stroke (Holm et al., 2012). Notably, although
reactive astrocytes triggered by microglia activation are harmful
to their function in the GS, an enhanced uptake and phagocytosis
of astrocyte solutes and microglia may offset the impairment of
glymphatic clearance (Feng et al., 2020).

Astrocytes and Pericytes Interactions
Pericytes are the main mural cells that maintain the BBB
integrity at the capillary level (Jeske et al., 2020; Zhang
et al., 2020e). In the brain, astrocytes–pericytes interactions
play a key role in regulating BBB permeability and cerebral
blood flow and helping to facilitate the clearance of toxic
substances. Astrocytes are the main cells expressing ApoE in
the brain (Zhao et al., 2017). Previous studies demonstrated
that ApoE4 astrocytes reduced Aβ clearance and increased
cholesterol accumulation compared with ApoE3 astrocytes (Lin
et al., 2018; Prasad and Rao, 2018). In addition, ApoE4
astrocytes aggravate pericytes degeneration and BBB breakdown
via activating the cyclophylin A–nuclear factor kappa B (NF-
κB)–matrix metalloproteinase 9 pathway in pericytes (Halliday
et al., 2016; Sweeney et al., 2016). Furthermore, astrocytes
promote cell contraction by increasing intracellular Ca2+ or

K+ transients in pericytes (Mishra et al., 2016; Sweeney et al.,
2016). Astrocytes have been reported to secrete prostaglandin
E2 (PGE2) and activate PGE2 receptor 4 in pericytes to induce
pericytes relaxation (MacVicar and Newman, 2015). Astrocytes
regulate cell differentiation and maintain BBB integrity via
secreting laminin α-2 chain (Lamα2) and interact with integrin
α-2 receptor in pericytes (Yao et al., 2014). Conversely,
pericytes regulate the polarization of astrocytic AQP4 (Gautam
et al., 2020). In pathological conditions, pericyte deficiency
reduces the expression of α-syntrophin, the component of
dystrophin complex that regulates AQP4 anchoring, resulting
in a redistribution of AQP4 on astrocytic end-feet where AQP4
moves away and is expressed onsite without vessel contact
(Anderova et al., 2014; Gundersen et al., 2014).

THE GS DYSFUNCTION IN STROKE

The GS dysfunction has been demonstrated to be involved
in the pathophysiology of brain edema, BBB disruption,
neuroinflammation, and neuronal cell death after stroke. In
this section, we summarize the new discoveries about function
of the GS in pathophysiological process of hemorrhagic and
ischemic stroke (Table 1).

Subarachnoid Hemorrhage
Subarachnoid hemorrhage (SAH) is a devastating form of
stroke often with permanent brain impairment. Currently,
there is no effective intervention for preventing secondary
neuropathological damage and improving the prognosis of
SAH patients. Impaired CSF circulation along periarterial influx
routes has been indicated in rodent models and gyrencephalic
non-human primate model of SAH and has shed new light
on translational therapeutic strategies (Gaberel et al., 2014;
Goulay et al., 2017; Golanov et al., 2018; Liu et al., 2020a,b;
Figure 1B). Following SAH, blood components particularly
fibrin and fibrinogen deposit in PVS, which led to occlusion and
dysfunction of the GS, ultimately worsening cerebral ischemia
and edema (Goulay et al., 2017). Further studies confirmed that
subarachnoid blood invaded the PVS within 5 min after SAH
induction, gradually penetrating into the brain parenchyma in
the following hours (Luo et al., 2016). They further demonstrated
that the GS dysfunction following SAH resulted in vasculitis,
widespread microinfarction, and neuroinflammation (Luo et al.,
2016). In a more recent study, Pu et al. (2019) injected fluorescent
tracers into the cisterna magna of SAH mice and found that
the tracers that flowed into the brain parenchyma and drained
to the dcLNs were significantly reduced after SAH induction.
A further study found that the CSF influx into the brain and
the ISF egress from the brain both significantly decreased after
SAH (Liu et al., 2020a). In non-human primates, Goulay et al.
(2017) injected gadolinium chelate into the cisterna magna and
evaluated the parenchymal CSF circulation in healthy or SAH
induction status using living MRI. They found a gradual active
distribution of CSF from cerebral ventricles to the superficial
part of the brain and then to deeper structures of the brain in
normal physiological status, whereas SAH induction significantly
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impaired parenchymal CSF circulation (Goulay et al., 2017).
Collectively, these observations support the evidence that GS
dysfunction is an important pathophysiological feature and
associated with secondary brain injury and neurological deficits
following SAH. Interestingly, it has been reported that clearance
of the PVS with tissue-type plasminogen activator could alleviate
histological injury and improve behavioral deficits of SAH
(Luo et al., 2016; Bosche and Mergenthaler, 2020). Therefore,
targeting the GS potentially serves as a novel strategy for the
treatment of SAH. However, further studies are necessary to
investigate the underlying molecular mechanisms governing the
link between SAH and the GS.

Intracerebral Hemorrhage
Intracerebral hemorrhage (ICH) is another severe hemorrhagic
stroke subtype with high risk of death and disability (Charidimou
et al., 2017). The research related to the association of the GS with
ICH is limited. Several studies reported the role of EPVS in the
pathology of ICH. As mentioned above, PVS is a key anatomical
structure of the GS. Normally, the diameter cutoff of PVS is set
as 3 mm (Zhu et al., 2011; Wardlaw et al., 2013, 2020; Dubost
et al., 2019). Previous studies demonstrated that EPVS was linked
to impaired glymphatic clearance (Mestre et al., 2017; Boespflug
et al., 2018; Opel et al., 2019). The GS dysfunction contributes to
the accumulation of metabolic wastes and neurotoxic substances
in PVS, ultimately resulting in EPVS (Figure 1C). Therefore,
EPVS is a marker of the GS dysfunction. EPVS has been indicated
to be associated with perforator arteriopathy and emerged as
a marker of small vessel disease (SVD) (Charidimou et al.,
2017; Brown et al., 2018; Jokinen et al., 2020). Recent studies
provide new evidence that EPVS is linked to an increased risk
of ICH. One study followed 1,678 participants for 10 years and
found that increasing global EPVS burden was associated with a
higher risk of incident ICH (Duperron et al., 2019). In another
study, researchers included 1,386 patients with atrial fibrillation
receiving oral anticoagulants (OAC) after a recent transient
ischemic attack (TIA) or ischemic stroke and followed subjects
for a mean of 2.3 years while assessing EPVS with MRI and
found that EPVS was an independent risk factor for symptomatic
ICH in patients receiving OAC (Best et al., 2020). However,
the underlying mechanisms leading to the transformation from
EPVS to symptomatic ICH remain unclear. Recent research
has further demonstrated that EPVS was associated with ICH
recurrence (Raposo andViswanathan, 2020). During the recovery
process of ICH, one study examined the connection between
EPVS and Aβ deposition through MRI and 18F-florbetapir PET,
respectively, and demonstrated that EPVS that appears in the
centrum semiovale was the marker of vascular Aβ burden and
enhanced the risk of poor prognosis (Raposo et al., 2019).
Therefore, there is no doubt that EPVS is of great clinical
significance in the pathology of ICH, and further investigations
need to illustrate the molecular mechanism of EPVS aggravating
the pathological process of ICH.

Ischemic Stroke
Findings from the current studies indicate that the GS is involved
in the pathology of ischemic stroke (Figure 1D). First, the

GS dysfunction is a predictor of incidence of ischemic stroke.
According to accumulating brain MRI and pathological studies,
EPVS has been identified as the risk of stroke (Zhang et al., 2020d;
Bu et al., 2021).

Second, CSF circulation is impaired after ischemic stroke,
although there is still lack of consensus on the dynamic change
in CSF flow in the GS. In murine models of acute ischemic
stroke (AIS), CSF inflow in the ipsilateral cortex has been
verified to be impaired at 3 h after AIS induction via MRI
and histological examination (Gaberel et al., 2014). Consistently,
researchers found that the influx of CSF was slow even 7 days
after ischemic stroke (Lin et al., 2020). However, a recent study
found a conflicting conclusion; researchers discovered that the
influx of CSF in the GS increased rapidly within minutes of an
ischemic insult (Mestre and Du, 2020). The ischemic spreading
depolarizations along with subsequent vasoconstriction might
be responsible for EPVS and doubled glymphatic inflow speeds
(Mestre and Du, 2020). Meanwhile, the increased CSF flow in
the GS was considered to be the primary cause of acute ischemic
tissue swelling (Mestre and Du, 2020). These findings revised our
understanding of poststroke edema.

Notably, the reduced glymphatic clearance after ischemic
stroke is defined. Researchers injected fluorescent tracers into the
infarction area of a rodent MCAO stereotactically to evaluate
the clearance of solutes, and the results showed that tracers
were trapped in the infarct core (Zbesko et al., 2018). Further
results from Yang et al. (2015) are consistent with this finding
(Lin et al., 2020). They used contrast-enhanced MRI by injecting
Gd-DTPA into the cisterna magna to assess the GS function in
the acute and subacute phases of ischemic stroke induced by
MCAO. They evaluated the time course of the signal-to-noise
ratio (SNR) in the substantia nigra (SNe) and ventral thalamic
nucleus (VTN) and found that the SNR time-to-peak on the
ipsilateral side was longer in SN both in the acute phase and in the
subacute phase than in the contralateral phase (Lin et al., 2020).
In addition, the GS dysfunction contributes to the accumulation
of toxic solutes and proinflammatory cytokines within the core
infarction area. It is well known that damaged brain tissue
after AIS goes through the stage of liquefactive necrosis, which
produces poisonous extracellular fluid. One study demonstrated
that extracellular fluid present in areas of liquefactive necrosis
following ischemic stroke was injurious to primary cultured
cortical and hippocampal neurons even after 7 weeks following
stroke (Zbesko et al., 2018). Interestingly, a recent study found
that overexpression of slit2 alleviated neuronal excitotoxicity
and improved cognition via accelerating glymphatic clearance
after ischemic stroke (He et al., 2020). This study provided
a new evidence for potential therapeutic role of the GS in
ischemic stroke.

Furthermore, the GS is beneficial to the restoration phase
of ischemic stroke. The GS dysfunction is related to poststroke
dementia (PSD), which is one of the most common and
severe consequences of stroke (Pantoni, 2017). Deposition and
hyperphosphorylation of tau have been implicated as the main
pathophysiology underlying PSD (Zhao et al., 2014; Qiu et al.,
2016). Recently, a study demonstrated that the parenchymal
infiltration of CSF tracers injected into the cisterna magna
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FIGURE 3 | The change in AQP4 expression after stroke. AQP4 mislocalization and an increase in total AQP4 expression appear in all subtypes of stroke; however,

the perivascular polarity of AQP4 decreased. The matrix constituent agrin and α-syntrophin play an important role in anchoring of AQP4 to astrocytic end-feet. After

stroke, multiple factors increase the expression of AQP4, including glutamate VEGF, G-CSF, EPO, RSG5, Nrf2, lncRNA MALAT1, and Cav1. Moreover, activation of

MAPK pathway is responsible for AQP4 upregulation. AQP4 mislocalization and expression change are involved in the GS dysfunction, BBB disruption, brain edema,

and neuronal apoptosis induced by stroke.

was attenuated in the PSD model and that tau clearance was
obstructed, suggesting that GS malfunction was a risk factor for
the incidence of PSD (Back et al., 2020). Therapeutic strategies to
improve the clearance of brain metabolic wastes, including tau,
may be a promising approach to prevent PSD after stroke.

Collectively, the GS plays an essential role in the pathology
of ischemic stroke; further studies should investigate the role of
the GS in different phases of ischemic stroke so as to develop
alternative treatment strategies for ischemic stroke.

THE CHANGE IN AQP4 EXPRESSION
AFTER STROKE

Aquaporin-4, the most important molecular component in the
GS, mediates the influx of CSF into the brain parenchyma and
the efflux of ISF into the subarachnoid space. AQP4 is involved
in multiple biological processes, including the regulation of brain
edema, promotion of migration of astrocytes, calcium signal
transduction, and synaptic plasticity (Chu et al., 2016). In this
section, we review the expression of AQP4 in different subtypes
of stroke and then examine the signaling pathways that regulate
AQP4 expression and discuss therapeutic opportunities that
target AQP4 (Figure 3).

AQP4 in SAH
Previous studies have revealed that the expression level of AQP4
messenger RNA (mRNA) and protein increased at day 1 and
peaked at day 3 after SAH (Long et al., 2019). One study indicated
that AQP4 maintained high level even at 7 days after SAH
(Luo et al., 2016).

The role of AQP4 in the pathophysiological process of
SAH is complex. Several recent studies validated that AQP4
was responsible for brain edema following SAH. Zhang et al.
(2020a) demonstrated that glutamate might be responsible for
the elevation of AQP4 following SAH and that metabotropic
glutamate receptor 1 (mGluR1) negative allosteric modulator
could reduce BBB damage and cerebral edema via inhibition

of AQP4. Another study found that treatment with pituitary
adenylate cyclase-activating polypeptide (PACAP) inhibited the
expression of AQP4 and attenuated brain edema (Fang et al.,
2020). Additionally, salvinorin A and baicalin were confirmed
to reduce SAH-induced brain edema via AQP4 inhibition (Sun
et al., 2018; Zhang et al., 2020c). Furthermore, AQP4 inhibition
preserved the function of the BBB and the GS and provided
neurological benefits (Fang et al., 2020).

Some other studies reported the neuroprotective role of
AQP4 in early brain injury (EBI) following SAH. Given that
AQP4 facilitated ISF transport in the brain parenchyma to
eliminate the toxic factors, AQP4 knockout has been shown to
aggravate EBI following SAH through impairment of the GS
(Liu et al., 2020a,b). Pu et al. (2019) also demonstrated that
the perivascular polarity of AQP4 decreased after SAH, which
resulted in accumulations of tau proteins and CD3+, CD4+, and
CD8+ cells, and led to a series of pathological changes, including
microvascular spasm, activation of glial cells, neuroinflammation,
and neuronal apoptosis (El Amki et al., 2018). Meanwhile, the
length density of AQP4-positive capillaries in the hippocampus
was significantly reduced following SAH (Anzabi et al., 2018).
One potential explanation for the controversial role of AQP4
in SAH is that the expression of AQP4 in the influx and efflux
routes of the GS is different. After SAH, astrocytes surrounding
the arteries were activated to increase the expression of AQP4;
however, the expression of AQP4 around the veins changed
slightly (Liu et al., 2020b). Therefore, the inflow of CSF from
periarterial space (PAS) increased highly due to the enhanced
level of AQP4, and the ISF volume expanded owing to the
unchanged expression of AQP4 around the veins.

AQP4 in ICH
It has been reported that AQP4 expression increased from
3 h after ICH and peaked between day 2 and 5 (Tang et al.,
2010; Fang et al., 2015; Wang et al., 2015; Huang et al.,
2020). Several studies demonstrated that VEGF, granulocyte-
colony stimulating factor (G-CSF), and erythropoietin (EPO)
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contributed to the increase in AQP4 via the activation of the
c-JUN N-terminal kinase (JNK) pathway, extracellular signal-
regulated kinase (ERK) pathway, and mitogen-activated protein
kinase (MAPK) pathway, respectively (Chu et al., 2013, 2014a,b).

Aquaporin-4 is involved in brain edema, BBB disruption, and
neuronal apoptosis induced by ICH. It has been demonstrated
that AQP4 is responsible for the explosive swelling of astrocytes
and their dysfunction after ICH (Appelboom et al., 2015). Zhang
et al. (2020b) observed that inhibition of the expression of
AQP4 with glycyl-l-histidyl-l-lysine (GHK) could alleviate the
injury of astrocytes and brain edema. Moreover, a different
group also showed that AQP4 deletion reduced brain edema
(Chen et al., 2020).

Several studies reported the opposite role of AQP4 in ICH.
Tang et al. (2010) observed that AQP4 deletion aggravated brain
edema. Meanwhile, AQP4 deletion resulted in swelling capillary
endothelial cells and disruption of tight junctions (Chu et al.,
2014a). Recently, in a rodent intracerebral hematoma expansion
model, Chu et al. (2020) found that AQP4 deletion was associated
with larger hematoma volume and more severe BBB disruption,
which indicated that AQP4 reduced the hematoma volume
and neurological deficits via the maintenance of BBB integrity.
Furthermore, the presence of AQP4 alleviated neuronal apoptosis
after ICH via inhibition of cytokines, especially TNF-α and IL-
1β. These results indicate that AQP4 may have a protective effect
on brain edema, BBB disruption, and neuronal apoptosis (Chu
et al., 2014c). Therefore, it is difficult to draw definite conclusions
about the effects of AQP4 in ICH. The mislocalization of
astrocytic AQP4 may contribute to its controversial role in ICH
(Qiu et al., 2015).

AQP4 in Ischemic Stroke
Currently, a series of studies reported AQP4 expression after
ischemic stroke. The continuous and dynamic observation
carried out in transient MCAO demonstrated that AQP4 mRNA
and protein were upregulated at 30 min after ischemia and that
this lasted at least 72 h and normalized after 28 days (Badaut
et al., 2007). Another study using the transient MCAO model
found that there were two peaks of AQP4 expression: 1 and
48 h (Ribeiro Mde et al., 2006). AQP4 expression was positively
correlated to the regulator of G protein signaling 5 (RGS5),
transcriptional factor Nrf2, long non-coding RNA (lncRNA)
MALAT1, and caveolin-1 (Cav-1) after ischemic stroke (Özen
et al., 2018; Liu et al., 2019; Filchenko et al., 2020; Wang et al.,
2020). Furthermore, MAPK pathways have been proven to play
a pivotal role in AQP4 upregulation, and the activation of
protein kinase C (PKC) pathway may be responsible for AQP4
downregulation (Nito et al., 2012; Wei et al., 2015).

Aquaporin-4 plays a complex bimodal function in the
pathology of ischemic stroke. Most of the studies found that
AQP4 inhibition, including AQP4 knockout or AQP4 gene
silence using small interfering RNA (siRNA), reduced brain
edema in different cerebral ischemia models. Manley et al. (2000)
first showed that brain edema was decreased in AQP4 knockout
mice at 24 h after permanent MCAO. Then, several studies reveal
similar results (Katada et al., 2014; He and Lu, 2015; Yang et al.,
2015; Yao et al., 2015; Özen et al., 2018; Liu et al., 2019; Filchenko

et al., 2020; Wang et al., 2020). One study found that treatment
with AQP4 inhibitor TGN-020 in MCAO mice reduced brain
edema and infarct volumes through blocking fluid flow toward
the parenchyma in the perivascular drainage pathways (Pirici
et al., 2017). Moreover, AQP4 knockout decreased mortality,
increased motor recovery, and improved long-term outcome
after transient MCAO (Hirt et al., 2017).

Several studies reported the opposite role of AQP4 in
the pathology of ischemic stroke. One study reported that
AQP4 knockout resulted in a striking hypertrophy of astrocytes
and aggravated brain injury with enlarged infarct size and a
serious loss of CA1 neurons (Zeng et al., 2012). Moreover,
AQP4 knockout showed more severe neutrophil infiltration
and microglial activation but less astrocyte proliferation in
the brain after MCAO compared to wild-type mice (Shi
et al., 2012). The dual role of AQP4 in ischemic stroke is
mainly due to its spatial expression heterogeneity. Studies
from cerebral infarction patients demonstrated that AQP4
expression increased only in white matter, while cortical
astrocytes exhibited reduced perivascular AQP4 (Stokum et al.,
2015). Back et al. (2017) also found that AQP4 distribution
changed from perivessel to parenchyma.Moreover, a recent study
showed that impaired perivascular AQP4 covering after ischemia
was associated with altered reactive astrocyte morphology and
enhanced brain edema. In summary, the effects of AQP4 on the
pathophysiological process of ischemic stroke are very complex,
and more studies are needed to further investigate the spatial and
temporal differences of AQP4 expression and its role in different
phase of ischemic stroke.

CONCLUSION AND PERSPECTIVES

The CSF/ISF exchange and the transport systems for brain solutes
and metabolic wastes have gained significant attention in recent
years. Currently, the GS has become prominent in AD research
by demonstrating its role in Aβ clearance. Several key proteins
involved in neuroinflammation and cognitive decline, such as
tau and cytokines, are also believed to be removed by the GS,
supporting its potential role in the recovery stage of stroke.
Information from human and rodent studies confirmed that the
GS dysfunction caused a risk of stroke and was involved in
the pathology of stroke. However, the molecular mechanisms of
the interaction between the GS and stroke are not completely
understood. First, we should clarify factors that impair or
enhance the GS function in order to map the time course of
pathological changes in the GS function during stroke. Second,
we have already documented the existence of the GS through
MRI and two-photon microscope, but novel neuroimaging
modalities able to assess the function state of the GS have
not yet been taken advantage of. Furthermore, high spatial
resolution imaging and mathematical models are necessary to
understand the CNS interstitial space. Third, it is not clear what
kind of pathophysiological changes following stroke influence
the redistribution of astrocytic AQP4. For instance, it is not
knownwhether there are additional astrocytic ion channels, apart
from AQP4, that facilitate the CSF/ISF exchange and metabolic
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wastes clearance. Finally, it has been established that glymphatic
clearance is primarily active during sleep (Shokri-Kojori et al.,
2018; Holth and Fritschi, 2019). Coincidentally, most stroke
patients suffer from circadian rhythm disorders (Pérez-Carbonell
and Bashir, 2020). Therefore, it is not clear whether improving
the sleep quality of stroke patients is an effective approach to
promoting recovery. In addition, some studies have shown that
sleep-promoting states improved brain-wide drug distribution
(Plog et al., 2018; Lilius et al., 2019). In the future, more studies
should focus on the relevance of intrathecal delivery of drugs
to the GS function. Anyway, a comprehensive understanding of
GS will provide novel molecular markers for the prognosis and
diagnosis of stroke, and promising therapeutic targets.
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