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Abstract The GMT/MATLAB toolbox is a basic interface between MATLAB
VR
(or Octave) and GMT, the

Generic Mapping Tools, which allows MATLAB users full access to all GMT modules. Data may be passed

between the two programs using intermediate MATLAB structures that organize the metadata needed;

these are produced when GMT modules are run. In addition, standard MATLAB matrix data can be used

directly as input to GMT modules. The toolbox improves interoperability between two widely used tools in

the geosciences and extends the capability of both tools: GMT gains access to the powerful computational

capabilities of MATLAB while the latter gains the ability to access specialized gridding algorithms and can

produce publication-quality PostScript-based illustrations. The toolbox is available on all platforms and may

be downloaded from the GMT website.

1. Introduction

The Generic Mapping Tools (GMT; gmt.soest.hawaii.edu) is a widely used set of software for analyzing and

displaying geoscience data [Wessel and Smith, 1991, 1995, 1998]. Its power to analyze and process data and

produce publication-quality graphics has made it one of several standard processing toolsets used by a

large segment of the Earth and Ocean Sciences communities. GMT’s strengths lie in superior publication-

quality vector graphics (from page-size to wall-size), geodetic-quality map projections, robust data process-

ing algorithms scalable to enormous data sets and grid sizes (e.g., making global bathymetry maps from

440 million randomly distributed soundings constraining grids with sizes up to 43,200 by 86,400, Olson

et al. [2014]), its ability to run under all operating systems and being Open Source and freely available under

a flexible license (Lesser GNU Public License). The GMT toolbox offers �140 modules sharing a common set

of command options, file structures, and documentation. GMT modules are designed as UNIX filters, i.e.,

they accept input and write output, which allows users to write shell scripts where one module’s output

becomes another module’s input, creating highly customized GMT workflows.

Since its initiation, GMT has been a UNIX and DOS command-line tool set and greatly benefitted from script-

ing. However, the release of GMT 5 [Wessel et al., 2013] introduced three key changes: (1) There is now a ful-

ly documented C Application Program Interface (API) for building new modules and libraries, containing

basic functionality for handling GMT data objects (i.e., the input/output of data), manipulating module

options, reporting errors and warnings, and accessing any of �140 modules via a flexible GMT_Call_Module

function. Unlike previous GMT versions, in GMT 5 these modules are no longer stand-alone programs but

have been implemented as high-level API functions; (2) The ‘‘namespace pollution,’’ i.e., how to manage lots

of different program executables in a standard installation directory (such as/usr/bin) when there might be

many other tools with exactly the same names, have been eliminated. Since there are already other soft-

ware packages that distribute programs called ‘‘surface’’ or ‘‘triangulate,’’ this means they are competing for

installation in the same directory as gmt via standard software package managers. By building just a single

executable called gmt (that can access all modules) and requiring users to run ‘‘gmt triangulate’’ that con-

flict is now avoided, while a few shell functions implement backwards compatibility with older GMT 4

scripts; (3) The notions of input sources and output destinations have been generalized. In addition to the

familiar mechanism of passing file names or using standard input/output, developers using the API can

specify sources and destinations in several different ways, including memory locations, file pointers to open

files or standard streams, and file descriptors. The GMT modules themselves are unaware of these distinc-

tions as this flexibility is implemented in the API input/output layer.
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Consequently, the new GMT API has made it possible for developers to build additional modules or external

APIs on top of the core C API, allowing for rapid development of new and complex functionality, including

discipline-specific processing not presently available in the main GMT toolbox [Wessel et al., 2015]. Here we

report on the development of a Foreign Function Interface (FFI) between the GMT API and external pro-

grams via the C programming language. While this FFI is known to work with other languages (an experi-

mental Julia—http://julialang.org - is also being developed and work on a Python interface will start soon),

we present here the GMT/MATLAB toolbox (http://gmt.soest.hawaii.edu/projects/gmt-matlab-octave-api/

wiki). This toolbox represents a layer (an API) between the GMT API and the MATLAB
VR
and Octave environ-

ments and allows full access to GMT and its modules. We will discuss the passing of data, show a series of

examples of the symbiotic relationships of these two tools in producing elaborate results, present installa-

tion procedures for Windows, OS X, and Linux, and discuss any limitations in the toolbox relative to the

standalone command-line GMT version.

2. GMT/MATLAB Overview

The intertwined use of GMT and MATLAB
VR
encapsulates the working environments of major groups of sci-

entists, especially those operating within the Earth and Ocean disciplines. It is important to note that while

GMT 4 offered basic support for MATLAB going back more than a decade, this limited support only included

the ability to read and write GMT grids from the MATLAB command line; no access was provided to the

GMT modules themselves except via cumbersome system calls and separate input/output processing.

Both scientists and engineers rely on MATLAB for technical work. As shown in Figure 1, GMT can now be

accessed from MATLAB via a MEX (MATLAB Executable) function called gmt. The gmt MEX function pro-

vides access to all of GMT’s modules as well as import, formatting, and export of GMT data objects. Internal-

ly, the GMT/MATLAB C API defines six high-level data structures that handle input and output of data via

GMT modules. These are data tables (representing one or more sets of points, lines, or polygons), grids (2-D

equidistant data matrices), raster images (with 1–4 color bands), raw PostScript code, text tables (free-form

text/data mixed records), and color palette tables (i.e., color maps). Correspondingly, we have defined six

data structures that we use at the interface between GMT and MATLAB via the gmt MEX function. The

GMT/MATLAB API is responsible for translating between the GMT structures and native MATLAB objects.

The six MATLAB objects (Table 1) are:

Segments. GMT considers point, line, and polygon data to be organized in one or more segments in a data

table. Modules that return segments use a native MATLAB segment structure that holds the segment data,

which may be either numerical, text, or both; it also holds a segment header string which GMT uses to pass

metadata. Thus, GMT modules returning segments will typically produce arrays of segments and you may

pass these to any other module expecting points, lines, or polygons or use them directly in MATLAB. Since a

Figure 1. Conceptual block diagram of GMT dependencies. In GMT5, the high-level functionality resides in the API and any module may

be called via the single gmt executable. Supplemental and custom APIs may also be accessed this way. The GMT/MATLAB toolbox allows

direct access to all core, supplemental, and custom GMT modules, similar to how UNIX shell scripts access modules via the gmt executable

(modified from Wessel et al. [2013]).
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matrix is the fundamental data type in MATLAB you can also pass any data type matrix directly to GMT

modules as well. Consequently, it is very easy to pass data from MATLAB into GMT modules that process

data tables as well as to receive data segments from GMT modules that process and produce data tables as

output. The toolbox also provides a function for concatenating segments into a single segment.

Table 1. The GMT/MATLAB Data Structures

(a) Data/Text Segment Structure and its Attributes

data Matrix with segment data

text Cell array with any text after data coordinates

header String with segment header

comment Cell array with any data set comments [empty after first segment]

proj4 Projection string in PROJ4 syntax (optional)

wkt Projection string in WKT syntax (optional)

(b) Grid Structure and its Attributes

z Grid matrix

x Vector with x coordinates

y Vector with y coordinates

range Vector with range [x_min x_max y_min y_max z_min z_max]

inc Vector with grid spacing [x_inc y_inc]

registration Registration type: 05Grid registration; 15 Pixel registration

nodata The value used to indicate ‘‘no data’’

title Title (optional)

comment Comment (optional)

command Command used to create the grid (optional)

datatype Data type: ‘‘float’’ or ‘‘double’’

x_unit Units of x axis (optional)

y_unit Units of y axis (optional)

z_unit Units of z axis (optional)

layout A three chars code describing the memory layout (optional)

proj4 Projection string in PROJ4 syntax (optional)

wkt Projection string in WKT syntax (optional)

(c) Image Structure and its Attributes

image Image matrix

X Vector with x coordinates

y Vector with y coordinates

range Vector with range [x_min x_max y_min y_max z_min z_max]

inc Vector with grid spacing [x_inc y_inc]

registration Registration type: 05Grid registration; 15 Pixel registration

nodata The value used to indicate ‘‘no data’’

title Title (optional)

comment Comment (optional)

command Command used to create the image (optional)

datatype datatype: ‘‘uint8’’ or ‘‘int8’’

x_unit Units of x axis (optional)

y_unit Units of y axis (optional)

z_unit Units of z axis (optional)

colormap Color palette structure

alpha Array with alpha (transparency) values (empty if no alpha)

layout A four chars code describing the memory layout

proj4 Projection string in PROJ4 syntax (optional)

wkt Projection string in WKT syntax (optional)

(d) Color Palette Table Structure and its Attributes

colormap Matrix with R/G/B values for all color intervals

alpha Vector with alpha (transparency) values

range Matrix with [z_low z_high] for each color interval

minmax Vector with [z_min z_max] for entire range

bfn Matrix with R/G/B for back-, fore-ground, and NaNs

depth Color depth as 1 (black/white), 8 (gray) or 24 (colors)

hinge Hinge separating two parts of the CPT [NaN means no hinge]

cpt Full GMT cpt array for communicating with GMT

model Color model used: ‘‘rgb,’’ ‘‘hsv,’’ or ‘‘cmyk’’

comment Cell array with any data set comments [empty after first segment]

(e) PostScript Structure and its Attributes

postscript Text array with all PostScript code

length Number of bytes in the string

mode Status mode: 15Has header, 25Has trailer. 35Has both.

comment Comment (optional)
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Grids. Many tools consider equidistant grids a particular data type and numerous file formats exist for

saving such data. Because GMT relies on GDAL (Geospatial Data Abstraction Layer; www.gdal.org) we

are able to read and write almost all such formats in addition to a native netCDF4 format that com-

plies with both the Cooperative Ocean/Atmosphere Research Data Service (COARDS) and the

more recent Climate and Forecast (CF) netCDF conventions (www.unidata.ucar.edu/software/netcdf/

conventions.html). We have designed a native MATLAB grid structure that holds header information

from the GMT grid as well as the data matrix representing the gridded values. These structures may

be passed to GMT modules that expect grids and are returned from GMT modules that produce such

grids. In addition, we supply a function to convert a MATLAB matrix and some metadata into a grid

structure.

Images. The raster image shares many characteristics with the grid structure except the bytes representing

each node reflect gray shade, color bands (1, 3, or 4 for indexed, RGB and RGBA, respectively), and possibly

transparency values. We therefore represent images in another native MATLAB structure that among other

items contains three components: the image matrix, a color map (present for indexed images only), and an

alpha matrix (for images specifying transparency on a per-pixel level). As for grids, a wrapper function creat-

ing the correct structure is provided in the gmt function.

Color Palettes. GMT uses its flexible Color Palette Table (CPT) format to describe how the color (or pattern)

of symbols, lines, polygons, or grids should vary as a function of a state variable. In MATLAB, this informa-

tion is provided in another MATLAB structure that holds the color map as well as an optional alpha array for

transparency values. Like grids, these structures may be passed to GMT modules that expect CPTs and will

be returned from GMT modules that normally would produce CPT files. The content of the CPT can also be

used to change color maps in MATLAB.

PostScript. While most users of the GMT/MATLAB toolbox are unlikely to manipulate PostScript directly, the

API allows for the passing of PostScript via another data structure.

Text Data. Because of their variable record lengths and mixed numeric/text contents, we chose to represent

text tables by data segments (as introduced above) containing a cell array. All GMT modules expecting text

tables (or producing them) will use such segments to communicate with MATLAB. If the leading columns of

data records contain numerical data, then those components will be decoded into a data matrix instead.

You may also pass text data to GMT using text cell arrays, and if only a single text record is involved you

can pass that string as is.

Interaction between GMT and MATLAB is done via the MEX-function gmt. This function is invoked with the

syntax

output objects½ � 5 gmt modulename; optionstring ; input objects½ �ð Þ;

where modulename is a string with the name of a GMT module (e.g., ‘‘surface,’’ ‘‘grdimage,’’ ‘‘psmeca,’’ or

even a custom extension), while the optionstring is a text string with the options passed to this module. If

the module requires data inputs from the MATLAB environment, then these are provided as optional

comma-separated arguments following the option string. Should the module produce output(s), then these

are captured in standard MATLAB parlance by assigning the result of gmt to one or more comma-separated

variables. Some modules do not require option strings or input objects, while other modules do not pro-

duce any output objects.

As on the command line, the gmt function has access to all modules in the core and supplemental GMT

package, as well as any custom extensions installed, such as the modules developed for the Global Seafloor

Fabric and Magnetic Lineation project [Wessel et al., 2015]. In addition, it can also use two i/o modules that

are irrelevant on the command line: the read and write modules. These modules allow the toolbox to import

and export any of the GMT data types to and from external files. For instance, to import a grid from the file

relief.nc we run

G = gmt (‘read’, ‘-Tg relief.nc’);

We use the -T option to specify grid (g), image (i), PostScript (p), color palette (c), data set (d), or textset (t).

Results kept in MATLAB can be written out at any time via the write module, e.g., to save the grid G to a file

we use
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gmt (‘write’, ‘model_surface.nc’, G);

Because GMT data tables often contain headers followed by many segments, each with their individual seg-

ment headers, it is best to read such data using the read module since native MATLAB import via load is

unable to parse such headers.

3. How Input and Output Are Assigned

Each GMT module knows what its primary input and output objects should be. Some modules only produce

output (e.g., psbasemap makes a basemap plot with axes annotations) while other modules only expect

input and do not return any items back to MATLAB (e.g., the write module writes the data object it is given

to a file). Typically, (i.e., on the command line) users must carefully specify the input filenames and some-

times give these via a module option. Because users of the toolbox will want to provide input from data

already in memory and likewise wish to assign results to variables, the syntax between the command line

and toolbox commands necessarily must differ. For example, here is a basic GMT command that reads the

time series raw_data.txt and filters it using a 15 unit full-width (6r) median filter:

gmt filter1d raw_data.txt Fm15 > filtered_data.txt

Here the input file is given on the command line but input could instead come via the shell’s standard

input stream via piping. Most GMT modules that write tables will write these to the shell’s output stream

and users will typically redirect these streams to a file (as in our example) or pipe the output into another

process. When using the GMT/MATLAB toolbox there are no shell redirections available. Instead, we wish

to pass data to and from the MATLAB environment. If we assume that the content in raw_data.txt exists

in a MATLAB array named raw_data (perhaps we ran ‘‘load raw_data.txt’’ or used the gmt read module)

and we wish to obtain the filtered result as a segment array named filtered, we would run the toolbox

command

filtered 5 gmt (‘filter1d’, ‘-Fm15’, raw_data);

Here the filter1d module is used to perform the Gaussian filter. This illustrates the main difference between

command line and toolbox usage: instead of redirecting output to a file we return it to an internal object

(here a segment array) using standard MATLAB assignments of output.

For data types where piping and redirection of output streams are inappropriate (including most grid file

formats) the GMT modules use option flags to specify where grids should be written. Consider a GMT com-

mand that reads (x, y, z) triplets from the file depths.txt and produces an equidistant grid using a Green’s

function-based spline-in-tension gridding routine:

gmt greenspline depths.txt -R-50/300/200/600 -I5 -D1 -St0.3 -Gbathy.nc

Here the result of gridding Cartesian data (-D1) within the specified region (an equidistant lattice from x

from 250 to 300 and y from 200 to 600, both with increments of 5) using moderately tensioned cubic

splines (-St0.3) is written to the netCDF file bathy.nc. When using the GMT/MATLAB toolbox, we do not

want to write a file but wish to receive the resulting grid as a new MATLAB variable. Again, assuming we

already loaded in the input data, the equivalent toolbox command is

bathy5 gmt (‘greenspline’, ‘-R-50/300/200/600 -I5 -D1 -St0.3’, depths);

Note that since we are returning the result back to MATLAB (i.e., via the bathy variable), -G is no longer

specified among the options. In this case, the toolbox uses the GMT API to determine that the primary out-

put of greenspline is a grid and that this is normally specified via the -G option. If no such option is given

(or given without specifying an output filename), then we instead return the grid via memory (as here), pro-

vided a left-side assignment is specified. GMT only allows this behavior when called via an external API such

as this toolbox: not specifying the primary output option (here -G) on the command line would result in an

error message. However, it is perfectly fine to specify the option -Gbathy.nc in the toolbox—it simply means

you are saving the result to a file instead of returning it to MATLAB.

Some GMT modules can produce more than one output (here called secondary outputs) or can read more

than one input type (i.e., secondary inputs). Secondary inputs or outputs are always specified by explicit

module options on the command line, e.g., ‘‘-Fpolygon.txt.’’ In these cases, the toolbox enforces the
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following rules: When a secondary input is passed as an object then we must specify the corresponding

option flag but provide no file argument (e.g., just ‘-F’ in the above case). Likewise, for secondary output we

supply the option flag and add additional objects to the left-hand side of the assignment. All secondary

items, whether input or output, must appear after all primary items, and if more than one secondary item is

given then their order must match the order of the corresponding options in optionstring. Here are two

examples contrasting the GMT command line versus GMT/MATLAB toolbox usage. In the first example we

wish to determine all the data points in the file all_points.txt that happen to be located inside the polygon

specified in the file polygon.txt. On the command line this would be achieved by

gmt select points.txt -Fpolygon.txt > points_inside.txt

while in the toolbox (assuming the points and polygon already reside in memory) we would run

inside 5 gmt (‘select’, ‘-F’, points, polygon);

Here the points object must be listed first since it is the primary data expected.

Our second example considers the joining of line segments into closed polygons. We wish to create one file

with all closed polygons and another file with any remaining disjointed lines. Not expecting perfection, we

allow segment end-points closer than 0.1 units to be connected. On the command line, we would run

gmt connect all_segments.txt -Cclosed.txt -T0.1 > rest.txt

where all_segments.txt are the input lines, closed.txt is the file that will hold closed polygons made from

the relevant lines, while any remaining lines (i.e., open polygons) are written to standard output and redir-

ected to the file rest.txt. Equivalent toolbox usage would be

all5 gmt (‘read -Td all_segments.txt’);

[rest, closed]5 gmt (‘connect’, ‘-T0.1 -C’, all);

Note the primary output (here rest) must be listed before any secondary outputs (here closed) in the left-

hand side of the assignment.

So far, the toolbox has been able to understand where inputs and outputs objects should be inserted, pro-

vided we follow the rules introduced above. However, there are two situations where more information

must be provided. The first situation involves two GMT modules that allow complete freedom in how argu-

ments are passed. These are gmtmath and grdmath, our reverse polish notation calculators for tables and

grids, respectively. While the command-line versions require placement of arguments in the right order

among the desired operators, the toolbox necessarily expects all inputs at the end of the function call.

Hence, we must assist the toolbox command by placing markers where the input arguments should be

used; the marker we chose is the question mark (?). We will demonstrate this need using an example of

grdmath. Imagine that we have created two separate grids: kei.nc contains an evaluation of the radial

z5bei (r) Kelvin-Bessel function (not available in MATLAB) while cos.nc contains a cylindrical undulation in

the x direction. We create these two grids on the command line by

gmt grdmath -R-4/4/-4/4 -I2561 X Y HYPOT KEI5 kei.nc

gmt grdmath -R -I2561 X COS5 cos.nc

Later, we decide we need p plus the product of these two grids, so we compute

gmt grdmath kei.nc cos.nc MUL PI ADD5 answer.nc

In the toolbox, the first two commands are straightforward:

kei5 gmt (‘grdmath’, ‘-R-4/4/-4/4 -I2561 X Y HYPOT KEI’);

C 5 gmt (‘grdmath’, ‘-R -I2561 X COS’);

but when time comes to perform the final calculation we cannot simply do

answer 5 gmt (‘grdmath’, ‘MUL PI ADD’, kei, C);

since grdmath would not know where kei and C should be put in the context of the operators MUL and

ADD. We could probably teach grdmath to discover the only possible solution since the MUL operator

requires two operands but none are listed on the command line. The logical choice then is to take kei and

C as operands. However, in the general case it may not be possible to determine a unique layout, but more
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importantly it is simply too confusing to separate all operators from their operands (other than constants)

as we would lose track of the mathematical operation we are performing. For this reason, we will assist the

module by inserting question marks where we wish the module to use the next unused input object in the

list. Hence, the valid toolbox command actually becomes

answer 5 gmt (‘grdmath’, ‘? ? MUL PI ADD’, kei, C);

Of course, all these calculations could have been done at once with no input objects but often we reuse

results in different contexts and then the markers are required.

The second situation arises if you wish to use a grid as argument to the -R option (i.e., to set the current

region to that of the grid). On the command line this may look like

gmt pscoast -Reurope.nc -JM5i P -Baf -Gred > map.ps

However, in the toolbox we cannot simply supply -R with no argument since that is already an established

shorthand for selecting the previously specified region. The solution is to supply –R?. Assuming our grid is

called Europe then the toolbox command would become

map5 gmt (‘pscoast’, ‘-R? -JM5i -P -Baf -Gred’, europe);

4. Examples of Toolbox Use

The GMT and MATLAB combination is extremely flexible, letting the user harvest the general numerical and

graphical capabilities of both systems. The GMT/MATLAB toolbox represents a giant step forward in interop-

erability between GMT and other software packages (i.e., beyond mere file format compatibility). It is

difficult to do justice to the range of operations possible with this well-matched combination. Also, by

keeping the interface low-level and simple we will have the resources to maintain it, while developers can

build more user-friendly GUI layers on top of the basic interface. Here we will present four typical examples

of GMT/MATLAB toolbox use, ranging from the simple to the complex. Each script shows a mix of basic

MATLAB language constructs interspersed with calls to the toolbox. We only give general comments on

these scripts here; for details on the syntax used for either MATLAB or GMT commands we refer you to the

relevant documentation.

4.1. Example 1: Gridding

Our first example illustrates gridding of ship track bathymetry near the Geologists seamounts southwest of

Hawaii via robust, median-based averaging followed by gridding using a minimum curvature spline in ten-

sion algorithm. The result is visualized in Octave using contour and surf. While this is a simple example, we

note that the blockmedian and surface combination powers the creation of many global data sets [Becker

et al., 2009] and that our gridding module surface is widely used across all sciences (citations of our splines-

in-tension algorithm, Smith and Wessel [1990] exceed 1000). The script is shown below while Figure 2 shows

a screenshot of the toolbox in action in Octave.

geo5 gmt (‘read’ ‘-Td geologists.txt‘); % Read in the point data

% Decimate data using median spatial averaging on a 1 arc min lattice

ave5 gmt (‘blockmedian’ ‘-R158:00W/156:40W/18:00N/19:40N -I1m’ geo);

% Grid the data using splines in tension

G 5 gmt (‘surface’ ‘-R -I1m -T0.2 -N1000 -C1e-6’ ave);

% Plot the result in MATLAB

figure(2); clf; subplot (2,1,1)

contour (G.x, G.y, G.z)

hold on; axis equal

plot (ave(:,1), ave(:,2), ‘g.’ ‘MarkerSize’ 2)

axis (G.range(1:4)); subplot (2,1,2)

surf (G.x, G.y, -G.z); title (‘Geologists Seamounts‘)

Here GMT was used for various calculations not easily done in Octave while we display the contents of the

structures ave and G using standard Octave graphics.
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4.2. Example 2: Profiling

Our next example is more ambitious and imports a relief grid for an area off Japan as well as a line data set

reflecting the location of the Japan Trench. We wish to create profiles normal to the trench every 25 km,

with each profile being 300 km long and sampling the grid every one km along the profiles. Finally, these

profiles, which all have distance5 0 at the trench axis, are stacked and a median profile is computed. Both

the set of profiles and the median profile are returned to MATLAB for further analysis. The script is shown

below while Figure 3 shows a screen capture of the toolbox in action, where two figure windows were cre-

ated: one displays a PNG image created by GMT and another displays the individual profiles and highlights

the stacked median profile.

% Read in relief grid and Japan trench location

G 5 gmt (‘read -Tg JP.nc‘);

T 5 gmt (‘read -Td JP.txt‘);

% Take gradient in N45E direction to be used for illumination

intens 5 gmt (‘grdgradient -Nt0.8 -A90’ G);

% Sample grid along profiles normal to the trench

Figure 2. Screen capture of situation once our first script has completed. Octave displays the illustration, while we see the Workspace window indicate we have three structures contain-

ing the data we read or produced.
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[profiles, stack] 5 gmt (‘grdtrack -G -C300k/1k/25k -Sm1s1a’ T, G);

% Evaluate an asymmetrical color palette with hinge at sealevel

C 5 gmt (‘makecpt’ ‘-Cgeo -T-8000/2000‘);

% Make the GMT plot

P 5 gmt (‘grdimage’ [‘-R141/147/35/42 -JM6i -P -Baf -BWSne -I -K -C ‘ . . .

‘--FORMAT_GEO_MAP5dddF‘], G, intens, C);

P 5 gmt (‘pscoast’ [‘-R -J -O -K -W0.25p -Dh ‘ . . .

‘-LjTR1w200k1u1f1c38:30N1o0.5i/0.2i -F1gwhite1p0.5p‘]);

% Use first and last point of each profile and create a polygon of the area

A 5 gmt(‘convert’ ‘-Ef -T’ profiles);

B 5 gmt(‘convert’ ‘-El -T -Is’ profiles);

area5 gmt (‘catsegment’ [A B]); % Join the two segments

P 5 gmt (‘psxy’ ‘-R -J -O -K -Ggreen@85’ area);

P 5 gmt (‘psxy -R -J -O -K -W2p1v0.3c1gred1p0.25p1bc1ec’ T);

P 5 gmt (‘psxy -R -J -O -K -W0.5p,red1v0.25c1p0.25p1bt1et’ profiles);

P 5 gmt (‘psscale’ [‘-R -J -O -DjBL1w3i/0.1i1h1o0.3i/0.4i -C -W0.001 ‘ . . .

‘-F1gwhite1p0.5p1i0.25p -Bxaf -By1l"km"‘], C);

% Convert plot to a PNG and display in MATLAB as Figure 1.

I 5 gmt (‘psconvert -TG -P -E300 -A’ P);

Figure 3. Screen capture of situation once our second script has completed. MATLAB displays two illustrations: A PNG image produced by GMT but loaded into MATLAB and a MATLAB

graph of the individual profiles, with the stacked profile drawn in a heavier line.
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figure(1); clf

h 5 imshow (I.image); set (h, ‘AlphaData’ I.alpha)

% Figure 2 shows the stacked relief profiles across the trench

figure(2); clf; hold on

for k51:length(profiles)

plot (profiles(k).data(:,3), profiles(k).data(:,5))

end

plot (stack.data(:,1), stack.data(:,2), ‘LineWidth’ 3)

xlabel(‘Distance (km)‘); ylabel (‘Depth (m)‘);

title (‘Japan Trench Profiles‘); xlim ([-150 150]); grid on

Note we are here mixing GMT and MATLAB graphics: the map is made as a GMT PostScript plot but con-

verted to PNG, then read and displayed by MATLAB, whereas the profiles are displayed directly in MATLAB.

Note the use of an asymmetrical color table with different data ranges for sea and land. We maintain the

PostScript code in MATLAB and this structure auto-appends each new overlay added.

4.3. Example 3: Data Conversion

Our third example illustrates reading in satellite measurements of sea surface temperature stored as several

individual arrays inside a single HDF5 data set. We read these separate arrays, exclude low-quality data

points, grid the data stored in satellite sensor coordinates using a nearest neighbor algorithm, and mask

the grid away from the data constraints. Finally, we generate a PDF illustration (Figure 4) which we display

within MATLAB via its open command.

% Import sea surface temperature grids from several HDF5 layers

file5 ‘A2016152023000.L2_LAC_SST.nc5gd?HDF5:"A2016152023000.L2_LAC_SST.nc"‘;

sst5 gmt (‘read’ [‘-Tg ‘ file ‘://geophysical_data/sst‘]);

qual5 gmt (‘read’ [‘-Tg ‘ file ‘://geophysical_data/qual_sst‘]);

lat5 gmt (‘read’ [‘-Tg ‘ file ‘://navigation_data/latitude‘]);

lon5 gmt (‘read’ [‘-Tg ‘ file ‘://navigation_data/longitude‘]);

% Ignore points of low quality that is stored in the quality flags array

sst.z (qual.z > 0) 5 [];

lon.z (qual.z > 0) 5 [];

lat.z (qual.z > 0) 5 [];

% Perform nearest neighbor gridding

G 5 gmt (‘nearneighbor’ ‘-R-12/-1/33/43 -I0.01 -S0.05’ [lon.z‘ lat.z‘

sst.z‘]);

% Create a mask that is NaN where no data exist

mask5 gmt (‘grdmask’ ‘-R -I0.01 -NNaN/1/1 -S0.02’ [lon.z‘ lat.z‘]);

% Apply the mask to limit the plot that follows

G.z5 G.z .* mask.z;

% Select color table and make PDF illustration and display it in MATLAB

cpt_s5 gmt (‘grd2cpt’ ‘-Cjet -E -M --COLOR_NAN5255’ G);

cpt_t5 gmt (‘makecpt’ ‘-Celevation -T0/3000‘);

gmt (‘grdimage’ ‘-JM15c -C -Ba -BWSne -P -K > WL_example_3.ps’ G, cpt_s)

arg5 [‘-TdjTR1w3c1o1c1f31l --FONT_TITLE512 --MAP_TITLE_OFFSET55p ‘];

% Clip topography to only plot over land, using shading

gmt (‘pscoast’ ‘-Di -Gc -A1000 -J -R -O -K >> WL_example_3.ps‘)

int5 gmt (‘grdgradient’ ‘-R etopo1m.nc -A0 -Nt0.7‘);

gmt (‘grdimage’ ‘-R -J -O -K -C etopo1m.nc -I -t50 >> WL_example_3.ps’ . . .

cpt_t, int)

gmt (‘pscoast’ ‘-Q -O -K >> WL_example_3.ps‘)

gmt (‘pscoast’ [‘-Di -W0.5p -A1000 -N1/0.5p -J -R ‘ arg ‘ -O -K ‘ . . .

‘>> WL_example_3.ps‘])

gmt (‘psscale’ [‘-R -J -C -DJBC1w14c/0.25c1o0/1c1h1ef -Baf1u" m" ‘ . . .

‘-O -K >> WL_example_3.ps‘], cpt_t)
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gmt (‘psscale’ [‘-R -J -C -DJTC1w14c/0.25c1o0/1c1h -Ba1f1u\232 ‘ . . .

‘-O >> WL_example_3.ps‘], cpt_s)

gmt (‘psconvert’ ‘-Tef -P -A WL_example_3.ps‘)

open (‘WL_example_3.pdf‘);

Here we focus on the sea surface temperature grids over the oceans by washing out the land topography

using 50% transparency. The two color-bars relate colors to data values, while national borders and a direc-

tion rose add distinction to the map.

4.4. Example 4: Crossover Error Analysis

Our final example highlights GMT’s capability of determining intersections between arbitrary lines and to

estimate any mismatch in observed along-track quantities at these intersections; another task not easily

done in MATLAB. Such information is useful when determining systematic biases that affect certain instru-

ments, requiring further data processing. We let MATLAB display a map showing the worst offenders and a

histogram of the crossover error distribution; this is then saved as a PDF illustration (Figure 5).

−12˚ −10˚ −8˚ −6˚ −4˚ −2˚

34˚

36˚

38˚

40˚

42˚

S

E

N

W

0 m 500 m 1000 m 1500 m 2000 m 2500 m 3000 m

15˚ 16˚ 17˚ 18˚ 19˚ 20˚ 21˚

Figure 4. Sea-surface temperatures from a MODIS Level 2 scene (best resolution of all provided products at the OceanColor site, �1 km)

for the day 1 June 2016 near the Straits of Gibraltar from NASA OceanColor (http://oceancolor.gsfc.nasa.gov/cms) site. We use ETOPO1 to

paint the land and overlay political boundaries and color bars. MATLAB assists with data processing while GMT makes a publication-ready

PDF map.
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% Read in all tracks

all5 gmt (‘read -Td all_tracks.txt‘);

% Initiate the crossover system

here5 pwd;

setenv (‘X2SYS_HOME’ here);

gmt (‘x2sys_init’ ‘TEST -Dgeoz -Etxt -F -Gd -R-180/-175/0/5‘)

% Compute internal crossovers

cross5 gmt (‘x2sys_cross’ ‘-TTEST all_tracks.txt -Qi -Ia‘);

% Make plot showing crossovers and a histogram of their values

% Find which crossings exceed dz5 4.

bad5 find (abs(cross.data(:,11)) > 4);

figure (4); clf; subplot (2,1,1); hold on

xlabel (‘Longitude‘); ylabel(‘Latitude‘);

tracks 5 gmt (‘catsegment’ all, 1);

plot (tracks(:,1), tracks(:,2)); hold on

plot (cross.data(bad,1), cross.data(bad,2), ‘ko’ ‘MarkerSize’ 10)

title (‘Crossover Error Analysis‘)

% Plot tracks and lcoations of crossings

plot (cross.data(:,1), cross.data(:,2), ‘r.’ ‘MarkerSize’ 15)

subplot (2,1,2)

histogram (cross.data(:,11), -40:1:10)

xlabel (‘Free-air gravity COE (mGal)‘); ylabel(‘Count‘);

Here GMT relies on the x2sys supplemental tool for the analysis and MATLAB for the display.
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Figure 5. MATLAB illustration of the crossing lines, their intersections (red circles) and the subset of large crossover errors (circles). The

crossover error distribution is presented as a histogram, identifying outliers as those exceeding64 mGal.
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5. Installation and Limitations

The core GMT package is available from the GMT site; several Linux distributions also provide this package.

However, installing the GMT/MATLAB toolbox varies between various platforms, mostly due to the depen-

dency on the user’s MATLAB installation (and version) and possible complications arising from shared

library conflicts. We will there discuss these procedures separately; please see our Wiki for updates.

5.1. Windows

The standard GMT installer for Windows already comes with the optional GMT/MATLAB toolbox that is

expected to work with a wide range of MATLAB versions. Given a valid MATLAB version then all that is

required is to run the GMT installer and add the GMT bin directory to the MATLAB path.

5.2. OS X

MATLAB users on OS X can install a prebuilt GMT distribution with the toolbox from the project website.

Alternatively, they may build the toolbox using their installed version of MATLAB and the GMT OSX Bundle

distributed from the GMT website. Furthermore, users who wish to gain access to the latest GMT version via

subversion must first build and install their own GMT bundle. Instructions for doing these steps can be

found on the GMT/MATLAB Toolbox wiki page.

5.3. Linux

As for OS X, MATLAB users on Linux must build the toolbox themselves, using the instructions found on the

GMT/MATLAB Toolbox wiki page. We have not yet been able to avoid a shared library conflict between

MATLAB and GMT’s GDAL dependency so for now we recommend building GMT without the GDAL library.

This means the GMT/MATLAB Toolbox can only open files that the core GMT API understands. We expect

this limitation to be lifted with more experience building the toolbox. We note that the shared library con-

flicts do not affect the toolbox built for Octave.
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