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Of the 23 Hilbert problems, 1 and 2 belong

to foundations of mathematics, while 10 and

17 are closely related to mathematical logic.

In addition, problems 3, 4, 5 were an

outgrowth of Hilbert’s interest in foundations

of geometry.

Hilbert’s 1900 Problem List

1. Cantor’s Problem of the Cardinal Number

of the Continuum.

2. Compatibility of the Arithmetical Axioms.

. . .

10. Determination of the Solvability of a

Diophantine Equation.

. . .

17. Expression of Definite Forms by Squares.

. . .
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Gödel’s Incompleteness Theorem:

Hilbert’s concern for consistency proofs led to

Gödel’s Incompleteness Theorems.

Let T be a theory in the predicate calculus,

satisfying certain mild conditions. Then:

1. T is incomplete.

2. The statement “T is consistent” is not a

theorem of T .

(Gödel 1931)

3. The problem of deciding whether a given

formula is a theorem of T is algorithmically

unsolvable.

(Gödel, Turing, Tarski, . . . )
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Some people believe that Gödel’s

Incompleteness Theorem means the end of

the axiomatic method generally, and of

Hilbert’s Program specifically.

In my opinion, this view fails to take account

of f.o.m. developments subsequent to 1931.

The purpose of this talk is to outline some

relatively recent research which reveals logical

regularity and structure arising from the

axiomatic approach to f.o.m.

1. The Gödel Hierarchy

2. Reverse Mathematics

3. Foundational consequences of R. M.

4. A partial realization of Hilbert’s Program

5. Beyond the Big Five

6. Relationship to degrees of unsolvability
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The Gödel Hierarchy:

Let T1, T2 be two theories as above. Define

T1 < T2

if “T1 is consistent” is a theorem of T2.

Usually this is equivalent to saying that T1 is

interpretable in T2 and not vice versa.

This ordering gives a hierarchy of

foundational theories, the Gödel Hierarchy.

The Gödel Hierarchy is linear and exhibits

other remarkable regularities.

The Gödel Hierarchy is a central object of

study in foundations of mathematics.
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Stopping Points in the Gödel Hierarchy:

strong





...
supercompact cardinal
...
measurable cardinal
...
ZFC (ZF set theory with choice)

Zermelo set theory

simple type theory

medium





Z2 (2nd order arithmetic)
...

Π1
2 comprehension

Π1
1 comprehension

ATR0 (arith. transfinite recursion)

ACA0 (arithmetical comprehension)

weak





WKL0 (weak König’s lemma)

RCA0 (recursive comprehension)

PRA (primitive recursive arithmetic)

EFA (elementary arithmetic)

bounded arithmetic
...
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Foundations of mathematics (f.o.m.):

Foundations of mathematics is the study of

the most basic concepts and logical structure

of mathematics as a whole.

Among the most basic mathematical

concepts are: number, shape, set, function,

algorithm, mathematical proof, mathematical

definition, mathematical axiom, mathematical

theorem, mathematical statement.

A key f.o.m. question:

What are the appropriate axioms for

mathematics?

. . .
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Background of Reverse Mathematics:

Second-order arithmetic (Z2) is a two-sorted

system.

Number variables m, n, . . . range over

N = ω = {0,1,2, . . .} .

Set variables X, Y, . . . range over subsets of ω.

We have +, ×, = on ω, plus the membership

relation

∈ = {(n, X) : n ∈ X} ⊆ ω × P(ω) .

Within subsystems of second-order arithmetic,

we can formalize rigorous mathematics

(analysis, algebra, geometry, combinatorics).

Subsystems of second-order arithmetic are

basic to our current understanding of

the logical structure of contemporary

mathematics.
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An essential reference:

David Hilbert and Paul Bernays

Grundlagen der Mathematik

(“Foundations of Mathematics”)

Second Edition

Volume I, XV + 475 pages

Volume II, XIV + 561 pages

Grundlehren der Mathematischen

Wißenschaften

Springer-Verlag, 1968–1970

In Supplement IV (“Appendix IV”) of

Grundlagen der Mathematik, Hilbert and

Bernays present the formalization of rigorous

mathematics within second-order arithmetic

(= Z2).

9



Themes of Reverse Mathematics:

Reverse Mathematics is particular f.o.m.

research program.

Let τ be a mathematical theorem. Let Sτ be

the weakest natural subsystem of

second-order arithmetic in which τ is

provable.

1. Very often, the principal axiom of Sτ is

logically equivalent to τ .

2. Furthermore, only a few subsystems of

second-order arithmetic arise in this way.

For a full exposition, see my book.
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Two books on reverse mathematics,

a status report:

1. RM2001

S. G. Simpson, editor

Reverse Mathematics 2001

(a volume of papers by various authors)

Volume 21, Lecture Notes in Logic

Association for Symbolic Logic

VIII + 401 pages, 2005

2. SOSOA

Stephen G. Simpson

Subsystems of Second-Order Arithmetic

Second Printing

Perspectives in Logic

Association for Symbolic Logic

approximately 460 pages, in press
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The Big Five:

For Reverse Mathematics, the five most

important subsystems of Z2 are:

RCA0 = formalized computable mathematics

(Recursive Comprehension Axiom)

WKL0 = RCA0 + a compactness principle

(Weak König’s Lemma)

ACA0 = RCA0 + the Turing jump operator

(Arithmetical Comprehension Axiom)

ATR0 = ACA0 + transfinite recursion

(Arithmetical Transfinite Recursion)

Π1
1-CA0 = ACA0 + Π1

1 comprehension

(Π1
1 Comprehension Axiom)
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Themes of R. M. (continued):

We develop a table indicating which

mathematical theorems can be proved in

which subsystems of Z2.

RCA0 WKL0 ACA0 ATR0 Π1
1-CA0

analysis (separable):

differential equations X X

continuous functions X, X X, X X

completeness, etc. X X X

Banach spaces X X, X X

open and closed sets X X X, X X

Borel and analytic sets X X, X X, X

algebra (countable):

countable fields X X, X X

commutative rings X X X

vector spaces X X

Abelian groups X X X X

miscellaneous:

mathematical logic X X

countable ordinals X X X, X

infinite matchings X X X

the Ramsey property X X X

infinite games X X X
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Reverse Mathematics for WKL0

WKL0 is equivalent over RCA0 to each of the following
mathematical statements:

1.The Heine/Borel Covering Lemma: Every covering of [0,1] by a
sequence of open intervals has a finite subcovering.

2. Every covering of a compact metric space by a sequence of
open sets has a finite subcovering.

3. Every continuous real-valued function on [0,1] (or on any
compact metric space) is bounded (uniformly continuous,
Riemann integrable).

6. The Maximum Principle: Every continuous real-valued function
on [0,1] (or on any compact metric space) has (or attains) a
supremum.

7. The local existence theorem for solutions of (finite systems of)
ordinary differential equations.

8. Gödel’s Completeness Theorem: every finite (or countable) set
of sentences in the predicate calculus has a countable model.

9. Every countable commutative ring has a prime ideal.

10. Every countable field (of characteristic 0) has a unique
algebraic closure.

11. Every countable formally real field is orderable.

12. Every countable formally real field has a (unique) real closure.

13. Brouwer’s Fixed Point Theorem: Every (uniformly)
continuous function φ : [0,1]n → [0,1]n has a fixed point.
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Reverse Mathematics for WKL0

(continued)

14. The Separable Hahn/Banach Theorem: If f is a bounded
linear functional on a subspace of a separable Banach space, and

if ‖f‖ ≤ 1, then f has an extension f̃ to the whole space such that

‖f̃‖ ≤ 1.

15. Banach’s Theorem: In a separable Banach space, given two
disjoint convex open sets A and B, there exists a closed
hyperplane H such that A is on one side of H and B is on the
other.

16. Every countable k-regular bipartite graph has a perfect
matching.
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Reverse Mathematics for ACA0

ACA0 is equivalent over RCA0 to each of the following
mathematical statements:

1. Every bounded, or bounded increasing, sequence of real
numbers has a least upper bound.

2. The Bolzano/Weierstraß Theorem: Every bounded sequence
of real numbers, or of points in Rn, has a convergent subsequence.

3. Every sequence of points in a compact metric space has a
convergent subsequence.

4. The Ascoli Lemma: Every bounded equicontinuous sequence
of real-valued continuous functions on a bounded interval has a
uniformly convergent subsequence.

5. Every countable commutative ring has a maximal ideal.

6. Every countable vector space over Q, or over any countable
field, has a basis.

7. Every countable field (of characteristic 0) has a transcendence
basis.

8. Every countable Abelian group has a unique divisible closure.

9. König’s Lemma: Every infinite, finitely branching tree has an
infinite path.

10. Ramsey’s Theorem for colorings of [N]3, or of [N]4, [N]5, . . . .
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Reverse Mathematics for ATR0

ATR0 is equivalent over RCA0 to each of the following
mathematical statements:

1. Any two countable well orderings are comparable.

2. Ulm’s Theorem: Any two countable reduced Abelian p-groups
which have the same Ulm invariants are isomorphic.

3. The Perfect Set Theorem: Every uncountable closed, or
analytic, set has a perfect subset.

4. Lusin’s Separation Theorem: Any two disjoint analytic sets can
be separated by a Borel set.

5. The domain of any single-valued Borel set in the plane is a
Borel set.

6. Every clopen (or open) game in NN is determined.

7. Every clopen (or open) subset of [N]N has the Ramsey property.

8. Every countable bipartite graph admits a König covering.
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Reverse Mathematics for Π1
1-CA0

Π1
1-CA0 is equivalent over RCA0 to each of the following

mathematical statements:

1. Every tree has a largest perfect subtree.

2. The Cantor/Bendixson Theorem: Every closed subset of R, or
of any complete separable metric space, is the union of a
countable set and a perfect set.

3. Every countable Abelian group is the direct sum of a divisible
group and a reduced group.

4. Every difference of two open sets in the Baire space NN is
determined.

5. Every Gδ set in [N]N has the Ramsey property.

6. Silver’s Theorem: For every Borel (or coanalytic, or Fσ)
equivalence relation with uncountably many equivalence classes,
there exists a perfect set of inequivalent elements.

7. For every countable set S in the dual X∗ of a separable Banach
space X (or in ℓ1 = c∗0), there exists a smallest weak-∗-closed
subspace of X∗ (or of ℓ1) containing S.

8. For every norm-closed subspace Y of ℓ1 = c∗0, the
weak-∗-closure of Y exists.
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My Reverse Mathematics Ph.D. students:

1. John Steel, Determinateness and Subsystems of Analysis,
University of California at Berkeley, 1977.

2. Rick L. Smith, Theory of Profinite Groups with Effective

Presentations, Pennsylvania State University, 1979.

5. Stephen H. Brackin, On Ramsey-type Theorems and their

Provability in Weak Formal Systems, Pennsylvania State
University, 1984.

7. Douglas K. Brown, Functional Analysis in Weak Subsystems of

Second Order Arithmetic, Pennsylvania State University, 1987.

8. Jeffry L. Hirst, Combinatorics in Subsystems of Second Order

Arithmetic, Pennsylvania State University, 1987.

9. Xiaokang Yu (Connie Yu), Measure Theory in Weak

Subsystems of Second Order Arithmetic, Pennsylvania State
University, 1987.

10. Fernando Ferreira, Polynomial Time Computable Arithmetic

and Conservative Extensions, Pennsylvania State University, 1988.

11. Kostas Hatzikiriakou, Commutative Algebra in Subsystems of

Second Order Arithmetic, Pennsylvania State University, 1989.

12. Alberto Marcone, Foundations of BQO Theory and

Subsystems of Second Order Arithmetic, Pennsylvania State
University, 1993.

13. A. James Humphreys, On the Necessary Use of Strong Set

Existence Axioms in Analysis and Functional Analysis,
Pennsylvania State University, 1996.

14. Mariagnese Giusto, Topology, Analysis and Reverse

Mathematics, University of Torino, 1998.

16. Carl Mummert, On the Reverse Mathematics of General

Topology, Pennsylvania State University, 2005.
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Foundational consequences of R. M.:

1. We precisely classify mathematical

theorems, according to which subsystems of

Z2 they are provable in.

2. We identify certain subsystems of Z2 as

being mathematically natural.

The naturalness is rigorously demonstrated.

3. We work out the consequences of

particular foundational doctrines:

• recursive analysis (Pour-El/Richards)

• constructivism (Bishop)

• finitistic reductionism (Hilbert)

• predicativity (Weyl, Feferman)

• predicative reductionism

(Feferman, Friedman, Simpson)

• impredicative analysis

(Takeuti, Schütte, Pohlers)
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Foundational consequences (continued):

By means of Reverse Mathematics, we

identify five particular subsystems of Z2 as

being mathematically natural. We correlate

these systems to traditional f.o.m. programs.

RCA0 constructivism Bishop

WKL0 finitistic reductionism Hilbert

ACA0 predicativity Weyl, Feferman

ATR0 predicative reductionism Friedman, Simpson

Π1
1-CA0 impredicativity Feferman et al.

We analyze these f.o.m. programs in terms of

their consequences for mathematical practice.

Specifically, under the various proposals,

which mathematical theorems are “lost”?

Reverse Mathematics provides precise

answers to such questions.
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Hilbert’s Program:

Hilbert 1925 proposed to reduce all of

mathematics to finitistic mathematics.

Gödel’s Theorem implies that Hilbert’s

Program cannot be completely realized. For

instance, “first-order arithmetic is consistent”

is finitistically meaningful yet not finitistically

provable.

Nevertheless, a significant partial realization

of Hilbert’s Program has been obtained.

Reference:

Stephen G. Simpson, Partial realizations

of Hilbert’s Program, Journal of Symbolic

Logic, 53, 1988, 349–363.

See also the next slide.
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A partial realization of Hilbert’s Program:

1. W. W. Tait has argued that PRA embodies

finitism.

2. H. Friedman has shown that WKL0 is

conservative over PRA for Π0
2 sentences. This

class includes all finitistically meaningful

sentences.

3. A large portion of core mathematics can

be carried out in WKL0, including many of the

best known nonconstructive theorems.

Thus Hilbert’s Program can be realized for a

large portion of core mathematics.

This is a byproduct of Reverse Mathematics.

Reference:

Stephen G. Simpson, Partial realizations of

Hilbert’s Program, Journal of Symbolic Logic,

53, 1988, 349–363.
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Beyond the Big Five:

Mummert/Simpson 2005 provide an example

of Reverse Mathematics at the level of Π1
2

comprehension. The results are in the area of

general topology.

Definitions.

Let P be a poset. A filter is a set F ⊆ P such

that F is upward closed and for all p, q ∈ F

there exists r ∈ F such that r ≤ p and r ≤ q.

(Compare forcing in axiomatic set theory.)

A maximal filter is a filter not properly

included in any other filter.

MF(P) is the space of all maximal filters,

with topology generated by basic open

neighborhoods Np = {F | p ∈ F}, p ∈ P .

An MF-space is a topological space of the

form X = MF(P). If P is countable, we say

that X is countably-based.
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MF-spaces (continued):

The MF-spaces comprise a wide class of

topological spaces, including all complete

metric spaces and many non-metrizable

spaces. In particular, every Polish space

is a countably-based MF-space.

Consider the following statement, MFMT:

A countably-based MF-space is regular

if and only if it is completely metrizable.

Note that MFMT can be formalized as

a sentence in the language of second-order

arithmetic.

Theorem (Mummert/Simpson 2005).

MFMT is equivalent to Π1
2-CA0 over Π1

1-CA0.

This is the first (and so far the only) example

of Reverse Mathematics at the level of

Π1
2 comprehension.

25



Beyond the Big Five (continued):

Other results and problems concern systems

in the vicinity of WKL0.

We mention some results in the

Reverse Mathematics of measure theory.

Definition (Xiaokang Yu, 1986).

WWKL0 (weak weak König’s Lemma)

consists of RCA0 plus the following statement:

If T is a subtree of 2<N and lim
n→∞

|T ∩ 2n|

2n
> 0,

then T has an infinite path.

It can be shown that RCA0 $ WWKL0 $ WKL0.

Many statements of measure theory are

equivalent to WWKL0 over RCA0. Examples:

• finite additivity

• countable additivity

• the Monotone Convergence Theorem

• the Vitali Covering Lemma.
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Reverse Mathematics of measure theory

(continued):

It can be shown that WWKL0 is equivalent

over RCA0 to

∀X ∃Y (Y is Martin-Löf random rel. to X).

Thus we have a good tie-in to recent work on

algorithmic randomness.

A second wave of research in

the Reverse Mathematics of measure theory

concerns almost everywhere domination.

Definition (Dobrinen/Simpson 2004).

A Turing oracle B is said to be a.e.

dominating if for almost all X ∈ 2N

and all f ≤T X there exists g ≤T B

such that f(n) < g(n) for all n.

Here “almost all” refers to the fair coin

measure on 2N.
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Almost everywhere domination

(continued):

Almost everywhere domination is closely

related to the reverse mathematics of

measure-theoretic regularity. For instance, B

is a.e. dominating if and only if every Π0
2 set

of reals contains a Σ
0,B
2 set of the same

measure. See also recent definitive results by

Kjos-Hanssen, Miller, Solomon.

It turns out that B is a.e. dominating if and

only if the Halting Problem is LR-reducible to

B in the sense of André Nies.

The relevant definition is: A ≤LR B if

∀X (X random rel. to B ⇒ X random rel. to A).

Thus we have another good tie-in between

the Reverse Mathematics of measure theory

and recent research in algorithmic

randomness.
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Degrees of unsolvability:

There are close connections between

subsystems of Z2 and degrees of unsolvability.

RCA0 corresponds to the Turing degree 0.

ACA0 corresponds to the Turing degree 0′

or perhaps 0(ω).

Π1
1-CA0 corresponds to 0

(
ωCK
1

)
(= the Turing

degree of Kleene’s O) or perhaps 0

(
ωCK

ω

)
.

Similarly for Π1
2-CA0, etc.

However, it is difficult to assign a Turing

degree to systems such as WKL0, WWKL0,

ATR0, etc.

To overcome such difficulties, we propose to

use a generalization of Turing degrees known

as Muchnik degrees.
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Muchnik degrees (continued):

Definition. Let P and Q be sets of reals.

P is Muchnik reducible to Q, abbreviated

P ≤w Q, if (∀y ∈ Q) (∃x ∈ P) (x ≤T y).

The Muchnik degree of P , denoted degw(P),

is the equivalence class of P under mutual

Muchnik reducibility.

To motivate this concept,

view P as a mass problem, namely,

the “problem” of finding an element of P .

Then P ≤w Q means:

any “solution” of the problem Q can be used

to compute a “solution” of the problem P .

The Muchnik degree corresponding to WKL0

is degw(CPA) where CPA is the problem of

finding a completion of Peano Arithmetic.

Similarly, the Muchnik degree corresponding

to WWKL0 is r1 = degw(R1) where R1 is the

problem of finding a 1-random real.

30



Muchnik degrees (continued):

We have been studying the lattice Pw of
Muchnik degrees of nonempty Π0

1 sets of
reals. It turns out that Pw is structurally
similar to the r.e. Turing degrees, but much
better than the r.e. Turing degrees because:

1. Pw is a distributive lattice, while the r.e.
Turing degrees are not even a lattice.

2. Pw contains many specific, natural degrees
which are closely related to foundationally
interesting topics:

• algorithmic randomness

• reverse mathematics

• almost everywhere domination

• diagonal nonrecursiveness

• hyperarithmeticity

• resource-bounded computational
complexity

• Kolmogorov complexity

• effective Hausdorff dimension

• subrecursive hierarchies
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A picture of Pw. Here a = any r.e. degree,

h = hyperarithmeticity, r = randomness,

b = almost everywhere domination,

d = diagonal nonrecursiveness.
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Similarly, the lattice Dw of all Muchnik

degrees is better behaved and has many more

specific, natural degrees than the upper

semilattice of Turing degrees. In addition,

there are important connections to

intuitionism going back to Kolmogorov.

Some specific, natural degrees in Dw:

• 0, 0′, 0′′, . . . , 0(α),. . . where α runs through

the constructibly countable ordinals (at least,

depending on the universe of set theory).

• rn = degw(Rn) where Rn is the problem of

finding an n-random real.

• b = degw(AED) where AED is the problem

of finding an a.e. dominating real.

• c2 = degw(C2) where C2 is the problem of

finding a Ramsey real, i.e., a real which

computes homogenous sets for all recursive

colorings of pairs.

• · · ·

THE END
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