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Abstract

We explore the loss landscape of fully-connected and convo-
lutional neural networks using random, low-dimensional hy-
perplanes and hyperspheres. Evaluating the Hessian, H , of
the loss function on these hypersurfaces, we observe 1) an
unusual excess of the number of positive eigenvalues of H ,
and 2) a large value of Tr(H)/||H|| at a well defined range
of configuration space radii, corresponding to a thick, hollow,
spherical shell we refer to as the Goldilocks zone. We observe
this effect for fully-connected neural networks over a range
of network widths and depths on MNIST and CIFAR-10
datasets with the ReLU and tanh non-linearities, and a simi-
lar effect for convolutional networks. Using our observations,
we demonstrate a close connection between the Goldilocks
zone, measures of local convexity/prevalence of positive cur-
vature, and the suitability of a network initialization. We show
that the high and stable accuracy reached when optimizing
on random, low-dimensional hypersurfaces is directly related
to the overlap between the hypersurface and the Goldilocks
zone, and as a corollary demonstrate that the notion of intrin-
sic dimension is initialization-dependent. We note that com-
mon initialization techniques initialize neural networks in this
particular region of unusually high convexity/prevalence of
positive curvature, and offer a geometric intuition for their
success. Furthermore, we demonstrate that initializing a neu-
ral network at a number of points and selecting for high mea-
sures of local convexity such as Tr(H)/||H||, number of pos-
itive eigenvalues of H , or low initial loss, leads to statistically
significantly faster training on MNIST. Based on our obser-
vations, we hypothesize that the Goldilocks zone contains
an unusually high density of suitable initialization configu-
rations.

1 Introduction

1.1 Objective Landscape

A neural networks is fully specified by its architecture –
connections between neurons – and a particular choice of
weights {W} and biases {b} – free parameters of the model.
Once a particular architecture is chosen, the set of all pos-
sible value assignments to these parameters forms the ob-
jective landscape – the configuration space of the problem.
Given a specific dataset and a task, a loss function L char-
acterizes how unhappy we are with the solution provided
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by the neural network whose weights are populated by the
parameter assignment P . Training a neural network corre-
sponds to optimization over the objective landscape, search-
ing for a point – a configuration of weights and biases –
producing a loss as low as possible.

The dimensionality, D, of the objective landscape is typi-
cally very high, reaching hundreds of thousands even for the
most simple of tasks. Due to the complicated mapping be-
tween the individual weight elements and the resulting loss,
its analytic study proves challenging. Instead, the objective
landscape has been explored numerically. The high dimen-
sionality of the objective landscape brings about consider-
able geometrical simplifications that we utilize in this paper.

Figure 1: An illustration of the loss landscape. The thin
spherical shell on which common initialization procedures
initialize neural networks is shown in yellow, and its radius
in gray. A random, low-dimensional hyperplane intersect-
ing such a configuration P is shown in purple, together with

two of its coordinate directions θ̂1 and θ̂2. A thick shell – the
Goldilocks zone – of unusually high convexity/prevalence of
positive curvature (e.g. unusual behavior of Tr(H)/||H||) is
shown as blue shading. Cuts through the region by hyper-
planes at 4 different radii are shown schematically. The radii
of common initializations lie well within the Goldilocks
zone, therefore a random hyperplane perpendicular to r̂ is
bound to have a significant overlap with the zone.

1.2 Related Work

Neural network training is a large-scale non-convex op-
timization task, and as such provides space for poten-
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tially very complex optimization behavior. (Goodfellow and
Vinyals 2014), however, demonstrated that the structure of
the objective landscape might not be as complex as expected
for a variety of models, including fully-connected neural
networks (Rumelhart, Hinton, and Williams 1986) and con-
volutional neural networks (LeCun, Kavukcuoglu, and Fara-
bet 2010). They showed that the loss along the direct path
from the initial to the final configuration typically decreases
monotonically, encountering no significant obstacles along
the way. The general structure of the objective landscape has
been a subject of a large number of studies (Choromanska et
al. 2014; Keskar et al. 2016).

A vital part of successful neural network training is a suit-
able choice of initialization. Several approaches have been
developed based on various assumptions, most notably the
so-called Xavier initialization (Glorot and Bengio 2010),
and He initialization (He et al. 2015), which are designed
to prevent catastrophic shrinking or growth of signals in the
network. We address these procedures, noticing their geo-
metric similarity, and relate them to our theoretical model
and empirical findings.

A striking recent result by (Li et al. 2018) demonstrates
that we can restrict our degrees of freedom to a randomly
oriented, low-dimensional hyperplane in the full configura-
tion space, and still reach almost as good an accuracy as
when optimizing in the full space, provided that the dimen-
sion of the hyperplane d is larger than a small, task-specific
value dintrinsic ≪ D, where D is the dimension of the full
space. We address and extend these observations, focusing
primarily on the surprisingly low variance of accuracies on
random hyperplanes of a fixed dimension.

1.3 Our Contributions

In this paper, we constrain our optimization to randomly
chosen d-dimensional hyperplanes and hyperspheres in the
full D-dimensional configuration space to empirically ex-
plore the structure of the objective landscape of neural net-
works. Furthermore, we provide a step towards an analytic
description of some of its general properties. Evaluating the
Hessian, H , of the loss function on randomly oriented, low-
dimensional hypersurfaces, we observe 1) an unusual excess
of the number of positive eigenvalues of H , and 2) a large
value of Tr(H)/||H|| at a well defined range of configura-
tion space radii, corresponding to a thick, hollow, spherical
shell of unusually high local convexity/prevalence of posi-
tive curvature we refer to as the Goldilocks zone.

Using our observations, we demonstrate a close connec-
tion between the Goldilocks zone, measures of local con-
vexity/prevalence of positive curvature, the suitability of a
network initialization, and the ability to optimize while con-
strained to low-dimensional hypersurfaces. Extending the
experiments in (Li et al. 2018) to different radii and gener-
alizing to hyperspheres, we are able to demonstrate that the
main predictor of the success of optimization on a (d ≪ D)-
dimensional sub-manifold is the amount of its overlap with
the Goldilocks zone. We therefore demonstrate that the con-
cept of intrinsic dimension from (Li et al. 2018) is radius-
and therefore initialization-dependent. Using the realization
that common initialization techniques (Glorot and Bengio
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(a) Accuracies reached on hy-
perplanes of different dimen-
sions and distances from origin.
The contours show the valida-
tion accuracy reached when op-
timizing on random hyperplanes
initialized at distance r from the
origin. Consistently with our hy-
pothesis, r < rXavier leads to an
equivalent performance to r =
rXavier, as the hyperplanes in-
tersect the Goldilocks zone. For
r > rXavier, the performance
drops as hyperplanes no longer
intersect the Goldilocks zone.
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(b) Accuracies reached on hy-
perspheres of different dimen-
sions and radii from origin. The
contours show the validation ac-
curacy reached when optimiz-
ing on random hyperspheres ini-
tialized at distance r from the
origin. The optimization was
constrained to stay at this ra-
dius. Consistently with our hy-
pothesis, r < rXavier as well
as r > rXavier lead to poor
performance, as the spherical
surface on which optimization
takes place does not intersect the
Goldilocks zone.

Figure 2: Accuracies reached on random, low-dimensional
hyperplanes (panel 2a) and hyperspheres (panel 2b). The
contours show the validation accuracy reached when opti-
mizing on random hypersurfaces, confirming that good ini-
tial points are distributed on a thick, hollow, spherical shell,
as illustrated in Figure 1. Plots of accuracy as a function of
dimension presented in (Li et al. 2018) correspond to sec-
tions along the yellow vertical line and we therefore extend
them. Consequently, this shows that the intrinsic dimension
(Li et al. 2018) of a problem is radius-dependent, and there-
fore initialization-dependent.

2010; He et al. 2015), due to properties of high-dimensional
Gaussian distributions, initialize neural networks in the same
particular region, we conclude that the Goldilocks zone con-
tains an exceptional amount of very suitable initialization
configurations.

As a byproduct, we show hints that initializing a neu-
ral network at a number of points at a given radius, and
selecting for high number of positive Hessian eigenvalues,
high Tr(H)/||H||, or low initial validation loss (they are
all strongly correlated in the Goldilocks zone), leads to sta-
tistically significantly faster convergence on MNIST. This
further strengthens the connection between the measures of
local convexity and the suitability of an initialization.

Our empirical observations are consistent across a range
of network depths and widths for fully-connected neural
networks with the ReLU and tanh non-linearities on the
MNIST and CIFAR-10 datasets. We observe a similar effect
for CNNs. The wide range of scenarios in which we observe
the effect suggests its generality.

This paper is structured as follows: We begin by intro-
ducing the notion of random hyperplanes and continue with
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building up the theoretical basis to explain our observations
in Section 2. We report the results of our experiments and
discuss their implications in Section 3. We conclude with a
summary and future outlook in Section 4.

2 Measurements on Random Hyperplanes

and Their Theory

To understand the nature of the objective landscape of neu-
ral networks, we constrain our optimization to a randomly
chosen d-dimensional hyperplane in the full D-dimensional
configuration space, similarly to (Li et al. 2018). Due to the
low dimension of our subspace d ≪ D, we can evaluate the
second derivatives of the loss function directly using auto-
matic differentiation. The second derivatives, described by
the Hessian matrix H ∈ R

d×d, characterize the local con-
vexity (or rather the amount of local curvature, as the func-
tion is not strictly convex, although we will use the terms
convexity and curvature interchangeably throughout this pa-
per) of the loss function at a given point. As such, they are
a useful probe of the valley and hill-like nature of the local
neighborhood of a given configuration, which in turn influ-
ences optimization.

2.1 Random Hyperplanes

We study the behavior of the loss function on random, low-
dimensional hyperplanes, and later generalize to random,
low-dimensional hyperspheres. Let the dimension of the full
space be D and the dimension of the hyperplane d. To spec-
ify a plane, we need d orthogonal vectors {~v ∈ R

D}. The
position within the plane is specified by d coordinates, en-

capsulated in a position vector ~θ ∈ R
d, as illustrated in

Figure 1. Given the origin of the hyperplane ~P ∈ R
D,

the full-space coordinates ~x of a point specified by ~θ are

~x = ~P +
∑d

i=1
θi~vi. This can be written simply as ~x

(

~θ
)

=

~P + M~θ, where M ∈ R
D×d is a transformation matrix

whose columns are the orthogonal vectors {~v}. In our ex-

periments, the initial ~P and M are randomly chosen, and
frozen – they are not trainable. To account for the different
initialization radii of our weights, we map M → ηM , where
ηii ∝ 1/ri is a diagonal matrix serving as a metric. The op-
timization affects solely the within-hyperplane coordinates
~θ, which are initialized at zero. The freedom to choose ~P
according to modern initialization schemes allows us to ex-
plore realistic conditions similar to full-space optimization.

As demonstrated in Section 2.2, common initialization
schemes choose points at an approximately fixed radius

r = |~P |. In the low-dimensional hyperplane limit d ≪ D, it
is exceedingly unlikely that the hyperplane has a significant
overlap with the radial direction r̂, and we can therefore vi-
sualize the hyperplane as a tangent plane at radius |P |. This
is illustrated in Figure 1.

For implementation reasons, we decided to generate
sparse, nearly-orthogonal projection matrices M by choos-
ing d vectors, each having a random number n of randomly
placed non-zero entries, each being equally likely ±1/

√
n.

Due to the low-dimensional regime d ≪ D, such matrix

is sufficiently near-orthogonal for our purposes, as validated
numerically.
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(b) A measure of local convex-
ity/positive curvature.

Figure 3: Two measures of local convexity/prevalence of
positive curvature evaluated for random points using ran-
dom, low-dimensional hyperplanes intersecting them. Fig-
ures 3a and 3b show the existence of an unusual behav-
ior of local convexity at a well defined range of configu-
ration space radii – the Goldilocks zone. The one sigma
experimental uncertainties are shown as shading. The rel-
atively small uncertainties in the Goldilocks zone point to-
wards high angular isotropy of the objective landscape. The
fraction of positive Hessian eigenvalues diminishes as the
dimension d of a random hyperplane increases, whereas
Tr(H)/||H|| remains a good predictor, as discussed theo-
retically in Section 2. The Xavier initialization (Glorot and
Bengio 2010) initializes networks.

2.2 Gaussian Initializations on a Thin Spherical
Shell

Common initialization procedures (Glorot and Bengio 2010;
He et al. 2015) populate the network weight matrices {W}
with elements drawn independently from a Gaussian distri-
bution with mean µ = 0 and a standard deviation σ(W ) de-
pendent on the dimensionality of the particular matrix. For a
matrix W with elements {Wij}, the probability of each ele-

ment having value w is P (Wij = w) ∝ exp
(

− w2

2σ2

)

. The

joint probability distribution is therefore

P (W ) ∝
∏

ij

exp

(

−
W 2

ij

2σ2

)

= exp

(

− r2

2σ2

)

, (1)

where we define r2 ≡
∑

ij W
2
ij , i.e. the Euclidean norm

where we treat each element of the matrix as a coordinate.
The probability density at a radius r therefore corresponds
to

P (r) ∝ rN−1 exp

(

− r2

2σ2

)

, (2)

where N is the number of elements of the matrix W , i.e. the
number of coordinates. The probability density for high N
peaks sharply at radius r∗ =

√
N − 1σ. That means that

the bulk of the random initializations of W will lie around
this radius, and we can therefore visualize such random ini-
tialization as assigning a point to a thin spherical shell in the
configuration space, as illustrated in Figure 1.
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Each matrix W is initialized according to its own dimen-
sions and therefore ends up on a shell of a different radius
in its respective coordinates. We compensate for this by in-
troducing the metric η discussed in Section 2.1. Biases are

initialized at zeros. There is a factor O(
√
D) fewer biases

than weights in a typical fully-connected network, therefore
we ignore biases in our theoretical treatment.

2.3 Hessian

We would like to explain the observed relationship between
several sets of quantities involving second derivatives of the
loss function on random, low-dimensional hyperplanes and
hyperspheres. The loss at a point ~x = ~x0 + ~ε can be approx-
imated as

L(~x0 + ~ε) = L( ~x0) + ~g · ~ε+ 1

2
~εTH~ε+O(ε3) . (3)

The first-order term involves the gradient, defined as gi =
∂L/∂xi. The second-order term uses the second deriva-
tives encapsulated in the Hessian matrix defined as Hij =
∂2L/∂xi∂xj . The Hessian characterizes the local curvature

of the loss function. For a direction ~v, ~vTH~v > 0 implies
that the loss is convex along that direction, and conversely
~vTH~v < 0 implies that it is concave. We can diagonalize
the Hessian matrix to its eigenbasis, in which its only non-
zero components {hi} lie on its diagonal. We refer to its
eigenvectors as the principal directions, and its eigenvalues
{hi} as the principal curvatures.

After restricting the loss function to a d-dimensional hy-
perplane, we can compute a new Hessian, Hd, which comes
with its own eigenbasis and eigenvalues. Each hyperplane,
therefore, has its own set of principal directions and princi-
pal curvatures.

In this paper, we study the behavior of two quantities:
Tr(H) and ||H||. Tr(H) is the trace of the Hessian matrix
and can be expressed as Tr(H) =

∑

i hi. As such, it can be

thought of as the total curvature at a point. ||H||2 =
∑

i h
2
i ,

and it is proportional to the variance of curvature in differ-
ent directions around a point (assuming large D and several
other assumptions, as discussed later).

2.4 Curvature Statistics and Connections to
Experiment

As discussed in detail in Section 3, we observe that the fol-
lowing three things occur in the Goldilocks zone: 1) The
curvature along the vast majority of randomly chosen direc-
tions is positive. 2) A slim majority of the principal curva-
tures (Hessian eigenvalues) {hi} is positive. If we restrict
to a d-dimensional hyperplane, this majority becomes more
significant for smaller d, as demonstrated in Figure 3a. 3)
The quantity Tr(H)/||H|| is significantly greater than 1 (see
Figures 4, and 3b), and is close to Tr(Hd)/||Hd|| for large
enough d (see Figure 3b).

We can make sense of these observations using two tools:
the fact that high-dimensional multivariate Gaussian distri-
butions have correlation functions that approximate those of
the uniform distribution on a hypersphere (Spruill 2007) and
the fact (via Wick’s Theorem) that for multivariate Gaussian

random variables (X1, X2, X3, X4),

E[X1X2X3X4] = E[X1X2]E[X3X4] + E[X1X3]E[X2X4]

+E[X1X4]E[X2X3]

Choose a uniformly-random direction in the full D-
dimensional space, given by a vector v. For D ≫ 1, any
pair of distinct components vi, vj are approximately bivari-

ate Gaussian with E[vi] = 0, E[v2i ] = 1/D,E[vivj ] = 0.
Then, working in the eigenbasis of H , the expected cur-
vature in the v direction is E[vTHv] = E

[
∑

i hiv
2
i

]

=
∑

i hi/D = Tr(H)/D, which is the same as the average
principal curvature.

The variance of the curvature in the v-direction is

E[(vTHv)2]− E[vTHv]2 = E





∑

ij

hiv
2

i hjv
2

j



− E[vTHv]2

and we can apply Wick’s Theorem to E[vivivjvj ] to find

that this is 2
∑

i h
2
i /D

2 = 2||H||2/D2. On the other hand,

the variance of the principal curvatures is (1/D)
∑

i h
2
i −

((1/D)
∑

i hi)
2 = ||H||2/D − Tr(H)2/D2. Empirically,

we find that Tr(H)/||H|| ≪ D in all cases we consider, so
the dominant term is ||H||2/D, a factor of D/2 larger than
we found for the v-direction.

Therefore, when D is large, the principal directions have
the same average curvature that randomly-chosen directions
do, but with much more variation. This explains why a slight
excess of positive eigenvalues hi can correspond to an over-
whelming majority of positive curvatures in random direc-
tions.

In light of the calculations above, the condition
Tr(H)/||H|| ≫ 1 implies that the average curvature in a
random direction is much greater than the standard devia-
tion, i.e. that almost no directions have negative curvature.
This is the hallmark of the Goldilocks zone, as demonstrated
in Figure 4. The corresponding condition for principal di-
rections to be overwhelmingly positive-curvature (i.e. for

nearly all hi to be positive) is Tr(H)/||H|| ≫
√
D, which

is a much stronger requirement. Empirically, we find that in
the Goldilocks zone, Tr(H)/||H|| is greater than 1 but less

than
√
D.

Restricting optimization to low-dimensional hyperplanes
does not affect the ratio Tr(H)/||H||. Another application
of Wick’s Theorem gives that Tr(Hd) ∝ d for d ≫ 1.
Similarly, it can be shown that |Hd| ∝ d so long as

d ≫ (Tr(H)/||H||)2. This implies that for large enough d,
Tr(Hd)/||Hd|| ≈ Tr(H)/||H||. We find empirically that at
rXavier this ratio begins to stabilize for d greater than about

(Tr(H)/||H||)2 ≈ 40, as shown in Figure 3b.

Because ||Hd|| ∝ d, the principal curvatures on d-

hyperplanes have standard deviation ||Hd||/
√
d ∝

√
d,

while the average principal curvature stays constant. This
explains why smaller d hyperplanes have a larger excess
of positive eigenvalues in the Goldilocks zone than larger d
hyperplanes (Figure 3a): their principal curvatures have the
same (positive) average value, but vary less, on hyperplanes
of smaller d.
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As a final observation, we note that the beginning and end
of the Goldilocks zone occur for different reasons. The in-
crease in Tr(H)/||H|| at its inner edge comes from an in-
crease in Tr(H), while the decrease at its outer edge comes
from an increase in ||H||, as shown in Figure 5b. To (par-
tially) explain this, we give a more detailed analysis of these
two quantities below. It turns out that the increase in Tr(H)
is a feature of the network architecture, while the decrease
in ||H|| is not as well understood and may be a feature of the
problem domain.

2.5 Radial Dependence of Loss

We observe that for fully-connected neural networks with
the ReLU non-linearity and a final softmax, the loss at an
average configuration at distance r from the origin is con-
stant for r / rGoldilocks, and grows as a power-law with the
exponent being the number of layers for r ' rGoldilocks, as
shown in Figure 5a. To connect these observations to the-
ory, we note that, for nL layers (i.e. nL − 1 hidden layers),
each numerical output gets matrix-multiplied by nL layers
of weights. If all weights are rescaled by some number r, 1)
the radius of configuration space position grows by the fac-
tor r, and 2) the raw output from the network will generically
grow as rnL due to the linear regime of the ReLU activation
function.

Suppose that the raw outputs from the network (be-
fore softmax) are order from the largest to the smallest
as (y1, y2, . . . ). The difference ∆y between any two out-
puts yi and yj (i < j) will grow as rnL . After the ap-
plication of softmax p1 = 1 − exp(−rnL(y1 − y2)) and
p2 = exp(−rnL(y1 − y2)). If the largest output p1 corre-
sponds to the correct class, its cross entropy contribution
will be − log(p1) ≈ exp(−rnL(y1 − y2)) → 0. How-
ever, if instead p2 corresponds to the correct answer, as
expected at 10 % of the cases for a random network on
MNIST or CIFAR-10, the cross-entropy loss contribution is
− log(p2) ≈ rnL(y1− y2) ∝ rnL . This demonstrates that at
large configuration space radii r, a small, random fluctuation
in the raw outputs of the network will have an exponential
influence on the resulting loss. On the other hand, if r is
small, the softmax will bring the outputs close to one an-
other and the loss will be roughly constant (equal to log(10)
for 10-way classification).

Therefore, above some critical r, the loss will grow as a
power law with exponent nL. Below this critical value, it
will be nearly flat. We confirm this empirically, as shown in
Figure 5a. This scaling of the loss does not apply to tanh
activations, which have a much more bounded linear regime
and do not produce arbitrarily large outputs, which might ex-
plain the weaker presence of the Goldilocks zone for them,
as seen in Figure 4.

2.6 Radial Features and the Laplacian

As discussed above, Tr(H) measures the excess of positive
curvature at a point. It is also known as the Laplacian, ∇2L.
Large positive values occur at valley-like points: not neces-
sarily local minima, but places where the positively curved
directions overwhelm the negatively curved ones. Similarly,
very negative values occur at hill-like points, including local

maxima. This intuition explains our observation that, in the
Goldilocks zone, Tr(H)/||H|| is strongly negatively corre-
lated with the loss, as demonstrated in Figure 6d. However, it
is uncorrelated with accuracy, suggesting that Tr(H)/||H||
indicated a point’s suitability for optimization rather than its
suitability as a final point.

This leads to a puzzle, however. If we consider all of the
points on a sphere of some radius, then a positive-on-average
Tr(H) corresponds to an excess of valleys over hills. On the
other hand, one might expect hills and valleys to cancel out
for a function on a compact manifold like a sphere. Yet we
empirically observe such an excess, as shown in Figure 4.

The explanation of this puzzles relies on our observation
that the average loss begins to increase sharply at the in-
ner edge of the Goldilocks zone (see Figure 5a). A line tan-
gent to the sphere (perpendicular to the r̂ direction) will head
out to larger r in both directions, therefore if the loss is in-
creasing with radius, the point of tangency will be approx-
imately at a local minimum. This means that every point –
whether it is a local maximum, a local minimum, or some-
where in between on the sphere of r = const. – has a Hes-
sian (∝ Laplacian) that looks a bit more valley-like than it
otherwise would, provided that we measure it within a low-
dimensional hyperplane containing said point.

To be more precise, it follows from Stokes’ Theorem that
the average value of Tr(H) over a sphere (i.e. the surface of
r = const.) is given by

〈Tr(H)〉r=const. =
∂2

∂r2
〈L〉r=const. +

D − 1

r

∂

∂r
〈L〉r=const. , (4)

where 〈·〉r=const. indicates averaging over a spherical sur-
face of a constant radius. Therefore, this radial variation is
the only thing that can consistently affect Tr(H) in a spe-
cific way – the other contributions, from the actual variation
in the loss over the sphere, necessarily average out to zero,
regardless of the specific form of L. The true hills and val-
leys cancel out, and the fake valleys from the radial growth
remain.

We can verify this picture by showing that the
r-dependence of Tr(H) is consistent with that of
〈L〉r=const.(r). For a network with two hidden layers,
L(r) ∝ rnL = r3 for large r, as shown above. Therefore,
D−1

r
∂L
∂r

grows linearly in r. Consistent with this, we find
that Tr(H)/r is constant for large r, as shown in Figure 5b.

We observe that in the Goldilocks zone Tr(H) is a fairly
consistent function of radius, with small fluctuations around
its average, which indicates that this fake-valley effect dom-
inates there: Tr(H), and therefore the average curvature, is
controlled mostly by the radial feature we observe, rather
than anisotropy of the loss function on the sphere (i.e. in the
angular directions).

The increase in loss, as explained above in terms of the
properties of weight matrices and cross-entropy, shows that
the increase in Tr(H) (and therefore the inner edge of the
Goldilocks zone) is caused by the same effect that is usually
invoked to explain why common initialization techniques
work well – prevention of exponential explosion of signals.
In particular, it explains why the inner edge of the zone is
close to the prescribed r∗ of these initialization techniques.
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On the other hand, ||H|| is not nearly as strongly affected
by the radial growth. This is related to the variance in curva-
ture, not the average curvature; every tangent direction gets
the same fake-valley contribution, so ||H|| is mostly unaf-
fected. (To be more precise, this is true as long as the princi-
pal curvatures have a mean smaller than their standard devi-

ation, Tr(H)/||H|| ≪
√
D, which is true for all of our ex-

periments.) While Tr(H) is global and radial, ||H|| is local
and angular: it is mostly determined by how the loss varies
in the D− 1 angular directions along a sphere of r = const.
This means that the sudden increase in ||H|| (and the outer
edge of the Goldilocks zone) seen in Figure 5b is due to an
increase in the texture-like angular features of the loss, the
sharpness of its hills and valleys, past some value of r. This
will require much more research to understand in detail, and
is beyond the scope of this paper.

3 Results and Discussion

We ran a large number of experiments to determine the
nature of the objective landscape. We focused on fully-
connected and convolutional networks. We used the MNIST
(LeCun and Cortes ) and CIFAR-10 (Krizhevsky 2009) im-
age classification datasets. We explored a range of widths
and depths of fully-connected networks to determine the sta-
bility of our results, and considered the ReLU and tanh
non-linearities. We used the cross-entropy loss and the
Adam optimizer with the learning rate of 10−3. We studied
the properties of Hessians characterizing the local convex-
ity/prevalence of positive curvature of the loss landscape on
randomly chosen hyperplanes. We observed the following:

1. An unusually high fraction (> 1/2) of positive eigen-
values of the Hessian at randomly initialized points on
randomly oriented, low-dimensional hyperplanes inter-
secting them. The fraction increased as we optimized
within the respective hyperplanes, and decreased with an
increasing dimension of the hyperplane, as predicted in
Section 2. The effect appeared at a well defined range of
coordinate space radii we refer to as the Goldilocks zone,
as shown in Figure 3a and illustrated in Figure 1.

2. An unusual, statistically significant excess of
Tr(H)/||H|| at the same region, as shown in Fig-
ures 4a and 4b. Unlike the excess of positive Hessian
eigenvalues, the effect did not decrease with an increas-
ing dimension of the hyperplane and was therefore a
good tracer of local convexity/prevalence of positive cur-
vature. Theoretical justification is provided in Section 2,
and scaling with d is shown in Figure 3b.

3. The observations 1. and 2. were made consistently over
different widths and depths of fully-connected neural net-
works on MNIST and CIFAR-10 using the ReLU and
tanh non-linearities (see Figure 4).

4. The loss function at random points at radius r from the
origin is constant for r / rGoldilocks and grows as a
power-law with the exponent predicted in Section 2 for
r ' rGoldilocks, as shown in Figure 5a. The existence of
the Goldilocks zone depends on the behavior of Tr(H)
and ||H|| shown in Figure 5b.

5. The accuracy reached on random, low-dimensional hy-
perplanes was good for r < rXavier and dropped dramat-
ically for r > rXavier, as shown in Figure 2a. The accu-
racy reached on random, low-dimensional hyperspheres
was good only for r ≈ rXavier and dropped for both
r < rXavier and r > rXavier, as shown in Figure 2b.

6. Common initialization schemes (such as Xavier (Glo-
rot and Bengio 2010) and He (He et al. 2015)), initial-
ize neural networks well within the Goldilocks zone,
precisely at the radius at which measures of local con-
vexity/prevalence of positive curvature peak (see Fig-
ures 3 and 4).

7. Hints that selecting initialization points for high measures
of local convexity leads to statistically significantly faster
convergence (see Figure 6), and correlates well with low
initial loss.

8. Initializing at r < rGoldilocks, full-space optimization
draws points to r ≈ rGoldilocks. This suggests that the
zone contains a large amount of suitable final points as
well as suitable initialization points.

An illustration of the Goldilocks zone and its relationship to
the common initialization radius is shown in Figure 1.
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Figure 4: Characteristics of Hessians at randomly initialized
points on random hyperplanes at different radii. The plots
show Tr(H)/||H|| which is a good tracer of the amount
of local convexity/prevalence of positive curvature, as dis-
cussed in Section 2. The effect appears consistently for the
MNIST and CIFAR-10 datasets, a range of fully-connected
network widths and depths, as well as the ReLU and tanh
non-linearities. The peak coincides with the radius on which
the Xavier scheme initializes neural networks, suggesting
a link between the local convexity and signal growth. For
CNNs, a different profile of convexity is observed, although
its unusual non-zero size remains.

We sampled a large number of Xavier-initialized points,
used random hyperplanes intersecting them to evaluate
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Figure 5: Properties of the cross-entropy loss function for a
fully-connected network with ReLU.

their Hessians, and optimized within the full D-dimensional
space for 10 epochs starting there. We observe hints that a)
the higher the fraction of positive eigenvalues, and b) the
higher the Trace(H), the faster our network reaches a given
accuracy on MNIST. Our experiments are summarized in
Figures 6a, 6b and 6c. We observe that the initial validation
loss for Xavier-initialized points negatively correlates with
these measures of convexity, as shown in Figure 6d. This
suggests that selecting for a low initial loss, even though un-
correlated with the initial accuracy, leads to faster conver-
gence.

Using our observations, we draw the following conclu-
sions:

1. There exists a thick, hollow, spherical shell of unusually
high local convexity/prevalence of positive curvature we
refer to as the Goldilocks zone (see Figure 1 for an illus-
tration, and Figures 3 and 4 for experimental data).

2. Its existence comes about due to an interplay between
the behavior of Tr(H) and ||H||, which we discuss in
Section 2, and verify empirically (see Figures 5a and 5b).

3. When optimizing on a random, low-dimensional hyper-
surface of dimensionality d, the overlap between the
Goldilocks zone and the hypersurface is the main predic-
tor of final accuracy reached, as demonstrated in Figure 2.

4. As a consequence, we show that the concept of intrinsic
dimension of a task introduced in (Li et al. 2018) is nec-
essarily radius-dependent, and therefore initialization-
dependent. Our results extend the results in (Li et al.
2018) to r 6= rXavier and to hyperspherical surfaces.

5. The small variance between final accuracy reached by op-
timization constrained to random, low-dimensional hy-
perplanes is related to the hyperplanes being a) normal
to r̂, b) well within the Goldilocks zone, and c) the
Goldilocks zone being angularly very isotropic.
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Figure 6: Correlation between properties of Hessians at ran-
dom initial points and the speed of optimization. Accuracies
reached at a given epoch for random initial points with dif-
ferent Hessian properties are shown. The best fit line is plot-
ted for each time and its slope is presented. The higher the
trace of Hessian or the number of its positive eigenvalues
(∝ convexity), the faster the optimization. Due to the strong
correlation between these three properties in the Goldilocks
zone illustrated in panel d), sampling a number of initial-
izations and choosing the lowest initialization loss, although
unrelated to the initial accuracy, leads to faster convergence.

6. Hints that using a good initialization scheme and select-
ing for high measures of local convexity such as the num-
ber of positive Hessian eigenvalues, Trace(H)/||H||, or
low initial validation loss (they are all correlated (see Fig-
ure 6d) in the Goldilocks zone), leads to faster conver-
gence (see Figure 6).

7. Common initialization schemes (such as Xavier (Glorot
and Bengio 2010) and He (He et al. 2015)), initialize neu-
ral networks well within the Goldilocks zone, consistently
matching the radius at which measures of convexity peak.

Since measures of local convexity/prevalence of positive
curvature peak in the Goldilocks zone, the intersection with
the zone predicts optimization success in challenging con-
ditions (constrained to a (d ≪ D)-hypersurface), common
initialization techniques initialize there, and points from
r < rGoldilocks are drawn there, we hypothesize that the
Goldilocks zone contains an exceptionally high density of
suitable initialization points as well as final points.

4 Conclusion

We explore the loss landscape of fully-connected and con-
volutional neural networks using random, low-dimensional
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hyperplanes and hyperspheres. We observe an unusual be-
havior of the second derivatives of the loss function – an
excess of local convexity – localized in a range of configu-
ration space radii we call the Goldilocks zone. We observe
this effect strongly for a range of fully-connected architec-
tures with ReLU and tanh non-linearities on MNIST and
CIFAR-10, and a similar effect for convolutional neural net-
works. We show that when optimizing on low-dimensional
surfaces, the main predictor of success is the overlap be-
tween the said surface and the Goldilocks zone. We demon-
strate connections to common initialization schemes, and
show hints that local convexity of an initialization is pre-
dictive of training speed. We extend the analysis in (Li et
al. 2018) and show that the concept of intrinsic dimension
is initialization-dependent. Based on our experiments, we
conjecture that the Goldilocks zone contains high density of
suitable initialization points as well as final points. We offer
theoretical justifications for many of our observations.
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