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I
The Goodness of Match

I. Introduction

Statistical matching has received increasing popularity in the last

five years as a method of creating synthetic microdata sets. Benjamin

Okner merged the 1966 Internal Revenue Service (IRS) Tax File with the

1967 Survey of Economic Opportunity (SEO) by first dividing the two

files into broad "equivalence classes" and employing a distance func-

tion to choose the best record to match (Okner, 1972). Edward Budd and

Daniel Radner matched the Current Population Survey File with the

IRS Tax File by ranking records in each file by income level and

linking similarly ranked observations (Budd, 1971). Richard Rockwell

combined the 1970 Public Use Sample (PUS) with the SEO file by dividing

each sample into equivalence classes on the basis of five common

variables. Horst Alter linked the 1970 Canadian Survey of Consumer

Finances with the 1970 Family Expenditure Survey by using multiple

regression analysis to minimize the "distance" between matched observations

(Alter, 1974). Currently, Nancy and Richard Ruggles are undertaking

a match of the 1970 PUS with the 1960 PUS, the 1969 IRS Tax File, and

the Social Security's Longitudinal Employer-Employee Data File by creating

matching classes on the basis of interval analysis ard combining records

on a stochastic basis within these intervals (Ruggles, 1974).
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Though the statistical techniques vary, the matching problem is

essentially the same in each case and can be stated formally, as

Christopher Sims does, as follows: Given "observations on X,Y from

one sample and on X,Z from another sample, when will it be true that

by matching observations according to X, an artificial Y,Z sample will

result whose distribution is the true joint Y,Z distribution?" (Sims,

1972, p. 355). Though the imputed Y,Z distribution will, in gerneral,

be different from the true Y,Z distribution,1 the closeness of the two

yields a natural criterion of the goodness of match.

By making certain simplifying assumptions, we can make this criterion

operational. First, it can be assumed that the closeness of the corre-

lation coefficient between Y and its imputed Z value to the true corre-

lation coefficient between Y and Z reflects the closeness of the two

joint distributions.2 Though the true correlation between Y and Z is,

in general, unknown, we can determine a lower and upper bound on the

true correlation as a function of the matching variables and use the

range as a measure of the goodness of match. In order to do this, we

must, secondly, assume that for each observation in the first file there

exists an observation in the second file with exactly the same X values,

and conversely.3

1The two distributions will be exactly the same in the special case, which
Sims mentions, when X,Y and Z are mutually independent, and in the special
case when Y is a linear transformation of X and Z a linear transformation of X.

2The covariance between Y and Z, it should be recognized, is only one
moment of their joint distribution. Moreover, it is implicitly assumed
that Y, Z, and X are continuous variables. Furthermore, we shall ignore
the problem of sample estimation of the correlation coefficients and the
discrepancies between sample estimates and populatior values. In a sense,
we shall treat the sample as the full population.

31n practice, the major problem arising from matching two files is that
there rarely is an observation in the second file with the same X values
as a given observation in the first file, and conversely.
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The goodness of match depends on how much of the relation between

Y aid Z is transmitted through X--that is, on how X "mediates" between

Y and Z-- and we will therefore call X the mediating variables and Y

and Z the mediated variables.4 Since the functional form the lower

and upper bounds on the true correlation between Y and Z takes depends

on the number of X variables, we shall treat the problem in three stages:

(a) The case of one mediating variable. (b) The case of two mediating

variables. Cc) The case of n mediating variables.

41n principle there may be more than one Y or Z variable. Without
loss of generality we can assume that there is only one of each, since
the correlation of each pair Yj, Zj can be treated independently of
the other pairs.
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II. The Case of One Mediating Variable

Let X, Y, and Z be random variables with zero mean and unit

variance. Let

= cor(Y,Z)
q = cor(X,Y)
r = cor(X,Z)

Then,

= E(YZ)-E(Y)E(Z) = E(YZ)
ayaZ

Likewise,

q = E(XY)
= E(XZ)

Moreover,

E(X(Y-qX)) = E(XY) - qE(X2)
= q-q=0

Likewise,

E(X(Z-rX)) = 0

And:

E(Y-qX)2 = E(Y2) - 2qE(XY) + q2E(X2)
= -

E(Z-rX)2 = 1 - r2

5This is not a restrictive assumption. Suppose Y' has mean and variance
and Z' has mean p, and variance a2 Then Y = '' Y' and Z = - z'

,
cYy,

and each has zero mean and unit variance,
and cor(YZ') = E(Y' IJyt) (V - = E(YZ) = cor (Y,Z)
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Theorem 1: qr + 'Jj5Rj_r > p > qr - 1j5l_2)
Proof: Noting that Y = qX + (Y-qX) and Z = rX + (Z-rX),

p = E(YZ) = E[qX+(Y-qx)][rx+(z-rx)]

p = E[rqX2+rX(Y-qX) + qX(Z-rX) + (Y-qX) (Z-rX)]

p = rq +[E(Y-qx)(Z-rx)]

(p-rq)2 = [E(Y-qX)(Z-rX)J2

From Schwartz' inequality,

(p-rq)2 < E(Y-qX)2E(Z-rX)2

Therefore,

(p-rq)2 < (l-q2)(l-r2) Q.E.D.

Lower and upper bounds are shown for selected values of q and r in

Table 1. The lower bound is symmetrical in q and r. Denoting the lower

bound by L1

aL1 ____= r+qj2
Therefore, when q and r have the same sign, the lower bound increases

as either I or ri increases. When q and r are non-negative, the

lower bound is less than or equal to q and r, and equals q when r equals

1, and conversely. The upper bound behaves obversely to the lower bound.

Denoting the upper bound by U1

= rqJir
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Table 1

Lower and Upper Bounds for the Case of One Mediating Variable

A. Lower Bounds:

q\ .60 .70 .80 .90 .95 1.00

.60 -.280 -.151 .000 .191 .320 .600

.70 -.151 -.020 .132 .319 .442 .700

.80 .000 .132 .280 .458 .573 .800

.90 .191 .319 .458 .620 .719 .900

.95 .320 .442 .573 .719 .805 .950

1.00 .600 .700 .800 .900 .950 1.000

B. Upper Bounds:

q\r .60 .70 .80 .90 .95 1.00

.60 1.000 .991 .960 .889 .820 .600

.70 .991 1.000 .988 .941 .888 .700

.80 .960 .988 1.000 .982 .947 .800

.90 .889 .941 .982 1.000 .991 .900

.95 .820 .888 .947 .991 1.000 .950

1.00 .600 .700 .800 .900 .950 1.000
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When q and r have different signs, the upper bound decreases as

either I or ri increases. When q equals 1, the upper bound is

the same as the lower bound, r, and conversely when r equals 1.

When q and r have the same sign, the upper bound reaches its inaxi-

mum value of 1 when q equals r,6 and decreases as q deviates from r,

given r. Conversely, when q and r have different signs, the lower

bound reaches its minimum when q equals -r, and increases as iI

deviates from in, given r.

The upper and lower bounds give the range of values the true

correlation coefficient between Y and Z may have. The size of the

range is the difference between the two bounds and equals 2

Thus, the larger q and r, the smaller the range and the greater the

certainty that the imputed correlation between Y and Z is close to

the true one.

In the special case where q = r = p, the bounds take the following

form:

Lemma 1: 1 > p > 2p2 - 1

When equals 1, p equals l. Since the lower bound is quadratic in P

the range quickly widens as i deviates from 1 (See Figure 1).

6This can be shown by setting V1/q to zero and noting that the second
derivative is negative.

7Ii this case, both Y and Z are linear functions of X, say Y = aX+b
and Z = eX + d. Therefore,

Z = (..)Y÷ (d-.)
a a

and Z is a linear function of Y.
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Figure 1: Lower and Upper Bounds when q = r

At p = .9, L1 = .62; at p = .8, L1 = .28; and at p = .7, L = -.02.

When pJ falls below .707, it cannot be ascertained whether p is posi-

tive or negative.
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III. The Case of Two Mediating Variables

The same technique can be applied in the case of two intervening

variables X1 and X2 as in the case of one to determine the upper and

lower bounds on p. Let

q1 = cor(X1,Y)

q2 = cor(X2,Y)

r1 = cor(X1,Z)
=

cor(X2,Z)

s = cor(X1,X2)

Then:

4p = E[q1X1 + (Y-q1x1) + q2X2 + (Y-q2X2)][r1x1 + (Z-r1X1)

+ r2X2 + (Z-r2X2)]

4p -
(3q1r1 +

3q2r2- s(q1r2 + q2r1)) =

E(Y-q1X1)(Z-r1x1) + E(Y-q1X1)(Z-r2x2)

+
E(Y-q2X2) (Z-r1X1) + E(Y -

q2X2)(Z
-

r2X2)

Squaring both sides, collecting terms, using Schwarz1 inequality, completing

the square, and transposing terms yields:

[p + ¼(s(q1r2 + q2r1)
-

3(q1r1 + q2r2fl2 <

(l-q) (l-r) + (l-q) (l-r) + (l-q) (l-r) + (l-q) (l-r)
-(3qr + 3qr -

2q1q2r1r2)s2/16
2 2 2 2+

q2i1r2 +
r1q1q2

+
r2q1q2)s/8

-(3q2r2 + 3q2r2 - 2qqrr)/l6
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To simplify for purposes of analysis,, consider the case where

q1=q2=q and r1=r2=r. Then

Theorem 2: (3-s) +
T2

> qr(3-s) -
T2

where T2 =

Lower bounds are shown for selected values of q, r and S in
Table u.8 It is evident from the table that the lower bound increases

as q and r increase, when q and r are positive. This can be shown

formally as follows:

r(3-s) q((l-r2) + r2(l.s)2/4= +

T2

where L2 is the lower bound in the case of two X variables. Both terms

are positive when q and r are positive and

negative when q and r are negative. Since the lower bound is symmetrical

in q and r, the lower bound increases
as qJ or In increases, when q and r

have the same signs. When q and r are of opposite signs, the sign of

3L2/aq and aL2/r depends on the values of q, r, and s. The obverse

holds for the upper bound,
02:

8lmpermissab].e combinations of q,r, and s are indicated by an asterisk
in Table II. They occur when the term in the radical is negative, and
this arises when Lemma 1 is violated. This is a necessary (though not
sufficient) condition, as can be shown by proving the converse. Let:

p = max(IqJ,r)
(l-q2) (]._r2) > (1-p2)2

Since q2 < 1 and r2 < 1,

(l-q2) (1-n2) > (qr)2(]._p2)2
From Lemma 1,

s > 2p2-l
< (5+1)12—

( Footnote 8 continued)
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all2 = r(3-s) - q((l—r2) + r2(1-s2)/4)
aq 2

T2

If q and r have different signs, the upper bound decreases as ii or

I r increases. When q and r have the same signs, the direction of

movement depends on the values of q, r, and s.

As is also evident from Table II, the lower bound decreases as 5

increases, when q and r are positive.9 Formally:

= - (l-s)q2r2
as 2

4T2

3U- 22
= + (1-s)q r

as 2
4T2

Since s < 1, aL2/as is always negative when q and r have the same sign,

and the lower bound increases as s decreases. When q and r have dif-

ferent signs, the sign of aL2/as depends on the values of q, r and s.

The obverse holds for the upper bound.

The upper bound can exceed 1 in certain cases when q

the same sign and the lower bound can fall short of -l in

when q and r have different signs. Therefore, the range

R < 2 (lq2)(i-r2)_[qr(l.s)]2/4. The upper bound on the range

therefore decreases as II or ri increases and as s decreases.

8 (continued)
2 2 2ls2(l-q )(1-r ) (qr) =

Therefore, if Lemma 1 is satisfied, the terni in

91n the limiting case, when s equals 1:

qr > qr - [TiRii)
When X2 is a linear transformation of X1 , the bou;ids degenerate into the
limits in the case of one mediating variable.

and r have

certain cases

p

f!. (1—s) ]2

the radical will be non-negative.
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IV. The Case of n Mediating Variables

Let:

ri l2 •'•
sin1

1

L
... 1

where X =
(Xi
I'

\ x

A1 = Y -
q1X1

B. = Z - r.X.
1 11

To simplify the analysis of the results, we shall assume
q1

. • = q

and r1 =.. • = r = r, though the problem is solvable in its present form.

Thus:

n2p = E[qX1+A1+. . .+qX+A] [rX1+B1+. ..÷rX+B]
=

E[q(X1+...+X) + (A1+...+A)]{r(X1+...+X) +

= qr E E(X1X) + q E E(x.B.)+ r E E E(X1A.) + E E(A.B.)
13 13 13 13

p
E E(XX) = C + n, where C = Z

s1j

E(X1B) = r(i-s.)
E(XAJ) = q(l-s1)

q1

S

S

= cor(X1,Y)
= cor(X1,Z)
= cor(X1X)
= cov(XX') =
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p - (2n2 - C -n)qr = E(A1B)

Squaring both sides, using Schwarz' inequality, noting that:

E(A1B) = p - qr for

E(A1B) = p - 2qr + Srs for

and that the

manner:

4
Right Hand Side has n terms distributed in the following

= Z sj , we obtain:

where T = (1-q2) (i-r2)+q2r2 4C2+ 4n2C + (4n-6n2)D + (2n3-2n4)

(3n2-2n)2

As in the case of one and two
mediating variables, the upper and lower

bounds have obverse properties. In this section, we shall concern

ourselves only with the lower bound, which is shown for selected values

i =3

ij

number

2n

- n

- n

2n(n -n)

2 2 2(n -n) - 2(n -n)

2

E(AB)

E(AB) ij

type

E(AB1)

E(A1B)

E (A1B)

F(AB1)

E
(A1B)

E(AB)

E(ABk)

E(AkBt)

and letting D

Theorem 3:

ij

j k

ij,
and ik or j

5n2-4n-2C 5n2-4n-2C
2 qr+T > qr-T

3n -2n —
3n2-2n
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of q, r and s in Table III. The lower bound increases as
q increases,

and this can be proved as follows:

fl
= 5n2-4n-2C

r + [(1-r2) - r2(4C2+4n2C+(4n_6n2)D + 2(n3-n4))]q
3n2-2n n

(a) First term: 3n2-2n is positive for n > 0.

Since C is the swn of the off-diagonal terms of the correlation matrix S,

C < n2-n and 5n2-4n-2C > 3n2-2n > 0. Therefore, the coefficient of

r is positive.

(b) Second term: r2 < 1 and r2 > 0. Therefore, the second term is

non-negative if:

t = 4C2 + 4n2C + (4n-6n2)D + 2(n3-n4) < 0

To maximize t, it is necessary to maximize C, given D, since all the

coefficients of C are positive. Therefore, using Lagrangean multipliers,

it is desired to:

Maximize C = sjj , subject to Sj = D
13

(Es1. - A(Es. - D)) = 0
s

Therefore,

sij = V ij

Let s=sj . Thus,

(n2-n)s2 = D

=

And C is maximized at C = , given D.
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Hence,

t < 4(n-n)D + 4n2 Jn2nD + (4n-6n2)D + (2n3-2n4)

t < 2n2[2)D - D - (n2-n)] = 2n2t'

where t' equals the expression in the brackets. To maximize t', subject

to D, set:

!:!= - = 0

Noting that:

- 1 ____ <
aD2 2JD3 —

t' is maximized at D = n2-n, at which value t' equals zero. Therefore

t < 0, and aLn/aq is positive when q and r are positive and negative

when q and r are negative. Hence, L increases as II or ri increases,

when q and r have the same sign.

From Table III, it is also evident that the lower bound decreases

as s increases)0 This can be shown formally, as follows:

= -2qr - qr2 4C + 2n2 + (2n-3n2)aD/aC
3n2-2n (3n2-2n)2 T

The first term is negative when q and r have the same sign. Moreover,

q2r2/(3n2_2n)2 is non-negative. To standardize the result, we assume

D is constant, and therefore 9D/C is zero. For n=l, C is zero and
2n2 > 0. For n>1, we note that S is a covariance matrix and there-

fore positive definite. Hence, C + n > 0, and 4C + 2n2 > 2n2-4n > 0.

Given a fixed D, the lower bound increases as C decreases, when q and r

have the same sign.

'0In the limiting case, when = 1 V i,j , the bounds take the form
of the one mediating variable case.
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It is also apparent from Table III that the lower bound increases

as n increases. This can be proved for the special case when

= s V ij. In this case, C = (n2-n)s, D (n2-n)s2 , and:

L = -2s)n-(4-2s) qr - [iq2)(1r2)r2(1)2(n2)(3n-2)2

Therefore:

= 2-2s qr - q2r2(1-s)2(n-2)I'
(3n_2)2 (3n-2) (1-q

(3n-2)2

= (l-s) [ 2 - (1-s)gr(n-2)
(3n2)2 [Riq2)(1r2) (3n2)2 - 2q2r2(1s)2(n2n)

qr(1-s)/(3n-2)2 is non-negative when q and r have the same sign. Therefore,

for n=1,

= qr[2+_______ ] > 0
[j2) (1-r2)

—

and for n=2,

= 2gr(1-s)
0(3n-2)2 —

For n > 3, we note that, from Lemma 1, s > 2q2-1 and s > 2r2-l. Hence,

q2 < (s+1)/2, r2 < (s+1)/2 and

> r(l-s) [i - (n-2) __________—
(3n-2)2 J3T22 n2_3

The expression in the brackets is at a minimum wh q = r = 1. Therefore,
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3L
> 9'(1S) [1 - n-2 ——

(3n-2) 2
—

The lower bound thus increases as n increases, given s, when q and r

have the same sign.

In the limit, as n approaches infinity:

Lim = 5-2s
qr -

jr (l-q2)(1-r2)
- 2(l-s)2q2r2

Limiting cases are shown in Table III.

The range R < 2T , since U may exceed 1 and L may fall below -1.

From the arguments presented above, given their special assumptions,

it is apparent that Tn decreases as qJ increases, ri increases,

C decreases, or n increases.

p
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V. Conclusion

The theoretical discussion presented in this paper provides a

guide for the construction of a viable match:

(i) In the case of one mediating variable it was shown that

the range of the correlation coefficient between the mediated variables

decreases sharply as either q or r approaches one. (In the case where

q or r equals one, p is determined with certainty.) Moreover, the range

of p in the case of n mediating variables can be no greater than the

range in the case of one variable. Therefore, X variables should

be chosen that are highly correlated with either the Y or Z variable.

(ii) The upper bound on the range of p declines as the sum of

the correlation coefficients between the X variables declines. From

Tables II and III it is evident that the lower bound on p is very

sensitive to the value of the s parameter. Therefore considerable

gain in the accuracy of the match can be achieved by choosing X

variables that are uncorrelated or even negatively correlated.

(iii) The upper bound on the range of p also declines, given

certain strong assumptions, as the number of X variables increases.

Table III shows that there is a large gain from increasing the number

of mediating variables from 1 to 5 but minimal gain from increasing

it beyond 5. Therefore, at least five X variables should be chosen

in engineering a match.
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