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ABSTRACT 

Images contain a great deal of information which requires large processing capa- 

bilities. For that purpose fast image processors have been developed. So far 

they have mainly dealt with processing of binary images obtained by threshoiding 

gray scale images. For segmentation of images having more subtle features such 

as noisy lines or edges, texture, color, etc. more elaborate procedures have to 

be used. 

A new type of image processor, GOP (General Operator Processor), has been deve- 

loped. It can work on gray scale or color images of any size, where it uses a 

combination of local and global processing which makes it possible to detect 

faint lines or edges. It also produces texture descriptions which can be inte- 

grated in the processing to enable segmentation based upon textural features. 

The processor can be used for classification and segmentation using simulta- 

neously up to 16 different transforms or representations of an image. Feedback 

controlled processing and relaxation operations can also be implemented with 

the processor. 

The GOP processor can be connected to any system for picture processing where 

it speeds up the processing by a factor of 200-1000, dependent upon the situa- 

tion. Processing of a 512x512 image with a 3x3 operator takes approximately 

0,5 seconds in the processor. 

INTRODUCTION 

Grayscale and color images with a reasonable resolution contain great amounts 

of information. Analysis of such images takes excessively long time and requi- 

res large processing capabilities. For that reason fast special purpose image 

processors have been developed [I-10]. Most of these processors are oriented 

towards use of logical operations on binary images. 

A common procedure is to use thresholding on an image to create a binary image 

where objects can be separated and described using topological transformations. 

Generation of a reduced representation of an image, e.g. a binary image, gives 

a large compression of the amount of information, but it also gives a great 

loss of information. For that reason the method can be utilized in a very 

limited number of situations. 

In fact, most situations where we would like to employ image analysis involve 

images with characteristics given by subtle variations in gray scale or color. 

We may havedifferent regions described by various textures, and it is often 

required to detect the borders of such texture regions. 

The GOP processor has been designed to perform computations within the General 

Operator framework. However, the processor is by no means limited to this class 

of operations, but it can perform most arithmetical and logical operations 

suggested in an efficient way. In order to give some background to the choice 

of architecture we will review some aspects of the General Operator concept. 

THE GENERAL OPERATOR CONCEPT 

If we are working with gray scale or color images and we want a quantitative 

description of image information, there is a problem of how to represent image 

information and to determine what operations should be performed on an image. 
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In this context we have made two fundamental assumptions concerning representa- 

tion of image information. 

I. Image information can be described as locally 

one-dimensional structures. 

2. Information about orientation of structures is 

extremely important, and it has to be integrated 

in processing. 

These assumptions have important consequences for the definition of operations 

on image information. We will not go into a discussion of the relevance o$ 

these assumptions as they are outside the scope of this paper. These matters 

have been discussed in more detail earlier [11-13]. Briefly it can be said that 

these assumptions have proved valid and useful for defining image operations. 

The preceding assumptions have provided the basis for definition of a particular 

operator described earlier [3]. The effect of the operator is to generate a 

transformed image of a given input image. 

The given input image is generally considered to be complex valued, that is, 

every picture point is represented with two numbers. We can represent an ordi- 

nary black and white scalar image by using only one of the numbers in the com- 

plex value; setting the other one to zero. We can represent images with more 

than two components using a set of complex images. 

An operator field of a certain size, say 5x5 elements, scans the input image 

step by step. For each position of the operator field a complex value is compu- 

ted for the corresponding position in the transform image or output image. See 

Figure I. 

Figure 

Illustration of the basic function of the operator. (a) original image; (b) 

contribution from window to transformed image. 

The complex value computed for a local region has two components: 

I. A magnitude reflecting the amount of variation within the window, 

e.g. step size of an edge. 

2. An angle determined by the orientation in which we find the largest 

magnitude component according to I. 

In the computation of the amount of variation within the image region, the 

image content is matched with a combination of edge and line detectors for a 

number of different orientations, e.g. eight. 
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Figure 2 

Simplified structure of output vector computation 

Every combination of edge and line detector gives a part±cular output for a par- 

ticular local region of the image. The outputs for all eight orientations are 

now compared and the largest output is taken to represent the neighborhood. See 

Figure 2. A vector is determined by the orientation of the operator set giving 

the largest output. 

If we were to just take the direction of maximum variation we might obtain a re- 

sult like in Figure 3. 

Q b 

Figure 3 

A stylized image (a) with its transform (b) 
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Such a definition of orientation of structure and direction of vector would 

give rise to a number of ambiguities and problems: 

I. Orientation of a line or a boundary is not uniquely defined. 

2. Such a definition produces a vector that uses only 180 ° of the angular 

spectrum. 

3. Structures maximally different in terms of orientation do not give oppo- 

sing vectors, something that we would appreciate intuitively. 

The reason for this ambiguity is the fact that orientation of a border or of a 

line is not uniquely defined. 

These problems can be resolved by rescaling with a factor of two the relation- 

ship between vector direction and orientation of dominant structure. See Figure 
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Figure 4 

Relationship between orientation of structure, line and edge mask giving maxi- 

mum output, and direction of produced output vector 
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We can see that in this case perpendicular orientations of the structures, e.g. 

lines, give vectors that are opposing. If we use this convention for orientation 

the output from a transformation of a disc will appear as in Figure 5. 

Q Figure 5 

Image of disc (a) with its transform (b) 

The preceding is an intuitive description of the function of the operator. More 

specifically, the operator computation goes as follows: See Figure 6. 

REAl. PART IMAGI~/A~y PARr 

/ 
OPERA TO~ 

Figure 6 

Illustration of computation of edge and line content in one direction. 

We have seen earlier that the transform image is complex. As the operator is 

intended to work hierarchically on previous transform products, this means that 

the input to the operator generally is a complex valued image. 

Let us denote the n picture points of the real part image within the window at 

some position (~) 

x k k = I, .... ,n 

and corresponding points of the imaginary part 

Zk k = I, .... ,n 
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Let us denote the weights of the n points of mask number i 

e 

Wik k = I, .... ,n 

ik ~ = I ..... ,m 

where m is typically 8, as we have edge and line masks for each one of 8 direc- 

tions. Edge and llne masks are designated by e and I respectively. In this case 

w e and ~i can be positive as well as negative. 
ik k 

A multiplication with the mask and a summation is performed for each one of the 

windows which gives 4 product sums 

e ye w e 
X~ = ~ Wik x k = Z ik Yk k = I, .... ,n 

k l k 

l k k ik .... 

As indicated in [11] these sums bear astrong resemblance to Fourier expansion 

sums. Using this as an argument, we can define the amplitude content in direc- 

tion i 

+ ye)2 + (q4 Y@)fl i = I ...... 8 zi: (qlX  )2 +(q3x  )2 (q2 i- 

The parameters ql to q4 can normally be considered as having value one. 

By selecting other values, however, it is possible to emphasize the edge opera- 

tor to the line operator or to emphasize one image component to the other one. 

The preceding discussion refers to the case of one complex input image. Often, 

however, we can have an input to the operator consisting of several complex 

images. 

This may be the case when we have as input a three color image plus a complex 

transform image, if we denote the magnitude component Z i from image s by Zis we 

obtain the magnitude from all image components 

Z i =~--~ s = I, 2,...Sma z 
s is 

In relation to the simplified discussion with regard to Figure 2 we perform a 

comparison to find the maximum value Zma x of Z i 

Zma x = max (Zi) = max(Zi,....,Z 8) 

i=I,....,8 

We now define an output vector Z where Z = Zmax'ej(im-1)~ aad i m is the di- 

rection corresponding to the one giving maximum output. 

This gives a relationship between orientation of structure, line and edge mask 

giving maximum output, and direction of produced output vector, according to 

Figure 4. The design of operator weights for this purpose is described else- 
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where [15,16]. 

An important property of the operator is that it can be used repeatedly upon 

earlier transform products to detect structure and to simplify the image. This 

property of the operator can be used to describe texture, and to discriminate 

between textures []4]. Two steps of transformation of a stylized image appear in 

Figure 7. 

liiiiiii!l . . . . . . . . .  

o b c 

Figure 7 

Result of two transformations. (a) Original image; (b) First order transforma- 

tion; (c) Second order transformation. 

The hypothetical example conveys the idea that the structural content in the 

original image is transformed into a slowly varying field. A second transform 

gives the boundary between the two fields. An interpretation in image analysis 

terms is the following: 

a) 

b) 

c) 

Original image with two different texture regions. 

First transform giving a description of the textures in terms of 

variation content and orientation. 

Second transform giving the border between the textures. 

A more realistic example is given in Figure 8. In the texture image of skin 

from unborn calf from Brodatz book on textures [17], a patch of the skin to the 

left has been turned 90 °. Between the first and second transformations, an an- 

gular average of the first transform has been computed. 

It is unfortunate that this and the following photographic illustrations can not 

be printed in color as the vector fields were originally displayed on a color 

TV monitor with the luminance controlled by the magnitude and tNe color by the 

angle of the vector. Some of the information in the original displays is conse- 

quently lost in the black and white reproductions. 

it is apparent that the procedure gives a very good delineation of the border 

between the two texture regions. It should be pointed out that the difference 

in average density over the border has not been used for discrimination, al- 

though this is the discrimination feature that is most apparent to the eye in 

certain parts of the border. 

The operator gives a description of the texture in terms of something like varia- 

tion content and orientation. As we will see in the next section there is no 

need to tune the frequency characteristic of the operator to that of the pattem 

as a set of operators with different frequency characteristics is used, and in- 

formation will be picked up by one operator or another. 

An important aspect is that we after the first transformation obtain a slowly 

varying field which does not contain the high frequency components existing in 

the texture but only a description of the structural properties of the texture 

and how these properties vary. 
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C Figure 8 £/ 

Processing of calf skin. (a) Original image; (b) First order transform; (c) An- 

gular average of first order transform; (d) Second order transform of angular 

average. 

An important property of the operator is its ability to detect structure as 

opposed to uniformity, whatever structure and uniformity may imply at a certain 

level. 

This relates to the function of the operator to describe variations in the 

image. These variations may relate to edges, lines, texture or some other fea- 

ture. Edges and lines will retain their identity as local events, while a more 

global event like texture will assume the description as a slowly varying fiel~ 

A second order transform will now try to detect variations in the variations dis- 

played in the first order transform. 

It has been shown earlier that it is possible to extract most of the informa- 

tion in a picture by analyzing the content in local regions of varying size, 

[I]]. We have also seen some of the effects of sequences of transformations, 

each with a certain window size giving the information within a limited fre- 

quency band. The question now arises: What type of structure can combine these 

two effects in a useful way? 
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It has been found useful that the windows become increasingly wider on higher 

transformation levels. One effect of the transform is that it gives a simpli- 

fication of the pattern. In order to contain the same average amount of infor- 

mation the window must become wider at higher levels of transformation. After 

every transformation only higher level features remain, and these features 

have to be related to other features on the same level. Thus the width of the 

operator field or the window must be increased. 

The organization suggested for a system combining several levels of transfor- 

m~ions is indicted in Figure 9. At the bottom left is the first-order trans- 

fo~ation covering the hi~est frequency b~d around r I and consequ~tly having 

the smallest window size. The window size and thus the s~pling frequency are 

indicated by a grid pattern on this and other picture functions. The transfor- 

mation gives as a result the complex function frl(l ) (x,y). In accordance with 

the earlier discussion, this transformed picture function has a lower feat~e 

density ~d ought to be sampled at a l~er density and within a lower frequency 

band. This is indicted by the grid pattern of l~er density for frl(Z) (x,y). 

/4__  ~/_ / 

_- : j /  ;. ..... -7/ 

Figure 9 

l hierarchical structure of transformations. 

~ ve! 

I 

Cen/er Frefw~,v(y 

According to the earlier discussion we should proceed with another transfor- 

mation of fr (1)(x,y). It has been found, however, that a better result is 

obtained if ~we threshold the function and take the log function of it. This 

procedure removes low-level noise and gives a compression of the range of va- 

lues of frl(i)(x,y) emphasizing the middle amplitude range. It may be interes- 

ting to observe that this amplitude characteristic is similar to certain sti- 

mulation-response characteristics of the visual system. 

In order for us to obtain information within lower-frequency ranges, the origi- 

nal picture has to be processed using wider windows and a lower center frequen- 

cy r2<rl. From Figure 9 it is apparent that the transformed and rescaled pic- 

ture is combined w~th the original picture to form a picture function drz(1)(x,y) 

which is transformed further. The combination operator is denoted ~ and 
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could in general be addition, multiplication, or something else. In our experi- 

ments it has been found that a form of addition gives appealing results. 

As we deal with a logarithmic representation of the transform, an addition of 

transforms will imply multiplication of the pictures. It might be argued that we 

do not perform any logarithmic rescaling on the original image; however, many 

media for picture input, such as photographic film, do in fact exhibit logarith- 

mic characteristics. 

As the next transformation is done around a lower center frequency, r2, only a 

band around that frequency will be taken from the original image. This is indi- 

cated by the lower resolution grid imposed upon the original picture function 

for that frequency. 

a 

c d 

Figure 10 

Processing of fingerprint. (a) Original image; (b) First order transform; (c) 

Angular average of first transform; (d) Second order transform of angular aver- 

age. 
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The combined picture function dr1(l~(x,y) is now transformed into a function 

fr (2)(x,y), which is rescaled logarithmically and thresholded and combined with 

th~ original picture giving a picture function dr2(2)(x,y) , and so on for each 

level analogously to the previous discussion. 

The number of transformation levels to use is still an open question, and will 

have to be determined after further experiments have been performed. 

An example of description of structure is given in Figure 10. In a fingerprint 

pattern we have regular as well as irregular features. 

We can see how structural irregularities appear in the second order transform 

indicating the principal points of the fingerprint. It should be noted that 

these features are not indicated by any differences in density, only in struc- 
ture. 

c 

Figure I] 

Processing of bolts. (a) Original image; (b) First order transform using high 

frequency operator; (c) First order transform using medium frequency operator; 

(d) Combination of the preceding two first order transforms 
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There are a number of ways in which structures can be discriminated between, 

using different combinations of transforms. In Figure 11 we have an example 

where the use of two first order transforms with different frequency characte- 

ristics makes it possible to discriminate between thread and cylinder of a bolt. 

Again, the limitation to gray scale in the images makes them less informative. 

We can see that different transforms extract different structural properties. 

This ability of the structure to employ information from operators of different 

sizes is extremely important. One oi' the attractive features is the reduction of 

noise that can be obtained in a way similar to the function of the operator 

described by Rosenfeld [18]. Let us consider a "one-dimensional" image as in 

Figure 12. 

b 

.............. C 

Figure 12 

Combination of transform products in a one-dimensional image. (a) Noisy edge in 

image; (b) First order transform, small operator; (c) First order transform, 

larger operator; (d) Product between transforms 

o b 

Figure 13 
Transformations of a hypothetical noisy edge. (a) First order transform giving 

edge candidates; (b) Second order transform combining edge candidates having 

consistent orientations. 
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The idea conveyed in this figure is that a small operator gives a noisy output 

well defined in position, while a large operator gives an output with less noise 

but also less well defined position. A combination of both outputs suppresses 

noise but preserves position of edge. This combination of operator products is 

obtained implicitly in the structure given in Figure 9. 

Operations on angular information are even more important and efficient than 

those on the magnitude in filtering operations, because we can detect consisten- 

cy in directionality which is the feature that distinguishes it from noise. Fi- 

gure 13 illustrates the transforms of a hypothetical noisy edge. 

The operator automatically takes the orientation of edge elements into account, 

which makes it possible to suppress the noise efficiently and to get a good de- 

finition of the boundary line. If we use feedback processing, as will be dis- 

cussed later~ we can obtain an even more precise definition of the boundary. 

THE G0P IMAGE PROCESSOR 

The G0P (General Operator Processor) image processor implements in hardware the 

operations described earlier, as well as most other operations suggested for 

image processing. The processor can be attached to a standard computer system 

used for image processing. A typical configuration is the one given in Figure 

14 [ 1 9 - 2 0 ] .  

Ill i Com~ud~ l Terrn, ino/ I 

Compv/er I 
I 

1 

i Gop 

I Proce55or 

I i,.n£,ae 
Dtsfi/£9' 

Figure 14 

Typical configuration of image processing system using the G0P image processor. 

The GOP processor speeds up the processing by a factor of 200-1000 dependent 

upon the situation. The processor is designed to provide maximum speed with 

maximum flexibility in a cost-effective manner. This is achieved by having the 

processor divided into two parts where processing speed and flex/bility are in- 

terchanged. Processing of a 512x512 image with a 3x3 operator takes approximate- 

ly 0.5 seconds in the processor. 

The processor cummunicates with the rest of the system on the DMA channel. This 

normally gives a good balance between transfer speed on the DMA channel and the 

speed of the processor, as every picture point in general is used several times. 

The operations that we have found to be of primary interest in image processing 

and analysis are of type: 

I 

II 
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where f is the output element computed from a neighborhood containing image ele- 

ments xij. 

This very general form includes operations of arithmetical as well as logical 

type. The output is partly a function of a number of product sums which may be 

convolutions between mask functions and neighborhoods of the image. The computa- 

tions of these product sums are generally very time-consuming as they contain a 

great number of products for each sum. However, the computation is very straigh~ 

forward and needs very little flexibility. 

The output is also a function of a number of parameters ~,~,y .... These parame- 

ters enable a high degree of non-linearity in the procedure. The parameters are 

typically functions of pictures or picture transforms which means that their 

value varies from one point of the image to another. The parameters can either 

be combined with the product sums to form any function, or they can point to 

different subroutines in the micro-program memory. Thus any degree of flexibili- 

ty can be obtained. The parameters can e.g. imply a variable threshold function 

or a dominant orientation for non-isotropic filtering. 

The two types of computations described earlier require two different architec- 

tures to be performed efficiently. This gives a structure according to Figure 

' I I I  

Oala mpul ~iproces.~/kyi flow I un/l I [un"ll'pr°ce''F' 
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Figure 15 

Simplified block diagram of system architecture. 

A more detailed block diagram of the processor is given in Figure 16. 

Part I of processor 

Part I of the processor is a reconfigurable pipelined parallel processor, where 

data from the image segment memory and weights from the mask memory are combined 

in four parallel pipelines. 

Image segment memory-- 

Capacity 16K words of 16 bits. Can be restructured to fit the current processing 

situation, such that up to 16 input images can be involved in processing simul- 

taneously. Software in the external computer determines the allowable length of 

the image segment, and moves data to the processor one line at a time. There it 

substitutes the oldest line in a "rolling" fashion. E.g. we can simultaneously 

have 4 input image segments of size 512x8 pixels. The definitive arrangement of 

the image segments is determined by the number of images and the mask size. 

Data modes: 

The image segment memory contains 16-bit words. Due to a selection and rescaling 

facility at the input of the pipelines there is a great deal of flexibility in 

the choice of data representation. Among the most commonly used are the follow- 

lug data modes: 
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Figure 16 
Block diagram of GOP image processor. 
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Complex data: The 16-bit data word is divided into two parts; one for mag- 

nitude and one for angle, generally 8+8 bits. 

Two-image data: The 16 bits are divided into two words of arbitrary length, 

e.g. two images with each 8 bits. These two images can 

either be processed independently or their contributions 

can be combined. 

16-bit data: The 16 bits can represent just one word of data. This can be 

used e.g. in classification procedures. 

Binary image data: The 16-bit word contains data representing binary ima- 

ges. The desired binary image can be selected. This 

gives the processor simultaneous access to up to 256 bi- 

nary images input. 

Mask memory: 

The mask data is stored in a memory of size 16K words of 20 bits. This storage 

can be restructured in a number of ways. 

The normal configuration is that the mask memory is divided into four sections, 

one section providing each pipeline with weight coefficients. In parallel with 

the first sectibn is another memory of 4K words of 14 bits. The content of this 

later memory points to the image segment memory selecting data points to be pro- 

cessed. This means that points can be picked arbitrarily within the 16K image 

segment memory to form a neighborhood of up to 4096 points sampled in any order 

or arrangement. This allows e.g. masks of different sizes to be used on diffe- 

rent input image planes. 

The mask memory san be organized to contain up to 4096 different masks with any 

distribution of size within the limits of the size of the mask memory itself. 

These masks can be freely combined in up to 256 different mask sets. Which one 

of these mask sets to use can be determined by part II, e.g. in response to im- 
age data intended to control the processing. 

Data modes: 

As is the case with the image segment memory, there is a great deal of flexibi- 

lity available in the choice of data representation in the mask memory due to a 

selection and reseating facility at the input of the pipelines. Among the most 

commonly used data modes are the following: 

Complex data: The 20-bit data word is divided into two parts; 

one for magnitude and one for angle, generally 

10+10 bits. 

16-bit data: Each word stores 16 bits of data in the least sig- 

nificant positions. Is used e.g. in classification 

procedures. 

Data format conversion: 

In order to allow fast computation, part I of the processor uses fixed point 

arithmetic. However, great care has been taken not to cause errors due to over- 

flow or underflow. Consequently, at the end of the pipeline there is a dynamic 

range of 27 bits. 
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Before data enters part Ii of the processor it is converted to either of three 

data modes:~ 16 bit fixed-point data, logarithmic data or floating-point data. 

Data converted in this fashion is then stored in the buffer memory between Dart 

I and part II. The data mode can be selected with respect to demands on accuracy 

and speed in the computation in part Ii. 

]6-bit fixed-point data: 

The 27 bits are converted to 16-bit fixed-point data using a resettable bi- 

nary rescaling. Overflow check is provided. This mode is useful for proce- 

dures giving results with small and predicted dynamic range. 

Logarithmic data: 

The 27 bits of fixed point data are converted to a signed-magnitude loga- 

rithmic representation of 16 bits. Computations with logarithmic data are 

very useful in many image analysis procedures, where relative magnitudes 

are of importance. This type of data can also be handled very fast in part 

II of the processor. 

Floating point data: 

The 27 bits of fixed point data are converted to a floating point represen- 

tation consisting of a 16-bit mantissa and a 8-bit exponent. This data 

mode is useful where high accuracy in computations is needed. 

Buffer memor~ 

The communication from part I of the processor to part II is done over a dual 

memory of 2.4K words of 16 bits. Part I can write into one half of this memory 

at the same time as part II reads from the other half. 

Part I I of processor 

Part II of the processor has an entirely different architecture. After proces- 

sing in part I, the amount of information is reduced considerably. Now a high 

degree of flexibility is required to combine intermediary results derived by 

part I. These combinations are usually highly nonlinear operations, determined 

from one point to the other by some particular transform of the image to pro- 

cess. 

Part II is consequently a serial, special purpose processor. The central parts 

are a microprogram controller 2910 and an arithmetic logic unit 2901B. A fast 

microprogram memory (access time 55 nsec) of size 2K words of 64 bits (expand- 

able to 4K words of 80 bits) gives a cycle time of 150 nsec for the processor. 

All units communicate over a ]6-bit bus. A special work memory of 2K words (ex- 

pandable), with possibilities of indirect addressing facilitates programming. 

In order to obtain fast processing of complicated algorithms, a 16K word memory 

area can be used for look-up tables. A memory area of 4K words is available for 

external processing control. In this memory lines from up to 4 images can be 

stored to control the processing point by point. 

On the main bus are attached a number of special purpose processing units. They 

perform operations such as fast multiplication, scaling and shifting (up to 16 

steps in one cycle), floating point operations, etc. 

The computation within the processor can be performed using fixed-point 16-bit 

representation, logarithmic 16-bit representation or floating-point representa- 
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tion, or any desired mix of these during a particular procedure. 

Common features 

Part I is controlled by part II regarding what operations to perform, but does 

not interfere during the computations set up for a neighborhood. However, the 

configuration of thepipeline can be changed after the computation, and an~tire- 

ly different configuration can be set up instantaneously for a different type 

of computation on the same (or different) neighborhood. This allows maximal 

flexibility in conjunction with high speed. 

In normal processing the pipelines remain in the same mode for the whole image. 

Parts I and II run simultaneously at maximum speed with data exchanged over the 

twin buffer. 

A typical operation step where maximal flexibil~ty is needed, may go as follows: 

The appropriate element from the controlling image is fetched from the memory. 

This data is processed in some way to determine which one of a number of prede- 

termined actions to take. This particular action leads to an address of the 

micro-controller, which goes through a procedure to activate the desired pre- 

set mode, to determine what set of masks to use and to give part I permission to 

start. Part I goes through the micro-program sequence determined by part II, 

thereby performing e.g. convolution within a particular mask, and returning the 

result to the buffer memory. Part II may now analyze this result and decide 

that it wants a different operation performed on a different input image (of 

which there may be up to 16) using a different size neighborhood, although the 

computation is performed with relation to one particular output pixel. The same 

type of prcedure is performed over again. The action decided leads to a diffe- 

rent adress in the micro-controller, which points out a different mode, a diffe- 

rent micro-program procedure and different masks to use for part I. 

The preceding procedure may sound very complicated but the computations can be 

performed very fast, as most possible actions can be prepared for, using look- 

up tables. We also have a speed of the whole procedure which is dependent upon 

the complexity of the procedure. 

All this flexibility would be extremely demanding, if it were not that assembler 

and macro-languages have been developed for both parts of the processor. Thus 

macro-routines are available for most common processing tasks, and use of these 

macros to develop new routines is not too demanding. 

One of the cards of the G0P processor handles all the communication with the 

host computer, and this is the only part that is specific for the particular en- 

vironment in which the processor is going to operate. Interface cards will be de- 

veloped for most of the common computers used for image processing. 

SOFTWARE 

In order to obtain an easily workable system with a processor as flexible as 

the GOP, it is necessary to have a good software system. For that reason an ex- 

tensive, interactive program system has been developed. The goal has been to 

provide ~rogram routines for most commonly occurring processing tasks, as well as 

to provide an attractive environment for the researcher who wants to investigate 

new algorithms and develop his own programs. 
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The program system is built around several levels of languages. The intention 

has again been that the program system should be easily transportable between 

different computers. 

The highest level language is a highly portable, interactive language INTRAC. 

This language is implemented on at least 5 different computers, and the package 

is written in FORTRAN. Its purpose is to give an easy, interactive way of combi- 

ning precoded application modules with automatic variation of parameters. This 

is done through the use of MACRO command files that are created and invoked by 

commands entered from a terminal. 

The medium level language is FORTRAN, in which the bulk of the application modu- 

les are written. The intention is that the user should be able to create his own 

particular application modules without too much difficulty. 

The low level language is the assembly language of the computer used, which is 

only utilized in very few I/0 drive routines. These routines are, however, very 

close to the standard form for other DMA peripherals of the computer used. 

As mentioned earlier, there are also assembly languages available for the crea- 

tion of microprograms for part I and part II for the processor. As a rule, the 

average user will never have to worry about this, and he will use available mo- 

dules for different modes of operation. Still, he will be able to employ the 

flexibility available, by specifying switches and parameters in the modules. 

There are also hardware checkout program modules available. The module of main 

interest to the user is one that checks every function of the processor on test 

data, as well as the communication with the main computer. An error message is 

printed out in the case of error. This testprogram can be activated at the be- 

ginning of each work period to insure proper operation. 

Another set of available program modules can be used to create synthetic images, 

which is of great value in evaluation of algorithms. Programs are also available 

for creation and optimization of filter Tunctions with desired properties, and 

various types of mask functions. 

MODES OF OPERATION 

Most of the software available is for work in image processing and analysis. 

Software for the most common problems has been developed, and further software 

is under development. 

In the following section it will only be possible to mention some of the modes 

of operation for which the GOP processor can be used. 

Fi!terin 5 

A real or complex valued image of any size can be convolved with a real or com- 

plex valued filter function with a size of up to 128x128 elements. Filtering 

using a mask of this size (if ever needed) on a 512x512 image will take approxi- 

mately two and a half minutes to process. 

The filtering can also be performed using various non-linear functions. Non- 

linear scaling functions can easily be specified and stored in look-up tables 

for fast access. 
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The non-linear filtering procedure can be made very specific, in that it can be 

image-content dependent. This means that we can employ different filter func- 

tions (or in general any operation) from one point to another of the processed. 
This gives limitless possibilities to guide the process from some processed 

version of the image. One framework for such experiments, ~hat has proved 

successful, is within the General Operator information representation. 

The filtering procedures can also be used for image interpolation and optimal 

shrinking of an image. 

Edge and line detection 

Most suggested types of edge and line de%ectors can be implemented in the GOP. 

Most of the software available, however, implements various forms of the General 

Operator. Routines are available $or edge element connection, contour thinning, 

masking of weaker contours next to stronger, etc. 

Texture description 

Most local texture description operators can be implemented using the GOP. While 

the General Operator has proved quite useful for texture description and discri- 

mination between different textures, a specific, more sensitive texture operator 

has been developed within the GOP information representation framework. This 

gives a texture description that can easily be integrated in the classification 

procedure. 

Higher-order feature detection 

A number of higher order feature or structure operators have been developed. 

These include operators for curvature, endpoints, symmetry and other higher or- 

der features which have proved useful in image analysis. 

Segmentation and labeling 

The processor can be used to implement various labeling and segmentation algo- 

rithms. 

Relaxation procedures and feedback processing 

The structure of the processor makes it attractive for applications in relaxa- 

tion procedures and in feedback processing. The high flexibility makes it poss- 

ible to perform image-dependent operations and to store the restriction rules 

to be employed. 

The feedback provision makes it possible to have the information of a number of 

image transformations determine the processing to be performed, to a complexity 

that is limited only by imagination and the effort to define the operations. The 

guiding information transformation products can determine the set of restriction 

rules to invoke for at particular subset of the image. 

Classification 

Classification is most easily done using linear discriminant functions, which 

well adapt to the GOP structure. Classification can be done point by point, e.g. 

for multispectral images of which there can be 16 real valued or complex input 

images. Classification can also be performed using contextual information over 

increasingly global regions. One way of doing this is using the G0P transforms, 

which form a natural, hierarchical structure of higher-order and global~atures. 
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Again, we can include information from up to 16 representations or transformations 

of the image, to classify different regions for labeling or segmentation. 

Quadric or other discrimination functions can also be implemented, although with 

less speed. 

Logical operations 

Logical operations on binary images can be performed with neighborhood sizes up 

to 3x4 elements. This allows classical operations such as erosion, dilation, 

labeling, skeletonizing, etc. Even in this case it is possible to determine the 

operation to perform on a particular neighborhood using some earlier image trans- 

form. 

Content-dependent translation 

Apart from translations with a fixed step size, it is possible to obtain a con- 

tent-dependent translation of image elements. This gives possiblities to produce 

controlled distortions of the image~ as well as to correct existing geometric 

distortions. 

EXAMPLE OF PROCESSING - CONTENT DEPENDENT IMAGE FILTERING 

As one example of the many uses of the GOP image processor we will look at how 

it can be used for content dependent image filtering in a feedback mode. 

An important feature of the processing system around this operator is its hier- 

archical structure with higher and lower levels as indicated earlier. There we 

suggested a hierarchy with processed znformation going from lower to higher 

levels. We also have a local feedback effect to low levels, due to the fact that 

the information concerning orientation of a structure is indicated in every 

single element belonging to this structure. This feature is most important be- 

cause it makes it possible to use some very efficient filtering procedures to 

enhance and suppress various features. 

An important use of the hierarchical structure is to introduce feedback from 

higher levels to the operation of the system at a lower level. This can be used 

for a number of purposes such as relaxation procedures [21]. 

The architecture ~f the processor allows such a processing to be performed, as 

a set of images can be used to control the operations to be performed from one 

neighborhood to another. Se Figure 17. 

This architecture makes the processor in effect an MIMD (Multiple Instruction 

stream - Multiple Date stream) machine. 

One use of feedback processing is for image-content dependent filtering. In 

this case a structure like the one in Figure 18 can be used. 

From the original image a controlling transform is computed. In the simplest 

case the controlling transform may be an ordinary first order transform giving 

the dominant orientation of structures in the images. 

The original image to be filtered is now brought into an iteration loop. The 

image is convolved with a filter function to form a filtered image. One interes- 

ting case is when the filter function is rotationally non-isotropic, and the 
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controlling transform determines the axis of symmetry of the filter. Figure 19 

gives an example of such an interative non-isotropic filtering of a fingerprint. 
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Figure 17 

Input-Output structure of GOP Processor. 
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Figure 18 

Feedback structure for content dependent image filtering 
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Figure 19 

Non-isotropic filtering of fingerprint (a) Original image (b) Results after one 

interation (c) Results after two interations (d) Comparable isotropic filter 

Another example of feedback processing is for contour detection and masking. Fi- 

gure 20 illustrates the structure used. 

The original image is processed with the General Operator producing a transform 

containing essentially contours. In general the first order transform is suffi- 

cient for this purpose. In the case where different regions are defined at least 

partly by different textures, it may be necessary to produce a second order 

transform which will then give borders between different textures [14]. The 

first and second order transform can then be combined which will give optimal 

definition of existing boundaries. 

From the contour transform a controlling transform is produced. The controlling 

transform is a function of the contour transform. In the simplest form it may 

consist of the contour transform or a low pass filtered version of the contour 
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transform. The controlling transform thus displays the direction of the dominant 

variation within the neighborhood. 

,Jill>_. / 
l~age / ~->" __ 

WT~ 

Itepo t/bn 

! Zoop / .... / I I  t t  
I J-+4 

/ 

i/ // 

.......... #/ ~ I" 

Figure 20 

Feedback structure for contour detection and masking 

The contour transform is now brought over to the iteration loop. A specially 

designed operator is used here, which performs a nonlinear differentiation in 

one direction and an integration in the perpendicular direction. The directions 

for differentiation and integration are determined for every point by the con- 

trolling transform. 

Figure 21 shows an example of the processing that can be performed. We can see 

that there is a fairly efficient thinning of the main contours. Another impor- 

tant property of the processing is the one of masking, implying that weak con- 

tours are suppressed next to strong ones. 

These structures described and the results given are very preliminary indica- 

tions of the potential of the method. In the cases given, the controlling pro- 

perty is simply the dominant direction found within the local region under con- 

sideration. In general it is possible to have more elaborate properties of the 

image content to control the operations on the image. This gives very flexible 

and powerful procedures for filtering and for detection. 

This procedure can also be formulated in relaxation terms, where the controlling 

transform determines which competibility relations to employ in a particular 

part of the image. This discussion is however outside the scope of this presen- 

tation. 
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Figure 21 

Example of processing in contour detection and masking (a) Original image (b) 

First order transform (c) Interatively processed image. 
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