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ABSTRACT

We present the first results of the Gould’s Belt Distances Survey (GOBELINS), a project aimed at measuring the
proper motion and trigonometric parallax of a large sample of young stars in nearby regions using multi-epoch
Very Long Baseline Array (VLBA) radio observations. Enough VLBA detections have now been obtained for 16
stellar systems in Ophiuchus to derive their parallax and proper motion. This leads to distance determinations for
individual stars with an accuracy of 0.3 to a few percent. In addition, the orbits of six multiple systems were
modelled by combining absolute positions with VLBA (and, in some cases, near-infrared) angular separations.
Twelve stellar systems are located in the dark cloud Lynds1688; the individual distances for this sample are highly
consistent with one another and yield a mean parallax for Lynds1688 ofv = 7.28 0.06 mas, corresponding to
a distance = d 137.3 1.2 pc. This represents an accuracy greater than 1%. Three systems for which astrometric
elements could be measured are located in the eastern streamer (Lynds 1689) and yield an estimate of
v = 6.79 0.16 mas, corresponding to a distance = d 147.3 3.4 pc. This suggests that the eastern streamer is
located about 10 pc farther than the core, but this conclusion needs to be confirmed by observations of additional
sources in the eastern streamer (currently being collected). From the measured proper motions, we estimate the
one-dimensional velocity dispersion in Lynds 1688 to be 2.8±1.8 and 3.0±2.0km s−1, in R.A. and decl.,
respectively; these are larger than, but still consistent within s1 of, those found in other studies.
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1. INTRODUCTION

1.1. The Gould’s Belt

The Gould’s Belt (see Poppel 1997 for a comprehensive

review) is a local Galactic structure containing much of the

dense interstellar matter and many of the young stars within a

few hundred parsecs of the Sun. It was originally identified by

John Herschel (circa 1847) and Benjamin Gould (in the 1870s),

who noticed that most of the brightest stars were neither

randomly distributed in the sky nor associated with the Galactic

plane, but instead concentrated along a great circle tilted by

about 18° from the Galactic equator. Modern studies (e.g.,

Perrot & Grenier 2003) have shown that the Gould’s Belt is a

broad elliptical ring of young stars and interstellar matter with

semimajor and semiminor axes of 375 pc and 235 pc,

respectively. The center of the structure is located at about

105 pc from the Sun, in the direction of the Galactic anti-center.

There is ample evidence that the Gould’s Belt is expanding and

has a dynamical age of order 30 Myr; Perrot & Grenier (2003)

indicate 26.4±0.4 Myr. The oldest stars associated with the

Gould’s Belt are also about 30Myr old (e.g., Stothers &

Frogel 1974), but T Tauri stars (age 106–107 years) as well as

protostars (105 years) and pre-stellar cores are also present,

showing that star formation is still ongoing.
The Gould’s Belt contains several million solar masses of

interstellar material and includes all the nearby sites of active

star formation (Orion, Ophiuchus, Perseus, etc.). These have

been the benchmarks against which theories of star formation

have been tested. Indeed, numerous “Gould’s Belt surveys”

targeting these regions have been carried out over the years—

for instance, the James Clerk Maxwell Telescope Legacy

Survey of Nearby Star-forming Regions in the Gould Belt

(Ward-Thompson et al. 2007), the Spitzer Gould Belt (Dunham

et al. 2015) and c2d (Evans et al. 2009) Legacy Surveys, and

the Herschel Gould’s Belt Survey (André et al. 2010). To take

full advantage of this wealth of high quality information, it is
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fundamental to have accurate distance measurements to each of
the regions in the Gould’s Belt. In addition, these regions are a
few hundred parsecs away and typically a few tens of parsecs
across—and therefore presumably also a few tens of parsecs
deep. As a consequence, using a single mean distance (however
accurately measured) for all young stellar objects (YSOs) in a
given region will result in typical distance errors in excess of
10% for the individual YSOs. A case in point is that of the
Taurus star-forming region, which is located at a mean distance
of about 145 pc, but is about 30 pc deep (Loinard et al. 2007;
Torres et al. 2007, 2009, 2012). Using the mean distance to
Taurus to calculate luminosities for YSOs located on the near
side of the complex (at 130 pc) results in an error of 25%. Thus
it is not sufficient to have an accurate mean distance for each
region. Rather, it is highly desirable to have accurate distances
to a substantial sample of individual objects within each region.
Such detailed information also makes it possible to reconstruct
the internal three-dimensional (3D) structure of the clouds.

Recently, Bouy & Alves (2015) used stars from the
Hipparcos catalogue to determine the 3D distribution of the
spatial density of OB stars within 500 pc from the Sun. They
found no evidence for a ring-like structure and claimed that the
Gould’s Belt is the result of a 2D projection effect. They also
proposed that the apparent rotation and expansion of the belt is
due to relative motions associated with Galactic dynamics, but
this needs to be investigated through accurate measurements of
the dynamical state of the Belt.

1.2. VLBI Distance Determinations

Understanding the processes of star formation requires
accurate observational constraints. The observational signatures
predicted by star formation models have to be compared to
actual observations, but a direct comparison can only be
performed when the stellar properties, such as source size,
luminosity, and mass, are well determined. Frequently the
distances to star-forming regions are poorly constrained
because they are obscured by molecular gas and dust. In such
cases, inaccurate distances are often the main source of error in
intrinsic parameter determinations.

Numerous indirect methods can be used to estimate the
distance to young stars (e.g., de Grijs 2011), but they typically
result in systematic uncertainties in excess of 20%. Only
trigonometric parallaxes can provide unbiased distance mea-
surements, but they are notoriously challenging to obtain. For
instance, the trigonometric parallax of a star at 200 pc is 5
milli-arcseconds (mas), so an astrometric accuracy of 50 micro-
arcseconds (μas) on the parallax would be required to measure
that distance to 1% accuracy. This is more than one order of
magnitude better than the astrometry delivered by the
Hipparcos satellite (Perryman et al. 1997). Indeed, Hipparcos
did not significantly improve our knowledge of the distance to
star-forming regions in the Gould’s Belt (e.g., Bertout
et al. 1999). Also, the Hipparcos result on the distance to the
Pleiades cluster, which is commonly used for testing theoretical
stellar models, disagrees with all distance determinations
obtained through other methods (Melis et al. 2014; David
et al. 2016). The upcoming Gaia astrometric mission (de
Bruijne 2012) will likely reach an accuracy of a few tens of
μas, sufficient for percent accuracy determinations of distances
in the Gould’s Belt. However, since it operates at optical
wavelengths, Gaia will be limited to stars that have low
extinction. This will be an issue in star-forming regions like

Orion, Ophiuchus, or Serpens, where values of AV larger than
10 are common (Cambrésy 1999; Ridge et al. 2006).
For accurate astrometry, an alternative to optical-wavelength

space missions is provided by Very Long Baseline Inter-
ferometry (VLBI; e.g., Thompson et al. 2007; Reid &
Honma 2014). VLBI observations at centimeter wavelengths
typically reach an angular resolution of order 1 mas. When
VLBI observations are phase-referenced to a bright nearby
source, the angular offset between the target and the reference
source can be measured to an accuracy of ∼20 to 300 μas,
depending on the signal-to-noise ratio of the detection, the
declination of the source, and the distance between the target
and the reference source (Pradel et al. 2006). The reference
sources are usually distant quasars that are very nearly fixed on
the celestial sphere. Thus the measured offset between the
reference source and the target can be transformed into accurate
coordinates for the target. When several such observations
collected over 1 year or more are combined, the parallax and
proper motion of the target can be measured with high
accuracy. Also, the astrometry quality of both VLBI and Gaia
observations can be tested by considering objects that both
instruments can detect.
Two technical points are worth mentioning here. The first is

that a systematic error on the target coordinates will obviously
occur if the reference quasar position is not well known. The
positional errors of reference calibrators used in VLBI
observations are typically between 0.5 and 10 mas, so this is
the level of accuracy that can be expected on absolute
coordinates derived from VLBI data. However, this additive
error will equally affect all observations of a given target (as
long as the same calibrator is used), and hence have no
measurable effect on the parallax and proper motion measure-
ments obtained from multi-epoch observations. The second,
potentially more serious issue is that because of emerging jet
components, the photocenter of the quasars may shift with time
when accuracies of a few μas on positions and a few μas yr−1

on proper motions are reached (e.g., Reid & Brunthaler 2004).
Because our typical positional errors are m100 300 as– , this
problem will not be relevant for the data presented here, and
can be mitigated by including several reference sources in the
observations and monitoring their relative positions as a
function of time (e.g., Reid & Honma 2014).
VLBI astrometry can only be applied to a specific class of

targets if they are detectable in VLBI observations (e.g.,
Thompson et al. 2007; Reid & Honma 2014). This requires that
the potential targets not only be radio sources but also have an
average brightness temperature in excess of ∼106 K within the
synthesized beam (i.e., be non-thermal sources), as VLBI
arrays do not have sufficient sensitivity to detect weaker
emission.17 A summary of the mechanisms that produce non-
thermal radio emission in YSOs is provided in Appendix A.
VLBI observations of non-thermal continuum emission from
young stars have been used to measure very accurate
trigonometric parallaxes to individual YSOs and star-forming
regions (Loinard et al. 2005, 2007, 2008; Menten et al. 2007;
Torres et al. 2007, 2009, 2012; Dzib et al. 2010, 2011, 2016).
These observations focus on YSOs that were previously known
to be non-thermal radio emitters. Building upon these
successes, we have initiated a large project (the Gould’s Belt

17
VLBI arrays are equivalent to telescopes thousands of kilometers in

diameter in terms of angular resolution, but emphatically not in terms of
collecting area.
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Distances Survey, hereafter GOBELINS18) aimed at measuring
the trigonometric parallax and proper motions of a large sample
of magnetically active young stars in the Gould’s Belt
(specifically in Taurus, Ophiuchus, Orion, Perseus, and
Serpens) using VLBI observations.

1.3. GOBELINS

GOBELINS was approved by the Telescope Allocation
Committee of the National Radio Astronomy Observatory in
the spring of 2010. It followed a two-stage strategy. During the
first phase, large maps of each of the regions of interest were
obtained, using conventional interferometry observations, with
the Karl G. Jansky Very Large Array (VLA; we called this first
phase of the project the Gould’s Belt Very Large Array
Survey). These maps (published by Dzib et al. 2013, 2015;
Kounkel et al. 2014; Ortiz-León et al. 2015; and Pech et al.
2016) enabled us to identify radio-bright YSOs in each region
and attempt a first separation between thermal and non-thermal
sources. For instance, in Ophiuchus, Dzib et al. (2013)
identified 56 radio sources associated with YSOs and proposed
that for 50% of them, the emission is of non-thermal origin.
The second stage consists in multi-epoch VLBI observations of
the selected targets with the Very Long Baseline Array (VLBA;
Napier et al. 1994), to measure the astrometric elements
(trigonometric parallax and proper motion) of each target. In
this paper, we report on the first VLBI observations of the
sources in the Ophiuchus region.

The results from GOBELINS will be used first and foremost
to pinpoint the location of the regions of star formation within
the Gould’s Belt, as well as their internal three-dimensional
structure. In addition, since the proper motion of each target
will be measured simultaneously with its trigonometric
parallax, the transverse component of the velocity vector will
be obtained. In many cases, the radial velocity will be available
from the literature or could be measured with dedicated optical
or near-infrared (NIR) spectroscopy. Thus GOBELINS will
also provide the complete velocity vector for many targets.
This will enable us to examine both the internal dynamics of
each region and the large-scale relative motions of the different
clouds in the Gould’s Belt (see Rivera et al. 2015 for a
preliminary example). In particular, these measurements will
help characterize the overall dynamics of the Gould’s Belt and
will be relevant to the understanding of its very origin.

GOBELINS will also provide radio images of a large sample
of YSOs at milli-arcsecond resolution. This is unparalleled at
any other wavelength, and will enable us to characterize the
population of young, very tight, binary and multiple systems
(see Torres et al. 2012 and Dzib et al. 2010 for examples of
young multiple systems characterized by VLBI observations),
as well as the magnetic structures around young stars (R.M.
Torres et al. 2016, in preparation). Finally, these results will
enable us to study the physical processes underlying the radio
emission. For instance, the Gould’s Belt Very Large Array
Survey data (Dzib et al. 2013, 2015; Kounkel et al. 2014; Ortiz-
León et al. 2015; Pech et al. 2016) have shown that the radio
emission from YSOs is reasonably correlated with their X-ray
luminosity, following the so-called Güdel-Benz relation
(Guedel & Benz 1993; Benz & Guedel 1994). The VLBI
observations will enable us to unambiguously separate the

thermal and non-thermal components and re-examine this
relation in more detail. It will also allow us to examine the
prevalence of non-thermal radio emission in young stars as a
function of their age and mass, providing clues regarding the
magnetic evolution of YSOs.

1.4. The Ophiuchus Region

As mentioned earlier, in the present paper we will focus on
the GOBELINS observations of the Ophiuchus region.
Ophiuchus is one of the best-studied regions of star formation
(see Wilking et al. 2008 for a recent review). It consists of a
centrally condensed core associated with the dark cloud Lynds
1688 (where AV=50 to 100 magnitudes; Wilking et al. 2008)
and several filamentary clouds (collectively known as the
“streamers”) extending toward the east (Lynds 1689 is a
particularly prominent dark cloud associated with the eastern
streamer) and the northeast (see Figure 1 in this paper and
Figure 1 in Dzib et al. 2013).
The distance to Ophiuchus has been discussed in some detail

by Wilking et al. (2008), Lombardi et al. (2008), Loinard et al.
(2008), and Mamajek (2008). The canonical value of 160 pc
(Bertiau 1958; Whittet 1974; Chini 1981) remained in use until
very recently. Evidence for a somewhat shorter distance
(120–145 pc) started to emerge from optical photometric and
astrometric studies of the nearby Upper Scorpius subgroup (de
Geus et al. 1989; de Zeeuw et al. 1999). The implications for
Ophiuchus itself, however, were limited by the unclear relation
between Upper Scorpius and Ophiuchus (see Wilking
et al. 2008 for a discussion of this topic). More recently,
Mamajek (2008) used the trigonometric parallaxes of the stars
illuminating seven reflection nebulae within 5° of the
Ophiuchus core to derive an estimate of 135±8 pc. Both
Knude & Hog (1998) and Lombardi et al. (2008) combined
Hipparcos parallaxes and extinction measurements to conclude
that Ophiuchus is at a distance of about 120 pc. Lombardi et al.
(2008), in particular, report a mean distance of 120±6 pc for
the entire region, with some evidence that the streamers might
be ∼10 pc closer than the core. This would be consistent with
the distance of 96±9 pc derived by Le Bouquin et al. (2014;
see also Schaefer et al. 2008) for the pre-main sequence binary
Haro 1–14c, located in the northeastern streamer.
It is important to note that none of the measurements

mentioned so far involve direct trigonometric parallaxes to
Ophiuchus cluster members. This is, of course, because the stars
in that cluster are too deeply embedded to be detectable
with Hipparcos or ground-based optical telescopes. Indeed, to
date, there are only two published trigonometric parallaxes for
Ophiuchus, and both were obtained through VLBI observations.
The first measurement was reported by Imai et al. (2007) and
targeted water masers associated with the Class0 protostar
IRAS16293-2422, located in the northern part of Lynds 1689.
They derive a distance of -

+178 34
18 pc, significantly larger than the

120–140 pc estimates that seem to emerge from the previously
described recent studies of the Ophiuchus core. It is not clear if
this discrepancy stems from issues with one or more of the
distance measurements, or if it is indicative that the eastern
streamer is significantly more distant than the core. The second
parallax measurement was reported by Loinard et al. (2008), and
focused on two young stars (DoAr 21 and S1) located toward the
Ophiuchus core. They obtain 120±5 pc for the mean distance
to these two stars, and adopt this value as the best estimate of the
distance to the Ophiuchus core.

18
A French word referencing the tapestries designed by the Gobelin

Manufactory in Paris, France.
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In summary, there is a growing consensus that the
Ophiuchus core is at 120–140 pc, but reducing the level of
uncertainty regarding the distance has proven difficult. In
addition, there are some conflicting results regarding the
orientation of the streamers relative to the core. This
unsatisfactory state of affairs largely results from the scarcity
of direct parallax measurements to Ophiuchus members.

In this paper we present new VLBA observations taken over
a period of 4 years as part of GOBELINS, and report on the
detection of 26 young stellar systems in the Ophiuchus region
(corresponding to 34 individual young stars, as some of the
systems are multiple). The target sample and observing strategy
are described in Section 2, the detections are described in
Section 3, and the properties of the detected radio emission are
analyzed in Appendix A.2. Section 4 focuses on a subset of this
sample and presents the astrometry of 16 stellar systems. We
first analyze single objects in Section 4.1, and then stars in
multiple systems in Section 4.2 (other detected sources that are
not known young stars are analyzed in Appendix B). Finally,
we provide a new improved distance to the core of Ophiuchus,
and a description of the cloud depth in Section 5.

2. OBSERVATIONS, CORRELATION,
AND DATA REDUCTION

The observations were obtained with the National Radio
Astronomy Observatory’s VLBA at ν=5 and 8 GHz. We
report on a total of 86 projects (code BL175), observed
between March 2012 and April 2016, and scheduled either
dynamically or on a fixed-date basis. Observations were
usually obtained within 3 weeks of the equinoxes (March 21
and September 22) for each year; this corresponds to the
maximum elongation of the parallax ellipse. The data were
recorded in dual polarization mode with 256MHz of
bandwidth in each polarization, covered by 8 separate 32
MHz intermediate frequency (IF) channels. Projects observed
during the first ∼1.5 years of our program were taken at 8 GHz
(Table 1). We switched to 5 GHz after the upgrade of the
C-band receivers of the VLBA, which resulted in an increase of
the bandwidth and sensitivity at that frequency.

A brief note regarding pointing positions and fields of view
is in order here, as these concepts can be somewhat ambiguous
for VLBI instruments. Observing with VLBI arrays involves
two steps: (1) the actual observations when the antennas are all
pointed toward a given direction (a0, d0) and the data are
recorded, and (2) the correlation step (often carried out days or
even weeks after the observations) when the data from the
individual antennas are combined to form visibilities (see
Thompson et al. 2007 for details). The field of view relevant for
the observation step corresponds to the primary beam (WPB) of
the individual telescopes. For the 25 m dishes conforming the
VLBA, the primary beam has a diameter of order 10′ and 6′, at
5 and 8 GHz, respectively. During correlation, however, the
useful field of view is limited by coherence losses, due to
beamwidth and time smearing, to a small patch typically only a
few arcseconds in diameter. The center coordinates of a patch
are specified during the correlation step, and can be chosen
anywhere within the primary beam. In particular, they do not
need to coincide with the position (a0, d0) where the telescopes
are pointing, as long as they are within WPB of that position. By
running multiple correlations on the same data, one can
reconstruct an arbitrary number of patches, each at different
locations within the primary beam. These different locations

Table 1

Observed Epochs

Project Observation
Observed Fields Centers

Observed

Code Date R.A. (a2000) Decl. (d2000) Band

BL175B0 2012 Mar 13 16 27 55.92 −24 47 24.82 X

BL175B1 2012 Mar 25 16 27 30.82 −24 47 27.21 X

BL175B2 2012 Apr 09 16 27 24.36 −24 42 13.39 X

BL175B3 2012 Apr 21 16 25 49.10 −24 38 31.00 X

BL175B4 2012 Apr 24 16 27 15.70 −24 38 45.68 X

BL175B5 2012 Apr 29 16 28 04.65 −24 34 56.66 X

BL175B6 2012 May 01 16 25 56.80 −24 30 23.76 X

BL175B7 2012 May 05 16 26 07.63 −24 27 41.73 X

BL175B8 2012 May 09 16 27 32.68 −24 33 24.54 X

BL175B9 2012 May 11 16 27 18.17 −24 28 52.96 X

BL175BA 2012 May 12 16 26 42.44 −24 26 26.12 X

BL175BB 2012 Aug 19 16 26 03.01 −24 23 36.42 X

BL175BC 2012 Sep 01 16 27 30.83 −24 47 27.14 X

BL175C0 2012 Sep 03 16 36 17.50 −24 25 55.44 X

BL175BD 2012 Sep 09 16 26 29.67 −24 19 05.85 X

BL175BE 2012 Oct 20 16 25 49.10 −24 38 31.00 X

BL175BF 2012 Oct 30 16 27 15.70 −24 38 45.71 X

BL175BG 2012 Nov 01 16 26 51.70 −24 14 41.50 X

BL175BH 2012 Nov 26 16 25 56.80 −24 30 23.76 X

BL175BI 2012 Nov 28 16 26 07.63 −24 27 41.73 X

BL175BJ 2012 Nov 30 16 27 32.68 −24 33 24.54 X

BL175BK 2012 Dec 07 16 27 18.17 −24 28 52.96 X

BL175BL 2012 Dec 08 16 26 42.44 −24 26 26.12 X

BL175BM 2012 Dec 09 16 26 03.01 −24 23 36.42 X

BL175BN 2012 Dec 16 16 26 26.01 −24 23 41.26 X

BL175BO 2012 Dec 21 16 26 29.67 −24 19 05.85 X

BL175BP 2012 Dec 28 16 27 05.16 −24 20 07.82 X

BL175ZQ 2013 Jan 25 16 26 49.23 −24 20 03.35 X

BL175BR 2013 Feb 01 16 26 51.70 −24 14 41.50 X

BL175BS 2013 Apr 27 16 31 57.16 −24 56 43.77 X

BL175A9 2013 May 01 16 27 55.92 −24 47 24.82 X

BL175BT 2013 May 21 16 31 38.57 −25 32 20.08 X

BL175BU 2013 May 29 16 31 17.60 −24 32 02.46 X

BL175BV 2013 Jun 06 16 32 11.80 −24 40 21.89 X

BL175BW 2013 Jun 15 16 32 45.24 −24 36 47.42 X

BL175BX 2013 Jun 23 16 30 32.21 −24 33 17.86 X

BL175AA 2013 Jun 28 16 27 30.82 −24 47 27.21 X

BL175BY 2013 Jul 16 16 34 21.10 −23 56 25.19 X

BL175BZ 2013 Aug 07 16 31 40.68 −24 15 16.49 X

BL175E0 2013 Sep 01 16 27 30.82 −24 47 27.21 C

16 26 16.31 −24 22 14.00

BL175E1 2013 Sep 02 16 27 18.18 −24 28 52.99 C

16 26 42.44 −24 26 26.27

BL175E2 2013 Sep 03 16 32 11.79 −24 40 21.92 C

16 36 17.50 −24 25 55.41

BL175E3 2013 Sep 05 16 31 38.58 −25 32 20.08 C

16 32 45.24 −24 36 47.33

BL175E4 2013 Sep 07 16 27 32.68 −24 33 24.54 X

BL175E5 2013 Sep 19 16 27 20.03 −24 40 29.53 C

16 27 22.96 −24 22 36.60

BL175E7 2013 Sep 24 16 30 32.21 −24 33 17.86 C

16 31 17.60 −24 32 02.46

BL175G0 2014 Mar 01 16 27 30.82 −24 47 27.21 C

16 26 16.31 −24 22 14.00

BL175G1 2014 Mar 03 16 27 18.18 −24 28 52.99 C

16 26 42.44 −24 26 26.27

BL175G2 2014 Mar 04 16 32 11.79 −24 40 21.92 C

16 36 17.50 −24 25 55.41

BL175GB 2014 Mar 05 16 26 47.73 −24 15 37.45 C

BL175G3 2014 Mar 06 16 31 38.58 −25 32 20.08 C

16 32 45.24 −24 36 47.33

BL175G4 2014 Mar 09 16 27 32.68 −24 33 24.54 X

BL175G5 2014 Mar 10 16 27 20.03 −24 40 29.53 C

4
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are usually called phase centers. The VLBA correlation is now
performed by a DifX digital correlator (Deller et al. 2011) that
can simultaneously reconstruct multiple patches in a single pass
through the data. A given VLBA observation is then defined by
specifying (1) a pointing center (a0, d0) where all antennas will
point during the observations, and (2) multiple phase centers at
coordinates (a i0, , d i0, ) where correlations will be performed. In
this mode, the correlator produces independent files containing
the different phase centers. The first file contains the first
(primary) phase center listed for each pointing center. Often,
but not always, the primary phase center in a given observation
corresponds to the pointing center itself.
Accounting for the previous discussion of positions and

fields of view, our observations were set up as follows. From
the Gould’s Belt Very Large Array Survey observations of
Ophiuchus reported by Dzib et al. (2013; see Section 1.3), a
sample of YSOs with potentially non-thermal radio emission
(our primary target list) was compiled. Here, we call YSOs
those sources that have been associated with young stars in
infrared and X-ray surveys, and young stellar object candidates
(YSOc) those sources not classified as young stars by these
surveys but that show evidence of coronal magnetic activity in
the radio (for instance, flux variability). All of the YSOs in our
sample have been accommodated in 44 different pointing
positions of the VLBA (Table 1); representative fields are
distributed across the region as shown in Figure 1. In some
instances, a few primary targets could be observed simulta-
neously (as different phase centers) in the same observation.
Within each of the 44 observed primary beams, we then
included additional phase centers at the position of all the
sources reported by Dzib et al. (2013) within the primary beam,
independently of whether those sources were classified as
YSOs, candidate YSOs, or extragalactic, and independently of
whether the radio emission was anticipated to be thermal or
non-thermal. In total, 118 sources toward the Ophiuchus region
have been observed during our program, of which 50 are
known YSOs.
The observations were organized into various observing

sessions, each with a different code, during which one or two
pointing positions were observed (Table 1). The observing
sessions consisted of cycles alternating between the target(s)
and the main phase calibrator, J1627-2427: {target—J1627-
2427} for single-target sessions, and {target 1—J1627-2427—
target 2—J1627-2427} for those sessions where two targets
were observed simultaneously. The target to calibrator angular
separations were in the range of 0°.1 for sources in Lynds 1688
to 1°.2 for targets in the streamers. The on-source time was
∼110 s for each target and ∼50 s for the calibrator in every
cycle. The total on-source time during each observing session
was ∼1.6 hr in projects that observed at 8 GHz, and ∼1 hr at
5 GHz. Scans on the secondary calibrators, J1625-2417, J1625-
2527, and J1633-2557, were also taken every ∼50 minutes
during the observations. Unfortunately, one of the secondary
calibrators, J1625-2417, was too weak to be detected in any of
our observations at both 5 and 8 GHz. Finally, geodetic blocks
were also included in each project, usually observed before and
after the regular session.
The data reduction was done using AIPS (Greisen 2003) and

following standard procedures for phase referencing VLBA
observations. Initial calibration was performed as follows.
Scans having elevations below 10° were flagged. The delays
introduced by the ionospheric content were removed, and

Table 1

(Continued)

Project Observation
Observed Fields Centers

Observed

Code Date R.A. (a2000) Decl. (d2000) Band

16 27 22.96 −24 22 36.60

BL175G6 2014 Mar 13 16 27 55.92 −24 47 24.82 C

16 28 04.65 −24 34 56.66

BL175G7 2014 Mar 14 16 30 32.21 −24 33 17.86 C

16 31 17.60 −24 32 02.46

BL175G8 2014 Mar 24 16 31 40.68 −24 15 16.49 C

16 31 57.16 −24 56 43.77

BL175G9 2014 Mar 25 16 34 21.10 −23 56 25.19 C

16 25 49.10 −24 38 31.00

BL175GA 2014 Apr 08 16 26 02.22 −24 29 02.76 C

16 26 57.20 −24 20 05.59

BL175GC 2014 Apr 01 16 27 19.49 −24 41 40.74 C

BL175GR 2014 Jun 05 16 26 42.44 −24 26 26.27 C

16 27 18.18 −24 28 52.99

BL175DY 2014 Aug 29 16 27 20.03 −24 40 29.53 C

16 27 22.96 −24 22 36.6

BL175CR 2014 Oct 07 16 27 30.82 −24 47 27.21 C

16 26 16.31 −24 22 14.00

BL175CS 2014 Oct 12 16 27 18.18 −24 28 52.99 C

16 26 42.44 −24 26 26.27

BL175CT 2014 Oct 15 16 32 11.79 −24 40 21.92 C

16 36 17.50 −24 25 55.41

BL175EX 2015 Feb 27 16 27 30.82 −24 47 27.21 C

16 26 16.31 −24 22 14.00

BL175EY 2015 Mar 02 16 27 18.18 −24 28 52.99 C

16 26 42.438 −24 26 26.27

BL175EZ 2015 Mar 20 16 32 11.79 −24 40 21.92 C

16 36 17.50 −24 25 55.41

BL175F3 2015 Mar 15 16 27 20.03 −24 40 29.53 C

16 27 22.96 −24 22 36.60

BL175F7 2015 Apr 29 16 26 02.22 −24 29 02.76 C

16 26 57.20 −24 20 05.59

BL175FY 2015 Aug 30 16 26 02.22 −24 29 02.76 C

16 26 57.20 −24 20 05.59

BL175FZ 2015 Sep 03 16 27 05.16 −24 20 07.80 C

16 27 20.03 −24 40 29.53

BL175GS 2015 Sep 04 16 30 35.64 −24 34 19.00 C

16 31 20.19 −24 30 01.06

BL175GT 2015 Sep 15 16 27 19.49 −24 41 40.74 X

BL175GU 2015 Sep 19 16 26 47.73 −24 15 37.45 C

16 31 57.16 −24 56 43.77

BL175GW 2015 Oct 04 16 26 29.67 −24 19 05.85 C

16 27 21.82 −24 43 35.99

BL175GX 2015 Oct 06 16 26 42.44 −24 26 26.27 C

16 27 18.18 −24 28 52.99

BL175GV 2015 Oct 11 16 28 04.65 −24 34 56.66 C

BL175GY 2015 Oct 13 16 31 38.58 −25 32 20.08 C

16 32 11.79 −24 40 21.92

BL175CU 2016 Feb 29 16 28 04.65 -24 34 56.66 C

16 32 11.793 -24 40 21.92

BL175F0 2016 Mar 01 16 26 43.76 −24 16 33.40 C

16 31 57.16 -24 56 43.77

BL175F1 2016 Mar 04 16 25 57.512 −24 30 32.11 C

16 26 49.215 −24 20 03.06

BL175F2 2016 Mar 17 16 27 05.16 −24 20 07.80 C

16 27 30.00 −24 38 20.00

BL175F4 2016 Mar 20 16 27 19.493 −24 41 40.74 X

BL175F5 2016 Mar 26 16 26 25.620 -24 24 29.21 C

16 27 21.82 −24 43 35.99

BL175F6 2016 Mar 30 16 30 35.64 −24 34 19.00 C

16 31 20.19 −24 30 01.06

BL175F8 2016 Apr 28 16 26 42.44 −24 26 26.27 C

16 27 18.18 −24 28 52.99
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corrections to the Earth Orientation Parameters used by the

correlator were then applied. Corrections for the rotation of the

RCP and LCP feeds, as well as for voltage offsets in the

samplers, were also applied. Amplitude calibration was done

with the Tsys method, using the provided gain curves and system

temperatures to derive the System Equivalent Flux Density

(SEFD) of each antenna. Instrumental single-band delays were

then determined and removed using fringes detected on a single

scan on the calibrator J1625-2527 or J1627-2427. Global fringe

fitting was run on the main phase calibrator in order to find

residual phase rates. This was done in two steps. First we used

the task FRING without giving a specific source model, applied

the solutions derived, and split and imaged the phase calibrator

data. Then we ran FRING again on the data set with all the

calibration applied except global fringe fitting, and using as a

source model the self-calibrated image of the phase calibrator.

Finally, the phase calibrator was phase-referenced to itself, and

the secondary calibrators, as well as the program sources, were

phase-referenced to the phase calibrator. The rms errors in

source positions achieved with this initial calibration were as

good as 0.01–0.02 mas for the strongest sources (a few mJy in

flux density), and of the order of 0.1–0.3 mas for sub-mJy

sources. However, these errors misrepresent the true errors

because they do not incorporate systematic errors, which

are dominated by unmodelled tropospheric zenith delays,

ionospheric content delays, and atmospheric fluctuations above
the VLBA antennas (Pradel et al. 2006).
Two calibration strategies can be adopted in order to deal

with these systematic errors. One method consists in removing
the tropospheric and clock errors using the all-sky calibrator
blocks (Reid & Brunthaler 2004). These blocks consisted of
observations of many calibrators over a wide range of
elevations taken with 512MHz total bandwidth covered by
16 IFs. The multi-band delay (i.e., the phase slope with
frequency) was derived for each scan and antenna, and used to
model the clock and zenith-path delay errors using the AIPS
task DELZN. The corrections were then exported and applied
to the phase referencing data set before global fringe fitting.
The second method uses the scans on the secondary calibrators
to determine the phase gradient across the sky. The data of the
secondary calibrators are split and self-calibrated after initial
and DELZN corrections are applied. The position offsets of the
secondary calibrators from their respective phase centers are
determined and removed, and residual phases are determined
for all calibrators with the task CALIB. Finally, the AIPS task
ATMCA is used to determine the phase gradients across the
sky and then to correct the phase of all sources. We found that
the corrections incorporated with DELZN decreased the rms
error positions by a factor of up to ∼2 when applied to sources
at more than 1° from the main calibrator. On the other hand,
the non-detection of the secondary calibrator J1625-2417

Figure 1. Spatial distribution of sources discussed in this work. Detected YSOs are shown as blue solid stars, YSO candidates as small magenta open circles, and other
sources as green open squares. The YSOs not detected in our observations are shown as red open stars. The large blue circles indicate the position and size of
representative VLBA fields used to observe our targets. The gray scale represents the extinction map obtained as part of the COMPLETE project (Ridge et al. 2006),
based on 2MASS data (Skrutskie et al. 2006). The gray contour indicates an AV of 4. The inset shows an enlargement of the Lynds 1688 area.
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Table 2

Detected YSOs

GBS-VLA Other Minimum Flux Maximum Flux Minimum Flux Maximum Flux log [Tb (K) ] SED Num. of AV

Namea Identifier at 5 GHz (mJy) at 5 GHz (mJy) at 8 GHz (mJy) at 8 GHz (mJy) Class Detc./Obs.
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

J162556.09-243015.3 WLY2-11a 0.13±0.05 0.27±0.06 L >7.0 Class III 4/5 13

J162556.09-243015.3 WLY2-11b 0.86±0.05 0.60±0.09 7.9 L 2/5 L

J162557.51-243032.1 YLW24 0.21±0.05 1.35±0.06 0.25±0.06 8.0 Class III 4/5 13

J162603.01-242336.4 DOAR21 1.98±0.11 14.97±0.14 4.13±0.07 5.66±0.07 9.2 Class III 7/7 12

J162616.84-242223.5 LFAMP1 0.15±0.06 0.47±0.04 L 6.8 Class II 2/6 20

J162622.38-242253.3 LFAM2 0.30±0.05 0.38±0.07 <0.09 >6.7 Class II 3/7 20

J162625.62-242429.2 LFAM4 0.66±0.12 <0.12 >6.9 Class I 1/14 17

J162629.67-241905.8 LFAM8 0.37±0.06 1.18±0.13 0.26±0.07 0.30±0.05 7.3 Class III 7/9 19

J162634.17-242328.4 S1b 5.56±0.15 7.58±0.07 3.27±0.14 9.2 Class III 8/8 18

J162642.44-242626.1 LFAM15a 0.28±0.05 0.93±0.06 0.25±0.06 1.50±0.06 7.8 Class III 10/10 18

J162642.44-242626.1 LFAM15b 0.15±0.05 0.35±0.07 0.18±0.05 1.13±0.05 6.8 L 7/10 L

J162643.76-241633.4 VSGG11a 0.95±0.04 1.53±0.20 L 8.9 Class III 7/7 14

J162643.76-241633.4 VSGG11b 0.58±0.06 0.82±0.05 L 7.7 L 3/7 L

J162649.23-242003.3 LFAM18 0.12±0.03 1.23±0.07 <0.09 7.6 Class III 5/9 18

J162651.69-241441.5 VSSG10 0.53±0.07 <0.06 7.1 L 1/5 12

J162705.16-242007.8 VSSG21 3.69±0.07 <0.09 8.4 Class III 1/11 19

J162718.17-242852.9 YLW12Ba 0.70±0.06 1.49±0.05 0.84±0.05 4.10±0.08 8.7 Class III 9/9 26

J162718.17-242852.9 YLW12Bb 0.42±0.06 9.89±0.11 1.19±0.08 1.33±0.05 8.9 L 9/9 L

J162718.17-242852.9 YLW12Bc 0.45±0.06 1.16±0.09 0.17±0.04 0.74±0.08 7.8 L 7/9 L

J162719.50-244140.3 YLW13A 0.35±0.05 0.31±0.08 0.71±0.07 7.0 Class III 3/11 22

J162721.81-244335.9 ROXN39a 0.22±0.07 1.44±0.07 0.24±0.06 0.44±0.08 7.9 Class III 7/15 20

J162721.81-244335.9 ROXN39b 0.22±0.05 0.81±0.06 0.57±0.09 7.6 L 5/15 L

J162724.19-242929.8 GY257 0.97±0.06 <0.09 >7.0 Class III 1/8 13

J162726.90-244050.8 YLW15 0.18±0.04 0.25±0.08 0.23±0.08 0.33±0.06 7.1 Class I 5/11 25

J162730.82-244727.2 DROXO71 0.30±0.05 0.91±0.05 0.60±0.07 1.15±0.09 8.0 Class III 8/9 8

J162804.65-243456.6 ROXN78 0.38±0.04 <0.12 >6.6 Class II 1/4 20

J163035.63-243418.9 SFAM87a 0.48±0.05 2.64±0.09 L 8.1 CTTS 4/4 3

J163035.63-243418.9 SFAM87b 0.28±0.06 1.35±0.06 L 7.8 L 3/4 L

J163115.01-243243.9 ROX42B 0.21±0.06 0.38±0.08 <0.12 7.0 WTTS 2/5 3

J163120.18-243001.0 ROX43B 0.20±0.05 1.20±0.08 <0.12 >7.1 WTTS 3/5 3

J163152.10-245615.7 LDN1689IRS5 0.23±0.05 3.17±0.08 0.64±0.07 8.3 FS 4/4 18

J163200.97-245643.3 WLY2-67 0.18±0.05 0.41±0.07 L >6.6 Class I 3/3 14

J163211.79-244021.8 DOAR51a 0.40±0.07 3.14±0.06 0.69±0.08 8.5 WTTS/Class II 7/7 8

J163211.79-244021.8 DOAR51b 0.24±0.06 0.68±0.07 0.47±0.08 7.6 L 7/7

Notes. Reported sources have flux densities greater than s6 and s5 in the cases of one or several detections, respectively. Non-detections are indicated by giving an upper flux density limit of s3 .
a
GBS-VLA stands for the Gouldʼs Belt Very Large Array Survey (Dzib et al. 2013).

b
This star is resolved into a double source in past VLBA observations.
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prevented us from applying the corrections from ATMCA in
most projects. We attempted to derive these corrections using
the only detected calibrators J1627-2427 and J1625-2527, but
this was limited to targets that are in line (within an angle of
45 ) with the two calibrators, and no significant improvement

in the rms position error or image quality was achieved.
Consequently, for the epochs taken during the fall of 2015 and
spring of 2016, we replaced the secondary calibrator J1625-
2417 with J1633-2557. This calibrator is well detected at both
5 and 8 GHz, and enabled us to apply the ATMCA corrections
in the most recent projects. After application of ATMCA, the
rms error of the position decreased, in some cases, to a quarter
of its original value.

For observations where several phase centers are observed
within a given primary beam, the calibration strategy described
previously was applied to the primary phase center data. The
other phase center data were calibrated by simply copying
the final calibration (CL) tables, after appropriate editing with
the AIPS task TABED to account for different source ID
numbering.

Finally, we imaged the calibrated visibilities using a pixel
size in the range of 50–100 μas and pure natural weighting
(ROBUST=+5 in AIPS). We constructed maps as large as
~ 1. 2 to search for our sources. Typical angular resolutions are
4 mas×2 mas (∼0.4 au at the distance of Ophiuchus) and 3
mas×0.9 mas (∼0.3 au) at 5 and 8 GHz, respectively. The
best noise level was achieved in the images at 5 GHz, and was
of order of m -25 Jy beam 1. The fluxes of sources observed in
data with multiple field centers were corrected for primary
beam attenuation. In doing this, we assumed that the primary
beam response of the VLBA 25 m antennas is similar to that for
the VLA 25 m antennas. The new AIPS task CLVLB, which
incorporates antenna beam parameters for the VLBA, could be
used for this purpose, but its performance is still being tested.

3. VLBA DETECTIONS

In Table 2 we list the YSOs detected in the Ophiuchus
region. Columns (1) and (2) give the VLA position of the
sources and their names, respectively. We report sources with
flux densities above a 6σ detection threshold if they are
detected in only one epoch. On the other hand, for sources with
more than one detection, a threshold (in individual epochs) of
s5 was used. We give the minimum and maximum total flux
densities measured at both frequencies in columns (3) to (6),
but we note that some sources were not observed at 8 GHz. In
epochs where sources were observed but not detected, we give
an upper flux density limit of 3σ. Six objects are resolved into
multiple components; for those, we report the flux densities for
each component separately. Brightness temperature (see
Appendix A.2 for details) is given in column (7). The
evolutionary status of the detected YSOs is indicated in
column (8), and the number of detections and observed epochs
in column (9). Notice that the number of observations carried
out toward each source differs considerably between sources.
This is partly because our program was running in dynamic
scheduling during the first 1.5 years, and partly because
observations on all the 50 targeted YSOs were not fully
completed in each equinox, even during the fixed-date
observations. The spatial distribution of our VLBA-detected
sources is shown in Figure 1. The majority of the YSOs belong
to the core, with only 5 YSOs distributed across the eastern

streamer cloud Lynds 1689. The other detected sources are
more evenly distributed across the core and Lynds 1689.

4. ASTROMETRY

For all the objects detected with the VLBA, we have
measured the source positions at each epoch by fitting two-

dimensional Gaussians to the images, using the task JMFIT in

AIPS. The resulting values are listed in Table 3. Having
identified single, double, and multiple sources in our images,

we used different approaches for the determination of the
source astrometric parameters. We will first describe the

approach followed for sources that appear to be single stars,

or sources that show evidence of multiplicity but for which we
do not have enough data to perform a more complex analysis.

4.1. Single Stars

Source positions were modeled to derive the trigonometric
parallax (ϖ), proper motion (ma, md), and mean position (a0,
d0). The fits were performed by minimizing the associated c2
(e.g., Loinard et al. 2007) and solving for the five astrometric
elements simultaneously. For the errors in the positions at each

epoch, we used the statistical errors provided by JMFIT, which
roughly represent the expected theoretical precision of VLBA

astrometry. However, systematic errors may significantly

contribute to the astrometric accuracy (Pradel et al. 2006) and
affect the derived astrometric parameters.
We estimate the systematic errors in two different ways:

First, we use the empirical relation found by Pradel et al.

(2006), according to which the VLBA astrometric accuracy
scales linearly with the angular separation between the source

and the phase calibrator. In the core, sources are separated from

the phase calibrator, J1627-2427, by up to 0°.4. Given this
angular separation, and a typical declination of ~- 25 , the

expected VLBA rms astrometric errors a d dD + Dcos 2 2( ) ( )

are m~210 as. For this calculation, we have assumed that the
rms errors for source coordinates, VLBA station coordinates,

Earth orientation parameters (EOPs), and wet tropospheric

zenith-path delays all contribute together (Tables 3 and 4, and
Equation (2) in Pradel et al. 2006).
The systematic errors were also estimated by quadratically

adding an error to the statistical errors given by JMFIT until a

reduced c2 of 1 was achieved in the astrometric fits. These
systematic errors are in general several times larger than those

predicted by the empirical relation. We note, however, that in

their simulations, Pradel et al. (2006) assumed a full track on
the source, while in our observations the source is tracked over

less than 4 hr, resulting in a poorer -u v( ) coverage. We used

the latter approach (based on a measured reduced c2) to deal
with systematic errors. As stated previously, these errors were

added quadratically to the statistical errors of each individual
epoch and used in the last iteration of the fits.
In the following subsections, we will comment separately on

a few of the critical sources describing the additional data that

were taken from the VLBA archive, when available, and

detailing the quality of the fits. In Table 4, we provide the
resulting astrometric parameters and distances for the complete

sample. The corresponding measured source positions and best
fits are shown in Figure 2.
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Table 3

Measured Source Positions

Julian Day α (J2000.0) sa δ (J2000.0) sd
DROXO71

2456011.96538 16 27 30.83414340 0.00000470 −24 47 27.142107 0.000161

2456172.52613 16 27 30.83298666 0.00000234 −24 47 27.153542 0.000071

2456471.70936 16 27 30.83302924 0.00000177 −24 47 27.178102 0.000063

2456537.53271 16 27 30.83267868 0.00000191 −24 47 27.182477 0.000065

2456718.03765 16 27 30.83359624 0.00000260 −24 47 27.198462 0.000085

2456937.93345 16 27 30.83241321 0.00000472 −24 47 27.212846 0.000216

2457081.04343 16 27 30.83323569 0.00000437 −24 47 27.227091 0.000170

2457473.99603 16 27 30.83275199 0.00000469 −24 47 27.256316 0.000188

YLW13A

2456026.92477 16 27 19.49265640 0.00000349 −24 41 40.735293 0.000105

2457097.02778 16 27 19.50365400 0.00001071 −24 41 40.786841 0.000421

2457281.47003 16 27 19.49036366 0.00000974 −24 41 40.828186 0.000183

ROXN39

First source:

2456026.92477 16 27 21.81663353 0.00000626 −24 43 35.989095 0.000146

2456748.92808 16 27 21.81566119 0.00000699 −24 43 36.052317 0.000246

2457269.55653 16 27 21.81365382 0.00000174 −24 43 36.095543 0.000068

2457281.47003 16 27 21.81365131 0.00000380 −24 43 36.096674 0.000110

2457300.44295 16 27 21.81366628 0.00001385 −24 43 36.098921 0.000329

2457467.95944 16 27 21.81426003 0.00000653 −24 43 36.115527 0.000252

2457473.99603 16 27 21.81422633 0.00000534 −24 43 36.115494 0.000195

Second source:

2456748.92808 16 27 21.81377141 0.00000373 −24 43 36.049837 0.000135

2456899.06892 16 27 21.81269783 0.00000865 −24 43 36.052231 0.000272

2456937.93345 16 27 21.81279168 0.00001167 −24 43 36.054796 0.000340

2457467.95944 16 27 21.81361924 0.00000366 −24 43 36.075851 0.000106

2457473.99603 16 27 21.81361906 0.00000654 −24 43 36.075317 0.000348

YLW15

2456026.92477 16 27 26.91975530 0.00000512 −24 40 51.171077 0.000169

2456727.04112 16 27 26.91809446 0.00000928 −24 40 51.223581 0.000233

2456748.92808 16 27 26.91792129 0.00001583 −24 40 51.225402 0.000707

2457465.02060 16 27 26.91614817 0.00000759 −24 40 51.276500 0.000342

2457467.95944 16 27 26.91612508 0.00000712 −24 40 51.276834 0.000241

GBS-VLA J162547.68-243735.7

2456038.89200 16 25 47.68461899 0.00000324 −24 37 35.718454 0.000151

2456221.39490 16 25 47.68461690 0.00000795 −24 37 35.718318 0.000258

2456742.00017 16 25 47.68465538 0.00000741 −24 37 35.718683 0.000312

ROXN78

2456730.03293 16 28 04.64323318 0.00000338 −24 34 56.574659 0.000153

YLW12B

First source:

2453529.77467 16 27 18.17199790 0.00000343 −24 28 52.790647 0.000136

2453887.79448 16 27 18.17278283 0.00000290 −24 28 52.816450 0.000123

2456058.83738 16 27 18.17634770 0.00000188 −24 28 52.966427 0.000074

2456269.26236 16 27 18.17718912 0.00000086 −24 28 52.988798 0.000037

2456538.52830 16 27 18.17625293 0.00000233 −24 28 53.000965 0.000096

2456720.03219 16 27 18.17804747 0.00000520 −24 28 53.020088 0.000168

2456813.77622 16 27 18.17770160 0.00000143 −24 28 53.029251 0.000049

2456943.42054 16 27 18.17733336 0.00000136 −24 28 53.037170 0.000051

2457084.03523 16 27 18.17785280 0.00000290 −24 28 53.041694 0.000105

2457302.43748 16 27 18.17777858 0.00000244 −24 28 53.063201 0.000093

2457506.87788 16 27 18.17832802 0.00000112 −24 28 53.079027 0.000040

Second source:

2453529.77467 16 27 18.17173883 0.00000540 −24 28 52.791325 0.000204

2453887.79448 16 27 18.17266976 0.00000411 −24 28 52.810830 0.000122
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Table 3

(Continued)

Julian Day α (J2000.0) sa δ (J2000.0) sd
2456058.83738 16 27 18.17665980 0.00000125 −24 28 52.971988 0.000050

2456269.26236 16 27 18.17625269 0.00000295 −24 28 52.979221 0.000124

2456538.52830 16 27 18.17657726 0.00000150 −24 28 53.003249 0.000053

2456720.03219 16 27 18.17732771 0.00000412 −24 28 53.015451 0.000142

2456813.77622 16 27 18.17673865 0.00000274 −24 28 53.018125 0.000099

2456943.42054 16 27 18.17671228 0.00000435 −24 28 53.026377 0.000135

2457084.03523 16 27 18.17822254 0.00000035 −24 28 53.046405 0.000013

2457302.43748 16 27 18.17686941 0.00000315 −24 28 53.053913 0.000128

2457506.87788 16 27 18.17801911 0.00000161 −24 28 53.071326 0.000059

Third source:

2453529.77467 16 27 18.16380766 0.00000229 −24 28 52.878764 0.000071

2453818.98287 16 27 18.16367158 0.00000473 −24 28 52.899861 0.000168

2456058.83738 16 27 18.15802440 0.00000540 −24 28 53.043846 0.000282

2456269.26236 16 27 18.15742392 0.00000451 −24 28 53.055984 0.000204

2456538.52830 16 27 18.15629959 0.00000497 −24 28 53.072046 0.000126

2456813.77622 16 27 18.15608788 0.00000692 −24 28 53.090076 0.000206

2457084.03523 16 27 18.15614139 0.00000292 −24 28 53.109045 0.000096

2457302.43748 16 27 18.15467809 0.00000502 −24 28 53.120030 0.000143

2457506.87788 16 27 18.15498736 0.00000543 −24 28 53.134508 0.000170

GY257

2457506.87788 16 27 24.19599570 0.00000199 −24 29 29.992344 0.000075

LFAM15

First source:

2453617.53443 16 26 42.44072639 0.00000589 −24 26 26.085858 0.000142

2453714.26955 16 26 42.44106573 0.00000587 −24 26 26.090142 0.000259

2453796.04568 16 26 42.44134043 0.00000399 −24 26 26.096076 0.000106

2456059.83431 16 26 42.43834146 0.00000119 −24 26 26.270103 0.000040

2456270.25963 16 26 42.43790745 0.00000641 −24 26 26.280485 0.000161

2456538.52830 16 26 42.43667908 0.00000321 −24 26 26.294376 0.000107

2456720.03219 16 26 42.43733099 0.00000340 −24 26 26.312356 0.000119

2456813.77622 16 26 42.43676227 0.00000259 −24 26 26.323559 0.000087

2456943.42054 16 26 42.43645660 0.00000488 −24 26 26.335835 0.000178

2457084.03523 16 26 42.43733727 0.00000560 −24 26 26.348959 0.000259

2457302.43748 16 26 42.43619859 0.00000350 −24 26 26.361949 0.000215

2457473.99603 16 26 42.43681431 0.00000819 −24 26 26.372860 0.000381

2457506.87788 16 26 42.43657742 0.00000354 −24 26 26.374173 0.000146

Second source:

2456059.83431 16 26 42.43746443 0.00000139 −24 26 26.259340 0.000047

2456270.25963 16 26 42.43721529 0.00000590 −24 26 26.278386 0.000163

2456720.03219 16 26 42.43759083 0.00001060 −24 26 26.317776 0.000382

2456813.77622 16 26 42.43677820 0.00000775 −24 26 26.316132 0.000259

2456943.42054 16 26 42.43601697 0.00000783 −24 26 26.320697 0.000297

2457302.43748 16 26 42.43531577 0.00001382 −24 26 26.348716 0.000510

2457506.87788 16 26 42.43578894 0.00001213 −24 26 26.368869 0.000282

DOAR21

2453621.52350 16 26 03.01891197 0.00000724 −24 23 36.343197 0.000148

2453691.33229 16 26 03.01889886 0.00000304 −24 23 36.349153 0.000063

2453744.18763 16 26 03.01910860 0.00000745 −24 23 36.355709 0.000207

2453755.15740 16 26 03.01918629 0.00000284 −24 23 36.355807 0.000115

2453822.97193 16 26 03.01896398 0.00000511 −24 23 36.361907 0.000138

2453890.78627 16 26 03.01818785 0.00000166 −24 23 36.364290 0.000075

2453971.56511 16 26 03.01698794 0.00000267 −24 23 36.369931 0.000114

2454092.23452 16 26 03.01768929 0.00000161 −24 23 36.380009 0.000052

2454321.60671 16 26 03.01610693 0.00000490 −24 23 36.395975 0.000109

2454331.07942 16 26 03.01612164 0.00000175 −24 23 36.395067 0.000052

2454353.51917 16 26 03.01600351 0.00000262 −24 23 36.398021 0.000057

2454365.48657 16 26 03.01588946 0.00000202 −24 23 36.398070 0.000067

2456158.56345 16 26 03.00879650 0.00000023 −24 23 36.532098 0.000008

2456271.25813 16 26 03.00899222 0.00000045 −24 23 36.541056 0.000014

2456537.53271 16 26 03.00730547 0.00000110 −24 23 36.559579 0.000037
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(Continued)

Julian Day α (J2000.0) sa δ (J2000.0) sd
2456718.03765 16 26 03.00766323 0.00000030 −24 23 36.575357 0.000010

2456937.93345 16 26 03.00579982 0.00000097 −24 23 36.589569 0.000036

2457081.04343 16 26 03.00621579 0.00000166 −24 23 36.602285 0.000058

2457300.44295 16 26 03.00441795 0.00000725 −24 23 36.615740 0.000215

LFAM8

2456180.50470 16 26 29.67379969 0.00000658 −24 19 05.899181 0.000225

2456283.22537 16 26 29.67437563 0.00000298 −24 19 05.908297 0.000094

2456537.53271 16 26 29.67335645 0.00000458 −24 19 05.927633 0.000138

2457081.04343 16 26 29.67375046 0.00000292 −24 19 05.974041 0.000131

2457300.44295 16 26 29.67253899 0.00000614 −24 19 05.990153 0.000254

2457449.06429 16 26 29.67333716 0.00000274 −24 19 06.003299 0.000093

2457452.05609 16 26 29.67333731 0.00000416 −24 19 06.004169 0.000133

VSSG10

2457449.06429 16 26 51.69086628 0.00000458 −24 14 41.978736 0.000196

YLW24

2456258.29307 16 25 57.51212530 0.00000469 −24 30 32.114725 0.000187

2456755.96194 16 25 57.51177560 0.00000627 −24 30 32.152014 0.000205

2457141.90491 16 25 57.51110685 0.00000164 −24 30 32.177539 0.000068

2457452.05609 16 25 57.51095598 0.00000448 −24 30 32.199319 0.000150

WLY2-11

First source:

2456755.96194 16 25 56.09115161 0.00000906 −24 30 15.304290 0.000213

2457141.90491 16 25 56.09021133 0.00000936 −24 30 15.334454 0.000522

2457265.56761 16 25 56.08917305 0.00001081 −24 30 15.340167 0.000341

2457452.05609 16 25 56.08988393 0.00000486 −24 30 15.353840 0.000178

Second source:

2456258.29307 16 25 56.09091678 0.00000596 −24 30 15.259179 0.000122

2457452.05609 16 25 56.09085688 0.00000182 −24 30 15.339724 0.000071

S1

First source:

2453545.73099 16 26 34.17395362 0.00000172 −24 23 28.427300 0.000057

2453628.50402 16 26 34.17368732 0.00000218 −24 23 28.432353 0.000096

2453722.24761 16 26 34.17436628 0.00000096 −24 23 28.441953 0.000041

2453810.00745 16 26 34.17465184 0.00000263 −24 23 28.451876 0.000080

2453889.78900 16 26 34.17402527 0.00000117 −24 23 28.456156 0.000046

2453969.57055 16 26 34.17330377 0.00000147 −24 23 28.462699 0.000057

2454256.78420 16 26 34.17389517 0.00000046 −24 23 28.479576 0.000016

2454260.77321 16 26 34.17405536 0.00000056 −24 23 28.476906 0.000019

2454264.76220 16 26 34.17381615 0.00000041 −24 23 28.479414 0.000014

2454268.75117 16 26 34.17387600 0.00000102 −24 23 28.479414 0.000027

2454272.74050 16 26 34.17376304 0.00000050 −24 23 28.480753 0.000018

2454276.72950 16 26 34.17380110 0.00000045 −24 23 28.482369 0.000013

2454280.71866 16 26 34.17371870 0.00000069 −24 23 28.481435 0.000025

2454284.70775 16 26 34.17367060 0.00000047 −24 23 28.480848 0.000015

2456278.23902 16 26 34.17330156 0.00000072 −24 23 28.630001 0.000022

2456537.53271 16 26 34.17211016 0.00000072 −24 23 28.648873 0.000024

2456718.03765 16 26 34.17335985 0.00000064 −24 23 28.661727 0.000022

2456937.93345 16 26 34.17244477 0.00000091 −24 23 28.677542 0.000031

2457081.04343 16 26 34.17321517 0.00000070 −24 23 28.692245 0.000023

2457300.44295 16 26 34.17207637 0.00000093 −24 23 28.702186 0.000032

2457473.99603 16 26 34.17308895 0.00000032 −24 23 28.718119 0.000012

2457506.87788 16 26 34.17292128 0.00000050 −24 23 28.720701 0.000016

Second source:

2453889.78900 16 26 34.17355935 0.00000304 −24 23 28.458375 0.000076

2454272.74050 16 26 34.17202332 0.00000178 −24 23 28.499403 0.000067

2454276.72950 16 26 34.17205479 0.00000249 −24 23 28.500747 0.000087

2454280.71866 16 26 34.17195583 0.00000592 −24 23 28.499485 0.000245
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Table 3

(Continued)

Julian Day α (J2000.0) sa δ (J2000.0) sd
LFAM4

2456538.52830 16 26 25.62311834 0.00000460 −24 24 29.340081 0.000167

LFAM2

2457081.04343 16 26 22.39009598 0.00000517 −24 22 53.396808 0.000267

2457300.44295 16 26 22.38891477 0.00000858 −24 22 53.410054 0.000331

2457473.99603 16 26 22.38959724 0.00000460 −24 22 53.425842 0.000181

VSSG21

2456755.96194 16 27 05.16439110 0.00000056 −24 20 08.102812 0.000024

GBS-VLA J163151.93-245617.4

2456409.87863 16 31 51.92835399 0.00000519 −24 56 17.490313 0.000168

2456741.00290 16 31 51.92788684 0.00001420 −24 56 17.512182 0.000360

2457449.06429 16 31 51.92686645 0.00000519 −24 56 17.565067 0.000192

GBS-VLA J163202.39-245710.0

2456409.87863 16 32 02.39822000 0.00000432 −24 57 10.343815 0.000154

2456741.00290 16 32 02.39823221 0.00002166 −24 57 10.344630 0.000553

LDN1689IRS5

2456409.87863 16 31 52.11386300 0.00000351 −24 56 16.009652 0.000093

2456741.00290 16 31 52.11363279 0.00000864 −24 56 16.030780 0.000269

2457285.48390 16 31 52.11201000 0.00000095 −24 56 16.062292 0.000034

2457449.06429 16 31 52.11274267 0.00000786 −24 56 16.074290 0.000235

GBS-VLA J163138.57-253220.0

2456433.81310 16 31 38.57911827 0.00000420 −25 32 20.078468 0.000158

2456541.52018 16 31 38.57910247 0.00001600 −25 32 20.080138 0.000563

2456723.02399 16 31 38.57913786 0.00000345 −25 32 20.076607 0.000137

2457309.41870 16 31 38.57913003 0.00000375 −25 32 20.077101 0.000121

ROX42B

2456560.49689 16 31 15.01221991 0.00001035 −24 32 44.039658 0.000379

2457477.98511 16 31 15.01218127 0.00001539 −24 32 44.101781 0.000549

ROX43B

2456560.49689 16 31 20.18111995 0.00000200 −24 30 01.018464 0.000076

2456731.03020 16 31 20.18256906 0.00000752 −24 30 01.028170 0.000365

2457477.98511 16 31 20.18076137 0.00001494 −24 30 01.082333 0.000455

DOAR51

First source:

2456449.77302 16 32 11.79261358 0.00000197 −24 40 21.924420 0.000089

2456539.52565 16 32 11.79223385 0.00000579 −24 40 21.928946 0.000216

2456721.02946 16 32 11.79332766 0.00000435 −24 40 21.943832 0.000148

2456946.41259 16 32 11.79248077 0.00000489 −24 40 21.958212 0.000215

2457102.07550 16 32 11.79325983 0.00000059 −24 40 21.971486 0.000023

2457309.41870 16 32 11.79227112 0.00000290 −24 40 21.984119 0.000103

2457448.12863 16 32 11.79303712 0.00000227 −24 40 21.997374 0.000079

Second source:

2456449.77302 16 32 11.79007110 0.00000269 −24 40 21.944770 0.000109

2456539.52565 16 32 11.78935516 0.00001089 −24 40 21.948446 0.000263

2456721.02946 16 32 11.78995501 0.00001231 −24 40 21.961295 0.000497

2456946.41259 16 32 11.78863803 0.00000746 −24 40 21.973309 0.000310

2457102.07550 16 32 11.78921243 0.00000357 −24 40 21.982029 0.000146

2457309.41870 16 32 11.78806957 0.00000361 −24 40 21.990150 0.000124

2457448.12863 16 32 11.78882778 0.00000293 −24 40 21.999831 0.000118

SFAM200

2456458.74485 16 32 45.23630782 0.00000791 −24 36 47.331480 0.000179
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Julian Day α (J2000.0) sa δ (J2000.0) sd
2456541.52018 16 32 45.23628708 0.00001362 −24 36 47.332569 0.000400

2456723.02399 16 32 45.23630881 0.00000937 −24 36 47.331435 0.000298

SSTc2d J163027.7-243300

2456731.03020 16 30 27.69715982 0.00000740 −24 33 00.166706 0.000227

2457270.55380 16 30 27.69716395 0.00000719 −24 33 00.166547 0.000347

SFAM212

2456174.52068 16 36 17.50047169 0.00000084 −24 25 55.410771 0.000027

2456539.52565 16 36 17.50048182 0.00000235 −24 25 55.411813 0.000080

2456721.02946 16 36 17.50043917 0.00000329 −24 25 55.411946 0.000108

2456946.41259 16 36 17.50048274 0.00000525 −24 25 55.412111 0.000178

2457102.07550 16 36 17.50047251 0.00000116 −24 25 55.411264 0.000047

LFAMP1

2456718.03765 16 26 16.84931422 0.00000236 −24 22 23.537591 0.000088

2456937.93345 16 26 16.84846826 0.00001253 −24 22 23.550740 0.000517

LFAM13

2456720.03219 16 26 35.33007904 0.00001742 −24 24 05.378855 0.000554

2456937.93345 16 26 35.33016006 0.00001436 −24 24 05.378401 0.000281

2456943.42054 16 26 35.33013612 0.00000787 −24 24 05.376639 0.000298

2457302.43748 16 26 35.33013402 0.00001301 −24 24 05.377817 0.000371

GBS-VLA J162718.25-243334.8

2457084.03523 16 27 18.23431162 0.00000882 −24 33 34.951660 0.000347

SFAM130

2456721.02946 16 32 10.77123123 0.00000769 −24 38 27.498627 0.000233

2456946.41259 16 32 10.77132165 0.00001042 −24 38 27.496690 0.000383

2457102.07550 16 32 10.77128863 0.00001343 −24 38 27.497429 0.000317

2457309.41870 16 32 10.77126826 0.00000644 −24 38 27.497571 0.000250

SSTc2d J163211.1-243651

2456539.52565 16 32 11.08492873 0.00000804 −24 36 50.916471 0.000549

2456721.02946 16 32 11.08495049 0.00000963 −24 36 50.915528 0.000274

2456946.41259 16 32 11.08491744 0.00000818 −24 36 50.917097 0.000224

2457102.07550 16 32 11.08494017 0.00000383 −24 36 50.915872 0.000177

2457309.41870 16 32 11.08495182 0.00000556 −24 36 50.915556 0.000282

GBS-VLA J163212.25-243643.7

2457102.07550 16 32 12.24716110 0.00000524 −24 36 43.555532 0.000196

2457309.41870 16 32 12.24719840 0.00001393 −24 36 43.555066 0.000612

GBS-VLA J163213.92-244407.8

2457309.41870 16 32 13.92922573 0.00000974 −24 44 07.782062 0.000186

SSTc2d J163227.4-243951

2456721.02946 16 32 27.40769338 0.00002030 −24 39 51.454135 0.000725

2457102.07550 16 32 27.40765118 0.00000920 −24 39 51.456859 0.000382

2457309.41870 16 32 27.40762110 0.00001175 −24 39 51.455911 0.000659

SSTc2d J163231.2-244014

2457102.07550 16 32 31.16848721 0.00000770 −24 40 14.638470 0.000295

2457309.41870 16 32 31.16851261 0.00000859 −24 40 14.639088 0.000376

GBS-VLA J162713.06-241817.0

2457269.55653 16 27 13.06069106 0.00000787 −24 18 17.090808 0.000338

2457465.02060 16 27 13.06072912 0.00001137 −24 18 17.092477 0.000381

ROC25
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2456555.51075 16 27 29.23368916 0.00000582 −24 17 55.411620 0.000156

2456727.04112 16 27 29.23368444 0.00000273 −24 17 55.411606 0.000073

2456899.06892 16 27 29.23371052 0.00000246 −24 17 55.411246 0.000075

2457097.02778 16 27 29.23368684 0.00000476 −24 17 55.411581 0.000139

2457269.55653 16 27 29.23368353 0.00000548 −24 17 55.411757 0.000137

ROC26

2456555.51075 16 27 34.55992198 0.00000920 −24 20 20.725049 0.000281

2456727.04112 16 27 34.55990816 0.00000510 −24 20 20.724976 0.000176

2456899.06892 16 27 34.55991988 0.00000299 −24 20 20.725208 0.000104

2457097.02778 16 27 34.55991770 0.00000610 −24 20 20.725197 0.000177

2457269.55653 16 27 34.55988071 0.00000902 −24 20 20.725929 0.000350

SSTc2d J163032.3-243128

2456560.49689 16 30 32.26027376 0.00000447 −24 31 28.011713 0.000186

2456731.03020 16 30 32.26025039 0.00000216 −24 31 28.012042 0.000067

2457270.55380 16 30 32.26027063 0.00000352 −24 31 28.012434 0.000131

ROC49

2456560.49689 16 31 09.78490899 0.00000944 −24 30 08.324997 0.000282

2456731.03020 16 31 09.78489672 0.00000537 −24 30 08.325067 0.000171

2457270.55380 16 31 09.78491218 0.00000441 −24 30 08.324410 0.000184

SSTc2d J163033.2-243039

2456731.03020 16 30 33.25165317 0.00000638 −24 30 38.884059 0.000206

GBS-VLA J163115.25-243313.8

2456731.03020 16 31 15.25452244 0.00000545 −24 33 13.781612 0.000281

2457477.98511 16 31 15.25455673 0.00002498 −24 33 13.781713 0.000755

ROC52

2456560.49689 16 31 20.13897283 0.00000266 −24 29 28.542211 0.000089

2456731.03020 16 31 20.13896190 0.00000060 −24 29 28.542334 0.000023

2457270.55380 16 31 20.13897246 0.00000075 −24 29 28.541947 0.000026

SFAM87

First source:

2454620.78761 16 30 35.63476219 0.00000484 −24 34 18.958646 0.000167

2454785.33715 16 30 35.63494522 0.00000500 −24 34 18.970301 0.000172

2454877.08587 16 30 35.63580491 0.00000407 −24 34 18.978334 0.000165

2456560.49689 16 30 35.63166911 0.00000102 −24 34 19.064773 0.000040

2456731.03020 16 30 35.63203197 0.00000362 −24 34 19.082480 0.000121

2457270.55380 16 30 35.62974397 0.00000151 −24 34 19.139299 0.000050

2457477.98511 16 30 35.63098169 0.00000835 −24 34 19.163958 0.000267

Second source:

2454540.00885 16 30 35.63655437 0.00000135 −24 34 18.935779 0.000053

2454620.78761 16 30 35.63568452 0.00000435 −24 34 18.937621 0.000148

2454698.57472 16 30 35.63478278 0.00000464 −24 34 18.939787 0.000147

2454785.33715 16 30 35.63468005 0.00000557 −24 34 18.946096 0.000212

2454877.08587 16 30 35.63485533 0.00000211 −24 34 18.954888 0.000079

2454967.83741 16 30 35.63402510 0.00000481 −24 34 18.962548 0.000165

2456731.03020 16 30 35.63287869 0.00000291 −24 34 19.118843 0.000116

2457270.55380 16 30 35.63143895 0.00000147 −24 34 19.133256 0.000054

2457477.98511 16 30 35.63152547 0.00001503 −24 34 19.142294 0.000522

SSTc2d J163130.6-243352

2456560.49689 16 31 30.62178183 0.00001008 −24 33 51.512104 0.000239

2456731.03020 16 31 30.62181139 0.00000426 −24 33 51.512137 0.000167

2457270.55380 16 31 30.62177163 0.00000812 −24 33 51.511820 0.000319

GBS-VLA J163036.26-243135.3

2456560.49689 16 30 36.26501151 0.00000629 −24 31 35.400645 0.000275
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4.1.1. DROXO 71

The model that assumes a uniform and linear proper motion

produces a good fit to the data. However, we discarded the last

detection because it degrades the quality of the fit. We ignored
the source of the error that may be introduced in this particular
epoch, but we found that the “expected” position from the fit to
the first seven epochs was on a sidelobe.

Table 3

(Continued)

Julian Day α (J2000.0) sa δ (J2000.0) sd
2456731.03020 16 30 36.26500965 0.00000206 −24 31 35.401147 0.000078

2457270.55380 16 30 36.26502326 0.00000408 −24 31 35.401258 0.000142

VSGG11

First source:

2456722.00179 16 26 43.75569790 0.00000130 −24 16 33.615170 0.000060

2456755.96194 16 26 43.75550380 0.00000342 −24 16 33.618593 0.000139

2457141.90491 16 26 43.75454490 0.00000505 −24 16 33.658504 0.000212

2457265.56761 16 26 43.75352207 0.00000313 −24 16 33.670179 0.000132

2457285.48390 16 26 43.75347972 0.00000172 −24 16 33.671690 0.000055

2457449.06429 16 26 43.75415819 0.00000107 −24 16 33.691930 0.000043

2457452.05609 16 26 43.75415976 0.00000210 −24 16 33.692895 0.000076

Second source:

2457285.48390 16 26 43.75384015 0.00000355 −24 16 33.678776 0.000123

2457449.06429 16 26 43.75459284 0.00000210 −24 16 33.689691 0.000089

2457452.05609 16 26 43.75456000 0.00000788 −24 16 33.689666 0.000349

SSTc2d J163154.5-245217

2456741.00290 16 31 54.49445738 0.00001834 −24 52 17.136283 0.000774

2457449.06429 16 31 54.49438170 0.00001014 −24 52 17.138334 0.000276

WLY2-67

2456741.00290 16 32 00.97871474 0.00001192 −24 56 43.413340 0.000456

2457285.48390 16 32 00.97716307 0.00000733 −24 56 43.446632 0.000312

2457449.06429 16 32 00.97790521 0.00001256 −24 56 43.460244 0.000403

LFAM18

2456722.00179 16 26 49.22836555 0.00000789 −24 20 03.414117 0.000375

2456755.96194 16 26 49.22819914 0.00000199 −24 20 03.416423 0.000071

2457141.90491 16 26 49.22715919 0.00000817 −24 20 03.438613 0.000336

2457265.56761 16 26 49.22608389 0.00000392 −24 20 03.441434 0.000147

2457452.05609 16 26 49.22669248 0.00000861 −24 20 03.449981 0.000452

LFAM17

2456722.00179 16 26 46.36011062 0.00001632 −24 20 02.188965 0.000342

2456755.96194 16 26 46.36010779 0.00001240 −24 20 02.191625 0.000382

2457141.90491 16 26 46.36005985 0.00001738 −24 20 02.191462 0.000423

2457265.56761 16 26 46.35994120 0.00001558 −24 20 02.192545 0.000467

2457452.05609 16 26 46.36005050 0.00001543 −24 20 02.192970 0.000480

GDS J162702.1-241928

2456755.96194 16 27 02.15242055 0.00001218 −24 19 27.915618 0.000350

2457141.90491 16 27 02.15241390 0.00000876 −24 19 27.915343 0.000447

2457265.56761 16 27 02.15242622 0.00001325 −24 19 27.915196 0.000502

2457452.05609 16 27 02.15240463 0.00000675 −24 19 27.915947 0.000298

SFAM127

2456741.00290 16 31 59.36475311 0.00000244 −24 56 39.800373 0.000088

2457285.48390 16 31 59.36476531 0.00000360 −24 56 39.800194 0.000124

SSTc2d J162540.9-244147

2456742.00017 16 25 40.94715532 0.00001533 −24 41 47.337014 0.000538

SFAM12

2456722.00179 16 26 33.48487742 0.00001057 −24 12 16.100168 0.000479

2457285.48390 16 26 33.48605313 0.00001170 −24 12 16.124239 0.000455
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4.1.2. DoAr 21

DoAr 21 has been observed and detected at seven epochs. In
addition to these observations, the source was observed with
the VLBA prior to 2012 in projects BL128 (nine epochs from
September 2005 to December 2006) and BT093 (eight epochs
from 2007 July to 2007 September). Seven epochs from project
BL128 were analyzed and published in Loinard et al. (2008).
Because the observing and calibration strategy adopted for
GOBELINS is not exactly the same as in Loinard et al. (2008),
we performed a consistency check as follows. We downloaded,
calibrated and revised these prior observations by applying
the same calibration procedures as to the data from our own
project. We note, however, that a large fraction of the
observations taken between 2006 December and 2007
September involved very poor weather conditions (Table 5).
Such conditions affected the image quality, and the rms error
position was relatively high in comparison with that measured
in observations collected under optimal weather. In the present
analysis, we do not include the epochs when data were highly
affected, and only five additional epochs to the seven reported
by Loinard et al. (2008) were included. Hence a total of 12
epochs from 2005 September to 2007 September are
considered in our analysis.

Unlike the GOBELINS observations, projects BL128 and
BT093 did not include geodetic-like scans, and therefore no
DELZN correction was applied to those projects. On the other
hand, the secondary calibrators J1633-2557 and J1634-2058
were detected and used only in projects BT093 CD and BT093
CE, for which an improvement in the image quality and the rms
error position was found when using the multi-calibrator
strategy.

Projects BL128 and BT093 observed J1625-2527 (located 1°
south of DoAr 21) as the main phase calibrator, while GOBELINS
observed J1627-2427, which is only 0°.2 away from the science
target. Before combining data from the three projects, it was
necessary to correct the target source positions, so that all positions
were measured relative to the main calibrator, J1627-2427. The

mean position of J1625-2527 measured in observations from 2005
to 2007 is αJ2000.0=16

h25m46 891640; δJ2000.0=−25°27′
38 32684. In the images corresponding to GOBELINS, we found
that J1625-2527 shows a position offset relative to the phase
center, as a result of a separation between the source and the main
phase calibrator of 1°.07. The mean position of J1625-2527 relative
to J1627-2427 in those data is αJ2000.0=16

h25m46 891617;
δJ2000.0=−25°27′38 32808. Thus an offset aD = - ´2.3
-10 5 s and dD = - 0. 0012 had to be applied to the positions

of DoAr 21 measured from projects BL128 and BT093.
We fit the data from these 12 epochs from BL128 and

BT093, and obtain a distance = -
+

d 123.4 12.9
16.3 pc, fully

consistent with the results reported by Loinard et al. (2008)
and consistent within 1 sigma with the new determination
based solely on GOBELINS data. It is noteworthy, however,
that the errors reported by Loinard et al. (2008) on the parallax
obtained from the data corresponding to BL128 alone are
significantly better than those we obtained when combining
BL128 and BT093. We argue that Loinard et al. (2008)
underestimated their systematic errors, which resulted in
artificially small quoted errors.
When the values derived from GOBELINS data and those

obtained from the older BL128+BT093 data are weighted-
averaged, the resulting astrometric elements are nearly identical
to those derived from GOBELINS data alone. This is expected,
of course, as the accuracy of these more recent observations
greatly surpass those of BL128 or BT093. Throughout the rest
of the paper, we therefore will use the results based solely on
GOBELINS.

4.1.3. LFAM 18

LFAM 18 has been detected in five of nine observations. The
model assuming a linear and uniform proper motion produces a
poor fit to the data. We then considered a model with an
accelerated and uniform proper motion, and found that it
produces a better fit to the data. Indeed, Cheetham et al. (2015)
state that the source has evidence of multiplicity, and this may

Table 4

Parallaxes and Proper Motions

GBS-VLA Other Identifier Parallax m da cos md daa cos da Distance

Name (mas) (mas yr−1) (mas yr−1) (mas yr−2) (mas yr−2) (pc)

(1) (2) (3) (4) (5) (6) (7) (8)

J162556.09-243015.3 WLY2-11 7.330±0.112 −9.78±0.09 −25.11±0.20 0.94±0.38 6.02±0.83 136.4±2.1
J162557.51-243032.1 YLW24 7.404±0.143 −7.26±0.04 −25.29±0.07 L L 135.1±2.6

J162603.01-242336.4 DoAr21 7.385±0.234 −19.63±0.19 −26.92±0.13 L L 135.4±4.3

J162622.38-242253.3 LFAM2 7.060±0.072 −5.64±0.09 −27.02±0.30 L L 141.6±1.5
J162629.67-241905.8 LFAM8 7.246±0.088 −5.89±0.06 −29.54±0.16 L L 138.0±1.7

J162634.17-242328.4 S1 7.249±0.091 −2.05±0.02 −26.72±0.04 L L 138.0±1.7

J162642.44-242626.1 LFAM15 7.253±0.054 −6.31±0.02 −26.95±0.05 L L 137.9±1.0

J162643.76-241633.4 VSSG11 7.160±0.152 −10.48±0.16 −38.99±0.35 0.31±0.65 −1.54±1.09 139.7±3.0
J162649.23-242003.3 LFAM18 7.232±0.068 −11.62±0.06 −18.30±0.15 −0.10±0.32 8.17±0.84 138.3±1.3

J162718.17-242852.9 YLW 12Bab 7.230±0.057 6.56±0.02 −26.26±0.04 −0.62±0.01 −0.17±0.02 138.3±1.1

J162718.17-242852.9 YLW 12Bca 7.230±0.057 −11.23±0.07 −23.10±0.10 0.19±0.03 0.11±0.05 138.3±1.1

J162721.81-244335.9 ROXN39 7.317±0.021 −7.32±0.31 −26.21±0.73 L L 136.7±0.4
J162730.82-244727.2 DROXO71 7.327±0.125 −4.41±0.11 −28.79±0.33 L L 136.5±2.3

J163035.63-243418.9 SFAM 87 7.206±0.080 −7.69±0.02 −26.04±0.04 L L 138.8±1.5

J163152.10-245615.7 LDN1689IRS5 6.676±0.046 −6.38±0.03 −22.74±0.04 L L 149.8±1.0

J163200.97-245643.3 WLY2-67 6.616±0.088 −5.94±0.12 −24.08±0.30 L L 151.2±2.0
J163211.79-244021.8 DoAr51 6.983±0.050 −4.80±0.08 −23.11±0.11 L L 143.2±1.0

Note.
a
Parallax is fixed at the value obtained for YLW 12Bab when solving for the other astrometric parameters.
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Figure 2. Observed positions and best fit for single sources. Measured positions are shown as green ellipses, the size of which represents the magnitude of the errors.
The expected positions from the fit are shown as blue open squares. The blue dotted line is the full model, and the red line is the model with the parallax signature
removed. The red squares indicate the position of the source expected from the model without parallax. When the systematic errors on source positions can be
estimated from the fits, these are included in the error bars shown in the plots. The arrow shows the direction of position change over time.
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explain why the detected source follows an accelerated rather
than a linear motion. The second component of the system is,
however, not detected in our VLBA observations. We report
the astrometric parameters from the latter fit, and caution that
the errors may be underestimated. This is because the method
we use to estimate the systematic errors that is described
previously can only be applied when more than five detections
are available.

4.1.4. YLW 24, LFAM 2, LDN 1689 IRS5 and WLY 2-67

These four sources have been detected just in three to five
epochs, and the errors in astrometric parameters may be
underestimated. Their corresponding fits give parallaxes that
are consistent with the rest of the sources (see also Section 5).
For these four sources, we assume a uniform and linear proper
motion, since they do not show any evidence of multiplicity.

4.2. Multiple Stars

Our VLBA observations (combined with past astrometric
observations) have detected a total of eight multiple systems (cf.
Table 2). In six of them, the individual components have been
detected at sufficient epochs such that we can model their orbital
motion, in addition to parallax and proper motion. Two different
fits were performed as follows. In the first “full model,” we use
all available absolute VLBA positions of individual components
(including data from epochs where a single component is
detected), together with relative positions, to solve for the orbital
elements, center of mass at first epoch of the GOBELINS
observations where the primary is detected (aCM,0, dCM,0),
parallax (ϖ), and proper motion (ma, md) of the system. The
orbital free parameters in this model are period (P), time of
periastron passage (T), eccentricity (e), angle of line of nodes
(Ω), inclination (i), angle from node to periastron (ω), semimajor
axis of primary (a1), and mass ratio m m2 1. Combining the mass
ratio with Kepler’s third law (that contains the sum of masses),

and because we know the distance to the system from the
parallax solution, the masses of each component are also
inferred. The orbital solutions are derived by minimizing c2,
which is computed for a grid of initial guesses of model
parameters. The errors in the parameters were calculated by
taking the average, weighted by c2, of the output uncertainties
over values across the entire grid.
From the VLBA images, we compute, for each system, the

angular separation and position angle of the secondary relative
to the primary star. In addition, we have compiled from the
literature separations measured with near-infrared (NIR)

observations. These data are shown in Figure 3 for each
source separately. In the second “relative astrometry model” we
only use the separation and position angle of secondary relative
to primary, measured at epochs when both components are
detected simultaneously. We use the orbital elements deter-
mined from the “full model” as initial parameters for the
Gudehus (2001) code, the Binary Star Combined Solution
Package,19 to solve for P, T, e, Ω, i, ω, and a. The total mass of
the system, MT, is then obtained from Kepler’s law, but we are
not able to determine individual masses in this case. For this fit,
the uncertainties in the orbital elements are computed from the
scatter on model parameters.
The results from both fits are given in Table 6, and the

resulting orbits are shown in Figure 3. We find that both fits are
consistent with each other within the errors. We will comment
on each system separately in the following subsections.

4.2.1. LFAM 15

The source LFAM 15 has been found to be double in 7 out of
our 10 observed epochs. LFAM 15 was also observed in four
epochs as part of project BL128 (Table 5), between 2005 June
and 2006 March. We have calibrated these additional data and

Figure 2. (Continued.)

19
This package is available at http://www.astro.gsu.edu/~gudehus/

binary.html.
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detected the source in three epochs, albeit always as a single

component. In Figure 4, we show the measured positions for

each component and the resulting best “full model” fit that, as

mentioned before, consists of the sum of orbital motion around

the center of mass, proper motion, and parallax of the system.

4.2.2. YLW 12B

YLW12B is found to be a hierarchical triple source formed
by a close binary (separation of 4–17 mas, equivalent to
0.6–2.4 au), detected in nine epochs, and a third component,
located a few hundred mas to the southwest of the binary and

Table 5

Archive VLBA Data

Project Code Date of Observation Source Relevant Entries from the Observing Log

BL128 FA 2005 Jun 07 LFAM 15 L

BL128 FB 2005 Sep 03 LFAM 15 L

BL128 FC 2005 Dec 09 LFAM 15 L

BL128 FD 2006 Mar 01 LFAM 15 L

BL128 FGa 2006 Dec 20 DOAR 21 PT may have some residual snow in the dish.

Cloudy at NL, LA, and PT.

LA weather: overcast and snowing. 2 inches of snow.

NL precipitation.

BL128 FF 2006 Dec 22 DOAR 21 L

BT093 CAa 2007 Jul 10 DOAR 21 Rain at NL, overcast SC, HN.

BT093 CBa 2007 Jul 20 DOAR 21 SC out due to bad HVAC in vertex rm. LA raining.

KP 35+ mph wind caution.

BT093 CCa 2007 Jul 31 DOAR 21 HN and BR unavailable for observing due to

scheduled maintenance visits. Raining at SC and FD.

BT093 CD 2007 Aug 09 DOAR 21 L

BT093 CE 2007 Aug 18 DOAR 21 L

BT093 CFa,b 2007 Aug 29 DOAR 21 SC, NL cloudy. NL, OV windy.

BT093 CG 2007 Sep 09 DOAR 21 L

BT093 CH 2007 Sep 21 DOAR 21 L

BL128 DA 2005 Jun 08 YLW 12B L

BL128 DG 2005 Sep 11 YLW 12B L

BL128 DC 2005 Dec 05 YLW 12B BR: not fringing, data not usable.

NL: slow to get on source.

BL128 DD 2006 Mar 24 YLW 12B L

BL128 DE 2006 Jun 01 YLW 12B L

BL128 DFa 2006 Aug 27 YLW 12B Raining at FD, MK and HN.

BL128 GA 2005 Jun 24 S1 L

BL128 GB 2005 Sep 15 S1 L

BL128 GC 2005 Dec 17 S1 L

BL128 GD 2006 Mar 15 S1 L

BL128 GE 2006 Jun 03 S1 Raining at HN.

KP subreflector not moving to any position in ROTATION.

KP antenna is removed from observing.

HN disabled ROTATION axis, subreflector is

About 6 counts off in ROTATION position.

BL128 GF 2006 Aug 22 S1 L

BT093 BA 2007 Jun 05 S1 L

BT093 BB 2007 Jun 09 S1 FD is on generator power, not in observation.

PT HC2 FIFO error.

BT093 BC 2007 Jun 13 S1 L

BT093 BD 2007 Jun 17 S1 SC, HN, NL overcast.

SC precipitation.

BT093 BE 2007 Jun 21 S1 L

BT093 BF 2007 Jun 25 S1 NL dense fog.

NL precipitation.

BT093 BG 2007 Jun 29 S1 L

BT093 BH 2007 Jul 03 S1 L

BT097 A 2008 Mar 14 SFAM 87 L

BT097 B 2008 Jun 03 SFAM 87 L

BT097 C 2008 Aug 19 SFAM 87 L

BT097 D 2008 Nov 14 SFAM 87 L

BT097 E 2009 Feb 14 SFAM 87 L

BT097 F 2009 May 16 SFAM 87 L

Notes.
a
Epoch was discarded.

b
Data shows low amplitudes for IFs 3–4.
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detected in seven epochs (Figure 5). Hereafter, we call the close

binary YLW12Bab and the third component YLW12Bc. Six
archival VLBA observations, obtained between 2005 and 2006

as part of project BL128, have also been found for this source;

they have been calibrated and analyzed (Table 5). One of these

older epochs was discarded due to poor weather conditions

Figure 3. Relative positions of the components of the binary systems. The green points mark the detections with the VLBA, while blue points indicate the detections
in the NIR by Cheetham et al. (2015) and Rizzuto et al. (2016). Green and cyan solid lines correspond to the “relative astrometry” and “full” model orbital fits,
respectively. The blue dotted line in the fourth panel is the fit by Rizzuto et al. (2016) to NIR only data. The black solid and dashed lines trace the line of nodes of the
“relative astrometry” and “full” model, respectively. The cross marks the position of the primary source.
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Table 6

Orbital Elements

Name a P T0 e Ω i ω M1 M2 MT

(mas) (years) (°) (°) (°) (M) (M) (M)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

LFAM 15

Full 16.40±0.13 3.591±0.0183 2007.008±0.039 0.528±0.005 337.93±0.81 110.30±0.49 235.54±1.02 0.4687 0.421 0.89

±0.0146 ±0.010 ±0.01

Rel. astr. 16.98±0.16 3.598±0.0099 2010.626±0.011 0.561±0.007 340.05±0.49 109.77±0.27 239.60±0.64 L L 0.99

±0.03

YLW 12Bab

Full 12.70±0.09 1.425±0.0012 2005.174±0.009 0.444±0.003 135.15±1.03 75.60±1.25 158.69±1.47 1.3969 1.258 2.66

±0.0194 ±0.006 ±0.02

Rel. astr. 12.54±0.06 1.424±0.0005 2013.720±0.003 0.442±0.003 135.38±0.32 74.32±0.48 160.11±0.99 L L 2.58

±0.07

SFAM 87

Full 35.58±0.31 7.691±0.007 2023.781±0.006 0.343±0.001 22.36±8.57 −162.66±2.84 346.19±8.83 1.0207 0.999 2.02

±0.0224 ±0.038 ±0.04
Rel. astr. 35.79±0.30 7.719±0.019 2008.404±0.015 0.341±0.005 18.62±4.32 −157.95±2.59 344.25±4.91 L L 2.06

±0.09

DoAr 51

Full 32.83±0.45 8.102±0.063 2012.025±0.044 0.802±0.004 51.56±6.31 18.95±1.75 216.41±6.42 0.7909 0.781 1.57

±0.0140 ±0.042 ±0.05
Rel. astr. 32.47±0.39 8.070±0.035 2012.020±0.029 0.801±0.005 51.81±9.66 17.80±4.36 215.81±10.20 L L 1.54

±0.07

Rizzuto+16 32.69±0.35 8.233±0.117 2012.009±0.010 0.818±0.009 24.1±11.0 16.3±2.0 243.0±10.9 L L 1.57

±0.03(±0.29)

ROXN 39

Full 54.3±3.9 11.2±1.5 2056.1±1.2 0.40±0.12 25.4±2.9 68.4±3.3 120.0±12.9 2.31 0.97 3.3

±1.04 ±0.50 ±1.2

S1

Full 19.99±0.20 1.734±0.003 2017.089±0.020 0.745±0.010 118.9±17.7 36.2±6.1 294.6±15.8 5.78 1.18 6.95

±0.15 ±0.10 ±0.18
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during the observations. In these archival observations, both
components of YLW12Bab were detected on 2005 June 8 and
2006 June 1, while YLW12Bc was detected on 2005 June 8
and 2006 March 24.

Given the distance to the source, the angular separation
between YLW12Bab and YLW12Bc of ∼140 and ∼320 mas
in 2005 and 2016, respectively, corresponds to 20 to 45 au.
This suggests that the sources form a bound multiple system,
and later in this section we provide stronger evidence that
supports this conclusion. To fit the positions of the YLW12-
Bab components, and to take the effect of the third companion
into account, we add two more free parameters to the “full
model.” These parameters are the acceleration of the center of
mass of YLW12Bab in each direction, aa and da , which we
consider to be uniform. As in the case of LFAM 15, three plots
were constructed to visualize the best fit solution. In the first
panel of Figure 6, we show the observed positions of the
compact binary and the best fit, while in the second panel, we
show this fit and source positions with the effect of parallax
removed. Using the solution for the mass ratio from the “full
model,” we now compute the positions of the center of mass of
YLW12Bab, and plot them along with the parallax plus proper
motion model in the third panel of Figure 6. It is clear that the
compact binary follows a curved motion as a result of the
gravitational force exerted by the third companion. Indeed, we
find that the acceleration is statistically different from zero at
s>8 in both directions.
Let us now discuss the third star of the system. The positions

of YLW12Bab relative to YLW12Bc, as well as the
acceleration vector of YLW 12Bab, are shown in Figure 5.

We see that the acceleration vector of YLW12Bab points
toward YLW12Bc, as would be expected of a gravitationally
bound system. This plot also shows that our assumption of a
uniform accelerated motion is a reasonable approximation,
because our observations cover only a small fraction of the
orbit expected for the wider system. We attempted to fit the
orbit of this source around the center of mass of the whole
system with a simultaneous distance and proper motion fit for
the three stars. However, we were not able to constrain most of
the orbital parameters because the VLBA detections of the third
companion are still insufficient. We only find solutions for the
following parameters: Ω∼85°, ϖ=7.190±0.088 mas,
m d = - a cos 4.55 0.03CM, masyr−1, m = - d 24.27CM,

0.06 masyr−1; limits on the mass, > M M33 , period,
~P 300 400 years– , and that inclination is consistent with

the compact binary. Even though we do not have enough data
for modeling the orbit of YLW12Bc, we can still constrain its
proper motion and acceleration using its absolute positions
measured with the VLBA. In order to do so, we fit the third star
separately using the astrometric code for single sources to solve
solely for proper motion and acceleration terms, while fixing
the parallax at the value derived for YLW12Bab. We show
this last fit in the fourth panel of Figure 6, and give the solution
of the astrometric parameters in Table 4.
As mentioned previously, the trajectory of YLW12Bab is

somewhat curved. That of YLW12Bc is, on the other hand,
more linear. This results in a smaller measured acceleration for
YLW12Bc (∼0.2 mas yr−2) than for YLW12Bab (0.64 mas
yr−2), and suggests that YLW12Bc is the most massive
member of the system. Indeed, we find that > M M33 , while

Figure 4. Observed positions and best fit for LFAM 15. Left: measured positions of each component are shown as red and blue circles. The solid lines show the fit
corresponding to the “full model” described in the text. Middle: the squares mark the measured positions with the parallax signature removed, while the dashed lines
are the fits from the “full model,” also without parallax. Right: green dots mark the position of the center of mass derived using the solutions from the orbital model for
the mass ratio. The green dashed line is the model for the motion of the center of mass of the system, while the red line is this same model with the parallax signature
removed. The red squares indicate the position of the center of mass expected from the model without parallax. The arrow shows the direction of position change with
time. Positional errors, as delivered by JMFIT, are smaller than the size of the symbols.
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= M M1.261 and = M M1.402 . This is the reason why we
plot the position of YLW12Bab relative to YLW12Bc in
Figure 5, rather than the converse. We also see that, as
expected, the acceleration of YLW 12Bc points, within the
errors, toward YLW 12Bab (see Figure 5).

4.2.3. SFAM 87

SFAM 87 (also called ROX 39) has been detected in four
epochs of GOBELINS. This source was also observed in six
epochs from March 2008 to May 2009 as part of project
BT097, but these data are yet to be published. We calibrated
these additional epochs (Table 5) and combined them with our
more recent data for the astrometric fits. The source is resolved
into two components that are simultaneously detected in 6 out
of the 10 total epochs (3 in BT097 and 3 in GOBELINS). We
note that Cheetham et al. (2015) identified a companion to
SFAM 87 in March 2013, using NIR aperture masking. This
source appears to be the counterpart of the secondary source
detected in our VLBA images (Figure 3). We used all available
VLBA and NIR data to fit jointly orbital and proper motion, as
well as parallax. The resulting best fit is shown in Figure 7 in a
similar fashion to LFAM15.

4.2.4. DoAr 51

DoAr 51 (also called ROXs 47A) is located in the Lynds
1689 eastern streamer, 1°.2 east of the Ophiuchus core. The
source has been detected in seven epochs, and was found to be

double in all of them. DoAr 51 was identified as a hierarchical
triple system composed of a tight binary with separation of
about 40 mas and a third component about 0.8 arcsec away by
Barsony et al. (2003). Cheetham et al. (2015) confirmed the
tight binary using NIR aperture masking observations. They
resolved the source into two components, with an angular
separation of 51.5±0.20 mas in June 2009 and 43.38±0.18
mas in April 2010. This is to be compared with a separation of
40±30 mas reported by Barsony et al. (2003) in May 2002.
More recently, Rizzuto et al. (2016) used the two positions
measured by Cheetham et al. (2015) and three new detections
in the NIR to model the orbit of the system. These five
detections are shown in Figure 3, together with the positional
offsets between the components of the system as seen in our
VLBA images. It is clear that our radio sources are the
counterparts of the NIR sources, as they lie along the orbit
derived by Rizzuto et al. (2016). We model all data available
from VLBA and NIR observations to better constrain the orbit
of the system. The resulting best fit using the “full model” is
shown in Figure 8, and the corresponding orbit in Figure 3. For
comparison, we also show in this latter figure the orbit derived
by Rizzuto et al. (2016).

4.2.5. ROXN 39

The components of the system ROXN 39 have been detected
separately in seven and five epochs, respectively, and
simultaneously in only three epochs. The “full model” fit and
measured positions of individual components are shown in

Figure 5. VLBA image of the multiple system YLW 12B, from data obtained on 2012 May 11 (first epoch observed by GOBELINS). Insets show zooms on the tight
binary YLW12Bab, top left, and the southwestern companion YLW12Bc, bottom right. Contour levels are 3, 9, and 21 (in top left inset), and 3 and 5 (in bottom right

inset) times m -32 Jy beam 1, the rms noise in the image. The green dots mark the position of YLW12Bab relative to YLW12Bc at the epochs when the three sources
in the system are detected. These are eight epochs, which correspond to the Julian dates listed in Table 3 for the third component in the system as follows:
1=2453529.77467, 2=2456058.83738, 3=2456269.26236, etc. Notice that at the epoch with JD=2453818.98287, the third component was detected but the
compact binary was not. The arrows with their error cones show the acceleration vectors at the first epoch observed by GOBELINS.
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Figure 9, while Figure 3 shows the same model and relative
positions. We did not fit the “relative model” to this system
because of the small number of simultaneous detections of both
components. Consequently, the orbital parameters are less
constrained, compared to the other systems described
previously.

4.2.6. S1

This source has been detected in a total of 8 epochs, and was
also observed at 14 epochs as part of projects BL128 and
BT093 (Table 5). The distance estimate by Loinard et al.
(2008) of = -

+
d 116.9 6.4

7.2 pc, based on the data from the first six
of these old epochs, is significantly different from the distance
obtained here for others sources in Lynds 1688 (which range
from 130 to 140 pc), and hence requires a careful inspection.
We re-calibrated the data used in Loinard et al. (2008), as well
as the additional eight unpublished observations obtained as
part of BL128 and BT093. Similarly to DoAr21, source
positions measured at these 14 older epochs were corrected
before fitting the data, by the positional offset of the calibrator,
J1625-2527, relative to its old position.

A second source was detected in four epochs of the archival
data, at an angular separation of about 20–30 mas from S1
(Figure 10). The detections are, however, only evident by self-
calibrating the images, and the source is not present in the most
recent epochs, so they should be taken somewhat cautiously. It
is interesting, however, that Richichi et al. (1994) did report on
the detection, using the lunar occultation technique in the NIR,
of a companion to S1 at about 20 mas. Our detections of a
second source in the system would be consistent with that
earlier result. If we assume that the source is double, we can fit
the orbital motion of the system jointly with the astrometric
parameters and use the positions of the putative second
component to estimate individual masses. To that end, we
discard the BL128 and 2nd BT093 secondary epochs, as well
as the second, fourth, and sixth BT093 primary epochs,
because their corresponding images are of poor quality due to

observing issues (cf. Table 5), and source positions do not
match up to the best fit solution. The “full model” fit, shown in
Figure 11, yields v = 7.249 0.091 mas and a distance of
138.0±1.7pc. The derived mass for the primary component
is M5.8 , which is consistent with its B4 spectral type, while
for the secondary we find a mass of M1.2 . When ignoring the
secondary component, the purely astrometric fit to all available
data of the primary source yieldsv = 8.335 0.522 mas, and
hence the distance derived by Loinard et al. (2008). It is clear
that this discrepancy in the results from the astrometry alone
and the “full model” fits is due to the fact that the former does
not take into account the multiplicity of the source. In the rest
of the paper, we will use the results based on the astrometric
plus orbital model, which are consistent with the distances
obtained for other sources in Lynds1688. Since the two
components are detected simultaneously in only two epochs,
we are not able to fit the “relative model” to relative positions,
and only provide the resulting orbital parameters from the “full
model” in Table 6.

4.2.7. VSSG 11

VSSG 11 has been detected in seven observed epochs, and
was found to be double in the last three. The second component
is separated about 9 mas from the primary source. We perform
the fits similarly to the other multiple systems discussed
previously. However, because our observations only cover a
small fraction of the orbit, the “full model” fit to the secondary
source does not converge. This produces considerably larger
errors in the astrometric and orbital parameters than those
derived for the other multiple systems. Also, we were not able
to reproduce the observed separations between the components
of the system. We then fit solely parallax and accelerated
proper motion. The resulting best fit is shown in Figure 12.

4.2.8. WLY 2-11

WLY2-11 has been detected in a total of five epochs. We
resolve it into a double source in the last epoch, where the

Figure 6. First through third panels are like Figure 4, but for YLW 12Bab. The fourth panel shows the observed positions and best independent fit for YLW 12Bc,
with parallax fixed to the value of YLW 12Bab.
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companion is detected at s>10 . Since there are insufficient
detections of primary and secondary for attempting to model
the orbit, we can only fit one of the components of the system.
We find that a good fit to the data is produced only when we
discard the first epoch and consider for the fit the fainter
component detected in the last epoch. If, instead, we take the
positions of the single component as measured at the first four
epochs and the position of the brightest component detected in
the last observation, the fit does not match all the measured
points, producing large errors in the astrometric parameters.
Thus the detection at the first epoch probably corresponds to
the companion source, which is detected as the brightest source
in the last epoch. The fit, including acceleration terms, is shown
in Figure 12. Because of the few detections, we are not able to
estimate systematic errors on the source positions. Never-
theless, the derived parameter uncertainties are comparable to
those from the fits that do incorporate systematic errors on
source positions.

4.3. YLW 15

We have observed the Class I protostar YLW15 at 11
epochs, and clear detections were obtained at five. Only one
source is detected in the VLBA images, and since YLW 15 is
known to be a binary system (Curiel et al. 2003), it is important
to determine which of the two stars is detected in our VLBA
data. This can be achieved by comparing the astrometry of the
present VLBA observations with that of the VLA data
published by Curiel et al. (2003), which were obtained between
1990 and 2002. Such a comparison is shown graphically in
Figure 13. The positions of the two sources in the system (VLA
1 and VLA 2) are shown as a function of time as black and red
symbols, respectively. We also calibrated and imaged the data
from a VLA observation obtained in 2007 as part of project

AF455. The VLBA positions are shown as blue symbols. It is
clear that the source detected with the VLBA is located very
near the expected position of VLA2 at the epochs of the VLBA
observations, and more than half an arcsecond away from the
expected position of VLA1. We conclude that the source
detected with the VLBA is VLA2.
A marginal (7–9σ) VLBI detection of YLW15 has been

reported in the past (Forbrich et al. 2007). Indeed, the authors
themselves mentioned that their detection was difficult to
interpret, as the position did not coincide with the expected
location of any of the two protostars in the system. This can
also be seen in our Figure 13, where the position of the VLBI
source reported by Forbrich et al. (2007) is shown as a cyan
triangle. Their observations were conducted, under project code
BF083, with the High Sensitivity Array (HSA), which for that
run consisted of the Green Bank (GBT) 100 m radio telescope,
the phased Very Large Array (equivalent in collecting area to a
130 m dish), as well as the VLBA. We calibrated these data
following the standard procedures for incorporating non-VLBA
antennas. We achieve rms noise levels between 10 and 22
m -Jy beam 1 (depending on the AIPS ROBUST parameter used
for imaging), which are consistent with the value reported by
Forbrich et al. (2007) of 15.4 m -Jy beam 1. We do not detect the
source, and confirm our suspicion that their detection was
likely spurious.
Even though five data points are, in principle, enough to

perform an astrometric fit, most of our VLBA detections of
YLW15 were obtained rather closely in time (two are separated
by ∼3 weeks and other two by only ∼3 days). Moreover, the
five detections were acquired around successive spring
equinoxes, with no detection close to the fall equinox. As a
result of this, the astrometric fit produces unreliable results. We
will wait until we have more detections for the derivation of the
astrometric parameters of this star.

Figure 7. Same as Figure 4, but for SFAM 87.
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5. THE DISTANCE TO OPHIUCHUS

In this paper, we report on 16 independent trigonometric
parallax measurements. These results are listed in Table 4 and
summarized graphically in Figure 14. They largely surpass all
previously published distance measurements for Ophiuchus.

Out of these 16 measurements, 12 are for YSOs in the
Ophiuchus core (Lynds 1688). The parallaxes for these 12
sources are highly consistent (Figure 14) and yield a weighted
mean value ϖ=7.28 mas, with a weighted standard deviation
s =v 0.06 mas. In terms of distance, this corresponds to
d=137.3 pc, with a standard deviation s = 1.2d pc. In
principle, the standard deviation around the mean value could
reflect both the uncertainties in our distance measurements, and
the true depth of the complex. Since our uncertainties on
individual parallax measurements are typically larger than 0.06
mas, we argue that the measured weighted standard deviation is
completely dominated by the uncertainties on individual
parallaxes rather than by the true depth of the core. We will,
therefore, adopt this value as our final uncertainty on the
distance to the core. We note that Lynds 1688 is about 0°.75
across (Figure 15), corresponding to 1.8 pc. Thus our results
indicate that it is not significantly more elongated along the line
of sight than on the plane of the sky.

We currently can only provide limited information on the
location of the streamers relative to the core, since we only
have measured parallaxes in the eastern streamer (Lynds 1689),
and have just three independent measurements there (the
parallaxes of LDN 1689 IRS 5, WLY 2-67, and DoAr 51). The
weighted mean value of these three measurements is
ϖ=6.79±0.16 mas, corresponding to d=147.3±3.4 pc.
This suggests that the eastern streamer is about 10 pc farther
than the core, although more parallax measurements of sources
in Lynds 1689 would be required to confirm this. Interestingly,
Imai et al. (2007) have measured the parallax of water masers
in the protostar IRAS16293-2422, located in the northern part

of Lynds 1689, and found a value ϖ= -
+6.5 0.5
1.5 mas, which is

consistent within 1 sigma with our parallax estimate for Lynds

1689 (Figure 14). Notice that we have not considered SFAM
87 in the previous analysis. It certainly lies somewhat outside
of Lynds 1688 (Figure 15), and was considered as belonging to
the Lynds 1689 “fringe” by McClure et al. (2010). These latter
authors, however, do not explain how they arrived at such a
conclusion, and we note that SFAM 87 does not formally lie
within the boundaries of Lynds 1689. We find that its parallax
is more consistent with the mean weighted parallax of the
Ophiuchus core, suggesting that it is not part of Lynds 1689.
This will also be confirmed when the distance to stars in the
central parts of this cloud becomes available.
The typical distance to Ophiuchus that is generally used in

the pre-main sequence literature is 125–130pc. Our new
distance is about 12% larger, which translates to a luminosity
increase of ~25%, and makes YSOs slightly younger with
respect to evolutionary tracks.
Finally, we should mention that the stellar population of

Ophiuchus could be contaminated by stars from the Upper Sco
association, which is located at a similar distance (∼140 pc; de
Zeeuw et al. 1999) and overlaps the Ophiuchus region in the
sky. The YSOs in Ophiuchus show extinctions in the range
 A3 26V mag (Table 2), whereas the associated members

of Upper Sco typically have A 2V mag (Walter et al. 1994).
The fact that our detected YSOs have larger extinctions than
Upper Sco ensures that these objects are part of the Ophiuchus
Complex.

5.1. Proper Motions

Figure 15 shows the distribution of the 16 individual sources
with astrometric parameters measured in this paper. In order to
calculate the motion of each source relative to its local
environment, we need to remove the contribution of the solar
peculiar motion. For this correction, we use the formulation of
Abad & Vieira (2005), and the solar motion relative to the LSR
derived by Schönrich et al. (2010). They obtained rectangular
components of the solar motion (ue, ve, we)=(11.1±0.7,
12.2±0.47, 7.25±0.37)km s−1, directed toward the

Figure 8. Same as Figure 4, but for DOAR 51.
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Galactic center, the direction of Galactic rotation, and the

Galactic north pole, respectively. Corrected proper motions

were transformed to tangential velocities (Table 7) and overlaid

on Figure 15. It is clear that, with the exception of a few objects

that may belong to a different substructure of the complex, all

sources share similar motions. The derived one-dimensional

velocity dispersion in R.A. and decl. of sources in Lynds 1688

are 2.8 and -3.0 km s 1, respectively. These are larger than the

values found in other studies, which range from ∼1 to 2 km s−1

(Makarov 2007; Wilking et al. 2015). However, our sample

size is small, and our results need to be confirmed with

additional proper motions and parallaxes. In addition, we

estimate that the associated errors of the velocity dispersions

(assumed to be Gaussian distributed) are 1.8 and 2.0 km s−1, in

R.A. and decl., respectively. Thus, within the errors, our results
are still consistent with past measurements.

6. SUMMARY

We have presented the first results from GOBELINS toward
the region of Ophiuchus. We observed a total of 50 YSOs with
the VLBA, and detected 26 of them. Most of our VLBA-
detected YSOs are Class II-III, but three Class I sources have
also been detected. The YSOs detected here are clearly non-
thermal emitters (otherwise they would not be detected with the
VLBA), so our observations have revealed the existence of a
large population of non-thermal YSOs in Ophiuchus. About
30% of our the VLBA-detected YSOs belong to tight multiple
systems with angular separations from 0.6 to 44 au. While this
fraction appears to be consistent with the binarity fraction in
Ophiuchus measured in a recent infrared multiplicity survey,
we note that most of the binaries detected with the VLBA are
very tight systems with separations below 10 au.
The astrometry of 16 young stellar systems was presented.

Absolute positions of single sources were modelled to derive
parallaxes and proper motions, and source distances were then
obtained with a few percent accuracy. For sources in multiple
systems, we use individual positions and, in most cases,
angular separations to model jointly orbital and astrometric
parameters. For these sources, the distance was measured with
0.3%–2% accuracy. Because the VLBA delivers absolute
positions for each component, we were able to determine the
individual masses in six of the eight total multiple systems;
masses range from ∼1 to 7 M .
Twelve sources are associated with the Ophiuchus core

(Lynds 1688). They yield a mean distance of 137.3±1.2 pc,
and no indication of a detectable depth. Three sources for
which the astrometric elements could be measured are located

Figure 9. Same as Figure 4, but for ROXN 39.

Figure 10. Two components of S1 detected on 2007 June 21 The contours

are 4, 8, 16, and 32σ, where s = ´ -1.08 10 4 μJy is the rms noise of the
image.
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in the eastern streamer (Lynds 1689); the measurements imply

a distance of 147.3±3.4 pc for this cloud. This result suggests

that the eastern streamer is 10 pc more distant than the core, but

this needs to be confirmed when more parallaxes become

available.
The measured proper motions of young stars in the core yield

one-dimensional velocity dispersions in R.A. and decl. of

2.8±1.8 and 3.0±2.0km s−1, respectively. This result may

indicate that our sources belong to different substructures of the

complex. However, our result may suffer from small-number

statistics, and the associated errors are large. Indeed, our values

are consistent within s1 with velocity dispersions of -1 2 km s 1– ,

which have been measured in the past.
Finally, we note that six YSOs have been detected only two

or three times with the VLBA in the observations presented

here. For these sources, no meaningful astrometric fit could yet

be performed, but this will become possible once a few

additional detections are obtained in the coming few years.

Thus we anticipate that we will soon be able to increase the

number of individual trigonometric parallaxes in Ophiuchus.
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APPENDIX A
NON-THERMAL RADIO EMISSION IN YOUNG STARS

AND GOBELINS DETECTION STATISTICS

A.1. Introduction

YSOs are often detectable radio sources due to a variety of
mechanisms. One common radio emission process in YSOs is
thermal bremsstrahlung (free–free) continuum emission, either
from photo-ionized gas around massive stars (e.g., Church-
well 2002) or from shock-ionized gas in supersonic jets and
outflows (e.g., Rodríguez 1997). The brightness temperature
corresponding to thermal bremsstrahlung emission, however, is
typically only 104 K—much too small to be detectable in
VLBI observations. The situation with thermal dust continuum
emission, which can be detected up to centimeter wavelengths
from circumstellar disks (e.g., Pérez et al. 2015), is even worse,
as such emission has brightness temperatures of at most several
hundred K. Thermal line emission, from molecules or atoms, is
similarly limited to brightness temperatures smaller than
several hundred K. Thus to find emission that could be
detected in VLBI observations, one must turn to non-thermal
mechanisms. For line emission, this implies focusing on
strongly amplified maser lines, like those of water (H2O),
methanol (CH3OH), formaldehyde (H2CO), silicon monoxide
(SiO), or hydroxyl (OH). Those lines (particularly those of
water and methanol) are widespread in regions of high-mass
star formation, and can be detected and studied with VLBI
observations up to distances of several kpc. Indeed, the
BeSSeL project (Brunthaler et al. 2009) takes advantage of
these lines to measure the parallax and proper motions of high-

Figure 11. Same as Figure 4, but for S1.
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mass star-forming regions distributed across the entire Milky
Way disk. In the Gould’s Belt star-forming regions, however,
only a handful of maser sources are known (e.g., Moscadelli
et al. 2006).

Non-thermal continuum emission also exists, and broadly
corresponds to the situation where electrons gyrate in a
magnetic field. This type of radiation is called cyclotron,

gyro-synchrotron, or synchrotron emission, depending on
whether the electrons are non-relativistic (with a γ Lorentz
factor of about 1), mildly relativistic (γ of a few), or ultra-
relativistic (γ ? 1), respectively (Dulk 1985). Such continuum
non-thermal emission has been detected around a number of
low-mass young stars (e.g., Forbrich et al. 2011, and references
therein), and has been interpreted as coronal emission from
active stellar magnetospheres. The most common mechanism
appears to be gyro-synchrotron, although maser-amplified
cyclotron emission (Smith et al. 2003) as well as synchrotron
emission (Massi et al. 2006) have also been reported in rare
instances. The magnetic field in which the electrons are
gyrating is generated through the dynamo mechanism, which
requires convection in the outer layers of the stellar interior
(e.g., Dormy et al. 2013). As a consequence, non-thermal
coronal emission should occur only in low-mass stars, because
intermediate and high-mass stars are fully radiative. This is true
both for main sequence and pre-main sequence stars: while
low-mass T Tauri stars approach the main sequence on fully
convective Hayashi tracks, stars more massive than about 3 M
follow radiative Henyey tracks (e.g., Palla & Stahler 1993). It is
noteworthy, however, that a few intermediate-mass young stars
have been found to exhibit non-thermal coronal emission
(Andre et al. 1991; Dzib et al. 2010). The electrons gyrating in
the magnetic field are thought to be accelerated to mildly
relativistic speeds during energetic reconnection processes
(Parker 1957), so the emission is often produced in flares (e.g.,
Bower et al. 2003) and is therefore highly variable. Once again,
there are some exceptions to this general behavior (e.g., Andre
et al. 1991). Finally, it should be mentioned that most of the
low-mass young stars where non-thermal emission has been
reported are T Tauri stars (particularly Weak Line T Tauri
stars), although a few younger Class I protostars have also been
detected (Forbrich et al. 2006; Deller et al. 2013).
Coronal non-thermal radio continuum emission usually

remains unresolved at the milli-arcsecond resolution of VLBI
observations (e.g., Loinard et al. 2007; but see Andre et al.

Figure 12. Same as Figure 2, but for VSSG 11 and WLY 2-11.

Figure 13. Observed positions of the components of YLW 15. Red and black
circles mark positions measured with the VLA at the indicated epochs. The
blue circles show the positions obtained from our VLBA observations. The
triangle marks the position reported by Forbrich et al. (2007) from HSA
observations.
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1991). Theoretically, the emission is expected to be confined to
the magnetosphere of the YSO, which extends to only a few
stellar radii (Bouvier et al. 2007). This is indeed very small—
for instance, 10 R corresponds to about 0.5 mas at 100 pc.

A.2. Statistics

As mentioned in the main text, we have firmly detected a
total of 26 YSOs, corresponding to roughly half of the 50
YSOs targeted in our observations. This confirms the claim by
Dzib et al. (2013) that about 50% of the radio-bright YSOs in
Ophiuchus are non-thermal emitters. We searched the literature
and found that only six of these YSOs had previously been
detected in VLBI experiments. These sources (DoAr 21, S1,
LFAM 15, VSSG 11, YLW 12 B, and SFAM 87) were known
to be magnetically active stars, with centimetric non-thermal
radio emission, before our observations (e.g. Andre et al. 1992;
Loinard et al. 2008). We note that Forbrich et al. (2007)

reported on the detection, with the HSA, of one of the
components of the binary class 0/I source YLW 15 (a target
that we also detect here). However, our analysis of the proper
motions of the system components (see Section 4.3) suggests
that the detection by Forbrich et al. (2007) was likely spurious.
The 26 detected YSOs correspond to a total of 34 individual
young stars, because five detections are found to be tight binary
systems, while one corresponds to a triple system (see Table 2).
Dzib et al. (2013) also published a list of YSOc detected in

their VLA observations. They reported as YSOc those radio
sources that are not associated with known young stars, but that
show high VLA flux variations, a negative spectral index, or
circular polarization. Four of these sources were also detected
in our VLBA observations, as well as another 27 (presumably
background) sources. We analyze the astrometry of these 31
objects in Appendix B and find that, as expected, most of them
are extragalactic sources.
In order to establish the nature of the emission, we have

measured the brightness temperature (Tb) of the VLBA-
detected sources, according to

n pq q
=T

c

k

S2
, 1b

B

2

2

total

maj min

( )

where qmaj and qmin are the deconvolved sizes of the major and

minor axes diameter, and Stotal is the total flux density measured

in the VLBA images. Since most of the sources have been

detected at several epochs, we are reporting the highest measured

brightness temperature. For unresolved sources, we give a lower

limit to Tb obtained using the corresponding beam size as an

upper limit for the source size. Brightness temperatures are given

in columns (7) and (5) of Tables 2 and 8, respectively. All of the

VLBA-detected YSOs have >T 10b
6 K, which is larger than the

brightness temperature expected for thermal bremsstrahlung

radiation ( T 10b
4 K), and consistent with the brightness

temperature expected for non-thermal emission. Our study has,

therefore, found a population of non-thermal YSOs larger than

previously reported. It is noteworthy that non-thermal emission

is detected in sources in the Class I to Class III stages.

A.3. Non-thermal Emission as a Function of Evolutionary
Stage and Multiplicity

In Figure 16, we plot the VLBA flux density at 5 GHz of the
detected YSOs as a function of their evolutionary phase, as
measured from their infrared/millimeter spectral energy
distribution (SED). It appears at first glance that older objects
have, on average, stronger non-thermal radio emission. The
significance of this correlation can be assessed by a
Kolmogorov-Smirnov test on the three YSOs classes. The p
values derived from such a test are>0.08, so we cannot reject
the null hypothesis that different classes are taken from the
same distribution function. The relation is, therefore, not
statistically significant. We also perform the Wilcoxon rank-
sum statistic finding similar results. Thus our conclusion about
the significance of the correlation does not depend on the
statistical test that we use.
From Table 2, it is clear that Class II and III sources are the

most common types of YSOs with non-thermal radio emission.
Past studies had only found two cases of Class I protostars with
non-thermal emission detectable in VLBI observations. These
sources are CrA IRS 5 (Deller et al. 2013) and EC 95 (Dzib

Figure 14. Summary of the parallax measurements reported here. Green circles
and characters are for sources in the core (Lynds 1688), while blue circles and
characters are for sources in the eastern streamer (Lynds 1689). SFAM 87 is
shown with a different color because it lies neither within the core nor within
the boundaries of Lynds 1689. The red squares are for previously published
parallaxes (Imai et al. 2007; Loinard et al. 2008). The green vertical bar shows
the mean parallax value for sources in the core, and its standard deviation
(see text).
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et al. 2010). Here we have detected non-thermal emission from
three other Class I objects, namely LFAM 4, YLW 15,20 and
WLY 2-67. Therefore we have more than doubled the number
of protostars with confirmed non-thermal emission. In a recent
study, Heiderman & Evans (2015) investigated whether the
Class 0+I and Flat SED sources identified in the c2d (Evans
et al. 2009) and Gould Belt (Dunham et al. 2015) surveys are in
the embedded phase. These authors used the detection of the

= + JHCO 3 2 as a good indicator of the Stage 0+1, which
corresponds to “a star and a disk embedded in a dense, infalling
envelope” (van Kempen et al. 2009). Our three Class I objects
with non-thermal radio emission meet the criterion to be in this
embedded stage. Non-thermal emission has not been detected
in Class 0 sources, and at this point it is unclear if this results
from a lack of such emission or if such young systems always
contain thermal radio jets that systematically absorb underlying
active coronas.

Magnetic activity is known to occur throughout the early
evolution of low-mass stars, so protostellar sources could easily
produce non-thermal emission. On the other hand, accretion
and outflow activity is also present in this protostellar stage. In
order for the observer to see the radio emission from the stellar
corona, the line of sight cannot cross regions where optically
thick radio emission is present (i.e., the central portions of disks
or wind/outflow systems). This might occur only for some
privileged relative orientation of the system, and naturally
explains the low fraction of detected protostars in our
observations, in comparison with the larger number of
detections of more evolved objects.

There does seem to exist a correlation between non-thermal
radio emission in YSOs and multiplicity. Perhaps the best
documented case is that of the V773 Tau system (Massi
et al. 2002; Torres et al. 2012), where the radio flux increases
by more than one order of magnitude when the system passes

periastron. We have found here that a significant fraction of the
VLBA-detected young stars belong to very tight binary or
multiple systems (with a separation of a few tens of mas—a
few au; Table 2). Multiplicity may help clear out the
surrounding material, and result in non-thermal emission that
is statistically less affected by free–free absorption, but the
exact mechanisms behind this remain unclear. The flux from
thermal jets becomes transparent at frequencies above a few
GHz (Reynolds 1986). Thus coronal non-thermal emission
from protostars with thermal emission should be detectable at
higher frequencies.
In our VLBA observations, we found that seven YSOs form

multiple systems, and one more has evidence of multiplicity
(see Table 2). This represents ~30% of the total number of
YSOs detected with the VLBA. The angular separations of the
components in these systems range from 4 to 315 mas,
corresponding to 0.6–44 au at the distance of Ophiuchus. In
order to investigate if this fraction is expected from the known
population of multiple systems in Ophiuchus, or if it indicates
that tight multiple systems are more likely to be non-thermal
radio emitters than single stars or wider multiple systems, we
compared it with the binary fraction reported in the literature.
Recently, Cheetham et al. (2015) compiled high-resolution
multiplicity data and combined them with their results from an
aperture masking survey; they obtained a binary fraction of
35±6% for spatial scales from 1.3 to 41.6 au. Taken at face
value, our VLBA detection of 30% of binaries with separations
between 0.6 and 44 au appears to be consistent with the binary
fraction derived from the multiplicity survey by Cheetham et al.
(2015). However, we still favor the idea that very tight binaries
are more often radio sources than single stars or more separated
binary systems, because seven of our eight detected binaries
have separations of a few au, whereas only one has a separation
larger than 10 au. Thus, for separations below 10 au, there does
appear to be an excess of radio-bright binaries. Our interpreta-
tion will be tested by considering the whole sample of multiple
stars seen in the five regions observed by GOBELINS, and

Figure 15. Spatial distribution of YSOs in Ophiuchus with astrometric parameters derived in this work. The gray scale represents the extinction map obtained as part
of the COMPLETE project (Ridge et al. 2006), based on 2MASS data (Skrutskie et al. 2006). The gray contour indicates an AV of 4. The arrows correspond to the
tangential velocity corrected by the solar motion.

20
As we mentioned earlier, a VLBI detection was reported by Forbrich et al.

(2007) toward YLW 15, but that detection was most likely spurious (see
Section 4.3).
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comparing with multiplicity studies in the infrared, where
aperture masking observations can explore angular separations
similar to those attained with the VLBA.

A.4. Radio Luminosity Function of Non-thermal YSOs

We show in Figure 17 the number of objects versus the radio
luminosity at 5 GHz (i.e., the luminosity function) of the 26
YSOs detected with the VLBA. The number of objects appears
to decrease with increasing luminosity, following roughly a
linear trend (in logarithmic luminosity). Assuming that the
trend is valid for lower luminosities, we can infer that deeper
observations with an improved sensitivity by an order of
magnitude will detect ∼20 more YSOs with non-thermal radio
emission, thus doubling the number of sources). It will be
interesting to construct the luminosity function for the other
regions considered in GOBELINS and see if this is a general
trend.

APPENDIX B
OTHER SOURCES

In this section, we analyze the astrometry of 27 sources
detected in our VLBA observations that are not classified as
YSOs in the literature. These sources are listed in Table 8.
Column (6) in that table provides a proposed classification
based on the radio emission properties in the VLA observations
of Dzib et al. (2013). Out of the 31 sources that are not known
YSOs in that list, 18 are proposed to be extragalactic (E), 4 are
YSO candidates (YSOc), and 9 have no proposed identifica-
tions. Many of these sources have been detected in several of
our VLBA observations, so we can analyze their changes in
position as a function of time to constrain their location along
the line of sight. Extragalactic sources are expected to remain
practically fixed on the celestial sphere, so any measured
change in their positions should be of the order of or less than
the rms astrometric errors. These errors are given by the
systematic errors found in the astrometric fits and are1.2 mas
for YSOs in the core, while for sources located in the L1689
streamer, we obtain systematic errors 2.4 mas. These larger
errors in L1689 result from the larger separation between the
main phase calibrator and the targets there. Galactic sources, on

other hand, should show an appreciable parallax and a proper
motion signature, particularly if they are within a few kpc.
For each source in Table 8 that has been observed in at least

two epochs (i.e., 56 out of the 64 sources in Table 8), we

measured the shift in position ( a d dD + Dcos 2 2 ) between
consecutive epochs, normalized it to 1 year, and averaged over
all consecutive pairs of epochs. For instance, for a source with
three detections, we averaged two displacements: one between
epoch 1 and epoch 2, and the other between epoch 2 and epoch
3. We will call this quantity the position change rate in the rest
of this section. This position change rate should be zero (within
the errors) for extragalactic sources and non-zero for (nearby)
Galactic objects. However, since the position change rate
contains information on both the parallax and the proper
motions, and is based on a varying number of detections for
different sources (from two to five detections), a non-zero value
cannot be easily interpreted in terms of distance along the line
of sight. Sources for which a non-zero value is found should be
analyzed in more detail.
The results are shown in the form of a histogram in

Figure 18, where we separate known YSOs from other sources.
The two histograms are markedly different. For known YSOs,
the histogram is roughly Gaussian and centered around a
position change rate of ∼36 mas yr−1. For the rest of the
sources, on the other hand, the distribution is dominated by a
peak around a position change rate of zero, to within a few mas
yr−1. Specifically, the first four bins in the histogram (23
sources) correspond to sources that do not show appreciable
motion on the celestial sphere (i.e., they have position changes
between consecutive epochs smaller on average than the
astrometric noise), and we identify them as extragalactic. This
new classification is shown in column (6) of Table 2. Of
course, for the four unclassified sources that have only been
detected once in our VLBA observations, the position change
rate cannot be measured, and we classify these sources as “?” in
column (6) of Table 8.
There are three sources, however, that do show a non-zero

position change rate, and we now discuss these in turn. The
source with the largest position change rate (∼27 mas yr−1) is
GBS-VLAJ163151.93-245617.4, and has been detected three
times. However, as in the case of YLW15, the three detections

Table 7

Corrected Proper Motions and Tangential Velocities

Name ma dcos
corr md

corr
av
t

dv
t

(mas yr−1) (mas yr−1) (km s−1) (km s−1)

(1) (2) (3) (4) (5)

WLY2-11 −1.96±0.72 −4.2±0.75 −1.26±0.46 −2.72±0.49
YLW24 0.63±0.83 −4.17±0.84 0.41±0.53 −2.67±0.54

DoAr21 −11.74±0.89 −5.91±0.86 −7.54±0.57 −3.79±0.55

LFAM2 1.87±0.87 −6.94±0.73 1.26±0.58 −4.66±0.49
LFAM8 1.82±0.83 −8.96±0.76 1.19±0.54 −5.86±0.5

S1 5.65±0.88 −6.1±0.77 3.69±0.57 −3.99±0.51

LFAM15 1.37±0.74 −6.29±0.71 0.9±0.49 −4.11±0.46

VSSG11 −2.88±0.92 −18.67±0.9 −1.9±0.61 −12.36±0.59
LFAM18 −3.96±0.82 2.25±0.71 −2.59±0.53 1.47±0.46

YLW12B 3.05±0.77 −3.66±0.7 2.0±0.5 −2.4±0.46

ROXN39 0.33±0.91 −5.25±0.83 0.21±0.59 −3.4±0.54

DROXO71 3.22±0.81 −7.77±0.72 2.09±0.52 −5.03±0.47
SFAM87 −0.41±0.86 −5.48±0.76 −0.27±0.56 −3.6±0.5

LIRS5 0.21±0.71 −3.55±0.69 0.15±0.5 −2.52±0.49

WLY2-67 0.58±0.79 −5.06±0.67 0.41±0.57 −3.63±0.48

DoAr51 2.1±0.84 −3.15±0.72 1.43±0.57 −2.14±0.49
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occurred around the spring equinoxes. Thus it is impossible to
obtain any meaningful information on its parallax. We note,
however, that its position change rate places it squarely within
the range covered by the YSOs in Ophiuchus. In addition,
because the detections occurred only during spring equinoxes
(April 2013, March 2014, and March 2016), the displacement
is dominated by proper motions, with only a small contribution
from parallax. The fact that the measured displacement (∼27
mas yr−1) is so similar to the proper motion of sources in
Ophiuchus suggests that GBS-VLAJ163151.93-245617.4 is
not only Galactic but indeed an Ophiuchus member. Interest-
ingly, this source had been classified as a YSO candidate by
Dzib et al. (2013) on the basis of the variability and spectral
slope of the radio emission. Additional detections will be
necessary to confirm this and obtain a trigonometric parallax,
but for the time being, we classify GBS-VLAJ163151.93-
245617.4 as an “Oph” member in column (6) of Table 8.

The source with the second largest position change rate (∼19
mas yr−1) is SFAM12, which was detected only twice. In this
case, the two detections occurred around the spring equinox of
2015 and the fall equinox of 2015, respectively. Thus the

displacement results from the combination of both parallax and

proper motion. This makes it unlikely that SFAM12 is an

Ophiuchus member, since for sources in Ophiuchus, a larger

position change rate would be expected (roughly 25 mas yr−1

due to proper motion, and an additional 15 mas due to parallax,

since the observations were obtained at opposite equinoxes).

Thus we classify SFAM12 as a Galactic source (“G” in column

(6) of Table 2), but unlikely to be associated with Ophiuchus

itself. We note that SFAM12 was previously believed to be

extragalactic. Finally, the third source with a definite non-zero

position change rate (∼10 mas yr−1) is LFAM17. Since there

were five detections of this target, an astrometric fit could be

attempted. Formally, it suggests a parallax ϖ=0.87±0.14
mas (corresponding to d=1.2±0.2 kpc), but the fit is poor.

Yet certainly this source is Galactic but much farther away than

Ophiuchus. Thus we classify it as “G” in column (6) of Table 2.

We note that Dzib et al. (2013) had classified it as a YSO on the

basis of its radio properties. Both SFAM12 and LFAM17 are

likely to be active stars (possibly, but not necessarily, young

ones) located behind Ophiuchus.

Table 8

Other Detected Sources

GBS-VLA Other Identifier Maximum Flux Maximum Flux log [Tb (K)]

Type of

Sourcea
Number of

Name at 5 GHz (mJy) at 8 GHz (mJy) Detections/Observations
(1) (2) (3) (4) (5) (6) (7)

J162540.94-244147.2 SSTc2d J162540.9-244147 0.39 <0.06 0.08 E ? 1/1

J162547.68-243735.7 L 0.45 0.37 0.05 ? E 3/3

J162633.48-241215.9 SFAM12 0.39 <0.06 0.05 E G 2/2

J162635.33-242405.2 LFAM13 0.79 <0.09 0.07 E E 4/10

J162646.36-242002.0 LFAM17 0.64 <0.06 0.08 YSOc G 5/6

J162702.15-241927.8 GDS J162702.1-241928 0.48 <0.06 0.07 E E 4/4

J162713.06-241817.0 L 0.21 <0.06 0.05 ? E 2/9

J162718.25-243334.8 L 0.52 <0.06 0.16 ? ? 1/6

J162729.23-241755.3 ROC25 2.74 <0.18 0.06 E E 5/5

J162734.55-242020.7 ROC26 1.25 <0.18 0.06 E E 5/5

J163027.69-243300.2 SSTc2d J163027.7-243300 0.25 <0.06 0.05 E E 2/4

J163032.26-243127.9 SSTc2d J163032.3-243128 0.90 <0.06 0.06 YSOc E 3/3

J163033.26-243038.7 SSTc2d J163033.2-243039 0.40 <0.06 0.06 YSOc ? 1/3

J163036.26-243135.3 L 0.80 <0.06 0.07 ? E 3/3

J163109.79-243008.4 ROC49 0.73 <0.06 0.07 E E 3/3

J163115.25-243313.8 L 0.29 <0.06 0.04 ? E 2/4

J163120.14-242928.5 ROC52 4.38 <0.06 0.14 E E 3/3

J163130.62-243351.6 SSTc2d J163130.6-243352 0.64 <0.06 0.06 E E 3/3

J163138.57-253220.0 L 0.56 1.00 0.07 ? G? 4/4

J163151.93-245617.4 L 0.34 0.28 0.06 YSOc Oph 3/4

J163154.49-245217.1 SSTc2d J163154.5-245217 0.35 <0.06 0.05 E E 2/3

J163159.36-245639.7 SFAM127 1.72 <0.06 0.09 E E 2/2

J163202.39-245710.0 L 0.18 0.34 0.06 ? E 2/3

J163210.77-243827.6 SFAM130 0.42 <0.09 0.07 E E 4/5

J163211.08-243651.1 SSTc2d J163211.1−243651 0.80 <0.09 0.08 E E 5/5

J163212.25-243643.7 L 0.37 <0.06 0.07 ? E 2/5

J163213.92-244407.8 L 0.36 <0.05 0.06 ? ? 1/6

J163227.41-243951.4 SSTc2d J163227.4−243951 0.51 <0.06 0.06 E E 3/5

J163231.17-244014.6 SSTc2d J163231.2−244014 0.51 <0.06 0.05 E E 2/5

J163245.23-243647.4 SFAM200 0.47 0.26 0.07 E E 3/3

J163617.50-242555.4 SFAM212 1.82 2.50 0.09 E E 5/5

Note. Reported sources have flux densities greater than s6 and s5 in the cases of one or several detections, respectively. Non-detections are indicated by giving an

upper flux density limit of s3 .
a
The first entry indicates the classification given by Dzib et al. (2013) from VLA observations. The second entry indicates the classification given in this work by

comparing the shift in source positions against the rms astrometric errors. Here, E stands for extragalactic, and G for Galactic objects.
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To finish this section, we should mention source GBS-
VLAJ163138.57-253220.0, which is the sole member of the
fifth red histogram bin in Figure 18. Its position change rate is

formally above the astrometric uncertainty. It was detected four
times, so an astrometric fit could again be attempted. As in the
case of LFAM17, the fit is poor; it results in a parallax

ϖ=0.17±0.05 mas (corresponding to d= -
+5.9 1.3
2.4 kpc).

This might suggest that GBS-VLAJ163138.57-253220.0 is a
Galactic source at several kpc, but given the large errors and
poor quality of the fit, we cannot completely discard that it be
extragalactic. Thus we classify it as “G?” in column (6) of
Table 8. In general, the identification proposed by Dzib et al.
(2013) for sources in Table 8 matches well with our new
classification based on VLBA observations.
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