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THE GRADED WITT RING AND GALOIS COHOMOLOGY. II

JON KR. ARASON, RICHARD ELMAN, AND BILL JACOB

Abstract. A primary problem in the theory of quadratic forms over a field
F of characteristic different from two is to prove that the rings H'F and
GWF are isomorphic. Here H'F = H'(Ga\(Fq/F),Z/2Z)), where Fq is
the quadratic closure of F , and GWF is the graded Witt ring associated to
the fundamental ideal of even dimensional forms in the Witt ring WF of F .
In this paper, we assume we are given a field extension K of F such that
WK is 'close' to WF or H'K is 'close' to H'F . A method is developed to
obtain information about these graded rings over F and its 2-extensions from
information about the corresponding graded ring of K. This relative theory
extends and includes the previously developed absolute case where K = Fq .
Applications are also given to show that H'F and GWF are isomorphic for
a collection of fields arising naturally from the theory of abstract Witt rings.

1. Introduction

The basic motivation for this paper is the interaction between the algebraic
theory of quadratic forms over fields and Galois cohomology.

Throughout F will be an arbitrary field of characteristic different from two.
We denote by WF the Witt ring of equivalence classes of quadratic forms
over F and by IF the ideal of even dimensional forms in WF. (Cf. [L]
or [Sch] for terminology from the theory of quadratic forms.) We write InF
for the nth power of IF and denote by GWF the associated graded ring
0~o InF/In+XF ■ We call GWF the graded Witt ring of F.

Let H'F := H*(F, Z/2Z) be the ('full') mod 2 cohomology ring of F , i.e.,
the cohomology ring H*(GF, Z/2Z) where GF is the absolute Galois group of
F. (Cf. [S] for terminology from Galois cohomology.) By [AI, Satz 4.8 or ELI,
Main Theorem 3.2] the assignment (1, -a,)®- • -® (1, -an) i-> (a,)U- ••U(an)
defines a map from the set of n-fold Pfister forms in WF to the set of n-
fold cup products in H*F. Here (a) in HlF = F/F2 denotes the element
corresponding to the square class of a in F := F\{0} . Our first main question
is whether this map extends to a homomorphism eF:InF —* HnF. We note
that In F is, even as a group, generated by the «-fold Pfister forms in WF, so
the question is not how to define eF but whether eF is well-defined. If eF is
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well-defined then its kernel contains In+lF , hence it induces a homomorphism
ê~"F: I" F/i" F —► HnF. Our second main question is then whether e~"F is an
isomorphism. Note that if both questions have an affirmative answer for all n
then the resulting isomorphism e~*F: GWF -+ H*F is an isomorphism of graded
rings.

If n is small then the answers are positive. The homomorphism eF is the
dimension index and ë~F is trivially an isomorphism. The homomorphism
eF is the (signed) discriminant and Pfister showed e~F to be an isomorphism
in [P, Korollar to Satz 13]. The homomorphism eF is the classical Clifford
invariant and e~F was shown to be an isomorphism by Merkurjev (cf. [Me]).
The homomorphism eF was shown to be well-defined by the first author (cf.
[AI, Satz 5.7]) and e~F was shown to be an isomorphism by Merkurjev-Suslin-
Rost (cf. [MS, R]). Recently, the map eF was shown to be well-defined by the
third author and Rost (cf. [JR]).

One would, a priori, only expect the theory of quadratic forms over F to give
information about 2-extensions of F, viz., about the Galois group Ga\(F IF).
Here, and throughout, we denote by F the quadratic closure (i.e., 2-closure) of
F . From the viewpoint of quadratic forms it is, therefore, more natural to ask
about the relationship between GWF and the quadratic mod 2 cohomology
ring H'F := H*(Gal(Fq/F),Z/2Z)). As before we have a map (1, - a,) ®
■ • • ® ( 1, - an) i-» (ax ) U • • • U (an) from the set of «-fold Pfister forms in WF to
the set of «-fold cup products in H*F . This time we view (a) as an element
in H F = F ¡F . Hence we also have the question whether this map extends to
a homomorphism e" F:l"F —» H"F and, if it does, whether the induced map
ë~" F:l"F/In+ F —► H"F is an isomorphism.

Of course, the two sets of problems are closely related. Indeed it is conjec-
tured that the inflation map inf: H* F —► H* F is an isomorphism, making both
sets of problems equivalent. This conjecture is equivalent to HnF = 0 for all
« > 0, i.e., to e~*F being an isomorphism. In particular, if e~*F: GWF —► H*F
is a well-defined isomorphism for every field F then also e* F: GWF —► H*F
is a well-defined isomorphism for every field F . The converse is also true (cf.
[AEJ1, Proposition 5.9]). The general results on the eF mentioned above imply
that H"F = 0 for 0 < « < 4. Hence inf: HnF -► HnF is an isomorphism for
0 < « < 4 and is injective for « — 4. In particular, the corresponding results
also hold for the enq F .

In this paper, we take the latter viewpoint. In particular, we want to find
conditions on F such that e* „:GWF —» H*F is a well-defined isomorphism.

In our papers [AEJ1 and AEJ3], we answered our questions in the affirmative
for fields F such that fF or Hq F is "small". For example, we proved that
e~* r is a well-defined isomorphism whenever I F = 0 or HnF — 0. Underq ,r q
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THE GRADED WITT RING AND GALOIS COHOMOLOGY. II 747

suitable hypotheses on the e™ F for small m , the methods and proofs in these
papers immediately give more general results. We now state some of these.

Theorem 1.1. Suppose that e~™ M is a well-defined isomorphism for all m < n
and e" M is well-defined for every finite 2-extension M of F. Then l"+lF = 0
or In+lF(y/^T) — 0 implies that ë* F is a well-defined isomorphism.

Proof. Cf. [AEJ1, Theorem 3.7 and Theorem 5.19].

In Theorem 1.1 replacing 'every finite 2-extension' by 'every finite extension'
and every e   by e also results in a valid theorem.

In connection with the conclusion of the theorem, we note that l"+ F = 21" F
and In+lF is torsion-free implies that In+{F(^f-i) = 0 (cf. [EP, Theorem
3.3]). Here 2InF := (1,1) ®InF. The converse is, however, not known.
Therefore, the following corollary is of interest.

Corollary 1.2. Suppose that ë™ M is a well-defined isomorphism for all m < n
and e" M is well-defined for every finite 2-extension M of F. Then In+ F(\/-ï)
= 0 if and only if In+lF = 21" F and l"+x F is torsion-free.
Proof. Cf. [AEJ1, Theorem 5.19].

It follows immediately from the theorem, assuming its hypotheses, that /"+ F
= 0 implies that Hq+lF = 0. For this, we have a converse but with a slightly
stronger hypothesis. More generally, we have the following

Theorem 1.3. Suppose that ë™ M is a well-defined isomorphism for all m < n
and e" M is well-defined for every field extension M of F. Then two (« + 1)-
fold Pfister forms over F are isometric if and only if their associated cohomology
classes in H"+lF are equal.
Proof. Cf. [AEJ3, Theorem 1]. Note that in the double equality on line 6 on p.
652 in [AEJ3] only the inclusion ker(eq F) ç Jn+lF is needed.

Corollary 1.4. Suppose that ë™ M is a well-defined isomorphism for all m < n
and e" M is well defined for every field extension M of F. Then I"+[F = 0 //
and only if Hq+lF = 0.

Combining Corollary 1.4 and Theorem 1.1, we get the following

Theorem 1.5. Suppose that ë™ M is a well-defined isomorphism for all m < «
and e"q M is well-defined for every field extension M of F. Then H"+lF = 0
or Hn+ .F(v/-T) = 0 implies that ë*q F is a well-defined isomorphism.

By the results cited above these theorems apply for « = 4. In particular,
if the cohomological 2-dimension of ^(v^-T) is at most four then ë* F is a
well-defined isomorphism. This includes fields of transcendence degree at most
four over a real closed or an algebraically closed field, fields of transcendence
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748 J. K. ARASON, RICHARD ELMAN, AND BILL JACOB

degree at most three over a finite field, and fields of transcendence degree at
most two over a local or global field. Using the following theorem, we see that
the same holds if F is a C5 -field. This includes fields of transcendence degree
five over an algebraically closed field and fields of transcendence degree four
over a finite field.

Theorem 1.6. Suppose that ë™ M is a well-defined isomorphism for all m < n
and e" M is well-defined for every field extension M of F. If every anisotropic
form in I" F has dimension less than or equal to 2n+ then ë* F is a well-defined
isomorphism.

Proof. Cf. [AEJ3, Proposition 2].

Thus there is increasing evidence for the conjecture that ë* F is a well-defined
isomorphism for every field F . (The appropriate analogs of (1.3)—(1.6) for the
e"F are also true (cf. [AEJ1 and AEJ3]).)

In this paper, we study consequences of 'relative' versions of the conditions in
Theorem 1.1 and Theorem 1.5. This means that we work with a field extension
K of F and assume, instead of /"+ F being 'small', that /"+ F is 'close to'
In+lK or, instead of Hq+XF being'small', that Hq+1F is'close to' Hq+lK. If
K = F then the 'relative' conditions are equivalent to the 'absolute' conditions
used in Theorem 1.1 and Theorem 1.5. For example, our 'relative' counterpart
of the condition Hq + lF = 0 will be that the natural morphism HqF -> HqK is
surjective and the natural morphism H"+ F —► H"+ K is injective. (It follows,
as we shall see in Theorem 3.9 below, that H™F —> H™K is an isomorphism
for every m > « .) We express this condition by saying that K is «-taut over
F . In §3, we study «-tautness and a weaker condition better suited to the case
when F is formally real. (When K = F , this weaker condition is equivalent
to Hn+ F(\/-T) = 0.) In §4, we introduce and study corresponding conditions,
called «-tightness, for the theory of quadratic forms. In §5, we prove a 'relative'
version of Theorem 1.1 in a slightly weaker form. In the last section, we present
an application of the machinery developed in the preceding sections. We show
that if WF can be built up from 'small' abstract Witt rings, using certain natural
constructions in the category of abstract Witt rings, then ë* E is a well-defined
isomorphism for every 2-extension E of F . This includes the case when WF
is an elementary Witt ring (cf. [Ma]). In particular, the results in [AEJ2] are
subsumed by the results here.

2. Commutative semisimple algebras

The idea behind the results of this paper is to obtain information about
e" F from knowledge about eq K where AT is a field extension of F such that
iKjF: WF -» WK is 'not too far from being an isomorphism'. It is, however, not
only more general, but also more convenient, to consider arbitrary commutative
semisimple F-algebras K . To do that we need some preparation.
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THE GRADED WITT RING AND GALOIS COHOMOLOGY. II 749

In what follows every commutative semisimple ring will have 2 a unit. Such
a ring K is canonically isomorphic to a direct product FT, ̂ , °f finitely many
fields Ki. (Indeed K = W^ K/& where & runs through the prime ideals of
K.) We define

HqK:^Y[HqK¡   and    ̂ /(T := JJ PFtf,.
i i

Using the corresponding facts for fields, it is easy to see that H*K and WK
behave functorially in K. (In fact, our definition of WK is consistent with
that of Knebusch [K], which gives a functor on the category of schemes. Also
H*K is a "2-etale" cohomology ring, defined functorially for all schemes.) Of
course, we also let

IK:=Y[lKi   so that   l"K = Y[lnK¡...
i i

It is then clear what we mean by e" K being well-defined, etc.
Let L be a commutative semisimple extension of a commutative semisimple

ring K that is free of rank 2 over K. Then L is necessarily of the form K@Kx
such that x is a unit d in K. Clearly, the isomorphism class of L over K
only depends on the class of d modulo the group of squares of units in K.
Conversely, this square class of d is determined by the isomorphism class of
L over K. If K — FT, K, is a decomposition of K into a direct product
of fields Ki and di 6 Ki is the ith coordinate of d then L = Y[tLit where
L; = Ki@Kixi with x( = rf(.. If di is not a square in AT( then L( is a quadratic
field extension of K{, and we have the exact triangle of cohomology

(d,)u «   '
where iL,K is the ordinary restriction map in group cohomology and corL ,K¡
is the ordinary corestriction map in group cohomology (cf. [AI, Satz 4.5]). If
di — ai is a square in Ki then Li has orthogonal idempotents (a¡ + x¡)/2a¡
and (a(. - x¡)/2a¡. So L( = K¿ x AT¿ with the inclusion Ki ç L. corresponding
to the diagonal mapping and with xi corresponding to (at, - a¡). The induced
map

i, ,r : H"K,. -» //"L, = H"KI x í/"a:i.//a,      ?     / q    i q     i q     i

is, of course, the diagonal mapping. By defining
cor, lr : HnLi = HnK x H"K — HnL

L,/Ki       q     t q     i q     i q     i

to be the codiagonal mapping, we get a short exact sequence
0-+H;Ki-+HngLi->H;Ki-+0

for each « . But, as di is a square in Kt, cup product with (c/() is trivial, so
that these short exact sequences fit into an exact triangle of cohomology just as
above. The direct product of all these exact triangles is also an exact triangle.
Thus we have the following proposition.
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750 J. K. ARASON, RICHARD ELMAN, AND BILL JACOB

Proposition 2.1. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L = K © Kx with x = d where d is
a unit in K. Then we have the exact triangle of cohomology:

This exact triangle unwraps into a long exact sequence
0 -» H°K -» H°L -* H°K ^HlK^ HXL

i  an q q q q q

-» HXK -» h]k -» //2L - /f^Ä" -+•••.

The exact triangle of cohomology is functorial in K.  More precisely, we
have the following

Proposition 2.2. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L = K®Kx with x — d where d is
a unit in K. Let M be a commutative semisimple ring and f:K —► M a ring
homomorphism. Let e := f(d) and let N := M © My with y = e. Denote
by g the ring homomorphism L —> N extending f with g(x) = y. Then the
following diagram is commutative:

■■■    -»    H"K    -»    H"L    -»    H"K    -*    H"+lK    -»    •■•
? ? 9 9
lili

•••    ->    H" M   -»   //"TV   -►    //"M   -»   i/"+1M   -»    •••? ? ? ?
//ere í«e horizontal arrows are the mappings in the sequence (A) and the vertical
arrows are the homomorphisms induced by f and g.
Proof. Only the commutativity of the middle square is not a priori clear. In
proving that this square is also commutative, one easily reduces to the case
where K and M are both fields. We then may assume that K ç M and /
is the inclusion. The case where L and N are also both fields is known (cf.
[AI, Satz 4.5]). If L is not a field then N is also not a field. In this case, the
commutativity follows at once from our definition of cor. There remains the
case where L is a field but ./V is not a field, i.e., where d is not a square in K
but is a square in M, say d = c .By mapping x (= \fd) onto c, we embed
L in M. As previously remarked, we then have N = M x M such that the
inclusion M ç N takes c to (c, - c). Consequently, the composition L -»
N = M x M is given by u> •->• (tu, W), where the bar denotes the nontrivial K-
automorphism of L. It follows that the induced homomorphism iN/L:HqL -*
HqN s H"qM x H"qM is given by y ^ (iM/L(y), '^¿(7)). where we also use
the bar to denote the automorphism induced on HqL. By the definition of
corN/M, we have
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for every y in H"L. On the other hand, cotl,k is the usual corestriction and
iL/K the restriction, so that (cf., for example, [Br, Proposition III.9.5]) we have
iL/K(coTL,K{y)) = y + y. It follows that

W(coV(y)) = W^/*(cori/A:(5?))) = tM/LÖ+y)
for every y in HqL.   a

For the Witt ring, we have analogous results.

Proposition 2.3. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L = K®Kx with x = d where d is
a unit in K. Then we have the exact triangle of Witt rings:

WL

WK¿--^-WK0 ,-</>»
Here the morphism s*L,K is induced by the K-linear map sL,K: L —► K deter-
mined by 1 i-» 0 and x i-> 1. This exact triangle unwraps into a long zero
sequence
( V )   WK - WL -» WK - IXK -> IlL -» IXK — I2K - I2L - I2K - • ■ ■ .

Proof. The proof is analogous to the proof of Proposition 2.1. For the case
d¡ is not a square in Ki cf. [AI, Satz 2.4 or EL3, Theorem 2.6].  When di

2= ai , one uses that the A^-linear map sL,K:Li —► K¡ maps (a¡ ±xi)/2aj h->
±\/2ai. It follows that i* : WLt = WKi x WKi -* WKi maps (<¿, ,^2) ^
(</»,-<^2)/2a..   D

Note that j2//c depends on the choice of *. Hence we have to be careful in
the formulation of the "functorality".

Proposition 2.4. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L = K®Kx with x2 = d where d
is a unit in K. Let M be a commutative semisimple ring and f:K —► M be
a ring homomorphism. Let e := f(d) and let N := M ® My with y — e.
Denote by g the ring homomorphism L —> N extending f with g(x) — y. Let
s1/k: WL ~* WK be the morphism induced by the K-linear map sL/K:L —► K
determined by 1 i-> 0 and x i-> 1 and let s^/Ar WN —* WM be the morphism
induced by the M-linear map sM/N: N —> M determined by 1 >-► 0 and y i-» 1.
Then the following diagram is commutative:

•••    -    I"K    -+    I"L   -»    InK    ->    In+XK    -   •••

i i 1 i
■■•    -   I" M   -»   /"/V   -+   /"A/   -♦   /"+1A/   -»    ••■

//ere /«e horizontal arrows are the mappings in the zero sequence (V) and the
vertical arrows are the homomorphisms induced by f and g.
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Proof. This is clear. Of course, for the commutativity at the middle square one
has to use that sM,N o g = fo sL/K .   o

It is not known if the zero sequence (V) is always exact. Indeed, one of
the main challenges in the algebraic theory of quadratic forms is to prove that
this sequence is always exact. However, we are able to show exactness in this
sequence in cases where we can use the exact sequence (A) of cohomology. For
example, we have the following

Proposition 2.5. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L = K@Kx with x — d where d is
a unit in K. Assume that ë™ K and ë™ L are well-defined isomorphisms for all
m < « . Then the sequence

...->I"-XK^ I"K -» InL - I"K -» I"+XK

is exact.
Proof. This is done by induction on « . The commutative diagram

0 0 0 0 0
1 I I i I

I"~XK    -»      I"K      -♦      I"L      -»      I"K      -»    I"+XK
I 1 I I I

/"-2Z,    _>    i"-2k    ->    In~xK    -    In~XL    -    /"-1ä:    -♦     I"K

I I 1 I I
H"T2L   -»   tf"-2*    -   //""'A-    -    //;_1L   -   H"~XKq q q q q

I I i I I
0 0 0 0 0

has exact columns by hypothesis. The bottom row is exact by Proposition 2.1
and the middle row is exact by the induction hypothesis. One chases in this
diagram to establish the induction step.   D

In the case we have, in addition to the hypothesis of the proposition, that e"q K
and e" L are also well-defined, we can extend the exact sequence. However, we
have to use kernels of e" instead of l"+x. To simplify the statement, we fix
the following notation: If e" K is well-defined we let

Jn+lK := kei(eqK).

Clearly,  Jn+lK is an ideal in  WK such that l"+xK ç Jn+lK ç l"K.   Of
course, ë" K is injective if and only if Jn+{K = /"+ K.

We do not know if our ideals Jn+l are always the same as the ideals Jn+l of
[K]. However, for « < 4 they do agree. (For « < 2 cf. [K, Example 6.2], for
« = 3 cf. [A3, Proposition 3], and for « - 4 it follows as in [A3, Proposition
3] using [MS or R and JR].)
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Proposition 2.6. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L-K®Kx with x2 = d where d is
a unit in K. Assume that ë™ K and ë™ L are well-defined isomorphisms for all
m < « and that e" K and e" L are well-defined. Then the sequence

I"K - I"L - I"K - Jn+lK - Jn+lL -+ Jn+lK
is exact.
Proof. We only have to prove exactness at Jn+lK and Jn+XL. That is done by
chasing in the commutative diagram

0 0 0 0
1 I I I

I"K      -    Jn+XK   -    Jn+lL   -    Jn+lK
1111

I"~XL    -+    I"~XK    -     I"K     -     I"L     -     I"K
1111H"q-XL   -   Hq~xK   -    HqK    -    HqL

1 1
0 0

as in the proof of Proposition 2.5.   ü

The exactness of the sequence in the conclusion has immediate consequences
regarding the injectivity of ë" F . We shall need the following in §5.

Proposition 2.7. Let L/K be an extension of commutative semisimple rings such
that L is free of rank 2 over K. Write L = K®Kx with x = d where d is
a unit in K. Assume that e" K and e"q L are well-defined and that the sequence

l"K^Jn+lK-*Jn+iL

is exact. Then e"q F is injective on the image of (1, -d)®l"~ K in l"K/In+ K.

Proof. Clear.   D

3. Taut algebras

Let A" be a commutative semisimple F-algebra. We view the embedding
F —► K as an inclusion. Then A" is a finite direct product of field extensions
of F. In this section, we consider a notion of iKiF'-II'qF —► H*K being not
too far from an isomorphism. This notion depends on a positive integer « .

Definition 3.1. Let A" be a commutative semisimple /•'-algebra. We say that K
is n-taut over F if both of the following conditions hold:

(i)   iK,F:H"F ^ H"K is surjective.
(ii)   iK/F:Hq+xF -+Hq+XK is injective.
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Example 3.2. Let F be a number field with exactly r real completions A",, ... ,
Kr. Let A" be the direct product of Kx.Kf. Then K is 2-taut over F
(cf. [T, §3.1]).

In the special case where A" equals F  (or the product of finitely many copies
of Fq ), we see that A" being «-taut over F means that Hq+XF = 0, i.e., that
the cohomological 2-dimension of Gal(Fq/F), denoted by cd2(Gal(Fq/F)), is
at most «. That, in turn, implies that H^E = 0 for every finite 2-extension
E of F and every m > n. Our first goal in this section is to establish a
corresponding result in the general case.

We begin with a 'Going up' result.

Proposition 3.3. Let K be an n-taut commutative semisimple F-algebra. Let
E/F be a finite 2-extension and let L = E®F K. Then L is n-taut over E.
Proof. By induction on [E : F], we reduce to the case when [E : F]-2. The
result now follows by chasing in the commutative exact diagram:

0 0
1 1H"F   ->   H"E   -   H"F   -+   Hn+XF   -   H"+XE   -+   Hn+XF

q q q q q q
1111 1 1

H"K   -    H"L    -   H"K   ->   H"+XK   -    H"+XL   -+   H"+XKq q q q q q
1 1
0 0

A similar proof now yields the following

Corollary 3.4. Let K be an n-taut commutative semisimple F-algebra.
Let E/F be a finite 2-extension and let L = E ®F K. Then the map from
ker(HqE -* HqL) to ker(HqF -+ HqK) induced by cote/f is surjective and
the map from coker(Hq+x F - Hq+X K) to coker(Hq+xE -► Hq+XL) induced by
* ei f Zí mJective-

For our next proposition, we need two lemmas.

Lemma 3.5. Let K be an n-taut commutative semisimple F-algebra. Let Kt
be one of the factors in the decomposition of K into a direct product of fields.
Let M be a field composite of F   and K¡. Then HqM = 0.
Proof. Let E/F be a finite 2-extension contained in Fq and let L = E®F K.
Let Li be the field composite of E and K¡ in M. Then Li is one of the factors
of L in its decomposition into a direct product of fields. Let HqL^> HqLi be
the projection map. Then the diagram

H"qE    -    HnqL   -    HnqLt

1 1
H"F„ -> H"M

is clearly commutative. As L is «-taut over E by Proposition 3.3, the maps
along the top row are surjective. Since H^F = 0, it follows that HqLi -* HqM
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THE GRADED WITT RING AND GALOIS COHOMOLOGY. II 755

is the zero map. As HqM is the direct limit of these HqLi, it follows that
HqM = 0.   D

Lemma 3.6. Let K be an n-taut commutative semisimple F-algebra. Let y e
H"+XK. Then there exists a finite 2-extension E/F suchthat iE®FKiK{y) = 0.

Proof. Let A" = \X^=0Ki be the decomposition of A" into a direct product
of fields. Fix an i and let y¡ be the image of y in H"+xKr Let M be
a field composite of F   and Kr  By the last lemma, HqM - 0, hence, by
[S, Proposition 1.11], also H"+XM = 0. It follows that there exists a finite 2-
extension EJF such that if Li denotes the field composite of Et and Ki in
M then iL jK (y¡) = 0. Enlarging E¡, if necessary, we may assume that EJF
is Galois. Then all field composites of E¡ and A"; are isomorphic over K(, so
iL,K.{yj) = 0 for any field composite L of E¡ and K¡. Let E/F be a finite
Galois 2-extension containing Ei for all /. Then this E works.   D

We can now proceed to prove the following

Proposition 3.7. Let K be an n-taut commutative semisimple F-algebra. Then
K is m-taut over F for all m>n.
Proof. By induction on m , it suffices to show that A" is (« + l)-taut over F.
We first show that iK/F:Hq+xF -» Hnq+XK is surjective. Let y € Hq+XK. By
Lemma 3.6, there exists a finite 2-extension E of F such that iL,K(y) = 0

where L = E®F K. In particular, iL/K{y) lies in the image of iL/E'-Hq+ E -+
Hq+XL. By Corollary 3.4, it follows that y lies in the image of iK/F: Hq+XF —
Hq+XK as needed.

We next show that iK/F:Hq+2F -» Hnq+2K is injective. Let y e Hq+2F
satisfy iKiF{y) — 0. There exists a finite 2-extension E of F such that
iE,F(y) — 0.  By induction on [£ : .F] and Proposition 3.3, we may assume
that E = F(\fd) is a quadratic extension of F . Let L = E ®F K. Then the
commutative diagram

0
1

H"+lE   -»    //"+1F    -    //"+2F    -    //n+2£
? 9 « ?
1111

//;+1l - //;+1a- -» //;+2a- - //;+2l
i
0

has exact rows. The columns are also exact. Indeed, the first column is exact
by Proposition 3.3 and the first part of the proof while the second column is
exact by hypothesis. The conclusion that y — 0 now follows by chasing in this
diagram,   o
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It should be noted that, in contrast to the proposition, HnF -* HnK an
isomorphism does not imply that HqF -► H™K is an isomorphism for all
m > «.

Example 3.8. Let F be a euclidean closure of Q. Then HqF ^ 0. Let M
be an odd degree extension field of F that is not Pythagorean (e.g., let M =
F(\/2)). Then there exists a quadratic extension M1 of M that is not formally
real but does not contain \/-T- Let A" be a maximal algebraic extension of
M' such that -1 is not a square in K. Then HqF -> HqK is an isomorphism
but Hq K = 0. To generalize this example let

^ = *■(«,))■••((<„_,))

and

Then HqF - HqK is an isomorphism but H"~XK = 0 although Hq+XF ¿ 0.

Proposition 3.3 and Proposition 3.7 together now yield the desired result:

Theorem 3.9. Let K be an n-taut commutative semisimple F-algebra. Let E
be a finite 2-extension of F and let L- E®F K. Then iLjE: H™E —► H™L is
surjective for m = « and an isomorphism for all m> n.

As remarked earlier, F  being «-taut over F simply means that

cd2(Gal(Fq/F)) < «.
Hence Theorem 3.9 might be interpreted as a result about some notion of a
relative cohomological dimension between Ga\{F IF) and Gal(A" /A"). Indeed
there is a purely group theoretic definition of such a relative cohomological
dimension and a group theoretical proof of a theorem giving Theorem 3.9 (cf.
[A4]).

In the 'absolute' case when K equals F (or the product of finitely many
copies of F ), Proposition 3.3 says that

cd2(Gal(Eq/E)) < cd2(Gal(Fq/F)).
In this case, there is also a 'Going down' result giving the opposite inequal-
ity, provided F is not formally real. We now look into the possibility of an
analogous 'Going down' result in our 'relative' setting. For the basic case of a
quadratic extension, we have the following technical result:

Lemma 3.10. Let K be a commutative semisimple F-algebra. Let E — F(\fd)
be a quadratic extension of F and let L — E ®F K. Assume that L is n-taut
over E.   Denote by Am  the kernel of iK/F:HqF -► HqK and by Cm  the
cokernel. Then for all m> n we have

( 1 )   (rf)u: Am -> Am+X is surjective.
(2) (rf)u: Cm - Cm+X is injective.
(3) ker((¿)u:^m+1 -» Am+2) is isomorphic to coker((i/)u: Cm -* Cm+X).
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Proof. Using Proposition 2.1, Proposition 2.2, and Proposition 3.7, we see that
the following commutative diagram is exact:

0 0 0 0
II 11

A"! __> Am+l 0 y4m+1 —► ¿'rt + 2

1 ï Ï I I
H™F     -     HfE    -*     H™F     -.     //¿"+1F     -    Hqr,+ ] E    -     //™+lF     -     H^F

1111 1 1 1
H™K     -     //¿"L    -»    //¿"AÏ    -    Z/^+'A:     -     //„m+lL     -    //,m+1A:    -     //™+2AT

1111
0 Cm      —      Cm+1 0

1 1
0 0

The results now follow by diagram chasing. (We do not use the left most
square.)   G

A finite algebraic extension E of F is said to be totally real (over F ) if
each ordering of F has [E : F] extensions to orderings of E. In particular,
a quadratic extension E = F(\fd) of F is totally real if and only if d is
totally positive in F, i.e., d is a sum of squares in F. Furthermore, a finite
2-extension £ of F is totally real if and only if E is obtained from F by
successive totally real quadratic extensions. If F is not formally real then, by
this definition, every finite algebraic extension of F is totally real. Hence the
following 'Going down' result is a generalization of the 'Going down' result for
cohomological dimension mentioned above.

Proposition 3.11. Let K be a commutative semisimple F-algebra. Let E be a
totally real finite 2-extension of F and let L — E ®F K. Assume that L is
n-taut over E. Then K is n-taut over F.
Proof. By induction on [E : F], we may assume that E = F(Vd) is a quadratic
extension of F where d is a sum of squares in F. Then there is a A: such
that (-\)k u (d) = 0. Using the well-known identity (d) u (d) = (-1) U (d),
we see that (d) +1 =0. We now use Lemma 3.10 and the notation therein.
By part (2) of this lemma, (d)k+XL): Cm -» Cm+k+x is injective. Thus Cm = 0
for all m > «. Applying part (3) of this same lemma, it now follows that
(d)\J:Am+ -* Am+ is injective. Using again that (d) +x — 0, it now follows
that Am+X = 0. This means that A" is w-taut over F for all m > « . D
Remark 3.12. The last proposition is false if we do not assume the extension
is totally real. For example, let F = R(í) and K = R(t,yJ-(l + t2)). Then
H"qF ¿ 0 but H"qK = 0 for all « > 2. Thus K cannot be «-taut over F for
any «. However, A"(v-1) is 2-taut over F(v-l).

If F is formally real then H™F ± 0 for all m . But we may haveq
H"+lF(y/=ï) = 0.

9

In this case we get, however, from the exact sequence (A) that H"+XF - (-l)U
HqF and that (-l)U: Hq+XF —>■ H"+2F is injective. There are several ways to

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



758 J. K. ARASON, RICHARD ELMAN, AND BILL JACOB

define something analogous in our 'relative' setting. Here we choose a definition
that is suitable for the purposes of this paper.

To simplify the notation, we let Hq{K/F) := ker(iK/F:HqF -> HqK) for
any commutative semisimple F-algebra K.

Definition 3.13. Let A" be a commutative semisimple F-algebra. We say that
K is loosely n-taut over F if all three of the following conditions hold:

(i)   iK/F:HqF —► Hq K is surjective.
(ii)   //;+1(A7F) = (-l)U//;(A7F).

(iii)   (-l)U://;+1(A-/F) - H"q+2{K/F) is injective.

Example 3.14. Let FQ be a formally real field such that Hq+xF0(y/^ï) = 0.
Let F be the Pythagorean closure of F0 (i.e., the smallest field extension of F
in which every sum of squares is a square). Then H"+ F(v/-T) = 0. Let K be
a SAP (cf. [EL2, Definition 1.4]) pythagorean field extending F such that the
inclusion map F0 ç A" induces a bijection, hence a homeomorphism, between
the spaces of orderings of K and of F0 . (Such a A" exists by [Cr, Theorem].)
Using that I2K{sfÄ) = 0 by [EL2, Theorem 5.3 and EP, Theorem 3.3], it is
easy to see that A" is loosely «-taut over F. But, in general, K is not «-taut
over F. Using also [A2, Satz 2], it can be seen that K is «-taut over F0 .

Let A" be a commutative semisimple F-algebra. Clearly, if K is «-taut over
F then K is loosely «-taut over F. If -1 is a square in F the converse also
holds because then (-l)U is the zero map. As we shall see this remains true
whenever F is not formally real. (Cf. Corollary 3.25 below.)

It is, of course, natural that the square class of -1 plays a special role in
studying H* F. It can, however, be shown that a commutative semisimple F-
algebra K is loosely «-taut over F if and only if there exists an element d in
F satisfying the following three conditions:

(1) iK/F'-HqF —> HqK is surjective.
(2) Hnq+x{K/F) = {d)uH"q{K/F).
(3) (d)l>:Hq+X(K/F) - Hq+2(K/F) is injective.

The proof is an easy application of the identity (d) U (d) = (-1 ) U {d). (By the
same method, it can be shown that (3) just above can be replaced by (iii) in the
definition of loosely «-taut.)

We shall not need this alternate characterization of loosely «-taut. We shall,
however, use the following trivial observation.

Remark 3.15. Let A" be a commutative semisimple F-algebra. Then A" is
loosely m-taut over F  for all  m > «  if and only if iKjF:H™F —► H™K
is surjective for all m > « and (-l)U:H™(K/F) — Hq+X{K/F) is surjective
for m = n and is an isomorphism for all m > « .
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We now want to prove a result for loose tautness corresponding to Theorem
3.9 for tautness. We start with a special case of 'Going up'.

Lemma 3.16. Let K be a loosely n-taut commutative semisimple F-algebra.
Let F+ = F(v/-f) and let K+ = F+®F K. Then K+ is n-taut over F+ .
Proof. As remarked above, \T-i e F implies that K is «-taut over F. Hence,
we may assume that \T-[ & F . As K is loosely «-taut over F, the following
commutative diagram is exact:

o

H»(K/F) -  H*+l{K/F)
1 1

H»F - H"F+  -      H^F      ->     H%+iF
111 1

H¡K -> H»K+  -»      H%K      -      H^XK
1 1
0 0

Chasing in this diagram, we see that K+ is «-taut over F+ .   D

We also have a 'Going down' result that includes a partial converse to the
previous lemma.

Proposition 3.17. Let K be a commutative semisimple F-algebra such that
iK/F:HqF — HqK is surjective. Let F+ = F(V=l) and let K+ = F+®F K.
If K+ is n-taut over F+ then K is loosely m-taut over F for all m> «.

Proof. We first show that i"     : HqF -» HmK is surjective. Let A € HqK. By
[A2 or AEJ1, Theorem 5.13 (iii)], there is a k such that (-1)* u A lies in the
subringof H'K generated by HXK. Enlarging k, we may assume that m+k is
divisible by «. Then (-1) UA lies in the subring of H*K generated by HqK.
As iK,F:HqF —> H"K is surjective, it follows that (-1) uA lies in the image
of iKjF:Hq+kF - Hq+kK. By part (2) of Lemma 3.10, cup product with
{-if from coker{iK/F:H'qnF-*H'qnK) to coktT(iKIF:Hq+kF -► Hq+kK) is
injective. Thus A lies in the image of ifr.p-.H^F -* H™K as needed.

Applying part (3) of Lemma 3.10, it now follows that the map

(-l)U://;+1(A7F) - //;+2(A-/F)

is injective. By part (1) of Lemma 3.10,

(-l)U:H"(K/F)^H"+x(K/F)

is surjective.   D

The following corollary is really a stronger version of the proposition. We
shall, however, not need it in the sequel.

- 0        -  H^+l(K/F)  - H^+2(K/F)
1 1

- H^+lF+  -»      H^+lF      -      H¡+1F

1 1
- h;+1 K+ -     H^+lK
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Corollary 3.18. Let K be a commutative semisimple F-algebra. Let E be a
finite 2-extension of F and let L = E ®F K. If L is loosely n-taut over E
and iKjF: HqF -► HqK is surjective then K is loosely m-taut over F for all
m> n.

Proof. Let F+ = F{yf-Î) and let K+ = F+ ®F K. Define E+ and L+ in a
similar way. By Lemma 3.16, L+ is «-taut over E+ and hence by Proposi-
tion 3.11, K+ is «-taut over F+ . The result now follows by the proposition
above,   o
Remark 3.19. In the proof of Proposition 3.17, we did not need the full force
of the hypothesis that iK,F:HqF —► HqK is surjective. We only used that the
subgroup of HqK generated by «-fold cup products of elements in HqK lies
in the image of iK,F: HqF —► HqK. We shall need this stronger formulation
later on.

Lemma 3.16 and the last proposition immediately imply the following analog
of Proposition 3.7.

Proposition 3.20. Let K be a loosely n-taut commutative semisimple F-algebra.
Then K is loosely m-taut over F for all m > n .

We can now prove our general 'Going up' result.

Proposition 3.21. Let K be a loosely n-taut commutative semisimple F-algebra.
Let E be a finite 2-extension of F and let L - E <g>F K. Then L is loosely
n-taut over E.

Proof. By induction on [E : F], we may assume that E = F(\fd) is a quadratic
extension of F.

We first show that iLjE:HqE —> HqL is surjective. Let ô e HqL. Chasing
in the exact commutative diagram

H"F    -+   H"E   ->    H"F    -+   Hn+XF    ^    Hn+X E   -    H"+x F
q q q q q q
1111 1 1H"qK   -    H"qL   -+   H"qK   -+   Hnq+XK   -    Hnq+X L   -+   Hnq+X K

1 1
0 0

shows that coïl,k{ô) - iK,F(ß) for some fi e HqF and that, moreover, {d)Uß
lies in Hq+X(K/F). By condition (ii) in the definition of loosely «-taut, we
then have {d) U ß = (-1) U (f> for some <j> e Hq(K/F). It follows that 0 =
(-d) U (d) U ß = (-d) U (-1) U <t>. Hence, by condition (iii) in the definition
of loosely n-taut, (-d) u <t> = 0. Thus (d) U <j) = (-1) U <f> = (d) u ß . Since
iK,F{<t>) = 0, this argument shows that, replacing ß by ß - <p, we may assume
that (d) Uß = 0. A straightforward chase in the diagram above now shows that
S lies in the image of iL,E:HqE —> HqL.
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Now let F+ = F(y/=ï) and let K+ = F+ ®F K. Define E+ and L+ in a
similar way. By Lemma 3.16, K+ is «-taut over F+ and hence, by Proposition
3.3, L+ is «-taut over E+ . The result now follows by Proposition 3.17.   D

Corollary 3.22. Let K be a loosely n-taut commutative semisimple F-algebra.
Let E = F(Vd) be a quadratic extension of F and let L = E ®F K. Then the
sequence

H"q(L/E) - H"q(K/F) - H"q+X(K/F) - H"q+X{L/E)
-//;+l(A-/F)-//;+2(A-/F)-...

is exact.
Proof. Proposition 3.21 and a straightforward chase in the diagram above shows
exactness at the first three places. The rest follows by using Proposition 3.20.   D

Our generalization of Theorem 3.9 now follows immediately from Proposi-
tion 3.20 and Proposition 3.21. To simplify the statement, we first make the
following
Definition 3.23. A subgroup H of HqF is said to be (-l)-torsion-free if there
is no nonzero element a e H such that (-1)  U a = 0 for some k .

Theorem 3.24. Let K be a loosely n-taut commutative semisimple F-algebra.
Let E be a finite 2-extension of F and let L = E ®F K. Then

(1) iL/E: H^E —► H™L is surjective for all m> « .
(2) H™(L/E) = {-\)m-n U Hnq{L/E) for all m > n .
(3) Hq{L/E) is (-l)-torsion-free for all m>n.

If F is not formally real then (-1) — 0 for some k . Hence we have the
following
Corollary 3.25. Assume that F is not formally real. Let K be a commutative
semisimple F-algebra. Then K is loosely n-taut over F if and only if K is
n-taut over F.

Combining the theorem with Proposition 3.17, we get the following specific
example of a 'relative result':

Corollary 3.26. Let K be a commutative semisimple F-algebra such that iK/F :
HqF - HqK is surjective. Let F+ = F{y/^l) and K+ = F{y/=Ï)®F K. Then
the following are equivalent:

(1) Hq+X {KIF) = (-l)U Hq(K/F) and is {-\)-torsion-free.
(2) iK+/F+:HqF+ - HqK+ is surjective and Hq+X{K+/F+) = 0.

4. Tight algebras
In this section, we begin the study of the quadratic form theoretic analog of

tautness.
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Definition 4.1. Let A" be a commutative semisimple F-algebra. We say that A"
is n-tight over F if the following two conditions hold:

(a) iK,F:InF —» InK is surjective.

(b) iK/F:In+xF^l"+xK is injective.

Examples 4.2. ( 1 ) Let K = F .   Then A" is «-tight over F if and only if
/"+1F = 0.

(2) Let F be a number field with exactly r real completions A",, ... , Kr.
Let K be the direct product of A",, ... , Kr. Then K is 2-tight over F (cf.
[Mi, Appendix or ELI, Example 4.3(2)]).

For convenience of notation, we let l"{K/F) = ker{iK/F: I"F —* l"K).

Definition 4.3. Let A" be a commutative semisimple F-algebra. We say that K
is loosely n-tight over F if the following three conditions hold:

(1) iK,F:I"F —► l"K is surjective.
(2) In+X{K/F) = 2I"{K/F) := (1, \)®l"{K/F).
(3) In+X{K/F) is torsion-free.

Examples 4.4. (1) Let K = F . Then K is loosely «-tight over F if and only
if In+XF = 21"F and l"+xF is torsion-free. If F is formally real then K is
not «-tight over F.

(2) Let F0 be a formally real field such that l"+xF0 = 2/"F0. Let F be
the Pythagorean closure of FQ. Using [EP, Theorem 3.1], one can show that
l"+iF = 21" F. Let A" be a Pythagorean field extending F such that the
inclusion map FQ ç K induces a bijection, hence a homeomorphism, between
the spaces of orderings of A" and of F0 . (Such a A" exists by [Cr, Theorem].)
Then K is loosely «-tight over F, but, in general, K is not «-tight over F.
If /     F0 is also torsion-free then A" is «-tight over F0 .

Let A" be a commutative semisimple F-algebra. Certainly, if K is «-tight
over F then it is loosely «-tight over F. Conversely, if F is not formally
real and condition (3) above holds then condition (b) holds. Thus if F is not
formally real then K loosely «-tight over F implies that K is «-tight over
F. It can be useful to think of the «-tight condition as the 'relative nonreaF
case, even though this condition can hold when F itself is formally real.

We would like to prove results about tightness analogous to the ones proved
about tautness in the preceding section. We are, however, not able to do this
without some extra conditions.

Let A" be a commutative semisimple F-algebra. If iK,F:l"F —► InK is
surjective then iKjF:ImF —► ImK is surjective for every m > n. (Indeed by

induction, we may assume that m - « + 1.  Then we have l"+ K = IK ®
iK/F{l"F) = IK® iK/F{l"'XF) ® iK/F{IF) C I"K ® iK/F{IF) = iK/F{In+xF).)
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It follows that if A" is «-tight over F then A" is w-tight over F for every
m > «. But we have not been able to prove that K loosely «-tight over F
implies that K is also loosely w-tight over F for all m > « . Note that this
would mean that l"+k{K/F) = 2kl"{K/F) for all k > 1.

Let A" be a commutative semisimple F-algebra. Let F be a finite 2-exten-
sion of F and let L = E®F K. We have not been able to prove that K «-tight
over F implies that L is «-tight over E. (We have the same problem with
loosely «-tight.)

The main reason for us not being able to get these desired results is that we do
not know if the sequence (V) is always exact at the right places. Consequently,
we shall need some substitute.

We would also like to prove that (loosely) «-tight over F implies (loosely)
«-taut over F . We are not able to do this without extra conditions. To explain
this problem, let us look at the special case that K = Fq. Then K being «-tight
over F simply means that /"+ F = 0 and K being «-taut over F means that
Hq+XF = 0. It is not known, however, if l"+xF - 0 implies that Hq+XF = 0
(cf. Corollary 1.4).

In our applications, we shall assume that ë™ F is a well-defined isomorphism
for all m < « and that e" F is well-defined for all fields F . (Cf. Corollary 1.4
and Proposition 2.6.) However, we do not need the full force of this assumption
for the results of this section and the next one. We shall, therefore, work with
weaker (but not as natural) hypotheses, which we now give a name.

Definition 4.5. Let A" be a commutative semisimple F-algebra. We say that A"
is n-admissible over F if the following two conditions hold:

(1) For every finite 2-extension M of any field in the decomposition of
K into a direct product of fields, e" M is well-defined and its image
im(e^) contains HxqMuHq'lM.

(2) If E/F is a finite 2-extension and E /E is a quadratic extension then
InL —► InL' —► InL—> T     I —► /     i' —> I     I

is exact where L — E®F K and L' = E' ®F K.
If F is «-admissible over F , we simply say that F is n-admissible.

Of course, condition (1) in the above definition guarantees that the same
holds for arbitrary 2-extensions M.

Let A" be a commutative semisimple F-algebra. Let F be a finite 2-exten-
sion of F and let L = E ®F K. It is then clear from the definition that K
being «-admissible over F implies that L is «-admissible over F. But we
do not know, of course, if A" being «-admissible over F implies that A" is
«i-admissible over F for all m> « .

Examples 4.6. ( 1 ) Let A" be a commutative semisimple F-algebra. Then K is
easily seen to be 1-admissible and 2-admissible over F .
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(2) Let F = R and A" be a field of transcendence degree at most five over
F. Then A"(\/-T) is «-admissible over F(%/-T) for all « by Theorem 1.6
and Proposition 2.6. But at present it is not known if A" is 5-admissible over
F.

These examples are special cases of the following

Proposition 4.7. Let K be a commutative semisimple F-algebra. Assume for
any finite 2-extension M of any field in the decomposition of K into a direct
product of fields that ë™ M is well-defined for all m < n and is an isomorphism
for all m < « . 77ze« K is n-admissible over F.
Proof. The first condition is immediate, since e"~^ is surjective by hypothesis.
The second condition follows from Proposition 2.6.   D

Corollary 4.8. Let K be a commutative semisimple F-algebra. Then K is n-
admissible over F for every « < 4.
Proof. This follows immediately from Proposition 4.7, using [Al and Me] for
« = 3 and [MS or R and JR] for « = 4.   D

For consistency of notation, we let Jn+l{K/F) - ker{iK/F: Jn+lF -* Jn+1K)
whenever both e" F and e" v are well-defined.9 f 9 ,*

We can now formulate and prove our 'Going up' result.

Proposition 4.9. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) =
I"+X{K/F). Let E/F be a finite 2-extension and let L = E®F K. Then L is
loosely n-tight over E and Jn+l{L/E) = l"+x{L/E).

Proof. By induction on [E : F], we may assume that E = F{Vd) is a quadratic
extension of F . Consider the commutative diagram:
(D)

0 0 0 0 0
11111

I"{L/E)    -    I"(K/F)    -     Jn+l(K/F)    -    Jn+l(L/E)    -    J„+x(K/F)
11111

¡np      _ jnE _ ¡np _, j^p _ jn+{E _, jn+ip

1111 1 1
I»K    -        I"L        -        I"K        -        Jn+iK        -»        Jn+iL        -        Jn+lK

1 1
0 0

Since both K and F are «-admissible over F, the bottom two rows are exact.
Since K is loosely «-tight over F, the columns are exact.

We first show that iL/E:l"E -* l"L is surjective.  Let </> e InL.  By the
exactness in diagram (D) there exists a a e l"F such that iKjF{o) = sL¡K{<t>).
Since 0 = (1, -d)®sL,K{4>) - iK/F{(l ,-d)®a), condition (2) in the definition
of loosely «-tight produces ate l"{K/F) such that 2t = (1, -d)®a . Then
2(1 ,d) ® T = (1, - d) ® (1 ,d) ® a = 0, so  (1 ,d) ® x is torsion.   Hence
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(l,d) ® T = 0 by condition (3) in the definition of loosely «-tight. Thus
(1, - d) ® t = 2t = (1, - d) ® a . This shows that, by replacing a by a -i,
we may assume that (1 ,d) ® a = 0. Chasing in diagram (D) now shows that
<j> lies in iL/E{InE) as needed.

We next show that Jn+l{L/E) Ç 2l"{L/E) and hence that Jn+l{L/E) =
In+X{L/E) = 2I"{L/E). Let <\> e Jn+l{L/E). Since sE/F{cf>) e Jn+l{K/F),
by hypothesis there exists a a in l"{K/F) such that sE,F{<f>) = 2a. As 0 =
(1, - d) ®sE/F{(f>) = 2(1, - d) ® a, the form (1, - d) ® a is torsion, hence by
hypothesis zero. Chasing in diagram (D) shows that a - s*E,F{x) for some t e
l"{L/E). This shows that, replacing <p by <j> - 2t, we may assume that
s*E/F{(j>) = 0. Further chasing in diagram (D) then shows that <f> lies in
Vf^CT) = 2iE/F{l"{K/F)) ç 2I"{E/F) as needed.

To finish, we must show that In+X{L/E) is torsion-free. Since l"+x{L/E) =
2I"{L/E), it suffices to show that if <f> e l"{L/E) satisfies 2m</> = 0 for some
m > 1 then 2<f> = 0. By hypothesis 2s*F{(f>) = 0. Chasing in diagram (D)
shows that 2$ = iE,F{a) for some a in Jn+l{K/F) = 2I"{K/F). Write a =
2ß for some ß in In{K/F), so that 2<j> = 2iE,F{ß). Then iE,F{ß) is a torsion
form. It follows that the signature of ß with respect to a, denoted by sgnQ(/¿),
is zero for every ordering a on F that extends to E. If a is an ordering on
F that does not extend to E then d <a 0. Thus sgna{{l,d) ® ß) = 0 for
every ordering a on F. It follows by the Pfister Local-Global Principle [P,
Satz 22] that the form {l,d)®ß in /"+ (A"/F) is torsion, hence by hypothesis
zero. Consequently, 2ß — (1, - d) ® ß. This shows that 2<f> — iE,f{{2ß)) = 0
as needed.   G

Corollary 4.10. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) =
I"+X{K/F). Let E = F{\/d) be a quadratic extension of F and let L = E®FK.
Then the sequence

I"{L/E) -> I"{K/F) -» I"+X{K/F) -+ I"+X{L/E) - l"+X{K/F) - l"+2{K/F)

is exact.
Proof. Using the surjectivity of iK/F:l"F —► l"K and iL,E:InE —► l"L, chas-
ing in diagram (D) shows that its top row is exact. Since

Jn+l{K/F) = In+l{K/F)   and   Jn+l{L/E) = l"+x{L/E),

there remains only to prove the exactness at the second occurrence of In+X{K/F).
Suppose that 4> e l"+x{K/F) satisfies (1, - d) ® </> = 0. Write 4> = 2y/ for
some i// G I"{K/F). It follows that {l,-d)®y/ is torsion, hence zero. By the
exactness shown so far, y/ = s*E/F{ß) for some p. e l"{L/E). It follows that
<fi = sE,F{2p) as needed.   G
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Corollary 4.11. Let K be an n-tight commutative semisimple F-algebra. As-
sume that both F and K are n-admissible over F and that Jn+l{K/F) =
l"+ {K/F). Let E/F be a finite 2-extension and let L = E®F K. Then L is
n-tight over E and Jn+l{L/E) = l"+x{L/E).

Proof. As before, we may assume that E/F is a quadratic extension. By the
proposition, L is loosely «-tight over E. Since l"+x{K/F) = 0, we have
I"+X {L/E) = 0 by Corollary 4.10.   Q

Corollary 4.12. Let K be a loosely m-tight commutative semisimple F-algebra
for all m> n. Assume that both F and K are n-admissible over F and that
Jn+l{K/F) = l"+x{K/F). Let E/F be a finite 2-extension and let L = E®FK.
Then L is loosely m-tight over E overall m> « and Jn+l{L/E) = l"+x{L/E).

Proof. It suffices to show Im{L/E) = 2m~"l"{L/E) for all m > « . It suffices to
do the case when E = F{Vd) is a quadratic extension of F. Let y/ e Im{L/E).
We can replace y/ by any element in its coset modulo 2m~"l"{L/E). We know
that s*E/F{y/) e Im{K/F) hence that sEjF{yt) = 2m~"ß for some ß e l"{K/F)
by hypothesis. Since 0 = (1, - d) ® sEjF{y/) - 2m~"{\, - d) ® ß, the form
(1, - d) ® ß is torsion, hence zero. By Corollary 4.10, we have ß = sE/F{p)
for some p e I"{L/E). Replacing y/ by y/ - 2m~"p, we see that, modulo
2m~"l"{L/E), we may assume that sE/F{y/) = 0. Corollary 4.10 now implies
that y/ — iE/F{2(f>) for some <j) e I" {K/F), using the assumption l"+x{K/F) -
2I"{K/F). Now y/ e ImE implies that 2m~x | sgnQ(<¿>) for any ordering a of
F that extends to E. Since sgna((l ,d)) = 0 if the ordering a of F does not
extend to E , we have 2m \ sgna((l, d)®(f>) for every ordering a of F . Thus, by
[AEJ1, Proposition 2.1], there exists a Â: such that 2k{\ ,d)®4> e Ik+m{K/F) =
2k+m~"l"{K/F). Since I"+X{K/F) is torsion-free, we see that (1 ,d) ® <p e
2m-"l"{K/F). Hence y/ = iE/F{24>) = iE/F{{\ ,d) ® <j>) e 2m-"l"{K/F) as
needed,   a

Corollary 4.13. Let « < 3. Let K be an n-tight {respectively, loosely n-tight)
commutative semisimple F-algebra. Let E/F- be a finite 2-extension and let
L — E ®F K. Then L is n-tight {respectively, loosely n-tight) over E.

Proof. This follows immediately from Proposition 4.9, since K is «-admissible
over F by Corollary 4.8 and since Jn+lF = l"+ F as previously remarked,   a

5. From tight to taut

This purpose of this section is to show that, under suitable additional hy-
potheses, a (loosely) «-tight F-algebra is also (loosely) «-taut over F. We
begin by looking at the relevant kernels.
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Proposition 5.1. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) =
I"+X{K/F). Then the map l"{K/F)-* H"q{K/F) induced by e"qF is surjective.
Proof. Let x € H"{K/F). There exists a finite 2-extension E/F such that
iEiF{X) — en ¿(0) f°r some (j> € I"{L/E) where L = E ®F K. (For example,
there exists such an E with iE/F{x) = 0 •) By Proposition 4.9 and induction
on [E : F], we may assume that E = F{Vd) is a quadratic extension of F .
Since

^9,f(J£/f(^)) = C0TE/F(eq,E^ = C0TE/f(ÍE/fÍX)) = °>

the form sE/F{<j>) lies in Jn+lF n I"{K/F) = Jn+l{K/F) = l"+x{K/F). Thus
s*e/f(^) = ^/fM f°r some y m Jn+\(LIE) by Corollary 4.10. Hence, re-
placing 0 by <f> - y, we may assume that, in addition, sE,F{(f>) — 0. Since
F is «-admissible over F, we then have that 4> = iE,F{ß) for some ß e
I" F. It follows by the exactness of the sequence (A) that X ~ eâ /■(/*) ̂ es m
{d) UH"~XF. Hence condition (1) in the definition of n-admissible over F
implies that we may write X - eq F(ß) — eq ft/7) ^or some p e InF. More-
over, iE,F{p) € Jn+\E an<^ s*eif^eif^P)) = 0, so that the «-admissibility
of F implies that iE,F{p) lies in the image of iEiF'-Jn+\F —► Jn+lE. This
shows that, by modifying p by an element of J„+lF, we may assume that
X - ^.fM - eq,F^ and Íe/f^P) = °- Thus rePlacin8 ß by ^ - P, we see
that we may assume that x = eq F(ß) and iE/F{ß) = <t> ■ We must still show
that ß can be chosen such that iK/F{ß) = 0. Certainly, iK/F{ß) lies in Jn+[K
and iL/F{ß) = iL/E(iE/F(ß)) = ¡l/e^ = ^- Condition (2) in the definition of
the «-admissibility of K therefore shows that iEiF{ß) lies in (1, -d)®l"K.
Since iK,F:InF -* InK is surjective, iE,F{ß) - (1, - d) ® iK,F{x) for some
t<eI"F. Now iE/F{ß - (1, - d) ® x) = 0 and (1, - rf) ® x G /n+1F ç Jn+lF.
Thus ej f(// - (1, - d) ® x) — x , so we may indeed assume that iE,F{ß) = 0
as needed.   G

We have the following analogs of Lemma 3.5 and Lemma 3.6:

Lemma 5.2. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) =
/ {K/F). Let Ki be one of the factors of K in its decomposition into a direct
product of fields. Let M be afield composite of Fq and Ki. Then I" M = 0
and H"qM = Q.
Proof. By replacing H" in the proof of Lemma 3.5 by /" , we see that I"M =
0. Since I" M = 0, we have InN = 0 for every 2-extension N of M by [Al,
Satz 3.6 or EL3, Theorem 6.3]. Let a e HqM. We must show that a = 0.
There exists a finite 2-extension N of M such that iN/M{oc) = 0. By induction,
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we may assume that N/M is a quadratic extension, say N = M{\fd). But then
we have a = {d)U ß for some ß in Hn~xM. Condition (1) in the definition
of «-admissibility for K implies that HxqMuHq'xM ç enqM{InM) = 0. It
follows that a = 0.

Lemma 5.3. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) =
l"+x{K/F). Let y e HqK.  Then there exists a finite 2-extension E/F such
that   ÍE»FK/AV) = °-
Proof. This follows from the last lemma by the argument to prove Lemma
3.6.   a

We next show that, given suitable conditions, «-tight over F implies «-taut
over F.

Proposition 5.4. Let K be an n-tight commutative semisimple F-algebra. As-
sume that both F and K are n-admissible over F and that Jn+l{K/F) —
In+X{K/F). Then K is n-taut over F.
Proof. We first show that iKiF'-HnqF —► H"K is surjective. Let y e HqK. By
Lemma 5.3 above there exists a finite 2-extension E/F such that iE^ K/K{y) —
0. In particular, there exist a finite 2-extension E/F such that iL/K{y) lies in
the image of iL/E:HqE -» HqL, where L = E ®F K. By Corollary 4.11 and
induction on [E : F], we may futher assume that E = F{Vd) is a quadratic ex-
tension of F. Since In+X{K/F) = 0 by «-tightness, sE/F:l"{L/E) - l"{K/F)
is surjective by Corollary 4.10. By Proposition 5.1, it follows that the map
H"{L/E) —► H"{K/F) induced by cor£/f is surjective. Hence we have the
following commutative exact diagram:

0 0
1 1

H"q{L/E)    -    H"q{K/F)    -        0
1 1

H"qF    -       H"qE       -+       H"qF       -    H"q+XF    -*    Hq+XE
11 111HqK    -       HqL       -       HnqK       -*    Hq+XK   -    Hq+X L

By chasing in this diagram, we see that, modulo the image of iKiF'-HnqF —*

HnK, we may assume that iL/K{y) = 0. Then y lies in {d) U Hq~ K which
lies in e" K{l"K) by condition (1) in the definition of «-admissibility.  Now
iK/F: I"F —► InK is surjective by hypothesis. Consequently, y lies in the image
of zV/r://"F —» H"K as needed.K/F       q q

We next show that iK/F:Hq + xF - Hq + XK is injective. Let a e Hq+X{K/F).
We must show that a = 0. There exists a finite 2-extension E/F such that
iE/F{a) = 0.   By Corollary 4.11 and induction on  [E : F], we may assume
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that E — F{Vd) is a quadratic extension of F. Let L = E ®F K. By the
first part of the proof and Corollary 4.11, we have that iL/E:HqE —> HqL is
surjective. Chasing in the above commutative exact diagram now shows a - 0
as needed,   a

Combining Corollary 4.11, Proposition 5.1, and Proposition 5.4, we get the
following

Theorem 5.5. Let K be an n-tight commutative semisimple F-algebra. As-
sume that both F and K are n-admissible over F and that Jn+i{K/F) -
I"+X{K/F){= 0). Let E/F be a finite 2-extension and L = E ®F K. Then

(1) L is n-tight over E and Jn+l{L/E) = l"+x{L/E).
(2) L is n-taut over E.
(3) H"q{L/E) = e"qE{l"{L/E)).

One application of the above theorem is the following

Corollary 5.6. Let K be a commutative semisimple F-algebra such that both
K and F are n-admissible over F.   Suppose that iK,F:InF —> l"K is an
isomorphism. Then íKiF'-HTF —* H™K is an isomorphism for all m > « .

Proof. Clearly, K satisfies the hypotheses of Theorem 5.5 and l"{K/F) = 0.
The conclusion now follows using Theorem 5.5 and Theorem 3.9.   G

The analog of the 'Going down' result of Proposition 3.21 can now be estab-
lished.

Proposition 5.7. Let K be a commutative semisimple F-algebra. Suppose that
both K and F are n-admissible over F and iK/F: InF —► InK is surjective.
Let F+ = F(v^T) and let K+ = F+ ®F K. Suppose that K+ is n-tight over
F+ and Jn+l{K+/F+) = l"+x{K+/F+), i.e., Jn+1{K+/F+) = 0. Then K is
loosely n-tight over F and Jn+[{K/F) = l"+x{K/F).

Proof. We must show that Jn+l{K/F) = In+l{K/F) = 21" {K/F) and is torsion-
free. Let <j) e Jn+l{K/F). Since Jn+l{K+/F+) = 0, the «-admissibility of F
implies that <f> lies in 21"F. Since i¡c+iF+'-l"F+ —► l"K+ is surjective, chas-
ing in diagram (D) with E = F+ and L — K+ shows we may assume that 4>
lies in 21"{K/F). It follows that Jn+l{K/F) = l"+x{K/F) = 2l"+x{K/F). To
show that I"+X{K/F) is torsion-free, it suffices to show that In+X{K/F) has
no nontrivial elements of order two. Suppose to the contrary that 0 ^ <f> lies
in l"+ {K/F) but 2(f> = 0. By the Hauptsatz of [AP], there exists a maximal
r > 0 such that (f> = 2ry/ for some y/ € I"{K/F). By what we have already
shown, r > 1 . By [AEJ1, Corollary 2.5], there exists an integer m such that
{-l)r+m 'Jeq F{y/) = 0. Since iK,F{w) = 0 and e"q F is well-defined, we have
iniF^qjiv)) = 0. In particular, ¿K/f((-l) UeqF{y/)) - 0. By Theorem 5.5,
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K+ is «-taut over F+ . It follows by Theorem 3.24 that H"+X{K/F) is (-1)-
torsion-free. This implies that {-\)\je" F{y/) = 0. From the exact sequence
(A) and Theorem 5.5, we hence have e"q F{yi) = corf+/F{e" F{x)) for some x
in l"{K+/F+). Thus e"qF{yi - s*F+/F{x)) - 0, i.e., we have y/ - s*F+,F{x) lies
in Jn+l{K/F) = In+X{K/F) = 2I"{K/F). Consequently 2yi = 4p for some ß
in I" {K/F), so (f> = 2r+x ß. This contradicts the choice of r.   a

Proposition 4.9 and the above result immediately yield the following

Corollary 5.8. Let K be a commutative semisimple F-algebra. Suppose that
both K and F are n-admissible over F. Suppose that iK/F:l"F —> l"K is
surjective. Let F+ - F{\f-Î) and K+ = F+ ®F K. Then the following are
equivalent:

(1) Jn+l{K/F) = I"+X{K/F) = 2I"+X{K/F) and is torsion-free.
(2) iK+/F+--InF+ - I"K+ is surjective and Jn+l{K+/F+) = In+X{K+/F+)

(=0).
The generalization of Theorem 5.5 to the loosely «-tight case is now easily

established.

Theorem 5.9. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) —
l"+x{K/F). Let E/F be a finite 2-extension and let L = E ®F K. Then

(1) L is loosely n-tight over E and Jn+l{L/E) = l"+x{L/E).
(2) L is loosely n-taut over E.
(3) H™{L/E) = {-l)m-"ue"qE{l"{L/E)) for all m>n.

Proof. We have already shown that (1) holds. Let E+ = E{\/^\) and L+ =
E+ ®E L. Since L+ is loosely «-tight over E+ by Proposition 4.9 and since
E+ is not formally real, L+ is «-tight over E+ . By Theorem 5.5, L+ is «-taut
over E+ . Since iL/E: InE —► I"L is surjective, it follows that the subgroup of

HqL generated by «-fold cup products of elements in HqL, viz., eq L{l"L)
lies in the image of iL/E: HqE —> HqL. By Proposition 3.17 and Remark 3.19,
it follows that L is loosely «-taut over E. This shows (2). Using Proposition
5.1, statement (3) follows from (2) and Theorem 3.24.   a

We now come to the main result of this section.

Theorem 5.10. Let K be a loosely n-tight commutative semisimple F-algebra.
Assume that both F and K are n-admissible over F and that Jn+l{K/F) =
In+i{K/F). Then ë'" F is a well-defined isomorphism for all m>n ife^^ is
a well-defined isomorphism for all m> « .
Proof. We first show that e™F is well-defined for all m > « . By assumption
this is true for m - « so assume that m > n . Let xi be m-fold Pfister forms
and ai e F for 1 < / < r satisfying ]£í»i(fl,) ®x( = 0. We must show that
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the element a := 2/L, e£j{Tt) vanishes in HqF. Since e™K is well-defined,
we have iK/F{a) = 0. Thus a e H™{K/F). If E is a euclidean field then
eq'e *s well-defined. In particular, iE,F{a) = 0 for every euclidean closure E
of F. It follows by [A2, Satz 3] that a is a (-l)-torsion element in HqF . By
Theorem 5.9, we know that K is loosely «-taut over F, so by Theorem 3.24
we get that H™{K/F) is (-l)-torsion-free. Consequently, a = 0.

Next we show that e™F is surjective for all m > «. As noted before,
iK/F:l"F —► l"K surjective implies that iK/F:ImF —► ImK is surjective for
all m > « . By hypothesis e™ K is surjective for all m> n . Thus, to show our
claim, we need only show that the image of e™F contains Hq{K/F). But this
follows from Theorem 5.5.

To finish we must show that ker(e™f) = lm+lF for all m > «. Since
iK/F{ter{eqF)) ç kcT{eqK) - Im+XK and, as noted above, iK/F:Im+xF -»
Im+XK is surjective, it suffices to show that ker{eqF) n Im{K/F) ç Im+lF,
i.e.,   Jm+i{K/F) ç Im+lF.   To establish this we show that  Jm+i{K/F) ç
2m~"+xl"{K/F) for all m > n. If m = n this is true by hypothesis, so we
may assume that m > «. If A" is «-tight over F then this is trivial, since
both sides are 0. Thus we may assume that \f-\ & F . Let F+ = F(\/-T) and
K+ = F+ ®F K. Suppose that </> e Jm+l{K/F). We must show that </> lies in
2m~"+xl"{K/F). By induction, we may assume that 0 lies in 2m'"l"{K/F).
Say (p - 2m~" ®x where x lies in I" {K/F). Taking e™ F of this equation,
we get 0 = e'ZjW) = (-l)m"n U e"qF{x). Thus (-1) U e"qF{X) € H"q+X{K/F)
is zero, since Hq+X{K/F) is (-l)-torsion-free by Theorem 3.24. By Corol-
lary 3.22 then eqF{x) lies in the image of corF+/F:Hq{K+/F+) -+ Hq{K/F).
Using Theorem 5.5 we see that there exists an element yi e l"{K+/F+) such
that eqF{x) = corF+/F{eq F+{y/)) = eq F{s*FyF{y/)). Thus x - sF+/F{y/) lies
in Jn+X{K/F) = 21"{K/F). Since 2sF+/F{yt) = 0 and m > « , it follows that
(j, = 2m~"x = 2m~"{x - s*F+/F{y/)) lies in 2m~n+xI"{K/F). This concludes the
proof,   a

Remark 5.11. Our proof shows that under the hypotheses of this theorem, we
also have that K is loosely m-tight over F for all m> « .

Corollary 5.12. Assume for any field extension M of F that ë™ M is well-defined
for all m < n and an isomorphism for all m < n. Let K be a loosely n-tight
commutative semisimple F-algebra. Assume that Jn+i{K/F) = l"+ {K/F).
Then e* F is a well-defined isomorphism if e* K is.

Proof. This follows immediately from Theorem 5.10 and Proposition 4.7.   a
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Corollary 5.13. Let K be a loosely 4-tight commutative semisimple F-algebra.
Assume that J5{K/F) = I5{K/F). Then ë* F is a well-defined isomorphism if
ë* v is.9>A

A special case of Theorem 5.10 is already interesting. This is the case that
K equals F   (or the direct product of finitely many copies of F ). Then the
hypotheses in the theorem, besides the n-admissibility of F, are l"+xF =
21"F, /"+ F is torsion-free, and Jn+lF = l"+xF . In this case, we do not need
the last hypothesis (cf. Theorem 1.1 and Corollary 1.2).

Proposition 5.14. Assume that F is n-admissible. Assume furthermore that
l"+ F — 21"F and is torsion-free. Let E be a finite 2-extension of F. Then
l"+ E = 21" E and is torsion-free. Furthermore, ë1" E is a well-defined isomor-
phism for all m > n . In particular, H"+XE = 0 if E is not formally real.

Proof. Suppose first that v^T e F. Then the hypothesis implies that l"+xF —
0 and hence /"+ E = 0 for any finite 2-extension F of F by [AI, Satz 3.6 or
EL3, Theorem 6.3]. We show that J„,,F = 0. Let é e J„^,F. There existsJ n+l T n+i
a finite 2-extension E of F such that iE,F{4>) = 0. By induction on [E : F]
we may assume that E = F{Vd) is a quadratic extension of F . By hypothesis
I"F -> Jn+{F -► Jn+lE is exact so 4> e (1, - d) ® I"F ç l"+xF = 0. Thus

Suppose next that v^T £ F. Let F+ = F{y/-Í). Since l"+xF = 21"F
is torsion-free, /"+ F+ = 0 by [EP, Theorem 3.3]. Thus the argument above
shows that Jn+[F+ = 0 also. The exactness of the sequence I"F -> Jn+lF —>
J„^,F+  shows that  J„^,F - 21"F c /"+ F.   Thus, in all cases, we haven+1 n+1 — ' '

7^.F = 2rF = /"+1F.n+\
Now let K = F . Then the hypotheses of Theorem 5.10 are satisfied. Let

F be a finite 2-extension of F. Then L = E ®F K is a direct product of
finitely many copies of Fn . In particular, ë~™, is a well-defined isomorphism
for all m . The conclusion of the proposition now follows by Proposition 4.9
and Theorem 5.10.   a

Corollary 5.15. Assume that I F = 2/4F and is torsion-free.  Then ë* E is a
well-defined isomorphism for every 2-extension E of F.
Proof.  F is 4-admissible by Corollary 4.8. Since ë" E is an isomorphism for
n < 3, the result follows from the proposition above,   a

By Corollary 5.8, we can rephrase the corollary above as

Corollary 5.16. Assume that Z5F(\/^T) = 0. 77ze« ë* E is a well-defined iso-
morphism for every 2-extension E of F.

Of course, Theorem 1.1 can also be used to show this. Unfortunately, we
have not been able to prove Theorems 5.9 or 5.10 without the extra hypothesis
0n   Jn+l ■
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6. Abstract Witt rings
In this section, we shall apply the results of the previous sections to give a

new proof of the main result in [AEJ2]. Indeed, we shall prove a much more
general result.

We shall use the term abstract Witt ring in the sense of Marshall. For details
see the book [Ma]. But we recall here:

An abstract Witt ring is a commutative ring R together with a distinguished
group of units in R that generates R. This group of units is assumed to be
an elementary abelian 2-group and to contain -1. Its elements are called one-
dimensional forms.

There is a natural ring homomorphism R -» Z/2Z mapping one-dimensional
forms to 1. The kernel of this homomorphism, the ideal of even-dimensional
forms, is denoted by IR. We let l"R := {IR)n .

A morphism of abstract Witt rings is a ring homomorphism that maps one-
dimensional forms to one-dimensional forms. The category of abstract Witt
rings has arbitrary products. (Ring theoretically they are fiber products over
Z/2Z.) If R is an abstract Witt ring and A an elementary abelian (multiplica-
tive) 2-group then the group ring R[A] is, in a natural way, an abstract Witt
ring.

For convenience of expression, we make the following two definitions which
are to be used in this section.

Definition 6.1. We say that a field F is placid if ë* F: GWF —► H*F is a well-
defined isomorphism. We say that a field F is hereditarily placid if ë* E: GWE
—» //* E is a well-defined isomorphism for every finite 2-extension E of F .

Definition 6.2. We say that an abstract Witt ring R is docile if every field F
such that WF = R (as abstract Witt rings) is placid. We say that R is heredi-
tarily docile if every field F such that WF = R is hereditarily placid.

Examples 6.3. ( 1 ) If / R - 2I4R and I R is torsion-free then R is hereditarily
docile by Corollary 5.15. In particular, Z/2Z, Z/4Z, Z, Z/2Z[¿;] with cf =
1, and Z[Ç] with £2 = 1 are hereditarily docile.

(2) Every reduced abstract Witt ring of finite chain length is docile (cf. [J,
Theorems 5 and 6]).

For the first proposition in this section, we need a result that seems to be
known but not explicitly stated anywhere. We state it as follows:

Lemma 6.4. Let v be a 2-henselian valuation of F and denote by F its residue
class field. Then F is placid if and only if F is placid.

' 1
Proof. Choose a subgroup A of F/F such that v maps A bijectively onto
r/2T where T is the value group of v . Then there are natural descriptions of
WF (respectively, H*F ) in terms of WT (respectively, H*T) and A (cf.
[W]). The result immediately follows by comparing these descriptions,   a
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Proposition 6.5. Let R be an abstract Witt ring and let A be an elementary
abelian 2-group. Then R[A] is docile {respectively, hereditarily docile) if and
only if R is docile {respectively, hereditarily docile).
Proof. Let v be a 2-henselian valuation of F and denote by F its residue
class field and by T its value group. Then WF = WF[V] where V £ T/2r.
Using Lemma 6.4, it clearly follows that R is docile (respectively, hereditarily
docile) if R[A] is docile (respectively, hereditarily docile). This also shows, that
in proving the opposite implication, we may assume that R is not a group ring
(i.e., R is basic). So assume that WF = R[A]. By [AEJ4, Theorem 4.6 and
Remark 4.9(iii)], there is a 2-henselian valuation v on F such that WT = R,
where F is the residue class field, except possibly in the case R = Z/2Z or
R = Z, where_we might only get WF = Z/2Zß] or WF S Z[£] with tf = 1.
In any case, F is placid (respectively, hereditarily placid). Hence the result
follows by Lemma 6.4.   a

Unfortunately, we have not been able to prove that direct products of docile
Witt rings are docile. We do, however, have partial results.

Let a: WF —* R be a morphism of abstract Witt rings. We say that a field
extension K of F realizes a if there is an isomorphism t: WK —► R of
abstract Witt rings such that a corresponds to iKjF:WF —► WK, i.e., a —
x°iK,F . In the case we are given an isomorphism WF = RxS and a: WF —► R
is the morphism corresponding to the projection R x S —► R, we shall simply
say that K realizes the factor R of WF. Conversely, when we write WF =
WK x S, we mean to imply that the morphism WF —► WK corresponding to
the projection WK xS-» WK is iK/F .

Lemma 6.6. Suppose that we have an isomorphism WF = Rx x •• • x Rk of
abstract Witt rings. Assume that for each i there exists a field extension AT( of
F realizing the factor R¡ of F. Then F is placid {respectively, hereditarily
placid) if Kx, ... ,Kk are all placid {respectively, hereditarily placid).
Proof. Let A" = FT, K¡ ■ Then K is 1-tight over F. Let F be a finite 2-
extension of F and let L = E ®F K. Then L = rj7 L. where each L. is a
finite 2-extension of some Ki. By Corollary 4.13, we know that L is 1-tight
over E. In particular, E is placid if each L is placid by Corollary 5.12. The
result follows,   a

We do not know if factors of Witt rings of fields are always realizable. If we
knew this, it would follow from the lemma above the direct products of docile
abstract Witt rings were docile. In [AEJ4, Realization Theorem 4.8], however,
we proved that every factor of WF that is a nontrivial group ring is realizable.
Using Proposition 6.5, we hence get the following

Corollary 6.7. A finite direct product of nontrivial group rings over docile {respec-
tively, hereditarily docile) abstract Witt rings is docile {respectively, hereditarily
docile).
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The following lemma gives a sufficient condition for a field K to realize a
factor of WF.

Lemma 6.8. Suppose that we have an isomorphism WF = R x S of abstract
Witt rings and let a: WF —► R be the morphism corresponding to the projection
RxS —► R. Let K be a field extension of F and let x: WK —► R be a morphism
of abstract Witt rings such that a — x o iKjF . Assume that x is injective on one-
dimensional forms. Then x is an isomorphism, i.e., K realizes the factor R of
WF.
Proof. From the definition of a , it follows that a maps the one-dimensional
forms in WF surjectively onto the one-dimensional forms in R. As x is
injective on one-dimensional forms, it follows that x is an isomorphism on one-
dimensional forms and that iK/F is surjective on one-dimensional forms, hence
surjective. In particular, ker(r) = iK,F{ker{o)). From the definition of a, it
follows easily that ker(a) is generated by differences of two one-dimensional
forms. Using the hypothesis on x again, it follows that ker(r) = 0. Clearly, x
is surjective.   a

The next lemma says that if several factors of WF can be realized individ-
ually, then their direct product is also realizable.

Lemma 6.9. Suppose that we have an isomorphism WF = Rx x ■■■ x Rkx S
of abstract Witt rings. Assume that for each i there exists a field extension A"(
of F realizing the factor R¡ of WF. Then the factor R - Rxx ■■■ x Rk of
WF is realized by a field extension K of F. Moreover, if each A"( is placid
{respectively, hereditarily placid) then K can be chosen to be placid {respectively,
hereditarily placid).

Proof. Let A"° be the quadratic closure of F in A";. Then WK® —> R¡ is
injective on one-dimensional forms and hence is an isomorphism by Lemma
6.8. In particular, A"( is 1-tight over Ki . So, by Corollary 5.12 (and Corollary
4.13), we have K® placid (respectively, hereditarily placid) if A"; is placid
(respectively, hereditarily placid). This shows that, replacing Ki by A"; , we
may assume that each A"( is a 2-extension of F. But then we clearly also may
assume that each A"( ç Fq . Now let K = Ky n • • • n Kk. Then WK -► Rx x
■ ■ x Rk is injective on one-dimensional forms and, therefore, an isomorphism

by Lemma 6.8. The result now follows by Lemma 6.6.   a

Before we state the main results of this section, we introduce some terminol-
ogy.

Let 3§ be a class of abstract Witt rings. By the class ^, generated by ¿%,
we mean the smallest class of abstract Witt rings that contains ¿% and is closed
under the following operations:

(1) taking an isomorphic abstract Witt ring,
(2) taking a finite product of abstract Witt rings,
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(3) taking a group Witt ring of an abstract Witt ring.
Of course, every Witt ring in ^ can be constructed in a finite number of steps
out of Witt rings in 38 using these operations. We use this to define a filtration
^ç^Ç'-  of g^ as follows:

R is in 38^ if R is isomorphic to a finite product of abstract
Witt rings in the class 38 .
R is in 38k+x whenever R is isomorphic to a finite product of
group rings over Witt rings in 38k .

Clearly, every object in 3Bk+x is isomorphic to a finite direct product of abstract
Witt rings that are either nontrivial group rings over objects in 38k or are in
38.

A possible method to prove that every Witt ring R in ^ is docile is to
use induction on the degree of R with respect to this filtration. Let us, for
simplicity, assume that 38 is closed under taking finite products of abstract Witt
rings. Then, in the initial step, we are given that WF = S with S in 38 and
have to show that F is placid. (This is the absolute case.) In the induction step,
we are given that WF is isomorphic to a finite product Rx [Ax ] x ■ ■ ■ x Rr[Ar] x S
of abstract Witt rings where each Z?( is docile, each A( is nontrivial, and S is
in 38. Then, by Proposition 6.5 and [AEJ4, Realization Theorem 4.8], each
factor R^Aj] is docile and realizable. Hence, by Corollary 6.7 and Lemma 6.9
the factor R = RX[AX] x ■■ ■ x Rr[Ar] of WF is docile and realizable. So we
have that WF s WK x S where A" is a placid field extension of F and S
is in 38 and have to prove that F is placid. (This is the relative case.) Note
that the relative case contains the absolute case by letting K = F . The same
reasoning works for hereditarily docile instead of docile. We state the result of
this discussion as a proposition.

Proposition 6.10. Let 38 be a class of abstract Witt rings. Assume that for every
field F the following holds:

If there exists a placid {respectively, hereditarily placid) field ex-
tension K of F and abstract Witt rings Sx, ... ,SS in 38 such
that WF = WK x Sx x ■ ■■ x Ss then F is placid {respectively,
hereditarily placid).

Then every abstract Witt ring in the class W¿g is docile { respectively, hereditarily
docile).

Assume that we have WF = WK x S as in the discussion above. Then
iK/F: WF —► WK is surjective and has kernel isomorphic to IS. In particular,
if S is 'small' then iK/F: WF -> WK is 'not far from being an isomorphism'.
This is the connection to the preceding sections. We now come to the applica-
tions.

Theorem 6.11. Assume for every field F that ë™ F is a well-defined isomorphism
for all m < n anda well-defined monomorphism for m-n. Let 38 be the class
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of abstract Witt rings R such that l"+ R = 21"R and l"+ R is torsion-free.
Then every Witt ring in the class W^ generated by 38 is hereditarily docile.

Proof. We shall use the proposition above. As 38 is clearly closed under taking
finite direct products, we may assume that we have given that WF = WK x
S with a hereditarily placid field extension A" of F and S in 38. This
implies that iK/F: ImF —» ImK is surjective and has kernel isomorphic to ImS
for every m > 1 . We have to show that F is hereditarily placid. By the
description of 38 , we have that K is loosely «-tight over F . By Proposition
4.7, our hypothesis implies that every commutative semisimple F-algebra is
«-admissible. Furthermore, our hypothesis implies that Jn+XF = l"+ F , hence
Jn+X{K/F) = I"+X{K/F). Now let F be a finite 2-extension of F and let
L:= E®F K . By Theorem 5.9, we know that L is loosely «-tight over F and
Jn+X(L/E) = l"+x(L/E). As K is hereditarily placid ë* L is a well-defined
isomorphism. Hence, by Corollary 5.12, we have that F is placid,   a

Corollary 6.12. Let 38 be the class of abstract Witt rings R such that I R =
2/ R and I R is torsion-free. Then every Witt ring in the class %>^ generated
by 38 is hereditarily docile.

We need the notion of Milnor k-theory for abstract Witt rings.

Definition 6.13. Let R be an abstract Witt ring. We denote by k^R the graded
Z/2Z-algebra generated by symbols l{a) in degree one, where a runs through
the one-dimensional forms in R, subject only to the defining relations l{a-b) =
l{a) + l{b) and l{a)l{b) = 0 whenever (1 - a) ■ (1 - b) = 0. If S is another
abstract Witt ring we define the product ktR x ktS to be kt{R x S).

If R = WF then ktR is the Milnor A"-ring ktF (cf. [Mi]).  In this case
we have a natural morphism of graded rings hF:ktF —► H*F induced by
¡("0 • • • Kan) *-+ [ax) U • ■ • U {an). If n < 3 then h"F:knF -» HqF is an isomor-
phism (cf. [Mi] for « = 1 , [Me] for « = 2, [MS or R] for « = 3 ).

Theorem 6.14. Assume for every field F that the homomorphisms ë™ F and hF
are well-defined isomorphisms for all m < « and well-defined monomorphism for
m = « . Let & be the class of abstract Witt rings R such that l"+xR = 21" R
and l"+ ' R is torsion-free. Then hF is an isomorphism for every F such that
WF lies in W^ .
Proof. As above, we reduce to the case that WF = WK x S with K an ex-
tension field of F such that h*K is an isomorphism and S lies in 38. Then
it is easy to see that ktF = ktK x k^S with all isomorphisms compatible with
the maps induced by F ç A". In particular, ker{kn+[F -> H"+XF) is con-
tained in kn+xS. As e* E is surjective for every finite 2-extension F of F,
we clearly have that h*E is surjective for every such F. We show hF+x is in-
jective. It follows from [ELI, Main Theorem 3.2] that kn+xS = l{—l)k S. Let
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F+ = F(\/^T). We have a commutative diagram

0
1

KF+    -    K?    -    kH+lF
1 1 1

H"qF+   -»   H"qF   -»   //9"+1F
1
0

with exact columns and bottom row. Here the map knF+ -» fcnF is induced
by the norm and fcnF -» kn+lF is multiplication by /(-l). Since ker(«f+1) ç
im{knF —► kn+xF), chasing in this diagram shows that hF+x is injective. Using
induction, this argument can be used to show that hF is injective for all m >
n.   G

This theorem together with [MS or R] immediately yields the following

Corollary 6.15. Let 38 be the class of abstract Witt rings R such that I4 R =
2/ R and I R is torsion-free. Then h*F is an isomorphism for every F such
that WF lies in &# .

Using a slightly smaller class 38 in Theorem 6.11, we get by with a somewhat
weaker hypothesis.

Theorem 6.16. Assume for every field F that ë1" F is a well-defined isomorphism
for all m < n and well-defined for m = «. Let 38 be the class &# of abstract
Witt rings R such that

(1) I"+XR = 21" R and is torsion-free.
(2) Every class in I"R/I"+ R is the class of an element of the type {l-d)-x

where d is a one-dimensional form and x e l"~xR.
Then every Witt ring in the class generated by 38 is hereditarily docile.
Proof. We can use the same proof as for Theorem 6.11, except for the part
that Jn+X{K/F) = I"+X{K/F). We clearly only have to show that Jn+X{K/F) ç
In+lF. So let $ e Jn+X{K/F) be given. We see from the description of 38
that, modulo In+X{K/F) = l"+lS, we may assume that <j> = (1, - d) ® y/ for
some y/ in l"~x{K/F) = l"~xS. By the «-admissibility of F the hypothesis
of Proposition 2.7 holds so (f> lies in l"+xF as needed,   a

The present state of knowledge about the e™F in general now gives the fol-
lowing

Corollary 6.17. Let 38 be the class of abstract Witt rings R such that
(1) IsR = 2IAR and is torsion-free.
(2) Every class in I4R/I5R is the class of an element (1 - d) • x for some

one-dimensional form d and some xel R.
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Then every Witt ring in the class 9^, generated by 38 is hereditarily docile.

Note that the class 38 in this theorem contains the Witt rings of C4-fields
and fields F such that F(>/-T) has 2-cohomological dimension at most 3. The
former type includes the Witt rings of function fields of transcendence degree
< 4 over algebraically closed fields and the Witt rings of function fields of
transcendence degree < 3 over finite fields. The latter type includes the Witt
rings of function fields of transcendence degree < 3 over real closed fields and
the Witt rings of function fields of transcendence degree < 1 over local or
global fields. In particular, 9^, contains all Witt rings of elementary type (cf.
[AEJ2, Corollary 4.4]).
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