
The Gradient Theory of Phase Transitions and 
the Minimal lnterfaee Criterion 

LUCIANO MODICA 

Communicated by M. E. GURTIN 

Introduction 

In this paper I prove some conjectures of GURTIN [15] concerning the Van der 
Waals-Cahn-Hilliard theory of phase transitions. 

Consider a fluid, under isothermal conditions and confined to a bounded con- 
tainer 12 Q R',  whose Gibbs free energy, per unit volume, is a prescribed func- 
tion Wo of the density distribution u. The classical problem (cf. GURTIN [16]) 
of determining the stable configurations of the fluid is to minimize the total 
energy of the fluid, 

E(u) = f Wo(u(x)) dx, 
t2 

among all density distributions u of prescribed total mass m: 

f u(x) dx = m.  
D 

Suppose that Wo acts as in Figure 1, with two relative minima. 

Wdu) 

~ au+b 

l I 
I I 
! ! 

Fig. 1 
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It is obvious that the foregoing minimization problem remains unchanged when 
We(u) is replaced by W(u) = We(u) -- (au + b). (Of course, the minimum value 
changes by a constant). I f  o~ and fl denote the (absolute) minimizers of W, 
such a problem admits only piecewise constant solutions with values 0~ or/3. 
Moreover, for o~ I g2] < m </3]  g2 I, there are infinitely many such solutions, 
with no restriction on the shape of the interface between the sets (u = o~) and 
(u =/3). In particular, there is no way to recover the physically reasonable 
criterion that the interface have minimal area. 

To overcome difficulties of this type, the Van der Waals-Cahn-Hilliard 1 theory 
is based on the energy functional 

g (u) = f [8 IDul + We(U)] dx 
D 

or, equivalently, 

g,(u) = .f [8 Iz)ul 2 + W(u)] dx 
D 

in which interracial energy is modeled by the dependence on the density gradient, 
and where e > 0 is a small parameter. The mathematical problem is then to 
study the asymptotic behavior, as e --+ 0 +, of solutions u, of the minimization 
problem 

min {8~(u) : f f  u(x) dx = m}, 

and to prove that 

(*) (u~) converges to a function Uo which takes only the values o~ and fl with inter- 
face between the sets (Uo ---- 0~} and {Uo ---- fl} having minimal area. 

In this paper we establish (*) (modulo replacing (u,) by a subsequence) for ar- 
bitrary dimension 2 n ~ 1, for any bounded, open set f2 with Lipschitz contin- 
uous boundary, and under very mild assumptions on W (cf  Theorem I and 
Proposition 3 in section 2). A similar result has been announced by R. V. KOHN 
and P. STERNBERG. 

The plan of the paper is as follows: in section 1, I give some lemmas on sets 
with bounded perimeter in the sense of CACCIOPPOLI and DE GIORGI; in section 2, 
I state and prove the main results; in section 3, I mention the possibility of in- 
eluding my results within the theory of/ '-convergence. 

It is worth noting that my proof very closely follows ideas of an old example 
of/ ' -convergence (el  MODICA & MORTOLA [20]) for functionals of essentially 
the same form as g~. This example was proposed by E. DE GIORGI, within a com- 
pletely different physical context. A generalization of this example (el  MODICA 
& MORTOLA [21]) was never published in the international literature because it 
seemed specialized and of little importance. It has been surprising for me to find 

I C f ,  CARR, GURTIN & SLEMROD [5], NOVICK-COHEN & SEGEL [22], ALIKAKOS & 
SHAING [1], GURTIN ~Y~ MATANO [17], GURTIN [16], ALMGREN • GURTIN [2], which may be 
consulted for a more complete bibliography and for details of the thermodynamic setting. 

2 Cfi CARR, GURTIN & SLEMROD [5], who show, for the special case n ---- 1, that the 
limiting interface is a single point. 
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these techniques important in solving a completely different problem from thermo- 
dynamics. For  this, I am indebted to R. V. KOrlN and P. PODIO GuIouGLI, who 
informed me of GtmTIN'S results. I also wish to thank M. E. GtmTIN for his 
interest. 

1. Sets with bounded perimeter 

In this section we recall some properties of  sets with bounded perimeter and 
prove some lemmas used later in the proof of  the main results. The standard ref- 
erences for this subject are the original papers by Ol~ GIORGI [6], [7] and the 
books by FEDERER [I0], GIUSTI [13], MASSARI & MIRANDA [19]. 

For  any open subset a D of  p n and for every u E Lztor we define 

f I o,,1 = suplff u(x) Igl i}. 
D i = 1  

I f  fluldx< +oo and flDul< +oo, we write u~SV(O). Note that the 
D D 

Sobolev space ~/'1,1(12) is contained in BV(.Q) and f iDulequals, for u E qf1"I(s 
t2 

the ordinary Lebesgue integral flDu(x) ldx. There are, however, functions in 
D 

BV(Q) \ qf'm(D); e.g., the characteristic functions of the smooth, open, bounded 
subsets of  D. 

It is obvious that, if (uh) is a sequence in L1(s which converges in LI($2) 
to u~, then 

(1) f [Du[ ~ liminf f [DuhI. 
D - -  h ~ + o o  

Moreover, one can prove that the sets 

{uCL'(~2): f lul dx + f lDul ~ c} 
D D 

are compact in Ll(~2), for every real constant c, provided that ~2 is hounded. Each 
uE BVU2) can be approximated by a sequence (uh) in C~ in the sense that 
( c f .  A N Z E L L O T T I  & G I A Q U I N T A  [3 ] )  

I f  ]uh --u[ dx + 1  f Dun[- [ [Dull] = 0; lim 
h-+ + oo t D  D d / 

hence, by the Poincar6 inequality, if D is bounded, then 

(2) the sets luE LI(O): f u ~ m, f IDu I <~ c] are compact in L'(~2) 
I 

whenever 
t D D I 

m and c are real constants. 

a All results are stated for n --> 2; they hold also for n = 1 with obvious modifica- 
tions. 
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Let us fix an open subset (2 o f R  n and u E BV((2). Then the map A --~ f IDu i, 
A 

defined for any open subset A of (2, is the trace on the open sets of a uniquely 
determined Borel measure on (2; we shall denote by f lDul the value of this 
measure on a measurable subset E of (2. E 

Henceforth, o~r 1 will denote the ( n -  1)-dimensional Hausdorff measure 
and I'l the Lebesgue measure on R ". Let (2 be an open subset of R ~ with Lip- 
schitz continuous boundary. Then 

(3) Vu E BV(~2) A L~176 

u = f i  on (2, 

3 fi E BVfR") A L~(R ") : 

f iBril  = 0 .  

The assumption that 0(2 is Lipschitz continuous could be weakened (cf AN- 
ZELLOTTX & GIAQmNTA [3]), but it does not seem sufficient to assume only that 

I f  E is any measurable subset of R ", we denote by Iz the characteristic func- 
tion of E and, for every open subset f2 of R ", we let 

P,~(E) = f I DIEI. 
D 

If  Pa(E) < +o0,  we say that E has bounded perimeter in (2. It can be proved 
that P a ( E ) ~  a~,-x(OE/5 (2) with equality if, for instance, OEA f2 is a Lip- 
schitz continuous hypersurface. 

Let (2 be an open subset of R," and u E BV(R"). Then the function t---~ 
Pa ({x E R ~ : u(x) > t}) is Lebesgue measurable on R and the Fleming-Rishel [11 ] 
formula holds: 

(4) f l Du ] = f P~({x E R" : u(x) > t)) dt. 
,Q - - o o  

We now state and prove four lemmas. The first asserts that every set with 
bounded perimeter in (2 can be approximated in volume and in perimeter by a 
sequence of smooth subsets o f R  ", all having the same volume inside (2 and each 
of  whose boundaries satisty a measure-theoretic transversality condition with re- 
spect to 0(2. 

Lemma 1. Let f2 be an open, bounded subset of  R ~ with Lipschitz continuous bound- 
ary, and let E be a measurable subset of  (2. I f  E and (2 \ E both contain a non- 
empty open ball, then there exists a sequence (Eh) of open bounded subsets ofl~ n 
with smooth boundaries such that 

(i) h~ma+~ I(EhA (2)AE] =O' h~+~lim P0(Eh)= Pa(E); 

(ii) [EhA(2[ = IEI for h largeenough;  
(iii) gg._l  (OEh A 0/2) = 0 for h large enough. 

Proof. Let u = Iz and, by 43), let ~ E BV(R") A L~176 ") be such that ~ = u 
on Y2 and f I D~ ] = 0. Let (~) be the usual system of mollifiers: ~, E C~~ ~); 
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spt$,C__B(0, e); O<=~b,<= 1; f~b, dx= I. Then, defining u , = u , ~ , ,  we 
easily infer that R" 

hence 

lira f l u e  - ~1 dx = O; 
~.-~.0 + 

R n 

(5) lim I{x E R" : I u, (x)  - -  f i(x)[ > ~7}1 = 0 V~ > 0 
e___~O + 

and, moreover, 
lim f lDu,[ dx = f lD~[. 

~---).0 + R n R n 

From this last equality and the identity f lD~l = 0 we conclude, by applying 

the lower semicontinuity (1) to g2 and to 1%"\ ~,  that 

(6) lim f l O u , [ d x =  f l O ~ l =  f lDu[=ea(E) .  

The idea of the proof is now clear: after approximating u = IE by smooth 
functions (u,), we want to pass to a sequence (E,) of sets, which approximate E, 
by choosing suitable level sets of u,. Unfortunately, the proof is technical. 

Recall that, by the hypotheses, there exist xt E E, xz E 12 \ E, 6o > 0 such 
that 

B~ = B(xl, 60) C E, B2 = a(x2, 60) C ~ \ E, 
so that 

(7) u, = u on Bt W B 2 for every e < - ~ .  

Now, for every h E N, 
such that (see (5)) 

(8) 

Moreover, writing 

let us choose a positive number e h < min (l/h, 6o/2} 

] {xE t2: lu~h(x) _ u(x)l >= h }  <=1. 

vh = essinf Pa({xER" llh~_tZt-l/h : U*h(X) > t}), 

(essinf is the essential infimum of a Lebesgue measurable function), we choose 

t h E ] l ,  1 - - @ [  such that 

1 
( 9 )  P o ( { X  E R n : U~h(X) > th}) ~ V h -~- - ~  , 

(10) DUeh(X ) =~= 0 V X  E R n : U~h(X) : t h , 

(11) ae ._l({x E eta: % ( x )  = th}) = 0. 
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Note that (9) holds for a set of th with positive measure, so (10) and (11) can be 
fulfilled by appealing, respectively, to Sard's Lemma and to ~f'~_t(~Y2)< +oo.  

Finally, using eh and th, we can construct E h by setting 

s = {x ~ ~": %(t) > th), 

~h = lif~n el  - l e l ,  

ifh \ B(x~, rh) if 2h :> 0 

E h =  ifh if 2h : 0 

i fhVB(x:,rh) if 2h < 0, 

where r h is chosen such that IB(xD rh) l : IB(x2, rh) l : I ahl. 
We first prove that [EhA g21 = IEI. Note that 

1 
x ~ (Eh m ~'~) \ E ~ u,h(x ) > th > -'~ and 

while 
1 

x E  E \  ( i f hn  ~ ~ ) ~  Ueh(X ) ~ t h <  1 --  

so we conclude, by (8), that 

u(x)=0, 

I1 1 I (12) I~l~(ifhn~)LxEl=~l  xEK2:[u~h(x)--u(x) ~ T  ~ = T ;  

hence, by the definition of r h, 

(13) lira r h = 0. 
h - + +  eo 

It follows that, for h large enough, r h < 8o ; hence B(xl, rh) Q Bt, B(x2, rh) Q B2. 
On the other hand, as e h < 80/2, we obtain, by (7), that 

and therefore 

IEh A .(2[ : lifh A D [ -  IB(x, ,  rh) ] : I f l  

]EhA I2[ = [if, hA  t21 + IB(xz, r~)l = [el 

hence (ii) is proved. 
Analogously, 

a s  

if 2h > 0, 

if 2 h < 0; 

@E h A b o =  (OifhLl~B(xi, rh) )Ao~2  for i =  1 or i = 2 ;  

OB(xi, rh) n 0~2 = 0 for i = 1, 2, we conclude, by (11), that 

~k~n_l(OE h n e~'~) = O~n_l(OF-~ h n 0~-~) = O, 

which proves (iii). 

and u(x) = 1, 
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The sets Eh are obviously bounded and, because of (I0), have smooth bound- 
aries. Thus, we have only to prove (i). 

The fact that 

lim I(Eh[~ t2)AEI ---- 0 
h ~ + o o  

is a direct consequence of 

I(EnA I2)A (~h A t2)l = [2hi 

in conjunction with (12). 
Finally, to prove that 

(14) lim Pa(Eh) = Pa(E), 
h--. + oo 

we first observe that the argument used before yields 

ea(Eh) = Pa(ff~n) + ;.~f ._ ,  (OB(xi, r,)) 

and for h large enough, while (12) and the lower semicon- 

(15) 

for i =  1 or i = 2  
tinuity (1) give 

(16) Po(E) <= liminfPa(/~h). 
h - + +  oo 

For the converse inequality, we deduce from (9) that 

I <-~ e~({x ~ R" :%(x) Pa(E,) =< T + vh + > t}) 

forevery hEiSt and foralmost all t E ] l ,  1 - - 1 [ ,  so, integrating in t between 

1 I 
--h- and 1 ----~- and applying the Fleming-Rishel formula (4), we obtain 

1 
recalling that eh <= --~ , we may use (6) to conclude that 

(17) limsup Pa(Eh) ~ Pa(E). 
h - + + o o  

Finally, (13), (15), (16), and (17) yield the equality (14), and the proof of Lemma 1 
is complete. 

Our second lemma asserts that, to verify a minimum property for the perim- 
eter, it suffices to restrict the class of competing sets to sets with smooth boundary. 

Lemma 2. Let g2 be an open, bounded subset of  R ~ with Lipschitz continuous bound- 
ary, and let E be a measurable subset of  g2 with 0 <  IE[ < I 1. I f  for a f ixed 
2 >= 0 we have ~ <= Pa(A) for every open, bounded subset A o f R  ~ which has 
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smooth boundary and satisfies gn_ l (~A/5  092) = 0, [A/5 $21 = [E I, then 

2 ~ rain {Pa(F): F measurable subset o f  [2, IF[ = IEI}. 
If, in particular, ~ = Pa(E), then equality holds. 

Proof. Note that, because of the definition of Pa(F), the lower semicontinuity 
(1) and the compactness (2), there is a measurable subset Eo of 12 such that 

Pa(Eo) = min {Pa(F) : F measurable subset of [2, IF[ = [El}.  

By a theorem of GONZALEZ, MASSARI & TAMANINI ([14], th. 1), both Eo and 
[2 \ Eo contain a non-empty open ball, so by the hypotheses and Lemma 1 we 
conclude that 2 ~ P(Eo), and Lemma 2 is proved. 

The third lemma of this section discusses a geometrically evident property 
of the tubular neighborhoods of a compact smooth hypersurface in B ". 

Lemma 3. Let A be an open subset o f R  ~ with smooth, non-empty, compact bound- 
ary and define g(x) = dist (x, ~A), and, for  t > O, St = {x E A : g(x) = t). 
I f  12 is an open subset o f R  ~ such that ~,~,_l(~A /~ Og2) = O, then 

(i) lim a~,_ l (S  t A [2) = g ._~(OA A [2). 
t - ,O  + 

Proof. We first prove (i) with g2 = R". For t > 0, let Vt = {x E A : 0 < g(x) < t}; 
by repeating an argument of GILBARG & TRUDINGER ([12], App. A), we find 
that, for t small enough, there is a diffeomorphism ~ between Vt and 
0A • ]0, t[ such that 

n - - 1  

(18) det (D4~) (x) = H (1 - k~(~(x)) g(x)) 'r E Vt, 
i = 1  

where kj . . . . .  kn-1 denote the principal curvatures of 0A and $(x) denotes the 

component of 4~(x) on aA. Moreover, g is smooth on Vt and 

(19) Dg(x) = --~(~(x)) Vx E V,, 

where v denotes the outer normal vector to OA. Finally, if ~t denotes the nor- 
mal vector to St, outward with respect to Vt, we have 

(20) ~t(x) = Dg(x) Yx  E St. 

Now, the divergence theorem, (19) and (20) imply that 

f Ag(x) d x =  f Dg ' l ,  dart',,_, + f Dg'vtd..arg,,_ 1 
V t ~a 8 t 

= g n _ l ( g t )  - -  g n _ _ l ( O A ) ,  

and it is sufficient to verify that ]V t[ tends to zero as t - + 0  +. Indeed, by (18) 
and the smoothness and compactness of ~A, det Dq~(x)~/~ > 0 for x E Vt 
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and t small enough; hence 
t 

(21) lim I v, I = lim f d a ~ . _ , ( y ) f  [det Dcb-l(y, s)] ds 
h~O+ t-+O+ OA 0 

--< lim tt *-I ;,~._l(OA) = O, 
- -  t .+0 + 

and (i) is proved when /2 = R ~. 
We now remove this last condition. Note that St = O(A \ Vt); hence, for t 

small enough, 
�9 ~ n _ l ( S ,  I t~ /2)  : e o ( , 4  \ V t ) ,  

By (21), 

lim f IG - Ia~v,I dx = lim f Ivt dx = O, 
t-+O + t-+O + R n R n 

and the lower semicontinuity (I) yields 

( 2 2 )  , J ~ n _ l ( 0 A / ~ / 2 )  = Pta(A) <: liminf Pa(A \ Vt)  = l iminf~n_x(S t /q /2 ) .  
t-~0 + t-+0 + 

On the other hand, 

~ t ~ n _ l ( S  t I~ ~'~) ~ ~ n _ l ( g t )  - -  ~ t ~ n _ l ( S  t I~ ( S  n \ ~ ) ) ,  

and, as before, 

J~'._~(OA • (R" \ ~)) =< liminfag'._,(S, {~ (R" \ ~)) ;  
t--~0 + 

hence, for the hypothesis ~ . _ I ( 0 A  A ~/2) = 0, 

(23) limsup ~r f~ /2) ~ ;,~ff . -1(~A) -- Y/t~ I(OA A (R ~ \ ~)) 
t--~0 + 

= ~ . _ , ( a A  r ~ / 2 ) .  

The results (22) and (23) complete the proof of Lemma 3. 

The last lemma is a two-sided version and an immediate corollary of Lemma 3. 

Lemma 4. Let A and/2  be as in Lemma 3 and define the function h :R" --> R by 

--dist (x, OA) i f  x E A 
h(x) = dist (x, aA) 

Then h is Lipschitz continuous, ]Dh(x)[ : - 1  
St = {xERn:h(x)  = t}, 

(i) lim ~r A/2)  = ~._I(OA A/2) .  
t--+0 

Proof .  It is obvious that I h(x) - -  h(y) l =< Ix - -  Y l 
is Lipschitz continuous and 

if x~A. 

for  almost all x E R" and, i f  

for every x, y E R ~; hence h 
]Dh(x)[ ~ 1 for almost all x E R ~. Moreover, for 
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every x E R " \ O A  there exists XoEOA such that h ( x ) = 4 - 1 X - X o l  and 
x -- xo is orthogonal to OA in x o. Then, at each point y of the segment [x, Xo], 
we have h ( y ) = ~ l y - - X o l ;  hence ] h ( x ) - - h ( y ) l = l x - - Y [  for every 
y E Ix, Xo], and I Dh(x) l = 1 for almost all x E R ". 

To prove (i) it suffices to apply Lemma 3 to A and to R ' \  .4. 

2. Main results 

Throughout this section ~ will be a fixed open, bounded subset of R" with 
Lipschitz continuous boundary, and W: [0, +oo[-+R will be a fixed non-nega- 
tive, continuous function with exactly two zeros 0~, fl (0 < o~ < fl). For every 

> 0 and every uELX(I2), we define 

g (u) = f [el Du(x) l 2 + W(u(x)) ] ,ix 
19 

if u E qC/'l'2(g2); g~(u) = +o0  
the constant 

otherwise. Further, it is convenient to introduce 

Co = f W (s)ds. 
or 

Our main goal is to prove the following theorem. 

Theorem I. Fix m E R such that ~ [ ~1 <= m <= fl l ~1, and suppose that the func- 
tion u~ is, for every e > O, a solution of the variational problem 

g,(u,) : min {8,(u):u E LI(12), u >: O, af u dx ~- m}. 

I f  (eh) is a sequence of positive numbers such that e~ converges to zero and (uen) 

converges to a function Uo in LI (~)  as h-+ +oo, then 

(i) W(uo(x)) : 0 (i.e. Uo(X ) : o~ or Uo(X ) = fl) for almost all xE  (2; 
(ii) the set E : (x E [2: Uo(X) = o~) is a solution of  the variational problem 

(iii) lim e~g ,~(uJ-~  2coPa(E). 
h - ~ "  -}- a o  , ,  "~ 

We postpone to the end of this section some remarks about the statement of 
Theorem I. 

The proof of Theorem I relies on the following two propositions; these prop- 
ositions, as we shall see in section 3, are of interest in themselves. 

Proposition 1. Let (ve)~_o be a family of  functions in Ll(g2) such that v~ converges 
to Vo in LI(.Q) as e ~ 0 +. 
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(i) If 
liminfe-t~,(v,) < + ~ ,  

t-->O + 

then W (vo(x)) : 0 for almost all x E [2. 

(ii) I f  W(vo(x)) : 0 for almost all x E [2, then 

1 
Po(E) <= ~ liminf,_~o+ e-~g~(v')" 

where E : (x E [2: Vo(X) = o~}. 

Proposition 2. Le t  A be an open subset of  R" with ~A a non-empty, compact, 
smooth hypersurface and JCf n-l(~A /~ ~[2) : O. Define the function vo:[2 -+ R by 

V o ( X ) : ~  if x E A ~  [2, Vo(X)=fl if x E ( R "  \ A ) A  [2. 

Then there is a family (v,),> o of  Lipschitz continuous function on .(2 such that v 
converges to Vo in L1([2) as e -+ 0 +, o~ <= v~ <= fl for every e > O, and 

(i) f v ,  dx = fvodx=c,l~A[21 +~I[2\Ai V~>0, 
$2 O 

1 
(ii) "x--" limsup t-t~',(v~) ~ Pn(A). 

Z C o  t -+O + 

Proof of Proposition 1. (i) Let us choose a sequence (eh) of positive numbers, con- 
verging to zero as h--* +c~ ,  such that (V,h) converges pointwise to Vo almost 
everywhere in [2 and 

lim ~rh(Vth) : O.  
h ~ + o o  

Then, by Fatou's Lemma, 

f W(vo(x) dx <= liminf f W(v,h(x)) dx 
O h--~-+oo 

l i m i n f ~  (v,) = O. 
- -  h -+  + oo h h 

Since W_> 0, (i) is proved. 
(ii) It is not restrictive to assume 8,(v,) < +oo  (hence v~ E W't'2([2)) and 

0~ ~ v, <: fl for every e 3> 0. In fact, by considering the truncated functions 

~ ---- max {o~, min {v,, fl}}, 

we conclude that b, converges in L1([2) to vo as e ~ 0 +, and 8,(,3,)__<_ ~f,(v~) 
for every e :> 0, 

Define 
t 

~t)  = f W~(s) as, w , ( x )  = ~(v~(x)) 
0 
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for t > O, e ~ 0, x E f2. Since the v, are equibounded and ~b is of class C a, 
we converges to Wo in La(g2) as e ~ 0 +, so the lower semicontinuity (1) yields 

(24) f t Dwo [ =< liminf f [Ow~l. 

Next, by the Fleming-Rishel formula (4) and the hypothesis Vo(X ) = 0~ or 
vo(x) = 13 for almost all x E s 

(25) f lOwo ] = f et~((x E ,(2 : ~b(Vo(X)) > t}) dt 
o R 

---: (~b(fl) --  r Pa(E)  = coeo(E) .  

On the other hand, v, E Wq'2(g2) implies that Dw,(x)  =- ~b'(v,(x)) Dye(x) (cf. 
MARCUS & MmnL [18]); hence 

(26) f IDw,[ dx  = f Lw~(v~(x))l IDv~(x)[ dx 
I~  $2 

~ f [~ IDv~] ~ + e-~W(vD] dx 
I 2  

= �89 ~-~,(v,). 

By inserting (25) and (26) in (24), (ii) is proved. 

Proof  of  Proposit ion 2. Let us define the function h as in Lemma 4 and the func- 
tion Z o : R ~ R  by 

ZoO) = o~ if t < O, Zo(t) = fl if t ~ 0, 

so that vo(x) = Zo(h(x)). We shall construct (v~) using (Z,) to approximate Zo, 
with Z, obtained using a construction involving the ordinary differential equation 

~z'? = r  w(z~). 
For clarity, let us explain briefly why we choose this equation. Our aim is to 

approximate the two-valued function Zo by a Lipschitz continuous function Z, 
which interpolates between or and fl and, at the same time, minimizes 

f [eZ'~ 2 + W(Z,)] art, 

the one-dimensional analogue of ~ .  The corresponding Euler equation is 
vv  t , t 2eZ~ = W (Z~), multiplying by Z~ and integrating, we obtain eZ '2 c~ + W(Z~). 

The constant c, cannot be set equal to zero: indeed, in this case, if Z~(to) = o~ 
or z~(to) = t 3 for some to E R, then Z~ would be constant. On the other hand, 
we need c, >> e to make Z, fill the gap between o~ and 13 as quickly as possible 
(note that Z~ 2 ~ Ce/t~), and for that reason we choose c~ = I/~. 

To begin the explicit construction of Z,, fix e > 0 and define, for 0~ _< t ~< fl, 

t 1 

i( ~Xt) = 1/2+ w(s) as 
o, 
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and 

~, = w.(fl). 

In addition, let 4~: [0, ~/.]-~-[o~, 8] denote the inverse of  ~p.. Since W is non- 
negative, 

(27) 0 < ~/~ ~ e�88 -- o0; 

and, since W is continuous, 4~ is of  class C ~ and 

(28) e�89 ( t / e +  W(rh(t)))�89 

for 0-<- t ~< ~.. 
We now extend the definition of  4~ to the entire real line by setting 

4~.(t) = 0~ for t < 0, ~.(t) = fl for t > ~/~, 

so that 4~. becomes a Lipschitz continuous function on It. Note that, for every 
t E It, 4~.(t) ~ Zo(t) and cb,(t q- ~1~) ~ zo(t). Thus, there is a ~. E [0, r/.] such 
that 

(29) f 4,,(h(x) + ~,) dx = f Zo(h(x)) dx = f Vo(X) dx. 
D D 

Finally, we define Z.(t)= cb.(t + ~,) for t E N  and v.(x)= z.(h(x)) for 
x E D .  

Each v~ is a Lipschitz continuous function and 0~ ~ v, ~ 8; by Lemma 4 

f Iv, - Vo [ dx = f [z.(h(x)) -- Zo(h(x)) I [Dh(x)[ dx, 

so that the coarea formula (cf FEDERER [10]) 

(30) f f(u(x)) [Du(x)ldx = f f(t)o~~ ({xE .Q:u(x) = t)) dr, 
I2 R 

which holds for any Lebesgue measurable function f and any Lipschitz con- 
tinuous function u, implies that 

r/e - -  6 e 

f l y . -  Vo[ dx - f lz.(t)-zo(t)[ofa._l (Stf~ Q)dt 
12 -- ~5 e 

~,(/~ - o,) sup g n - I  (St f~ t2), 
[ t ] < ~  e 

w h e r e  S t --~ { x  E Itn:h(x) = t}. Applying (27) and Lemma 4, we conclude that v, 
converges to Vo in L1(s as e ~ 0 +. 

Since the thesis (i) is a direct consequence of (29), it remains to prove the 
estimate (ii). Let 

y. --~ sup Jr',,_ 1 (St le~ ~) .  
Itl ~r /8  
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We again employ the coarea formula (30), obtaining 

e- �89 (v.) = f [e �89 + e-�89 ( S  t [-h 17) dt 
R 

~e -- dr 

<9'~f 
- -  t~  e 

[e�89 -I- ~)  -I- e-�89 -k t~))] art 

~ r  

=< ~,~ f [~�89 + ~-�89 w(c(t)))] dt 
0 

and, recalling (28), 
~ e  

.-�89162 < ~,~ f 2(I/-2+ w(4~r(t)))�89 ,'.(t) at 
0 

# 
= 27, f (I/~-+ W(s))�89 ds. 

o~ 

Since Lemma 4 implies 

lira y. = O~n_l(0A A 17) ---- Pa(A), 
~---~0 + 

we conclude that 

limsup e-~(v~) <= 2P~(A) / g~(s )  ds 
~--~0 + cr 

and Proposition 2 is proved. 

Proof of Theorem I. Consider (i). Let us select, as comparison functions for ur, 
the following piecewise affine functions v,, depending only on the first variable x~ : 

0r 

~-~,  r  
v,(x) = ~ (x~ - to) -~ 

with to so chosen that 

i f x t ~ t o - -  J/7 

if t o -  J/e-< x l. < to + J/e 

if x t _>-- to + J/~, 

f v~dx---- m. 

If we let T, = {x E 17: to -- j / e ~  to + J/e), we have, by the boundedness of  17, 
that [T,[ ~ c~ J/e- for every e > 0 and for a suitable real constant c~, hence, 
by the minimality of  u,, 

1 eh�89 h) ~ e~�89162 = J/'~h ~ 2 J/-~h ] + --~h W(V*h(X)) dx 

--<c~ + max W(s �9 

Since W is continuous, Proposition 1 applies and (i) is proved. 
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Consider (ii). Suppose first that 0 < ]El < 1s Since 

]E I : f ([7~--Uo_.~!) dx f l ]  s - - m  

by Lemma 2 it suffices to verify that Po(E) <= Pa(A) for every open, bounded 
subset A of R ~, with smooth boundary, such that ~g'n_l(OA A 8s = 0 and 
IA c~ -(21 = IE[. Fix such a subset A and note that OA A s =t= 0, because 
0 < I A A s < I s using Proposition 2 we construct a family (v,),>0 in ~/r 
such that 

and 

(30  

fv,  dx = 0, IA A s + fl 1s AI = o, [El + ~(I s - IEI) : m 
..Q 

~-e limsup e-�89 "< Pa(A). 
0 ~-"~ 0 + 

On the other hand, by (i) and Proposition 2, 

1 1 
(32) Pa(E) <= ~ liminf*h-~'~(UJ'h-~ + ~ " " 

and, by the minimality of u, h, 

(33) o~,h(u, h) =< 8,h(v, h) Vh E ig. 

It is now obvious that (32), (33) and (31) yield Pa(E) <= Pa(A). It remains to 
consider the cases IE[ = 1s and IE[ = 0, which are trivial. For  instance, 
in the former case we have m = 0~ 1s so that 

0 <= min(Pa(F):F~_ s IF[ = 1s ~ P~(s = 0; 

but [I2 \ E[ = 0 implies that Pa(E) = P~(12) = O. 
Finally, let us prove Off). By taking into account (32), (33) and (31), we find 

that 

2coPa(E) <~ liminf e~�89 ) <= limsup e-~�89 ~ 2coPra(A) 
h--.,.+oo h ~ + o o  

for any open, bounded subset A of R:, with smooth boundary, such that 
~g'~_l(OA F~ ~Q) = 0 and [A A s = Igl, provided that 0 < Igl < 1s Ap- 
plying Lemma 2 with 2 = limsup eh�89 in conjunction with (ii), we immed- 

h - + +  oo 

lately obtain (iii). The proof of (iii) in the cases IE[ ----- [s and ]El = 0 is 
straightforward. For instance, in the former case m = o~[s hence u, = o~ 
and 8,(u,) = 0 for every e > 0, while Pa(E) = O. The proof of Theorem I 
is now complete. 

Let us conclude this section by a few comments and remarks about the state- 
ment of Theorem I. One may ask whether the convergence in L1(s of some se- 
quences (U~h) can be guaranteed in advance. In the following proposition we show 
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that the answer in "yes" if either one has an a priori L ~176 bound 4 on the us, or 
W has a (reasonable) polynomial behavior at infinity. 

Proposition 3. Fix m E R such that o~ [ g2 ] ~ m ~= t3 ] ~ 1, and suppose that the 
function us is, for every e ~ O, a solution of the variational problem 

gs(us) : min {gs( u ) : u E t  L~(-Q), u .~ O, f u d x =  m] .  
! 

Suppose that 
(a) there exists M > O such that us(x) <: M for every e > O and xE  ~;  or 
(b) there exist t o>O,  ct > O, c 2 > 0 ,  k > 2 such that 

cl.t k ~: W(t) ~ c2t k Vt >: to. 

Then, there ex&ts a sequence (eh) of  positive numbers such that eh converges to 
zero and (U,h) converges to a function uo in LI(g2) as h--~ §  

Proof. Let 4, be the primitive function of W �89 constructed in the proof of Propo- 
sition 2 and define vs(x) = 4~(u,(x)). First, we shall prove that the family (vs)s>o 
is bounded in LI(g2). 

This is obvious when (a) holds. If  (b) holds, it is not restrictive to assume 
that to ~ 1, and we easily have that 

,o 2 r tk/2+, = 
~(t) < f w�89 (s) ds + ~ vt  > t o . 

0 

k 
Moreover, k ~ 2 implies that -~- + 1 ~ k; hence 

oh(t) ~ e3 § c4W(t) Vt ~ 0 

for some real constants e3 and c 4. Then, 

f us dx < c3 I~l  + c, f W(u~(x)) dx 
D 

< c3 I~1 + c,~(u3, 

so, by recalling the proof of (i) in Theorem I, we conclude that (vs) is bounded 
in L1(~9). 

On the other hand, by recalling (26) and again the proof of (i) in Theorem I, 
we see that 

1 
f I Dvsl dx <= �89 ~-~es(u3 <~ c~ we > 0 

.Q 

for a suitable real constant cs > O, so the compactness (2) yields that there is a 
sequence (eh) of positive numbers converging to zero such that (V,h) converges in 
Ll(g2) to a function Vo. 

4 Cf .  GURTIN ~r MATANO [17]. 



Gradient Theory of Phase Transitions 139 

We now return to the functions u,. Let ~p be the inverse function of 4~ and de- 
fine uo(x) = ~p(Vo(X)). Let (a) hold. Since ~, is bounded and uniformly contin- 
uous on bounded subsets of [0, +c~[,  it follows easily that U,h = v 2 o V,h converges 

in LI(O) to uo as h ~ +oo  and Proposition 3 is proved. 

If  (b) holds, then ~b'(t) ~ I / ~  t~/2 for every t ~ to; hence ~ois Lipschitz con- 
tinuous on [if(to), +c~[  and uniformly continuous on the entire real line. It 
follows that U~h = V/o V~h converges in measure on (2 to u o as h ~ + c o ;  since 

1 

I 
tk I O I + ~ g*h(U,h), 

we conclude as above that (u,n) is bounded in Lk($2) with k _--> 2. Hence, by a 

classical theorem of measure theory, (U~h) actually converges in L1(g2) to uo, 

and this completes the proof of Proposition 3. 

Some further remarks concerning Theorem I: 

(a) The assumption that 80  is Lipschitz continuous can be weakened but not 
replaced by 9g'n_l(~$2) < +e~  (eft (3) and the proof of Lemma 1). 
(b) The proof of Theorem I can be repeated with only minor changes when W is 
defined on the open positive real line with lira W(t) ----- +oo,  or when W is de- 

t.--~0 + 

fined on the entire real line with the condition u ~ 0 removed. 
(c) The same is true for the constrained variational problem 

min {8~(u):uE Ll(g2), a <-- u <-- b, ! u = m } 

where a, b are fixed positive numbers with a < o~, b </3.  Note that, in this 
case, the compactness of (u,) is automatically verified because of Proposition 3. 
In a forthcoming paper GtmTIN & MATANO [17] give some conditions on W 
ensuring that all solutions u, of the original variational problem lie in a strip 
a < - - u ~ b .  
(d) It is also possible to study, by the technique of Theorem I, the asymptotic 
behavior, as e --~ 0 +, of the variational problem obtained by adding a perturba- 

tion e�89 continuous in LI(g2), to 8~(u) (cf  the next section). 
(e) The proof of Theorem I is entirely variational: no regularity is assumed for 
W, so that, in general, there is no Euler-Lagrange equation for u,. On the other 
hand. it is easy to verify, by direct methods, that the functionals 8~ attain their 
minimum value in the variational problems considered above. 

3. Relation to /'-convergence theory 

In this section we will show how the content of the previous sections might 
be placed within the general framework of variational convergence. This is only 
a first attempt: the subject deserves a more careful and deeper treatment (see the 
final remark). 
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Let Y2 be an open, bounded subset of  R ~ with Lipschitz continuous boundary. 
A family (F,),>0 of  real-extended functionals defined, on Ll(12) is said to / '-con- 
verge as e -+ 0 ~ to a functional Fo in a fixed point u E Ll(12) if the following 
two conditions are fulfilled: 

(a) u lim f l u s  -- u I dx = 0 ~ Fo(u) <~ liminfF~(u~); 
e->0+ ~ - -  8~),.0+ 

(b) 3(u,)~>0:lim f l u e  -- u I dx : 0 and Fo(u)~ l imsupF, (u , ) .  
* -~0  + ~ 8-+0 + 

There is a large literature on /'-convergence, beginning with the pioneering 
works of  DE GIORGI [8], [9]. We refer the interested reader to the comprehensive 
account of ATTOUCH [4], noting that in his terminology/ '-convergence is referred 
to as epi-convergence. 

The following abstract proposition, whose proof  is quite simple, explains why 
/'-convergence is convenient in the asymptotic analysis of variational problems. 

Propos i t ion  4. Suppose that F8 /'-converges as e -+ 0 + to Fo at every point of  
LI(Q). For every t > O, let u8 be a minimum point o f  F~ in LI(s I f  u~ converges 
in L l( ~2) to a function Uo as ~ --~ 0 +, then Uo is a minimum point o f f  o in L l(12) and 
lim F~(u3 : Fo(uo). 
e---~O + 

We now return to the results of Section 2. Define 

F,(u) --~ e-�89 ----- f [ek lDu 12 + e-�89 dx 
12 

(F,(u) ---- + o o  if u~ ~/V'�89 and 

In(U) - -  0 if  f u dx  = m,  Ira(u) = + o o  i f  f u dx  :4: m ,  

and finally 

2Co f lOul if uE BV(I2) and W(u(x)) ----- 0 
for almost every x E O 

Fo(u) = 

+ o o  otherwise. 

Then it is easy to verify that Propositions 1 and 2 are equivalent to asserting that, 
as e---> 0 +, F, + lm / '-converges to Fo + I m  at every point u E Ll(12) except 
for those which satisfy 

(i) f udx---- m; 
D 

(ii) W(u(x)) = 0 for almost every x E t2; 
(iii) there is no open subset A o f R  n with non-empty, compact, smooth boundary 

such that ~r (X 00)  = 0 and {xE t2:u(x) ---- o~} ----- A f~ Q. 

Actually, it can be proved rather easily, using Lemma 2, that / ' -convergence 
really occurs at all points of LI(O), so that Theorem I is a corollary of Proposi- 
tion 4. 
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Furthermore, the true advantage of the formulation in terms of F-conver- 
gence is that this convergence is invariant under continuous perturbations (it is 
enough to insure the definition of F-convergence given above). For example, 
one directly obtains, without additional computation, a theorem--analogous to 
Theorem I--for the asymptotic behavior, as e ~ 0 +, of the variational problem 

min/8,(u) + e �89 f w(x) u(x) dx: u ~ O, f u dx = m] 
t J 

with w E L~176 
The Modica-Mortola example of/ '-convergence cited in the introduction is 

exactly the F-convergence of F, to Fo. Of course, this does not imply Theorem I 
since I m does not correspond to a continuous perturbation. 

We conclude with a remark about the asymptotic /'-expansion: 

E , ( u )  = f [e }Dul 2 + We(U)] ax 

= f W**(u) dx + 2c0,�89 f lDul +. . . ,  

which holds in the sense 

and 

min f W~*(u(x)) dx ----- min F-lim E,(u) 
u~ V f f  u~ V e-+O + 

E,(u) -- f rVg*fu) dx 
min 2Co f l Oul = min F- lim a 
uE V .0 u~ V n-+O + ~ 

where V denotes the set {uE L'(f2): a S u d x : m '  a f W ( u ( x ) ) d x = O }  and IV*" 

is the greatest convex function less than 14:o. 
It should be interesting to analyze more deeply this concept of asymptotic 

expansion. A possible question may be to find an explicit form of the next term 
in the development, which is probably t multiplied by 

E,(u) -- f W**(u) dx -- 2c0e�89 f [ Dul 
F-lim a a 

t-+O+ E 

1 2 
F-lim f [IOul -- : � 8 9  dx, 

*-'->0+ D 

where, for the last (tentativeD equality, we might use the facts: We(U) -- W**(u) = 

W(u) for o~_<u_</5; coflDul = f lD( fou) l  for uE V; q6'= W~; 

t O(~o u) (x) l = W�89 IOu(x) l 

for any function u E W'1'2(12). 
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