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There is a large amount of experimental and numerical work dealing with dry granular
flows (such as sand, glass beads etc.) that supports the so called µ(I)- rheology. The
reliability of the µ(I)-rheology in the case of complex transient flows is not fully ascer-
tained, however. In this perspective, the granular column collapse experiment provides an
interesting benchmark. In this paper we implement the µ(I)-rheology in a Navier–Stokes
solver (Gerris) and compare the resulting solutions with both analytical solutions and
two-dimensional contact dynamics discrete simulations. In a first series of simulations,
we check the numerical model in the case of a steady infinite bi-dimensional granular
layer avalanching on an inclined plane. A second layer of Newtonian fluid is then added
over the granular layer in order to recover a close approximation of a free-surface con-
dition. Comparisons with analytical and semi-analytical solutions provide a conclusive
validation of the numerical implementation of the µ(I)-rheology. In a second part, we
simulate the unsteady two-dimensional collapse of granular columns over a wide range of
aspect ratios. Systematic comparisons with discrete two-dimensional contact dynamics
simulations show good agreement between the two methods for the inner deformations
and the time evolution of the shape during most of the flow, while a systematic underes-
timation of the final run-out is observed. The experimental scalings of spreading of the
column as a function of the aspect ratio available from the literature are also recovered.
A discussion follows on the performances of other rheologies, and on the sensitivity of
the simulations to the parameters of the µ(I)-rheology.
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1. Introduction

Despite a large amount of dedicated research, modelling and predicting granular flows
remains a challenging goal. Granular flows are characterized by a very large diversity
of behaviours. For example, the simple controlled experiment of a granular layer flow-
ing on an inclined plane reveals more intriguing features than one would expect. As
a consequence, defining a generic continuum granular flow rheology has not yet been
achieved. Recurrent struggles are, for instance, the identification of a relevant variable to
describe the transition from arrest to flow and the corresponding hysteresis, the initiation
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of shear banding, or the understanding of non-local effects (Aranson & Tsimring 2001;
GdR MiDi 2004; Pouliquen 2009b).

Notwithstanding these difficulties, much progress has been made since the pioneer-
ing work of Bagnold (Bagnold 1954); however these advances have primarily concerned
phenomenological observations rather than reliable modelling. This includes the follow-
ing topics: role of initial conditions and hysteretic behaviour, dependence on the system
size, wall effects, fluidization etc. (Daerr & Douady 1999; du Pont et al. 2003; Jop et al.

2005; Nichol et al. 2010). Constitutive laws that could explain and predict these ob-
servations are still lacking. Among the different models and theories developed in the
past two decades, the µ(I)-rheology has recently emerged as the only framework so far
consistently describing observations from a great variety of experimental and numeri-
cal set-ups (GdR MiDi 2004; Jop et al. 2006; Pouliquen 2009b). Initially established for
stationary shear flows, and based on a Coulombic friction model, this rheology relates
the value of the effective coefficient of Coulombic friction µ (the ratio of tangential to
normal stresses) to the non-dimensional inertial number I (comparing the typical time
scale of microscopic rearrangements and the typical time scale of macroscopic deforma-
tions). Although the µ(I)-rheology is mostly phenomenological, it rests on a physical
basis based on the origin of frictional properties. Most interestingly, its validity seems to
extend to the case of highly dynamical and transient situations such as the granular col-
umn collapse, as shown by the numerical work of Lacaze & Kerswell (2009). The granular
column collapse experiment was initially designed to constrain the factors controlling the
run-out (or maximum distance reached by the flowing material) of natural catastrophic
granular flows (Lajeunesse et al. 2004; Lube et al. 2004). It simply consists of initially
confined columns of grains allowed to spread over a horizontal plane in response to grav-
ity. The main outcome can be summarised as follows. The run-out (normalised by the
initial width of the column) behaves like a power law of the column initial aspect ratio
(initial height to initial width); the exponent of the power law is dependent only on the
geometry of the column; and its value is highly reproducible. Although the experimen-
tal set-up is simple, the origin of the power-law scaling is not fully understood. In the
context of the present work however, it offers a reference behaviour against which the
µ(I)-rheology can be compared, provided we have a simulation tool solving this specific
constitutive model. Continuum modelling of the granular column collapse has been the
subject of several studies, often based on the Saint-Venant/shallow-layer approximation
whose validity is intrinsically limited to squat columns (Mangeney et al. 2005; Kerswell
2005; Larrieu et al. 2006; Hogg 2007; Doyle et al. 2007). Recently, two-dimensional simu-
lations of the collapse of elastoplastic materials allowed for the modelling of tall columns
with good agreement (Crosta et al. 2009), but using a Lagrangian approach and a Mohr-
Coulomb plastic model. Yet, no systematic comparisons between discrete granular dy-
namics and the complete Navier-Stokes equations with continuum rheologies were carried
out. The challenge is no less than the simulation of granular systems (from silos to geo-
physical flows) at an affordable computational cost.

In this article, we simulate numerically the two-dimensional granular column collapse
experiment using the Gerris two-phase flow Navier-Stokes solver, in which we have imple-
mented the non-Newtonian µ(I)-rheology. We consider the flow of dry granular material,
in contrast to Chauchat & Médale (2010) in which immersed granular flows were consid-
ered. The first validation results of this rheology are presented in section §2. We validate
our approach by testing it against two ideal avalanche configurations: the case of a single
granular layer on an incline and the case of two layers (a granular layer covered by a
viscous flow). Showing that the upper layer plays a negligible role for the range of pa-
rameters in which we are interested in, we apply our approach to the more complex case
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of the transient flow of the granular column collapse in section §3. In parallel we per-
form simulations using the discrete contact dynamics method (Moreau 1994) in which
the motion of individual grains is explicitly solved, thus allowing detailed comparison
with the continuum µ(I) counterpart (Staron & Hinch 2005, 2007). Details of the dis-
crete numerical methods are presented as well. We compare experimental scaling laws
for the run-out and the deposit height with the outcome of the continuum simulation.
Comparisons with discrete simulations of the time evolution of the shape of the column
are also performed. Other plausible candidate rheologies (Bagnold, Bingham, constant
friction, and a case with linearised total derivative in the Navier-Stokes equations) are
tested and their performances discussed. Finally at the end of §3 we present a detailed
discussion on the sensitivity of the µ(I)-rheology to parameters, and on the difficulty of
modelling l the flow front from both a theoretical and a numerical point of view.

2. Implementing the µ(I)-rheology in a Navier-Stokes Solver

2.1. Some results on the µ(I)-rheology

Early concepts to explain the behaviour of granular flows were introduced in the seminal
work of Bagnold, who identified many of the features of granular media by analysing field
and laboratory experiments (Bagnold 1954). Since this pioneering work, one of the major
milestone might be the introduction of the so-called µ(I)-rheology by the MiDi group
(GdR MiDi 2004). Some of the ideas developed in that paper were to some extent already
discussed in Savage (1979); Savage & Hutter (1989) and Ancey et al. (1999); however, the
µ(I)-rheology results from the analysis of a large number of experimental and numerical
data sets, which for the first time revealed a common framework explaining a wide range
of behaviours of granular materials. The prospect of these efforts is a comprehensive
and reliable description of granular dynamics using a continuum mechanics point of
view. Granular media can flow as complex non-Newtonian fluids or resist shearing as a
plastic solid. First, they are characterised by the existence of a flow threshold analogous
to the classical Mohr-Coulomb friction law. When the flow develops, by analogy with
Coulombic friction, the local normal stress p and the local tangential stress τ are often
found in practice and assumed in the model to be proportional:

τ = µp, (2.1)

where µ is the analogue of a coefficient of friction. The introduction of a Coulomb-like
friction law in a continuum description of granular flows is not new. It was first proposed
by Savage & Hutter (1989) who derived shallow-layer equations for granular flows where
dissipation was accounted for through basal friction. The value and physical origin of
this basal coefficient of friction have subsequently been the subject of extensive work
(Pouliquen & Forterre 2002; Bouchut et al. 2008; Kelfoun et al. 2009; Davies et al. 2010;
Mangeney et al. 2010). The underlying question is which mechanisms at the grain scale
in the bulk are responsible for dissipation and/or effective friction.

The strength and novelty of the µ(I)-rheology lay in the fact that it relates the effective
coefficient of friction characterizing the flow to a non-dimensional number reflecting the
local state of the granular packing. This number is known as the inertial number I
(da Cruz 2004), and is defined as:

I =
d∂u

∂y
√

p/ρ
, (2.2)

where ∂u/∂y is the shear rate, p is the pressure, and d and ρ are teh diameter and the
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density of the grains, respectively. It represents the ratio of two time scales: (∂u/∂y)−1

is a macroscopic shear deformation time scale, and
√

ρd2/p is an inertial time scale
constructed with the pressure force pd2. Gathering and comparing a large variety of
studies of shear flows (Couette plane shear, annular shear, vertical chute flows, inclined
plane, heap flow, rotating drum), either experimentally or numerically (using discrete
methods such as molecular dynamics or contact dynamics simulations), GdR MiDi (2004)
has demonstrated the generality of the dependence of the ratio τ/p on I. The following
law was proposed as a possible fit to account for the shape of the dependence (Jop et al.

2005, 2006):

µ(I) = µs +
∆µ

I0/I + 1
, (2.3)

where the values of the coefficients µs, ∆µ and I0 are material-dependent; indicative
values for glass beads are µs = 0.38, ∆µ = 0.26 and I0 = 0.279 (Jop et al. 2005).
Recently, numerical studies using discrete element simulations have shown that the µ(I)
dependence was also satisfied in highly transient situations such as the granular column
collapse (Lacaze & Kerswell 2009).

So far, the µ(I)-rheology is purely phenomenological. Other models exist, building
on different theoretical backgrounds (Aranson & Tsimring 2001; Josserand et al. 2006;
Mills et al. 1999); however, none compares so well against so many experiments. Al-
though the validity of the µ(I)-rheology might be questionable close to the jamming
transition (Staron et al. 2010), or when non-local effects are not negligible (Nichol et al.

2010; Pouliquen 2009b), it emerges nonetheless as the most reliable description of gran-
ular flows so far. Therefore, in what follows, we will not discuss the validity of the
µ(I) model. Instead, we will be interested in the still challenging issue of implement-
ing a granular rheology in a continuum mechanics model, while going beyond the av-
eraged Saintt-Venant/shallow-layer approaches, which presents the shortcomings of a
simplified description of the flow, and the need for a closure hypothesis. Following the
idea of Jop et al. (2006), who generalise relations (2.2) in a tensorial way to obtain a
constitutive law for granular flows, we implement the µ(I)-rheology in an incompress-
ible 2D Navier-Stokes solver and discuss the solution. Previous attempts to implement
the µ(I)-rheology in Navier–Stokes solvers were hampered by the difficult coupling be-
tween a free-surface condition and the (pressure-dependent) µ(I)-rheology (Pouliquen
2009a; Cawthorn 2011). By reusing the two-fluid model implemented in the Gerris solver
(Popinet 2009), we are able to circumvent this particular problem.

2.2. Implementing the viscosity in the Gerris flow solver

2.2.1. The Gerris flow solver

Gerris is an open-source solver for the solution of incompressible fluid motion using
the finite-volume approach (Popinet 2003, 2009). Gerris uses the Volume-of-Fluid (VOF)
method to describe variable-density two-phase flows. In this method the Navier–Stokes
equations are written as

∇ · u = 0,

ρ
(

∂u

∂t + u · ∇u
)

= −∇p + ∇ · (2ηD) + ρg,
∂c
∂t + ∇ · (cu) = 0,

ρ = cρ1 + (1 − c)ρ2,

η = 1/(c/η1 + (1 − c)/η2),
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where the volume fraction c(x, y, t) enables the tracking of the position of the interface;
the mixture viscosity is taken as the harmonic mean of the viscosities of each phase; and
D is the strain rate tensor (∇u + ∇uT )/2.

The boundary condition will be supposed to be no-slip at the rigid walls (even if it is
possible to implement a mixed Robin-Navier boundary condition). The pressure will be
imposed at the top of the domain. In the case of avalanches, periodic conditions will be
imposed. Other details will be given later as they depend on the configuration.

2.2.2. Some details on the solver

Gerris uses a second-order staggered-in-time discretization combined with a time-
splitting projection method. This gives the following time-stepping scheme

c
n+1

2

−c
n−

1
2

∆t + ∇ · (cnun) = 0,

ρn+ 1
2

(

u∗−un

∆t + un+ 1
2
· ∇un+ 1

2

)

= ∇ · (ηn+ 1
2
D∗) − ∇pn− 1

2
, (2.4)

un+1 = u∗ − ∆t
ρ

n+ 1
2

(∇pn+ 1
2
− ∇pn− 1

2
), (2.5)

∇ · un+1 = 0. (2.6)

Combining equations (2.5) and (2.6) of the above set results in the following Poisson
equation

∇ ·
(

∆t

ρn+ 1
2

∇pn+ 1
2

)

= ∇ ·
(

u∗ +
∆t

ρn+ 1
2

∇pn− 1
2

)

. (2.7)

The momentum equation (2.4) can be reorganized as

ρn+ 1
2

∆t
u⋆ − ∇ · (ηn+ 1

2
D∗) = ρn+ 1

2

[un

∆t
− un+ 1

2
· ∇un+ 1

2

]

− ∇pn− 1
2
, (2.8)

where the velocity advection term un+ 1
2
· ∇un+ 1

2
is estimated by means of the Bell-

Colella-Glaz second-order unsplit upwind scheme (Popinet 2003; Bell et al. 1989). Note
that the diffusion equation for u⋆ , equation (2.8), uses a backward Euler implicit scheme
that is stable for arbitrary values of η. This will be important when dealing with stiff
rheologies such as µ(I). For Newtonian fluids ηn+ 1

2
is a function of cn+ 1

2
. In the case

of the µ(I)-rheology it is computed using cn+ 1
2
, Dn and pn (so that the scheme is not

strictly second-order in time any more).
Equation (2.7) is a Poisson-like problem with p as unknown variable while equation

(2.8) is similar to a Helmholtz problem with u⋆ as unknown variable. An efficient multi-
level Poisson solver for (2.7) is described in Popinet (2003). However, it is only applicable
to scalar fields and cannot be used directly to solve (2.8) to obtain the vector field u⋆ . A
work-around is to decouple the equations for each of the components of u⋆ and then use
the scalar multilevel algorithm to solve for each component independently. The equations
for each component are coupled through the cross-terms ∇u⋆

T appearing in ∇·(ηn+ 1
2
D∗)

in (2.8). To obtain scalar Helmholtz-like problems for each component we discretize the
cross-terms explicitly such that the Laplacian operator in (2.8) is approximated as

2∇ · (ηn+ 1
2
D∗) ≃ ∇ · (ηn+ 1

2
∇u⋆) + ∇ · (ηn+ 1

2
∇uT

n ).

The explicit cross-terms can be further rearranged as we have the tensorial general iden-
tity

∇ · (η∇uT ) = ∇uT
∇η + η∇ · ∇uT = ∇uT

∇η + η∇(∇·u) = ∇uT
∇η,

where we have used the incompressibility condition ∇·u = 0. The final decoupled scalar
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equations for each velocity component can then be written in vector form

ρn+ 1
2

∆t
u⋆ − 1

2
∇ · (ηn+ 1

2
∇u⋆) = ρn+ 1

2

[un

∆t
− un+ 1

2
· ∇un+ 1

2

]

− ∇pn− 1
2

+
1

2
∇uT

n∇ηn+ 1
2
.

Note that the explicit viscous term on the right-hand-side vanishes for a constant viscos-
ity. For variable viscosities, it is only dependent on the viscosity gradient. The robustness
of the implicit scheme is preserved for large values of viscosities provided the spatial vis-
cosity variations are small enough. This scheme has been validated for numerous prob-
lems with variable viscosity such as two-phase flows of Newtonian fluids with different
properties (Popinet 2009; Fuster et al. 2009,b; Bague et al. 2010), as well as generalised
Newtonian fluids (Popinet 2005) including yield-stress rheologies (Josserand et al. 2009).

Space is discretized using an octree where the variables are located at the centre of each
cubic discretization volume and are interpreted as the average value of the variable in the
cell. Coupled with the VOF representation of interfaces, this finite-volume formulation
guarantees mass and free-stream conservation. The octree discretization used in Gerris
allows an efficient mesh refinement or coarsening. The mesh can be adapted at every
time-step on demand with a minimal impact on overall performance. We refer the reader
to Popinet (2003, 2009) and references therein, for a comprehensive presentation of the
quad/octree data structure and the numerical integration procedure of the incompressible
Navier–Stokes scheme.

2.2.3. The µ(I)-viscosity

The µ(I)-viscosity is constructed from the second invariant D2 =
√

DijDij of the strain
rate tensor D (Dij = (ui,j +uj,i)/2. Then, following Jop et al. (2005), we implement the
expression of µ(I) and I into the Gerris solver, redefining the inertial number I using
the second invariant D2 as:

η = max

(

µ(I)√
2D2

p , 0

)

, with I = d
√

2D2/
√

(|p|/ρ). (2.9)

In practice the viscosity at very low shear rates is also bounded arbitrarily by ηM =
250ρ

√

gH3, as real “solid-like” behaviour cannot be described by viscosity alone. Real
arrest of the flow is thus approximated by a very slow creeping motion. All the results
presented were checked to be insensitive to the exact value of ηM (down to values less than

ηM = 1.0ρ
√

gH3 which effectively produce noticeable creeping). Other regularizations
may be constructed. Several non-Newtonian viscosities are implemented in the following
simulations (Newtonian, Bagnold, Bingham, etc.).

2.2.4. Why use a two-phase model?

The imposition of accurate free-surface boundary conditions on an interface of arbitrary
shape whose position is itself an unknown is a non-trivial numerical problem. A wide
range of methods have been developed in the case of Newtonian fluids, but the extension
of these methods to non-Newtonian rheologies is a topic of active research (Vola et al.

2004; Chauchat & Médale 2010). In the case of the µ(I)-rheology in more than one
dimension, the coupling between the rheology (which is pressure-dependent) and the
free-surface boundary conditions makes the problem more difficult. This has hampered
previous efforts of implementation (Pouliquen 2009b; Cawthorn 2011).

Considering an interface rather than a free surface simplifies a number of numerical
details. In particular, the continuity of the velocity field through the interface is guaran-
teed and simple (but approximate) techniques are available to evaluate viscous stresses
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Figure 1. Sketch of the granular material moving along a flat rigid bed inclined at an angle α;
the coordinate x is along the slope, y is the coordinate normal to the plane. The bottom is at
y = 0, and the top is at y = 2H . The thickness of the flow is H (much larger than the grain
size d ≪ H). The flow is parallel to the slope u = u(y) and v = 0. In section 2.3.3 the granular
medium is covered by a fluid, and there is an interface at y = H and a rigid wall at y = 2H ,
thus forming a channel.

at the interface. This treatment of interfaces and viscous terms within Gerris has been
validated extensively using thorough test cases and applications to difficult problems
Popinet (2009); Bague et al. (2010). The extension of this method to the µ(I)-rheology
is straightforward. We will show that it leads to accurate results for simple test cases
and allows the treatment of complex problems with large interface deformations (and
possibly merging and breakup of interfaces).

2.3. Validation for avalanching dry granular flows

2.3.1. Single-layer case, analytical solution

We first consider a two-dimensional granular flow along an inclined infinite plane. This
case was studied by Bagnold (1954) using a simple model. The tilt angle is α, x is the
direction along the plane and y is the perpendicular direction (Figure 1). The flow is
supposed steady and incompressible. We assume that we can use the formulation of
continuum mechanics. In a pure fluid picture, the stress tensor is decomposed into two
contributions, σxy = τ and σyy = −p, respectively tangential and normal to the flow.
There is no constraint at the top of the layer: τ = 0 and p = 0 at y = H , where H is
the thickness of the granular layer (d ≪ H , where d is the grain diameter). We assume
a no-slip condition at the bottom (i.e. at y = 0). The conservation of mass is consistent
with the velocity field, so that u = u(y) and v = 0, where u and v are the components
of the velocity field in the x and y directions respectively. Under these hypotheses, the
conservation of momentum implies the following equilibrium between stress and weight:

0 =
∂

∂y
τ + ρg sin α and 0 = − ∂

∂y
p − ρg cosα, (2.10)

where ρ is the density of the grains. These conservation equations can be integrated once
without assumptions on the constitutive law. There is no constraint at the top of the
layer: τ = 0 and p = 0 at y = H . So that we have for any rheology,

τ = ρgH
(

1 − y

H

)

sin α, and p = ρgH
(

1 − y

H

)

cosα. (2.11)

We can here introduce the Bagnold viscosity prior to the µ(I)-viscosity. From his
observations, Bagnold (1954) derived a simple rheology in which the granular flow behaves



8 P.-Y. Lagrée, L. Staron and S. Popinet

as a viscous flow obeying

τ = ρν
∂u

∂y
, (2.12)

where η = ρν is a kinematic viscosity, and ν can be constructed with local quantities, such
as the grain size d and the shear rate (note that in the following, we use the notation η
for the dynamic viscosity to avoid confusion with the friction coefficient µ of the granular
rheology). In the case of a parallel sheared flow,

ν = d2 ∂u

∂y
(2.13)

is a good candidate, if only from dimensional analysis. We deliberately choose a unit
constant of proportionality for the sake of simplicity. This formulation is reminiscent of
the Prandtl turbulent viscosity (Schlichting 1987). Using relation (2.13), the conservation
of momentum gives the following solution for the velocity, known as the Bagnold velocity
profile:

u =
2

3

√

gd

(

sinα
H3

d3

)1/2(

1 −
(

1 − y

H

)3/2
)

, v = 0, p = ρgH
(

1 − y

H

)

cosα.

(2.14)

In fact, many authors call Bagnold profile the dependence
(

1 −
(

1 − y
H

)3/2
)

itself. One

obvious limitation of this model is that for any value of the slope angle α, no matter how
small, the velocity is non-zero and a flow develops; in other words, Bagnold’s model does
not take into account the existence of a critical angle of avalanche below which there is
no flow.

We now turn to the µ(I) model. As above, we consider a 2D steady incompressible
granular flow of thickness H along an infinite plane inclined at an angle α. The integrated
equilibrium (Eq. 2.11) gives p and τ as functions of y. By definition, µ(I) = τ/p; the
above expressions for the components of the stress tensor give that µ is constant for a
given value of the slope α, that is µ(I) = tanα. This implies that, for a given value of
the slope α, the inertial number I is a constant, I = Iα with Iα = µ−1(tanα), where µ−1

is the inverse of the function µ:

µ−1(tanα) = I0
tan α − µs

µs + ∆µ − tanα
. (2.15)

From the definition of the inertial number (2.3), we obtain d(∂u/∂y) = Iα

√

p/ρ. The
shear rate is thus an explicit function of y:

∂u

∂y
= (Iα/d)

√

gH (1 − y/H) cosα,

which is integrated using the no-slip condition at y = 0. This leads, for tanα > µs and
0 < y < H , to

u =
2

3
Iα

√

gd cosα
H3

d3

(

1 −
(

1 − y

H

)3/2
)

, v = 0, p = ρgH
(

1 − y

H

)

cosα. (2.16)

We thus recover a Bagnold profile (i.e. [1−
(

1 − y
H

)3/2
]), but with a different prefactor,

and a relation expressing hydrostatic balance. The slope angle α now has to be larger
than arctan(µs) to induce a flow which is consistent with an avalanching threshold.
Note The ratio τ/(∂u/∂y) defines an equivalent viscosity for the flow; its expression in
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this case is:

(ρνeq) = ρ(d/H)
sin α

√
gHH

(cosα)1/2Iα

√

1 − y/H (2.17)

so that its value is zero at the surface. At the limit of validity of the continuum mechanics
approximation, we can consider that the smallest value taken by the viscosity corresponds
to the value at a depth of one grain below the surface: the smallest kinematic viscosity
is thus the kinematic viscosity evaluated at y = H − d. From relation (2.17), νmin ≃
sin α

√
gHH

(cos α)1/2Iα
(d/H)3/2, and the order of magnitude of the smallest value of the viscosity is

approximately ρ
√

gd3.

2.3.2. Single-layer case, numerical solution

As explained, we implement the µ(I)-viscosity (equation (2.9)) in the Navier-Stokes
solver. The initial velocity profile at t = 0 is u = v = 0, but in practice we use the
Bagnold solution to speed up the computations. We consider a single granular layer of
thickness H (see sub-section 2.3.2). The pressure is imposed at the top of the domain,
p = 0, as well as the transverse velocity: v(H) = 0. The longitudinal velocity follows
a Neumann condition ∂yu(H) = 0. The problem is solved on a square grid periodic in
x. The equations are solved using non-dimensional variables: (x, y) = H(x̄, ȳ) for space,
(u, v) =

√
gH(ū, v̄) for velocities, and p = ρgHp̄ for the pressure. The non-dimensional

viscosity is thus η̄ = µ(I)√
2D̄2

p̄ and I = d̄
√

2D̄2/
√

|p̄|.
Figure 2 shows an example of solution for the velocity, the velocity gradient and the

pressure profiles for a given value of the slope angle α = 0.43. We obtain a numerical so-
lution consistent with the analytical solution, within discretization errors. The computed
resulting viscous component η̄dū/dȳ is found to be proportional to p̄, and the coefficient
of proportionality remains constant and equal to µ(I) as expected.

This simulation was repeated using 8, 16, 32 or 64 points across the channel. Figure
3 shows the evolution of the L2 and max norms of the difference between the computed
velocity and the exact Bagnold solution as a function of the number of grid points across
the layer. The convergence is intermediate between first and second order in the spatial
resolution.

Figure 4 shows the evolution of the velocity at the surface: u(y = H) for both numerical
and analytical solutions as a function of slope angle α. The analytical solution is given by
(2.16) and reads ū(1) = 2(

√
cosαIα/d̄)/3, with Iα = I0

−µs+tan α
µs+∆µ−tan α = µ−1(tanα). The

agreement between the two solutions is excellent. In particular the numerical method is
able to accurately capture the avalanching transition.

2.3.3. Two-layer case, analytical solution

The classical µ(I) model does not take into account the influence of the fluid surround-
ing the granular medium, assumed to be negligible; indeed, the density of glass beads is
2500 kg/m3, the density of sand is just less than 2000 kg/m3, whereas the density of air
is 1.2 kg/m3. This is justified by the fact that experiments show that dry granular flows
are not affected by the surrounding air. We place ourselves in this case, and directly solve
the flow of a dry granular layer overlaid with a Newtonian fluid. In the limit of a light
enough overlying fluid the pressure at the top of the granular medium will be close to
zero. We insist, that underwater avalanches would require a different formulation, and
take into account at least a two-phase mixture in the bottom and more complex mod-
eling (Cassar et al. 2005; Pailha & Pouliquen 2009; Chauchat & Médale 2010), which is
not within the scope of the present analysis.

To recover the solution for a pure free surface one has to be careful however. The



10 P.-Y. Lagrée, L. Staron and S. Popinet

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

– u(
– y)

, d
– u(

– y)
/d

– y 
an

d 
– p(

– y)

–y

Gerris
–u(–y) Bagnold

µ(I) Gerris
tan(α)

–D2*sqrt(2)
d–u(–y)/d–y bag

–p Gerris
–p(–y)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1
–y

–τ
µ(I)–p

(1-–y)sin α
µ(I)

tan α

Figure 2. Comparison between (a) analytical and (b) computed (on a 32x32 grid) profiles
for a single granular layer (0 < ȳ < 1) with the µ(I)-rheology. The slope angle is α = 0.43,
and d̄ = 1/25. (a) analytical (2.16) and Gerris solution for the pressure, velocity and velocity
gradient. (b) Comparison of shear stress τ̄ = η̄dū/dȳ (+), µ(I)p̄ (×) and exact solution (dashed
line); and comparison of the computed µ(I) (⊡) with the exact solution tanα (dot-dashed line).

viscosity of the overlying fluid must remain small enough to prevent any shear pertur-
bation of the granular flow. On the other hand, if the fluid is too light and not viscous
enough, numerical problems may arise. We thus consider a granular layer overlaid with
a Newtonian fluid of viscosity ηf = ρfνf and density ρf , and separated by an interface
at y = H . The problem consists of solving the continuity equations for each of the two
layers.

For the upper fluid (H < y < 2H), the conservation of momentum gives simply:

0 =
∂

∂y

(

ηf
∂u

∂y

)

+ ρfg sin α and 0 = − ∂

∂y
p − ρfg cosα,

with a no-slip condition at the upper wall: u(2H) = 0. We arbitrarily set p = 0 at y = 2H .
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Figure 4. In the case of a single granular layer (0 < ȳ < 1), comparison between numerical (+)
and analytical (dashed line) solutions for the velocity at the surface ū(ȳ = 1) as a function of
the slope angle α. For α < arctan(µs) ≃ 0.363 there is no motion, as expected.

We thus obtain:

u(y) =
(2H − y) (ρfgy sinα − 2τ0)

2ηf
and p(y) = ρfgH

(

2 − y

H

)

cosα.

At the interface, p(H) = ρfgH cos(α); the stress components are thus p0 = ρfgH cos(α)
and τ0 = ηfu′(H). We solve for the granular layer (0 < y < H) using the µ(I)-rheology.
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0.001 to 0.4 (large values have no physical application but validate the numerics). The slope is
α = 0.43. The corresponding Bagnold profile is plotted with a solid line for 0 < ȳ < 1.

Using the equality of constraints at y = H , we introduce τ0 and p0 as constants of
integration for the balance equations (2.10) (thus obtaining p = p0 +ρgH cosα(1− y/H)
and τ = τ0 + ρgH sinα(1 − y/H)). By definition, µ(I) = τ/p, so that the expression of
I is deduced by inversion of (2.15). Since ∂u/∂y = 0 when there is no flow:

d
∂u

∂y
= max

[

√

p0/ρ + gH
(

1 − y

H

)

cosα × µ−1

(

τ0 + ρgH
(

1 − y
H

)

sinα

p0 + ρgH
(

1 − y
H

)

cosα

)

, 0

]

.

(2.18)
By integration, using no-slip condition u(0) = 0 and the continuity of the velocity at the
interface, u(H−) = u(H+), we obtain the velocity profile. In practice, we solve two ordi-
nary differential equations (using a shooting method with Runge–Kutta differentiation),
and we determine using Newton iterations the value of τ0 that allows the velocity profiles
in 0 < y < H and in H < y < 2H to satisfy the condition u(H−) − u(H+) = 0.

2.3.4. Two-layer case, numerical solution

In this second instance a VOF tracer c is introduced to discriminate between the
granular layer and the overlying Newtonian fluid: c = 1 in the granular layer and c = 0
in the Newtonian layer. The same periodic condition in x, and a no-slip velocity condition
at the bottom of the domain, ū = v̄ = 0 are imposed. In addition, a no-slip condition is
imposed at the top of the domain, ū = v̄ = 0, as well as the pressure p̄ = 0. The initial
velocity profile at t = 0 is u = v = 0, but in practice we use the Bagnold solution and a
linear profile for 2H > y > H to speed up the computations. The density is scaled by ρ
and we use ηf/(ρ

√

gH3) as viscous parameter.
In this (more challenging) case the interface between the two layers is described using

the VOF method of the Gerris solver. The interface is stable and remains at its initial
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position y = H . Figure 5 shows the numerical solution for the two layers (granular and
Newtonian), with different values for the density and viscosity of the Newtonian fluid.
The overall agreement between the semi-analytical and the numerical solutions is again
very satisfying. Gerris computations match the semi-analytical solutions, with lighter
and less viscous overlying fluids allowing convergence towards the free-surface Bagnold
solution for the underlying granular layer. The amount of deceleration of the granular
flow may be computed exactly from the two-layer equations system, but an estimate
is sufficient for practical purposes. Starting from a linear development at small τ0

ρgH ,

we use the formula (2.18) but neglect the influence of the pressure p0 (which could be
reintroduced for a more refined estimate):

d
∂u

∂y
≃
√

ρgH(1 − y

H
) cosα × µ−1(tanα) +

dµ−1

dt
(tanα)

(

τ0

ρgH(1 − y
H ) cosα

)

.

After integration, this gives a first-order estimate for the variation of the velocity at the
top of the layer:

∆u

u(H)
= − 3∆µ

cosα(µs − tan α)(∆µ + µs − tan α)

τ0

ρgH
+ O

(

(

τ0

ρgH

)2
)

This variation is linked to the viscosity of the granular layer νeq; however, τ0 depends on
the upper fluid characteristics. If its density ρf is large, the fluid is flowing in response to
its weight τ0 ∼ ρfgH sin α. In that case the velocity of the granular layer at the interface
being

√
gHH/d, the error estimate is:

∆u√
gHH/d

≃ ρf

ρ
.

Conversely if its density is small the upper fluid is dragged by the granular layer and its
velocity reaches close to

√
gHH/d. In that case, the error estimate is:

∆u√
gHH/d

≃ ηf

ρ
√

gHd
.

These estimates are useful to evaluate a priori the influence of the Newtonian layer. Note
that the avalanching configuration addressed in this section maximizes this influence as
the upper layer of Newtonian fluid takes much more time to reach a stationary regime
than the granular layer does, thus implying a long total simulation duration.

In this section, numerical results compare well with analytical solutions with one or
two-layers. We are also able to estimate the order of magnitude of the departure from
the free-surface solution as a function of density and viscosity ratios. We expect that the
influence of the external Newtonian fluid will be smaller in the case of fast transient events
than for the stationary two-layers problem considered in this section. So, we now turn to a
more challenging and interesting case: the collapse of granular columns. This will involve
the unsteady and convective derivative terms in the Navier–Stokes resolution, all the
spatial derivatives, complex interface/free-surface deformation as well as the rheological
model itself.
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t = 0

t =∞

Figure 6. Schematic illustration of the column collapse experiment in two dimensions. The
initial height of the column is H0, its initial half-width is L0 and a = H0/L0 is the aspect ratio;
the final maximum thickness is H∞ and the final half-width, or run-out, is L∞.

3. The granular column collapse as a continuum

3.1. The collapse experiment from grains to continuum

3.1.1. Experimental scalings in 2D

The granular column collapse experiment consists of allowing an initially confined
column of grains to collapse onto a horizontal plane under its own weight. The subsequent
flow starts with a vertical fall combined with lateral spreading, followed by the advance,
and eventually the arrest, of a granular flow front. The experiment was performed either
in axisymmetric configurations (Lajeunesse et al. 2004; Lube et al. 2004) or in quasi two
dimensions, namely using a planar Hele-Shaw cell (Lajeunesse et al. 2005; Lube et al.

2005; Lacaze et al. 2008). A three-dimensional investigation (namely planar with varying
confinements) was performed by Balmforth & Kerswell (2005). In all configurations, the
material was released by opening a swinging gate or by swiftly pulling up the container.
The focus was set on the scaling law obeyed by the run-out, that is the final distance
covered by the flow front. If the initial height of the column is H0, its initial half-width
is L0, the final maximum thickness is H∞ and the final half-width is L∞ (see Figure
6 for a schematic illustration), the experimental scaling for the run-out in the planar
two-dimensional configuration reads:

L∞ − L0

L0
≃
{

λ1 a a < a0

λ2 aα a > a0
(3.1)

where a = H0/L0 is the column aspect ratio, and where a0, λ1 and λ2 are essentially
material-dependent parameters. Lube et al. (2005) found for sand, rice and sugar, λ1 ≃
1.2, λ2 ≃ 1.9 and 1.8 6 a0 6 2.8, while Lajeunesse et al. (2005) found λ1 ≃ 1.8, λ2 ≃ 2.3
and a0 ≃ 3.0 for glass beads. The exponent α is close to 2/3 in all experiments.

Similar scaling was obtained for the final height of the deposit:

H∞

L0
≃
{

λ3 a a < a0

λ4 aα a > a0
(3.2)

where Lube et al. (2005) found λ3 ≃ 1.0, λ4 ≃ 1., a0 ≃ 1.15 and an exponent α = 0.4,
while Lajeunesse et al. (2005) found λ3 ≃ 1.0, λ4 ≃ 0.9, a0 ≃ 0.7 and an exponent
α ≃ 1/3.

3.1.2. Numerical granular collapse

Two-dimensional numerical simulations of the column collapse were performed using
discrete methods, namely solving individual grain trajectories taking into account inter-
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Figure 7. Strip representing a series of snapshots of a column collapse with aspect ratio
a = 0.5, 1.42, 6.26 (from top to bottom) simulated with Gerris at time t̄ =0, 1, 2, 3 4.
The surrounding fluid is Newtonian of density ρf and viscosity ηf , while the non-Newtonian
µ(I)-rheology is used for the column.

actions with neighbours while neglecting the influence of the surrounding air and of con-
fining walls (Zenit 2005; Staron & Hinch 2005, 2007; Lacaze et al. 2008). They proved
successful in reproducing the scaling laws observed experimentally, thus showing the
negligible role of the interaction between grains and air compared to the grain-to-grain
interactions. Moreover Lacaze et al. (2008) showed that discrete simulations reproduce
very accurately experimental results in two dimensions, down to the grain size scale.
Applying a contact dynamics method (Moreau 1994), Staron & Hinch (2005) recovered
scaling (3.1) with an exponent of 0.7, and λ1 ≃ 2.5, λ2 ≃ 3.25 and a0 ≃ 2, and scaling
(3.2) with λ3 ≃ 1., λ4 ≃ 0.65, a0 ≃ 1 and an exponent α = 0.35, although a third regime
(H∞/L0 = 1.45) was also observed for a & 10.

Discrete numerical simulations are a powerful tool to explore the internal structure
of the flow and its dynamics. In the following, we apply a contact dynamics algorithm
to simulate the collapse of granular columns in two dimensions. This method assumes
perfectly rigid grains obeying the standard Newtonian equations of motion. The grains
interact at contacts through a Coulombic friction law involving a single parameter, the
contact coefficient of friction µ. In addition, a coefficient of restitution e sets the energy
dissipated in the advent of a collision. More details on the method can be found in Moreau
(1994).

Using 2D circular grains of mean diameter d, we simulate the collapse of columns
with aspect ratios a = 0.5, a = 1.42 and a = 6.26, containing 3407, 6041 and 6036
grains respectively. We have also explored the extreme case of a column with a = 67.9
containing 20050 grains. Contact parameters are µ = 0.5 and e = 0.5; these values were
not varied. The simulation protocol is exactly that described in Staron & Hinch (2007):
the column of grains is prepared by random deposition under gravity, and is allowed to
collapse at t = 0 onto a horizontal plane made rough by gluing grains on its surface. In
the following, trusting that discrete simulations accurately reproduce the phenomenology
of the granular column collapse, contact dynamics simulations are used for systematic
comparison with the continuum model using the Gerris flow solver, in which the µ(I)-
rheology (as well as others) was implemented as explained in sub-section §2.2.
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t̄ = 0 t̄ = 0.98

t̄ = 1.22 t̄ = 1.63

t̄ = 2.44 t̄ = ∞

Figure 8. Comparison between the µ(I) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 0.5 at different times (non-dimensionalized by
p

H0/g). The grains are colored in the initial heap, which allows one to track the displacement,
see (Staron & Hinch 2005). The parameters of the µ(I)-rheology are µs = 0.32, ∆µ = 0.28 and
I0 = 0.4. (color online).

3.1.3. The Gerris collapse in 2D

The Navier–Stokes equations are non-dimensionalized using the characteristic length
H0 (the initial column height), characteristic velocity

√
gH0 and characteristic time

√

H0/g. The continuum simulation of the granular collapse consists of allowing a column
of fluid obeying the non-Newtonian µ(I)-rheology to collapse in response to gravity onto
a horizontal plane. The column is surrounded by a light fluid of density ρ̄f = 10−3 (nor-

malised by ρgrains) and viscosity η̄f = 10−4 (normalised by g1/2L
3/2
0 ρgrains). Rather than

imposing a zero-pressure condition at the top of the simulation cell, we impose p = −ρf ℓ,
where ℓ is the size of the computation domain. Doing so the pressure at the top of the
granular layer is close to zero, and is actually zero at the very front of the flow. We find,
however, that this correction has a very small influence for ρ̄f = 10−3. A no-slip condition
is implemented at the bottom, while a slip (symmetry) condition is imposed on the left
wall of the simulation cell. The quadtree spatial discretization used in Gerris allows for
efficient adaptive mesh refinement. This is used in this study to refine the mesh within
the granular material. A coarse mesh is used to discretize the surrounding Newtonian
fluid far enough from the interface with the granular flow. This allows one to limit con-
finement effects by using a very large domain (ℓ/L0 ≈ 64) at a negligible computational
cost. In all the results presented, care was taken to ensure grid independence (the typical
spatial resolution within the granular material is of order L0/∆x = 32). For illustration,
series of snapshots for a = 0.5, a = 1.42 and a = 6.26 showing the initial state and the
collapse at t̄ = t/(H0/g)1/2 = 0, 1, 2, 3, 4 are displayed in Figure 7.

3.2. Comparing scalings and dynamics

3.2.1. Shape and inner deformation

Applying the contact dynamics method, we have simulated the collapse of granular
columns with a = 0.5, a = 1.42 and a = 6.26. In order to highlight the deformations
occurring in the bulk of the flow, grains at the periphery and in the centre were initially
coloured in black and act as tracers. For the same values of aspect ratios, continuum
simulations applying Gerris and the µ(I)-rheology were performed. For all three cases,
the value of the rheological parameters is the same, namely µs = 0.32, ∆µ = 0.28 and
I0 = 0.4. Systematic comparison with discrete simulations was carried out; the results
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t̄ = 0 t̄ = 0.66

t̄ = 0.96 t̄ = 1.37

t̄ = 1.92

t̄ = ∞

Figure 9. Comparison between the µ(I) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 1.42 at different times (non-dimensionalized by
p

H0/g). The parameters of the µ(I)-rheology are µs = 0.32, ∆µ = 0.28 and I0 = 0.4 (color
online).

are displayed in Figures 8, 9, and 10. The continuum simulations are represented by two
red lines showing the time evolution of the shape of the outline as well as the shape of
the inner volume. We observe that in all cases the agreement between continuum and
discrete simulations is good: both the outer shape and the inner deformations are well
predicted by the continuum model. This is particularly visible in the case of the tall
column (a = 6.26, Figure 10) where an inner triangular-shaped area develops at the base
of the falling edifice. As can be seen in Figure 10 however, the head of the front when
close to arrest reduces to a few grain diameters. Continuum simulation of such a thin
granular layer is expected to be problematic. The following subsection deals with this
issue.

3.2.2. Propagation of the flow front

In 2D discrete simulations, the position of the flow front in the course of time is defined
by the last grain(s) flowing at the foot of the flow, but still touching the bulk: any grain
rolling free ahead is not considered. This criterion is difficult to apply in practice, as the
front looks like a cloud of colliding grains rather than a dense flow of contacting spheres.
Hence, we have determined the position of the granular front in the course of time by
analysing the shape of the falling edifice and by identifying the position where the outline
reaches a zero height discarding all grains bouncing beyond (as an illustration, Figure 18
shows the front of the collapsing column for a = 6.26 at t̄ = 1.33, 2. and 2.66).

In the case of the continuum model, the flow front is defined by the position of the
contact point on the bottom plane of the interface between the granular continuum and
the surrounding fluid. This is in fact a “moving contact line” problem, which presents
difficulties of its own. Although this position is usually well defined, “droplets” of granular
material can sometimes detach from the bulk near the foot of the avalanche, thus offering
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t̄ = 0 t̄ = 0.66

t̄ = 0.95 t̄ = 1.24

t̄ = 1.52

t̄ = 2.28

Figure 10. Comparison between the µ(I) continuum model (red line) and contact dynamics
simulations (grains) for an aspect ratio a = 6.26 at different times (non-dimensionalized by
p

H0/g). The parameters of the µ(I)-rheology are µs = 0.32, ∆µ = 0.28 and I0 = 0.4 (color
online).

an interesting analogue with detaching grains in the discrete version. These droplets
are, however, largely an artefact of the numerical treatment of the moving contact line
problem (their diameter is typically comparable to the grid size). They are ignored when
estimating the position of the front. Care was taken in all cases to ensure that the flow
front position was independent of grid size (so that the possible numerical artefacts linked
to the treatment of the moving contact line did not affect the results).

For the three cases a = 0.5, a = 1.42 and a = 6.26, we have reported the position of
the flow front in the course of time for discrete and continuum simulations, as well as
height profiles at different instants of the collapse (Figure 11). In all three cases, the front
propagation in the first part of the granular collapse (corresponding to the acceleration
phase, namely t̄ . 2) is well captured by the continuum simulations. When the flow
starts decelerating however, the continuum simulations slow down earlier than discrete
granular flows, and systematically underestimate the run-out, ie the front final position.
The error is larger for larger aspect ratios (reaching 10%) and coincides with the final
part of the granular deposit formed by a thin layer of a few grains in height, where the
assumption of a continuum is questionable. This aspect is further discussed in section
4.3. Furthermore, we see for example on Figure 11 (e) that the position of the front
computed by Gerris may slightly decrease owing to the ejection of droplets mentioned in
the previous paragraph. In spite of this, the correct description of the front propagation
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Figure 11. Normalised position of the flow front x/L0 as a function of the normalised time

t̄ = t/(H0/g)1/2 and height profiles at different instants t
p

g/H0 = 0, 1, 2, and 4, in the case of
columns of aspect ratios a = 0.5 ((a) and (b) respectively), a = 1.42 ((c) and (d) respectively)
and a = 6.26 ((e) and (f) respectively), for discrete contact dynamics simulation (noisy dashed
line) and continuum Gerris simulation with the µ(I)-rheology (plain line).

at earlier stages, as well as the recovery of the bulk shape evolution in the course of
time, support the ability of a continuum Navier–Stokes approach with a µ(I)-rheology
to reproduce correctly the granular collapse and the subsequent flow.
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3.2.3. Scaling for the run-out for the continuum µ(I)-rheology

The main outcome of the granular column collapse experiment is the scaling relation-
ship obtained for the run-out (see subsection 3.1.1): (L∞ − L0)/L0 ∝ a for a < a0 and
(L∞ − L0)/L0 ∝ a2/3 otherwise.

Applying Gerris with the µ(I)-rheology, we have carried out collapse experiments with
values of aspect ratio a ranging between 0.25 and 64. To check the gridindependence of
the results, the spatial resolution was varied from L0/∆x = 16 (nine levels of refinement)
to L0/∆x = 128 (12 levels of refinement). The run-out distance L∞ was measured,
and the normalised run-out (L∞ − L0)/L0 plotted as a function of the aspect ratio a
(Figure 12(a)). In agreement with experimental results in two dimensions, we observe
the existence of a linear regime for smaller a, followed by a power-law regime with an
exponent α = 0.7 for larger a. The scaling obtained reads:

L∞ − L0

L0
≃
{

2.2 a a . 7
3.9 a0.7 a & 7

(3.3)

Note that both regimes are closely approximated by power laws. The exponents ob-
tained are within the error bars of the exponents obtained using contact dynamics simu-
lations or experiments (which typically display a much larger scatter of run-out values).
Only the value of the aspect ratio a0 characterizing the transition between these two
regimes differs from previous observations: we obtain a0 ≃ 7 instead of the experimentally
observed 1.8 . a0 . 4 (Lube et al. 2005; Lajeunesse et al. 2005), and the numerically
observed a0 ≃ 2 (Staron & Hinch 2005). The origin of this discrepancy is not obvious.
However, the general agreement in the time evolution of the shape and inner deformation
observed in Figure 8, 9 and 10 when comparing continuum and discrete simulations sug-
gests that this difference may result from the underestimation of the run-out by Gerris,
rather than from a difference in the bulk dynamics.

3.2.4. Scaling for the final height

Considering the same set of continuum simulations as reported in Figure 12(a), we give
the normalised final height H∞/L0 as a function of the aspect ratio a in Figure 12(b).
The following scaling is observed:

H∞

L0
≃







a a . 0.5
0.67 a0.4 0.5 . a . 6
1.4 6 . a

(3.4)

The agreement with experimental observations in two dimensions is very good for a . 6
(Lajeunesse et al. 2005). For a & 6, we observe a deviation from the power-law regime
to a constant regime as observed numerically in Staron & Hinch (2005). The appearance
of such a plateau is also visible in (Lajeunesse et al. 2005) (although not interpreted
as such) and even in (Lajeunesse et al. 2006) for Martian data. For larger values of a,
H∞/L0 decreases, which coincides with the formation of a “side bump”. This side bump
is initially thinner than the central part of the deposit (for 12 < a < 32) but becomes
thicker when a > 32, which explains the increase in the maximum thickness for large
aspect ratios. No experimental data are available for comparison in this range of aspect
ratios.

3.2.5. Sideways propagation of a bump: the case of a = 67.9

In the case of high aspect ratios, the falling material propagates sideways with in-
creasing energy, thus forming a bump and leading to a “Mexican hat” shaped deposit,
as described by Lajeunesse et al. (2004). To test the ability of the continuum Gerris



The granular column collapse as a continuum 21

(a)

(b)

Figure 12. (a) Normalised run-out (L∞ − L0)/L0 and (b) normalised final height H∞/L0 as
functions of the aspect ratio a for µ(I) continuum simulations. The different sets of symbols
correspond to increasing spatial resolutions.

simulations to reproduce the formation and propagation of this bump, we have simu-
lated a column collapse with aspect ratio a = 67.9, and compared the outcome with a
granular contact dynamics simulation. The result is displayed in Figure 13. We observe
that the evolution of the flow shape obtained with contact dynamics simulations is well
reproduced by the continuum simulation. The formation and sideways propagation of
the bump is accurate. Moreover, the default set of parameters used for the lower as-
pect ratios presented earlier also gives a sensible solution for this extreme case (curve in
cyan in Figure 13). As was the case for lower aspect ratios, the continuum simulation
systematically underestimates the flow front position, however.

4. Discusion

4.1. What of other formulations?

As seen in the previous section, the µ(I)-rheology allows for the recovery of most of the
granular column collapse dynamics. For completeness the results need be confronted to
the performance of other plausible candidate rheologies for granular flows. In the follow-
ing, we successively explore the Newtonian Navier-Stokes model, the Bingham model,
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Figure 13. A series of snapshots (t̄ = 0.5, 1.0, 1.2, 1.4, 1.7, and 2.0) of a column collapse with
aspect ratio a = 67.9 computed by contact dynamics (plain color) and different values of the
µ(I)-rheology, as an illustration of the sensitivity of the solution to the rheological parameters.
The most advanced curve (in green) corresponds to µs = 0.3 ∆µ = 0.26 and I0 = 0.30. the less
advanced (in blue) µs = 0.32 ∆µ = 0.28 and I0 = 0.30 fits better the end of the heap. The curve
in between (in cyan) corresponds to µs = 0.32 ∆µ = 0.28 and I0 = 0.40 and fits better the top
of the surge. This last set of values is the default used throughout this paper (color online).
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(a) µ(I)-rheology

(b) Newtonian

(c) Bingham rheology

(d) Bagnold rheology

(e) no advection

Figure 14. Series of snapshots of a column collapse simulated using using Gerris with dif-
ferent viscous models (the surrounding fluid is Newtonian of density ρf and viscosity ηf ): (a)
the µ(I)-rheology with µ(I) = 0.3 + 0.26/(0.3/I + 1), (b) a simple Newtonian rheology with

ηgrains = 0.1, (c) a non-Newtonian Bingham rheology with ηgrains = 0.1/(
√

2D2) + 0.001, (d)

Bagnold with ηgrains = (1./32)2
√

2D2

2 , and (e) the µ(I)-rheology with no advection term uj∂jui

in the total derivative. Time are t̄ = 0, 1, 2, 3, and 4.

the Bagnold model and the constant friction model, all implemented in the Gerris flow
solver. Solutions are presented for simple visual inspection on Figure 14.

4.1.1. Newtonian Navier–Stokes

For reference, the Newtonian Navier–Stokes case is illustrated in Figure 14(b). The
flow tends to evolve towards a quasi-uniform thickness, which results in a very different
flow front shape compared to the reference µ(I)-rheology solution (Figure 14(a)). The
flow obviously never stops. Note that there is no surface tension in this computation.

4.1.2. The Bingham model

Bingham fluids are characterised by their ability to resist shear at low stresses, while
flowing like Newtonian fluids at higher stresses. The existence of a yield value for the
shear stress τy is the strongest analogy that Bingham fluids bear with granular flows,
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µ(I) µ(I)=cst µ(I) µ(I)=cst

µ(I)

µ(I)=cst

Figure 15. A collapse at time t/(H0/g)1/2 = 1, 2 and 3, with aspect ratio a = 1.42, with
µs = 0.32, I0 = 0.4 and ∆µ = 0.28 in the three panels. In each panel, the same case with
a constant µ(I) = 0.33 (cst) is plotted, the arrow is from the variable µ(I) to the constant
µ(I) = 0.33.

which present a frictional yield value separating solid-like behaviour (coinciding with an
infinite value of viscosity) from avalanching (when the viscosity is finite) (Dufour et al.

2005). The Bingham rheology is implemented by

η = η0 +
τy√
2D2

, (4.1)

and is one of the test cases of the Gerris test suite. Using Gerris, we performed simulations
of the column collapse for a = 1.42. As previously, at low shear rates the viscosity is
capped to ηM . The values taken for the yield stress and the viscosity were τy = 0.001
and η0 = 0.1. The result is displayed in Figure 14(c), where a series of snapshots showing
the shape of the column at t̄ = t

√

g/H0 = 0, 1, 2, 3, 4 is displayed, together with the
result obtained with the µ(I)-rheology (Figure 14(a)). Not surprisingly, the agreement
with the experimental granular collapse is poor. In particular, the existence of a yield
stress τy is responsible for the creation of a solid-like corner advected by the flow which
modifies the final shape of the deposit. When the flow comes to rest, the front exhibits
a rounded shape very different from the sharp angle of the granular front.

4.1.3. The Bagnold model

As mentioned in the second section, Bagnold (1954) was the first to establish a rheology
where the viscosity is defined by η = ρd2

√
2D2. In that case, the existence of a flow

threshold depending on the ratio of the tangential to the normal stress is not described.
The flow never stops, Figure 14(d). To create a flow threshold one needs to introduce
a divergence of the viscosity taking into account the jamming transition, or introduce
a second contribution standing for the compressive stress (as in Josserand et al. 2004).
Doing so, however, is far from trivial. In the following, we only consider a Bagnold
viscosity without introducing a flow threshold. As a consequence, we do not obtain an
inner core which remains essentially static during the collapse, nor do we reproduce the
arrest phase of the flow.

4.1.4. Neglecting non-linear terms

In this part, we investigate the effect of neglecting non-linear terms. We have carried out
a collapse using the µ(I) continuum but with a linearised total derivative in the Navier-
Stokes equation leading to an unsteady Stokes µ(I). The results are displayed in Figure
14(e) for a column of aspect ratio a = 6.26, at instants t

√

g/H0 = 0, 1, 2, 3 and 4. We
observe that the shape of the flow strongly differs from what is observed for a granular
material, involving the formation of a wave-like structure. This structure disappears
during the propagation, so that the final state is closer to the granular phenomenology
than the transient flow is. The fact that the non-linear advection terms are not negligible
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µs=0.32

µs=0.28

∆ µ=0.28

∆ µ=0.20

I0=0.2

I0=0.4

Figure 16. A collapse at time t̄ = t/(H0/g)1/2 = 2 with aspect ratio a = 1.42, with µs = 0.32,
I0 = 0.4 and ∆µ = 0.28 in the three panels. In each panel, a second computation with only
one parameter changed is displayed. Left, µs is decreased: ∆µ, and I0 preserved. Center, case
with a smaller ∆µ, but same I0 = 0.4 and µs = 0.32, Right, case with a smaller I0, but same
∆µ = 0.28 and µs = 0.32.

for the column collapse highlights the fact that inertia is important relative to viscous
dissipation in this particular case.

4.1.5. The constant friction model

The µ(I)-rheology relates the frictional properties of the flow to the inertial number I
which changes during the flow; as seen in section 3.2, this model reproduces the granular
column collapse with a good accuracy. However, one can question the performance of the
µ(I) model compared to a simple constant friction model µ = cst = µs. One example is
given in Figure 15, where the shape of the collapsing column at three different times for
a = 1.42 is displayed for the constant friction continuum simulations µ(I) = 0.33 and
the case µ(I) = 0.32 + 0.28/(0.4/I + 1) for comparison. The beginning of the collapse
(namely t̄ . 1.5) shows a good agreement between the constant friction and µ(I) models.
However, as the flow develops, the agreement between the constant friction model and
the granular model degrades; the spreading and flow arrest are best captured by the µ(I)
model. This good agreement at initial times is due to the fact that I is initially small. The
same holds for small a so that good agreement between the µ(I) and constant friction
models is obtained for a = 0.5 (not shown). For larger a, the difference increases and a
larger µs needs to be taken to recover an acceptable solution. However, this rather good
performance of the constant friction model questions the actual relevance of the shape
of the µ(I) dependence. This aspect is discussed further in the next section.

4.2. Sensitivity to the shape and parameters of the µ(I)-rheology

The results discussed so far indicate that the µ(I)-rheology is able to capture the dy-
namics of highly transient granular flows. Indeed, the complex evolution of the granular
column collapse, for a wide range of aspect ratios, was recovered with very good accuracy.
However, the fair (although less good) results obtained with a constant friction model
question the sensitivity of the results on the particular shape of the I dependence as
well as the value of the rheological parameters. Furthermore, the continuum simulations
proved unable to reproduce the last stages of granular flow front propagation. These
aspects are discussed next.

What is the sensitivity of the results for the collapsing column to the rheological param-
eters (µs, ∆µ, I0)? As a first quick visual inspection, Figure 16 displays three snapshots
at the same time, of the same initial column, but on each of the images a second compu-
tation is shown where a single parameter is changed. We observe that a decrease of µs

(every other parameter being fixed) increases the displacement of the front and decreases
the height. A decrease in ∆µ has the same effect, and a decrease of I0 has the reversed
effect. These behaviours are consistent with what is expected from the µ(I) dependence:
a decrease in one of the parameters (µs, ∆µ, 1/I0) increases the total friction. To better
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Figure 17. Example of isolines (one isoline every 0.03 grain) of the errors between Navier–Stokes
and contact dynamic solutions as functions of µs and ∆µ, here for I0 = 0.4. Top left, for a = 0.5
(min error 0.65 grain, max 2.56 grain), top right a = 1.4 (min error 1.36 grain, max 3.65 grain),
bottom left a = 6.26 (min error 2.06 grain, max 4.36 grain). The averaged error for the three
cases a = 0.5, 1.4, 6.26 is shown on the bottom right, the min error is 1.36 grain and the max
error is 2.39 grain.

quantify this sensitivity, we performed a systematic campaign of comparisons. We con-
sidered the three cases a = 0.5, a = 1.42 and a = 6.26. For each case simulations were
performed with µs varying in the range [0.3, 0.36], ∆µ varying in the range [0.2, 0.3] and
I0 varying in the range [0.3, 0.4]. The error for each case was evaluated as the difference
between the height profile of the continuum model and the height profile of the granular
results integrated over time and over the shape of the deposit. This barycentric mean
gives less weight to the front of the flow (which is not so well predicted, as discussed
later). An example of the resulting error maps (for I0 = 0.4) is illustrated in Figure 17.
The optimal parameter set depends on a. For example, the higher a, the higher the value
of (µs, ∆µ, 1/I0). To obtain the optimal parameter set over the whole range of aspect
ratios, we created a single error map by averaging error maps for individual aspect ratios
(bottom right on Figure 17), the error is only 1.36 grain. This resulted in the (µs = 0.32,
∆µ = 0.28, I0 = 0.4) combination used as default in the results presented earlier.

The isolines of error are tilted more or less in a direction corresponding to ∆µs/I0

constant. This corresponds to a linear contribution µ(I) ≃ µs + I∆µ
I0

for small enough I.
A linear formulation µ(I) = µs + bI with µs ∼ 0.25 and b ∼ 1.1 was initially proposed
by da Cruz et al. (2005), da Cruz (2004) and in GdR MiDi (2004). This shape was then
further refined to best-fit experimental data by Jop et al. (2006) (equation 2.3), namely,
µ(I) = µs + I∆µ/(I0 + I), which is the formulation followed in the present work. We
also tested a linear rheology, which showed good agreement for small I (as expected
from Figure 17); however, the lack of saturation led to discrepancies for larger I. This
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t̄ = 1.33 t̄ = 2.00 t̄ = 2.66

Figure 18. Snapshots of the flow front at t̄ = 1.33, t̄ = 2.00 and t̄ = 2.66 for a discrete
numerical simulation with aspect ratio a = 6.26. Note the rough plane obtained by ”gluing”

grains.

tends to confirm the relevance of the µ(I)-rheology of Jop et al. (2006), although other
dependences have also been proposed: for example a power law of I in Hatano (2007); or
a square dependence in I: i.e. µ(I) = µs + µT I2 in Josserand et al. (2004).

4.3. Modelling the front of the flow

Although the continuum simulations describe the acceleration stage of the column col-
lapse very well, they are not as accurate during the deceleration phase, when the flow
front slows down and eventually stops. The propagation of the flow front is in effect a
“moving contact line” problem, a well-known and difficult problem in fluid mechanics
even in the case of Newtonian fluids (Pomeau 2002). From the point of view of the
contact point, the no-slip condition implemented in Gerris is in effect analogous to a
Navier slip condition with a slip length comparable to the mesh size (this is due to the
finite-volume representation). This allows for propagation of the contact line but is un-
likely to be physically meaningful. Obtaining a consistent description of the flow front is
thus likely to require a contact line model itself consistent with the µ(I)-rheology in the
vicinity of the contact line. This was done for early global models of µ(I) (when I was
averaged as a Froude number, (Pouliquen 1999)). This is a difficult problem whose so-
lution will probably require further advances in the description of contact lines, starting
with Newtonian fluids.

Another difficulty lies in the fact that the tip of the flow is formed by a cloud of
bouncing grains where binary collisions tend to replace long-lasting frictional contacts.
The snapshots of Figure 18, showing the granular flow front in the case a = 6.26, illustrate
this point. Consistently, the values computed by Gerris for the inertial number I in this
part of the flow are of the order one (between one and two, and larger on the final points),
which is significantly larger than the typical values for which the µ(I) relationship was
established (GdR MiDi 2004). It thus seems reasonable to suspect that the µ(I)-rheology,
valid in the denser bulk of the flow, may become inaccurate when the volume fraction
becomes too low. Alternatively, kinetic theory may provide a framework to capture this
part of the flow (Jenkins & Savage 1983). More fundamentally, moving closer to the tip
of the flow front, the number of grains involved in the flow rapidly decreases, so that the
definition of a representative elementary volume in this area becomes problematic. While
statistical properties can be defined in the bulk, this is hardly the case at the very front.
In other words, the continuum mechanics assumptions may become invalid at the tip of
the flow.

5. Conclusion

While the formulation of constitutive equations for granular flows remains an active
field of research, our aim in this contribution was to test the performance of the empirical
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µ(I)-rheology using the well-characterized column collapse experiment. To do so, we have
developed a continuum simulation tool for dry granular flows by implementing a µ(I)-
dependent viscosity in a complete Navier-Stokes solver (Gerris), using a Volume-Of-Fluid
approach.In contrast to previous works using averaged shallow-layer approximations, we
solve the complete velocity field of the equivalent continuum medium. Although the
results presented in this paper were two-dimensional, the current implementation in
Gerris should also work in three dimensions.

In a series of preliminary numerical tests, we first considered the simple case of a single
infinite layer flowing over an inclined plane, for which analytical solutions exist, followed
by the case of an infinite granular layer covered with a viscous layer, for which ODEs
can be solved. Comparing the solutions of the Gerris solver with the analytical and semi-
analytical solutions, we were able to validate the implementation of the µ(I)-rheology for
simple gravity-driven shear flows. Moreover, we were able to show that the existence of
a surrounding fluid of lower density and viscosity (air for instance) did not significantly
perturb the behavior of the granular flow, so that the two-phase approach adopted by
Gerris was suitable for the simulation of dry granular systems in air without modifying
the shape of the µ(I) dependence.

Applying the same tool to the granular column collapse experiment, we then consid-
ered several column geometries of aspect ratios a varying from 0.25 to 67.9. In addition
to continuum simulations, two-dimensional granular simulations using the contact dy-
namics algorithm were performed to allow for systematic comparison of the shape of
the falling column, the position of the front in the course of time and the final run-out.
For aspects ratios 0.5, 1.42 and 6.26, the outer and inner deformations of the collapsing
column showed good agreement between the two methods. Then by varying the value of
the aspect ratio between 0.25 and 64, continuum simulations led to scaling laws linking
run-out and final height to aspect ratio in good agreement with experimental scaling
laws. The position of the flow front in the course of time shows the same behavior for
both continuum and granular methods during the greater part of the spreading dynamics.
Close to arrest however, continuum simulations systematically underestimate the run-out
in the case of large aspect ratios. Finally, considering the extreme case of a = 67.9, con-
tinuum simulation proved able to reproduce the formation and the outward propagation
of a bump as observed in the granular counterpart.

The ability of the µ(I)-rheology to reproduce the dynamics of the granular collapse
was then compared to the performances of some simple model rheologies: Newtonian,
Bingham, Bagnold, and the case of constant friction. Of these alternatives, only the
constant friction model leads to reasonable results, provided the friction constant is
varied according to the aspect ratio. This supports a more complex dependence, and
we indeed demonstrate that the additional degrees of freedom of the µ(I)-rheology can
be used to obtain a single ”optimal” set of rheological parameters, which describes the
collapse accurately across the whole range of aspect ratios (using the contact dynamics
simulations as reference).

The value of I becoming noticeably high at the flow front (where volume fraction
decreases and bouncing dynamics takes place), the friction coefficient at this point may
be overestimated, and may result in the underestimation of the final run-out by the
continuum model. It is, however, uncertain whether the µ(I)-rheology applies at all at
the tip of the front, where grains are in a nearly gaseous state, and where their number
is small enough to question the validity of continuum modeling.

Only dry granular flows have been considered so far, but however an interesting per-
spective is to introduce in the present model the physics of immersed dense granular
flows (Cassar et al. 2005; Rondo et al. 2010; Chauchat & Médale 2010). Wider perspec-
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tives of this work include the efficient simulation of real systems such as geophysical flows
or industrial handling of granular matter: the 2D continuum simulations presented here
only take a few minutes to run on a standard PC. Moreover, the work provides a new
approach to validate and possibly improve Saint-Venant/shallow-layer approaches.

The complete two-dimensional continuum simulations presented in this paper support
the reliability of the µ(I)-rheology to capture the dynamics of dry gravity-driven non-
uniform transient granular flows (beside steady shear), at least in two-dimensions. They
are reproducible, and now part of the Gerris test suite (Lagrée 2010) and (Popinet 2011).
We next plan to study the flow structure of the continuum model in more detail. We also
hope that further applications in more severe configurations (three-dimensional, moving
boundaries, etc) will confirm these encouraging first results.
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