
REVIEW
published: 07 August 2015

doi: 10.3389/fcell.2015.00048

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 August 2015 | Volume 3 | Article 48

Edited by:
Thimios Mitsiadis,

University of Zurich, Switzerland

Reviewed by:
François Berthod,

Université Laval, Canada
Claudio Cantù,

University of Zurich, Switzerland

*Correspondence:
Stephanie Wallner,

Department of Traumatology and
Sports Injuries, Spinal Cord Injury and
Tissue Regeneration Center Salzburg,

Paracelsus Medical University
Salzburg, Strubergasse 22,

5020 Salzburg, Austria
stephanie.wallner@pmu.ac.at

Specialty section:
This article was submitted to

Stem Cell Research,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 31 May 2015
Accepted: 23 July 2015

Published: 07 August 2015

Citation:
Wallner S, Peters S, Pitzer C, Resch

H, Bogdahn U and Schneider A
(2015) The Granulocyte-colony

stimulating factor has a dual role in
neuronal and vascular plasticity.

Front. Cell Dev. Biol. 3:48.
doi: 10.3389/fcell.2015.00048

The Granulocyte-colony stimulating
factor has a dual role in neuronal and
vascular plasticity
Stephanie Wallner 1*, Sebastian Peters 2, Claudia Pitzer 3, Herbert Resch1, 4,
Ulrich Bogdahn2 and Armin Schneider 5

1 Department of Traumatology and Sports Injuries, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus
Medical University Salzburg, Salzburg, Austria, 2 Department of Neurology, University Hospital Regensburg, Regensburg,
Germany, 3 Interdisciplinary Neurobehavioral Core, Ruprecht-Karls-University, Heidelberg, Germany, 4 University Clinic of
Traumatology and Sports Injuries Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria, 5 SYGNIS Bioscience
GmbH, Heidelberg, Germany

Granulocyte-colony stimulating factor (G-CSF) is a growth factor that has originally
been identified several decades ago as a hematopoietic factor required mainly for the
generation of neutrophilic granulocytes, and is in clinical use for that. More recently, it has
been discovered that G-CSF also plays a role in the brain as a growth factor for neurons
and neural stem cells, and as a factor involved in the plasticity of the vasculature. We
review and discuss these dual properties in view of the neuroregenerative potential of
this growth factor.
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Introduction

In the last two decades the neuroscience community experienced a change of thought on the
regeneration capacity of the central nervous system (CNS). The earlier dogma of incapability
of CNS regeneration was overthrown by findings of astounding plasticity derived from neuron-
or neuronal network- inherent adaptations, fostered by neurogenesis and by supporting
vasculogenesis. These findings have raised hopes for developing new treatment approaches for
neurological diseases.

Granulocyte-colony stimulating factor (G-CSF) is a 19.6-kDa glycoprotein which has been well-
characterized as a growth factor for hematopoietic progenitor cells. It is an FDA- and EMA-
approved drug commonly used to treat neutropenia and to mobilize bone marrow hematopoietic
stem cells for transplantation (Nicola et al., 1983). For many years G-CSF has been thought of
as a highly specific growth factor in the hematopoietic system. However, more recent studies
have shown the presence of the G-CSF/G-CSF-receptor (G-CSFR) system in the brain and
roles in neuroprotection, neural tissue repair as well as improvement in functional recovery

Abbreviations: ALS, amyotrophic lateral sclerosis; ANG, angiogenin; ANGPT2, angiopoietin 2; BrdU, bromodeoxyuridine;
CNS, central nervous system; EMA, european medicines agency; FDA, food, and drug administration; G-CSF, Granulocyte-
Colony Stimulating Factor; G-CSFR, Granulocyte-Colony Stimulating Factor Receptor; GM-CSF, Granulocyte-macrophage
colony stimulating factor; HUVEC, human umbilical vein endothelial cells; IL, interleukin; kDa, kilo Dalton; MAP-2,
microtuble-associated protein 2; NeuN, neuronal nuclei; NSC, neuronal stem cell; PCA, posterior communicating artery; SCI,
Spinal Cord Injury; SOD1, superoxide dismutase 1; SVZ, subventricular zone; TNF, tumor necrosis factor; VEGF, vascular
endothelial growth factor; 3-VO, 3-vessel occlusion.
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have been described (Schneider et al., 2005b). The elevated
expression of G-CSF/G-CSFR on neurons subjected to ischemia
suggested that G-CSF serves as an autocrine protective signaling
mechanism in response to neural injury. Furthermore, G-CSF
receptors may also be present on glial cells, however at much
lower levels (Schneider et al., 2005a). G-CSF exerts potent anti-
apoptotic activity in neurons that appears largely responsible for
its neuroprotective effects in acute injury models. In addition, G-
CSF stimulates neurogenesis (Schneider et al., 2005b; Schmidt
et al., 2015), arteriogenesis in the CNS (Sugiyama et al., 2011),
and markedly improves long-term behavioral outcome after
cortical ischemia (Schneider et al., 2005a) or spinal cord injury
(SCI) (Dittgen et al., 2012). There is debate on the role of G-
CSF-stimulated hematopoietic stem cells that may migrate to
the injured CNS. Due to those effects and the ability of G-CSF
to cross the intact blood brain barrier (Schneider et al., 2005b),
facilitating peripheral administration, G-CSF got in the focus
for treating acute and chronic neurodegenerative disorders, with
protective and recovery enhancing effects in animal models of
stroke, amyotrophic lateral sclerosis (ALS), Alzheimer’s disease,
Parkinson’s disease, traumatic brain injury, and SCI (Diederich
et al., 2012). In this review, we concentrate on direct and
indirect effects of the cytokine G-CSF onCNS spinal regeneration
especially by neurogenic and vasculogenic mechanisms and
critically discuss the available pre-clinical and clinical evidence
in SCI and ALS.

G-CSF-mediated Neural Progenitor
Activation

The concept of adult neurogenesis is a relatively new one and
has added one principally new option to influence plasticity
and regeneration in the CNS. Neurogenesis can occur in
the hippocampus (dentate gyrus), the olfactory bulb, and
the subventricular zone (SVZ) (Winner and Winkler, 2015).
There is debate whether adult neurogenesis occurs in the
spinal cord near the central canal. One physiological role
for hippocampal neurogenesis is pattern separation. There
has been debate on whether neurogenesis is even relevant
for humans, but detailed post-mortem studies on humans
using radiocarbon dating in the brain have revealed that
neurogenesis is particularly strong in the human hippocampus.
Pathophysiologically, neurogenesis has been invoked as a
possible causative or modifying factor in depression and
schizophrenia. The case is stronger for depression, since several
antidepressants stimulate neurogenesis (Hanson et al., 2011).
Further, physical exercise which is anti-depressant, stimulates
neurogenesis in rodents (van Praag et al., 1999; Yau et al., 2011) as
well as humans (Déry et al., 2013). Interestingly, antidepressant
medication for example fluoxetine, typically requires several
weeks in order to be therapeutically active, which corresponds
with the duration of newly generated nerves to be functional
integrated. Moreover, impairment of neurogenesis has been
shown to block the antidepressive activity of antidepressants
such as fluoxetine (Santarelli et al., 2003). Also, imaging studies
have shown a decrease in hippocampal volume in some cases.

A function for G-CSF in stimulating neurogenesis was first
described in 2005 in mice, treated subcutaneously with G-CSF
(Schneider et al., 2005a). Neurogenesis was quantified using
a standard bromodeoxyuridine (BrdU) incorporation protocol.
While healthy mice showed a doubling of BrdU/neuronal nuclei
(NeuN) double positive cells in the hippocampus 6 weeks after
treatment initiation, mice subjected to cortical ischemia further
increased that rate, pointing to a particular relevance of this
stimulation also under pathological conditions to potentially
enhance CNS plasticity. Most likely, stimulation of progenitor
cells occurs via the G-CSF receptor present on these cells.
Interestingly, the G-CSFR is already expressed at the embryonic
stage in radial glia, which also later form the adult neural
precursor cells (Kirsch et al., 2008). In G-CSF knock-out
mice, hippocampal neurogenesis is strongly diminished, and
the mice show deficits in behavioral plasticity (Diederich et al.,
2009). For SCI and ALS the question whether neurogenesis
occurs in the spinal cord and could be enhanced by G-CSF
is of particular importance as this is the site of the main
pathology. A careful review of the data on progenitor cells in
the spinal cord comes to the conclusion that these cells exist
in the ependymal zone of the central canal, but are restricted
to a gliogenic fate (Sabelström et al., 2014). However, this
restriction can be overcome by transplanting those cells into the
hippocampus (Shihabuddin et al., 2000) and possibly growth
factors like G-CSF could help to overcome this restriction in
the spinal cord, but experimental proof for this is lacking
so far.

G-CSF-mediated Vasculogenic Effects

Prior to discussing effects on the vasculature it is important
to clarify some conceptual issues. Overall, arteriogenesis refers
to the remodeling of pre-existing capillary connections into
conducting vessels by mechanisms involving shear stress and
monocyte recruitment (Van Royen et al., 2001). Angiogenesis,
on the other hand, describes the process of capillary sprouting
driven by hypoxia and vascular endothelial growth factor (VEGF)
(Heil et al., 2006). While angiogenesis is a key mechanism
supporting tumor growth by improving local oxygen diffusion
distances, it does not contribute to substantial increases in
blood conductance, since only end-stage capillaries in the
circulation are created (Buschmann and Schaper, 1999, 2000).
Arteriogenesis is therefore a mechanism that is relevant for
ischemic conditions such as vessel occlusions and decreased
blood flow. The first hematopoietic factor for which evidence
was found for a role in arteriogenesis was not G-CSF, but
Granulocyte-macrophage colony stimulating factor (GM-CSF),
as early as 2001 by Buschmann et al. (2001). GM-CSF was
selected based on its propensity to stimulate monocyte and
thrombocyte generation and the hypothesis of a key role of
monocytes and thrombocytes in the arteriogenic process and
stem cell niche. While these experiments made use of the
femoral occlusion model in rabbits to observe arteriogenesis
from pre-existing anastomosing capillaries, a publication from
2003 demonstrated also induction of arteriogenesis in the CNS
(Buschmann et al., 2003). In this work, the authors made
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use of the 3-vessel occlusion (3-VO) model. In this model,
both vertebral arteries and the left carotid artery are occluded.
Treatment of rats over 7 or 21 days with 40μg/kg/day GM-
CSF led to a significantly larger increase in the diameter of the
left PCA (posterior communicating artery) (72 vs. 39% increase
in control animals after 7 days of treatment). Moreover, GM-
CSF treatment also preserved good CO2-reactivity, indicating
that the vessel was functionally intact with regard to blood flow
regulation. Moreover, this treatment also resulted in an improved
energy situation (ATP-depletion) in the hypoperfused brain in
this 3-VO model (Schneeloch et al., 2004). In 2006, Deindl and
colleagues were the first who also detect arteriogenic effects of G-
CSF in a myocardial infarction model in mice. Treatment with
100μg/kg/day G-CSF for 5 consecutive days after myocardial
infarction led after 30 days observation to decreased mortality
(68.8 vs. 46.2%), reduced final infarct size, and reduced thinning
of the left ventricular wall. Moreover, hemodynamic parameters
were improved such as ejection fraction, contractility, and
relaxation of the ventricle. The authors could show G-CSF
induced arteriogenesis from collateral vessels with proliferation
of endothelial cells and smooth muscle cells (Deindl et al.,
2006). Also, a decreased potential for arrhythmia generation
in the infarcted heart was noted (Kuhlmann et al., 2006). A
number of smaller clinical trials have indeed been conducted
in patients with myocardial infarction with mixed results, the
latest by Hibbert and colleagues in 86 patients (Hibbert et al.,
2014). Later, arteriogenic effects of G-CSF were also noted
in cerebral ischemia models (Sugiyama et al., 2011) and in
the 3-VO model described above (Duelsner et al., 2012). G-
CSF showed a very similar profile to GM-CSF in the 3-
VO model in terms of doses used and treatment effects. In
addition to the beneficial effects of arteriogenesis for blood
flow enhancement, locally increased angiogenesis in the CNS
could provide the critical neurovascular niche for neurogenesis
and neuronal remodeling. Indeed, a number of articles suggest
angiogenic activity of G-CSF in the brain. Bussolino and
colleagues were the first to describe angiogenesis evoked by
G-CSF (Bussolino et al., 1991). They used G-CSF secreting
pellets implanted into the cornea of rabbits and observed
formation of new capillaries within 8 days after implantation.
Boiled G-CSF did not achieve this effect. In vitro, G-CSF
enhanced proliferation and migratory behavior of HUVEC
cells. In the brain, Lee et al. reported much later that the
vascular surface area, vascular branch points, vascular length,
number of BrdU-labeled endothelial cells, and endothelial nitric
oxide synthase and angiopoietin 2 (ANGPT2) expression were
all significantly increased in G-CSF–treated rats in the focal
cerebral ischemia model (Lee et al., 2005). Ohki and colleagues
found that G-CSF increased plasma levels of VEGF from
neutrophils in vivo (Ohki et al., 2005). Furthermore, blockade
of the VEGF pathway eliminated G-CSF–induced angiogenesis
in a hindlimb ischemia model (measured as capillary density
in the gastrocnemius muscle), suggesting that G-CSF–induced
vasculogenesis is VEGF-dependent and could be indirectly
mediated by this mechanism (Ohki et al., 2005). The finally
responsible mechanism for these vasculogenic effects of G-
CSF has not been unambiguously established. Direct effects on

endothelial cells via the G-CSF receptor, increase in monocyte
counts, and indirect effects via induction of VEGF release have
all been discussed. In summary, G-CSF has both arteriogenic and
angiogenic effects, thereby both enabling increased blood flow via
generation of conductance vessels, and improving local oxygen
diffusion and providing a neurovascular environment for repair
mechanisms in the CNS.

G-CSF in SCI

Acute SCI is associated with a significant burden of illness.
Worldwide the estimated range of the incidence of SCI
lies between 15 and 30 per million inhabitants per year
(Wyndaele and Wyndaele, 2006). Therapeutic approaches
in the acute phase including early resuscitation, steroid
application, decompression/stabilization, have been reported to
be associated with somewhat better outcomes in incomplete
SCI. Thus, far, there is still no really effective treatment
for SCI available, and the degree of neurological recovery is
largely dependent on the magnitude of the initial injury. A
considerable number of animal studies using various models
of SCI have demonstrated convincing beneficial effects of G-
CSF therapy (Table 1). Mechanisms triggered by G-CSF include
anti-apoptotic effects and improved neurite outgrowth (Pitzer
et al., 2010). Vasculogenesis certainly has a beneficial role for
SCI repair and in limiting secondary damage after the initial
traumatic event (Oudega, 2012). The degree of angiogenesis
during the subacute phase after SCI correlates with regenerative
responses, and the newly formed vascular bridge might provide
scaffolding to accelerate axonal regeneration across the injury
site. Angiogenesis might contribute to the regenerative response
of neural tissue and enhance recovery of locomotor function after
injury. Recent reports demonstrated the pro-regenerative effects
of G-CSF in SCI which could be due to the enhancement of
angiogenesis (Kawabe et al., 2011; Dela Peña et al., 2015). Kawabe
and colleagues report significantly increased vessel numbers and
increased expression of angiogenic cytokines after treatment with
G-CSF in an experimental SCI model (Kawabe et al., 2011). G-
CSF significantly promoted angiogenesis in both the white and
gray matter of the spinal cord after injury. The total number
of vessels with a diameter >20μm was significantly greater
and expression of angiogenic cytokines was significantly higher
than in the control group. The G-CSF-treated group showed
greater recovery of hindlimb function than the control group.
As for a contribution of neurogenesis to the beneficial effects
of G-CSF treatment, the problem with restricted neurogenesis
in the spinal cord applies here. However, for SCI there is
a way around this restriction and this is by making use of
stem cell transplantation. An example of this approach was
provided by Pan et al. (2008). Neural stem cells (NSC) were
embedded in fibrin glue in combination with or without G-CSF
and were transplanted into the gap in the injured spinal cord.
Higher expression levels of NeuN and MAP-2 and advanced
regeneration according to the clinical motor score, motor evoked
potential and conduction latency was observed in the group
treated the fibrin glue, G-CSF and NSC compared to the group
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TABLE 1 | Published preclinical studies in the use of G-CSF for SCI.

Drug/dosage Application/treatment
duration

Outcome SCI
model/recipients

References

G-CSF 200μg/kg/day
± BMDC (4 weeks
prior SCI)

sc. injected immediately
after injury for 5 consecutive
days

• Increased number of neutrophil antigen-negative
BMDC in the lesioned site 24 h after injury

• Increased number of BMDC 6 weeks after injury
• Most of the BMDC in the lesioned site were Mac−1+
• Spared white matter was significantly larger
• Recovery of hindlimb function

Compression model
at T8 level, C57BL/6
mice

Koda et al., 2007

G-CSF 200μg/kg/day sc. injected immediately
after injury for 5 consecutive
days

• G-CSF Receptor expression by neurons in the spinal
cord

• Prevented glutamate-induced neuronal death during
the acute phase

• Increased number of surviving neurons after chronic
phase

• Increased recovery of hindlimb motor function

Compression model
at T7-T8 level,
BALBc/Cr mice

Nishio et al., 2007

G-CSF 50μg/kg
compared to MPSS

Single dose, injected sc.
immediately after injury

• Decreased MPO, LPO activity and MDA concentration
in the first 24 h after SCI, which may reduce tissue
damage

• No protective effect on the organelles after trauma

Contusion model at
level T7-T9, Wistar
albino rats

Sanli et al., 2010

G-CSF 50μg/kg/day sc. injection, within the first
72 h after injury for 3
consecutive days

• G-CSF Receptor expression on microglia cells
• Microglia recruitment to the injury site in the first 72 h
• Inhibited expression of pro-inflammatory factors
promoted the expression of neurotrophic factors

• Affect activation status of microglia
• Inhibited the expression of markers of M1 macrophage
in BV2 microglial cell line in vitro

• Promoted microglia to adopt M2 phenotype
• NFκB was involved in G-CSF induced M2 polarization
• IBA1+ cells within the lesion site after G-CSF treatment
• Attenuated accumulation of IBA1+ cells in the gray
and white matter

• Increased cell viability of BV2 microglial cell line
• Reduced expression of NFκB in BV2 microglial cell line

Hemisection model at
level T9-T11,
Kunming mice

Guo et al., 2013

G-CSF 50μg/kg/day ±
NSC in the lesion

sc. injected immediately
after injury for 5 consecutive
days

• Improved motor function (BBB score) after 8 and 12
weeks

• High expression levels of neuronal markers
• Increased expression of GFAP
• Increased BrdU positive cells
• Regenerating tissue bridging with NSC and G-CSF

Transection model at
level T8–T9,
Sprague-Dawley rats

Pan et al., 2008

G-CSF 50μg/kg/day ±
BMC, MSC

sc. injection on day 7 after
SCI for 5 consecutive days

• Improved functional recovery (BBB score, plantar test)
• Improved behavioral parameters
• Increased cross sectional areas of the white matter

Compression model
at T8–T9 level, Wistar
rats

Urdzíkova et al., 2006

G-CSF 300μg/kg/day
± SCF

sc. injection on day 11 after
SCI for 10 consecutive days

• Improved recovery of hindlimb motor function (BBB
score)

• Increased number of intrinsic BrdU+ cells
• Increased number of intrinsic F4/80+ cells
• Proliferation of OPC was activated
• Activation of intrinsic spinal cord cell proliferation
• Increase in intrinsic microglia cells was observed in
lesion

• No effects of SCF or G-CSF on the migration of
transplanted BMDC to the lesion sites

Static contusion
model at level
T11-T12, C57BL/6
mice

Osada et al., 2010

G-CSF iv. 60μg/kg sc.
30μg/kg/ day

Single dose injected iv.
immediately after injury
(5min after surgery)
followed by continuous sc.
application for 2 weeks

• G-CSF Receptor is upregulated in the CNS upon SCI
• Counteracts apoptotic cell death in the injured spinal
cord

• Increased expression of the anti-apoptotic Bcl-XL gene
• Promotes neurite outgrowth in vitro

Transection model at
level T8–T9
(transected to 75%),
C57BL/6 mice

Pitzer et al., 2010

(Continued)
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TABLE 1 | Continued

Drug/dosage Application/treatment
duration

Outcome SCI
model/recipients

References

• Enhanced branching capacity of hippocampal neurons
• Effects on both the CST and serotonergic tracts
• Increased number of large motoneurons
• Improved functional connectivity post-injury
• Improved functional outcome
• G-CSF overexpression in CNS correlated with an
improved functional motor outcome

G-CSF iv. 60μg/kg sc.
30μg/kg/

iv. injection immediately after
injury, followed by
continuous sc. application
for 14 days

• Improved functional recovery (BBB score, gridwalk
test, and swim test)

Contusion model
level T9-T10, Wistar
rats

Dittgen et al., 2012

G-CSF 15μg/kg/day iv. injection, 1 h after injury
and daily for 5 consecutive
days

• Increased number of vessels with diameters > 20μm
• Increased expression of angiogenic cytokine mRNA
(VEGF, HGF, FGF 2)

• Promotion of functional recovery
permeability

Contusion model at
level T8-T9,
Sprague-Dawley rats

Kawabe et al., 2011

G-CSF 15μg/kg/day iv. injection, 1 h after surgery
and daily for 4 consecutive
days

• G-CSF Receptor expression on neurons, astrocytes
and oligodendrocytes in normal spinal cord

• G-CSF Receptor expression on GFAP+ astrocytes and
MOSP+ oligodendrocytes

• Increased number of MOSP+ oligodendrocytes
• Suppressed inflammatory cytokine expression 72 h
after injury

• Smaller percentage of apoptotic oligodendrocytes 72 h
and 1 week after surgery

• Larger number of MAP-2+ neurons
• Normal appearing myelin was higher than in control
group

• Better myelin integrity and preservation
• Decreased Iba-1+ cell number
• Improved hindlimb recovery

Contusion model at
level T8–T9,
Sprague-Dawley rats

Kadota et al., 2012

G-CSF 20μg/ml ±
GM-CSF

Single dose, injected ip.
immediately after SCI

• improved functional recovery (BBB score)
• Reduced cavity sizes
• Marginal white matter seemed to be more intact
• Repressed GFAP expression 1 and 4 weeks after injury
• Repressed CSPG expression
• Maintenance of the integrity of axon fibers
• Suppressive ED-1+ cells 3 days after injury

Compression model
at level T9,
Sprague-Dawley rats

Chung et al., 2014

BBB, Basso, Beatti, and Bresnahan locomotor rating scale; BMC, bone marrow cells; BMDC, bone marrow derived cells; BV2, micro glia cell line; CNS, central nerve system; CSPG,
chondroitin sulfate proteoglycan; MSC, mesenchymal stem cells; CST, corticospinal tract; FGF2, fibroblast growth factor 2; GFAP, Glial fibrillary acidic protein; GM-CSF, granulocyte-
macrophage colony stimulating factor; HGF, hepatocyte growth factor; IP, intraperitoneal; IV, intravenous; LPO, lipidperoxidation; M1, Macrophage type 1; M2, Macrophage type 2;
MAP-2, microtubule associated protein; MDA, Malondialdehyde; MOSP, myelin oligodendrocyte-specific protein; MPO, Myeloperoxidase; MPSS, Methylprednisolone sodium succinate;
NSC, neuronal stem cells; OPC, oligodendrocyte precursor cell; SC, subcutaneous; SCF, stem cell factor; SCI, spinal cord injury; VEGF, vascular endothelial growth factor.

without G-CSF (Pan et al., 2008). Based on the considerable pre-
clinical evidence a number of smaller clinical trials have been
initiated (Table 2). Several of these clinical studies demonstrated
a neurological and functional improvement in SCI patients
treated with G-CSF (Takahashi et al., 2012; Derakhshanrad et al.,
2013; Inada et al., 2014; Saberi et al., 2014). Sakuma et al
examined patients with a compression myelopathy and observed
reduced progression of myelopathy in all 15 treated patients.
Neurological improvements inmotor and sensory functions were
obtained in all patients after the administration, although the
degree of improvement differed among the patients (Sakuma
et al., 2012).

G-CSF and ALS: Preclinical and
Preliminary Clinical Research

ALS represents a progressive and fatal neurodegenerative disease
affecting motor neurons with a typical median disease course
of 2–5 years and a lifetime risk of 1:400 (Ingre et al., 2015).
A large number of clinical trials have been undertaken for this
terrible disease, but the only approved drug so far is riluzole
with limited treatment effects (Miller et al., 2012). Preclinical
studies demonstrated that chronic or repeated subcutaneous
administrations of G-CSF exert positive effects on survival rate,
disease progression and immune status of SOD1-G93 mice
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(for details see Table 3). Some reports describe more gender-
specific effects in ALS mouse models with positive effects on
survival rate and motor performance only present in male but
not female mice (Naumenko et al., 2011). Mechanisms that
have been described include suppression of neuronal apoptosis
and oligodendrocyte cell death by regulating the expression of
apoptosis related proteins (Nishio et al., 2007; Pitzer et al.,
2008). Another claimed mechanism of action is via mobilizing
bone marrow cells into the spinal cord (Koda et al., 2007),
or enhancing the availability of circulating hematopoietic stem
cells in neuronal lesion sites and their ability for neurogenesis
and angiogenesis (Nishio et al., 2007), although this is a very
debated field. Moreover, reducing demyelination and expression
of inflammatory cytokines such as TNF-α and IL-1β could be
contributing to improved outcome after G-CSF treatment (Koda
et al., 2007; Nishio et al., 2007; Kawabe et al., 2011; Kadota et al.,
2012).

Several angiogenic key players may be related to ALS
with VEGF being the first described factor to contribute to
ALS (Oosthuyse et al., 2001) and angiogenin (ANG) recently
identified as a second angiogenic element related to that disease
(Gao and Xu, 2008). VEGF represents a pro-angiogenic factor
with neuroprotective properties. In vitro as well as in vivo studies
showed that VEGF promotes neuronal survival (Silverman
et al., 1999; Jin et al., 2000a,b) and prolongs the life span
of ALS animal models (Lambrechts et al., 2003; Storkebaum
and Carmeliet, 2004; Storkebaum et al., 2004). Several clinical
studies investigate the VEGF-system as a possible treatment
option for patients suffering from ALS (Pronto-Laborinho et al.,
2014). An enhanced angiogenesis might protect motoneurons
from degradation by increasing neurovascular perfusion. Studies
demonstrate a correlative reduction in the human umbilical
vein endothelial cell proliferative and angiogenic activities,
which may contribute to the induction of ALS (Crabtree et al.,
2007; Wu et al., 2007). Therefore, G-CSF might act as potent
medication for the treatment of ALS by activating pro-angiogenic
systems.

With regard to neurogenesis as a possiblemechanism there are
no data available from animal models that demonstrate a direct
regenerative effect of G-CSF treatment on the first or second
motoneuron. However, hippocampal and SVZ neurogenesis
are certainly triggered and enhanced under the chronic G-
CSF treatment protocols used in the animal studies that show
beneficial effects of G-CSF treatment (Pitzer et al., 2008;
Henriques et al., 2011) and one could speculate that this
could indirectly functionally ameliorate the ALS phenotype
via enhanced motor learning. There are papers that report
enhanced progenitor cell proliferation and migration in the
ependymal zone of the central canal in the lumbar spinal
cord of ALS mouse models (Chi et al., 2006a,b, 2007), but
true neurogenesis has not been reported in these studies.
Based on these pre-clinical findings several smaller studies in
ALS patients have been initiated with promising outcomes
(Table 4) and no severe adverse effects even following long-
term administration (Grassinger et al., 2014; Khomenko et al.,
2015) Some studies reported no beneficial effects of G-CSF for

patients suffering from ALS (Nefussy et al., 2010; Chiò et al.,
2011).

Conclusion and Clinical Implications

In this review we have described the neuroregenerative potential
of the hematopoietic growth factor G-CSF for SCI and ALS
with a focus on vasculogenic and neurogenic mechanisms of
action. Apart from all other arguments in favor of G-CSF as
a novel type of neuroprotective drug, particularly due to its
multiple mechanisms of action, and broad preclinical proof
of principle one major advantage of this protein is that we
are dealing with a drug with a well-known pharmacological
profile, and an excellent safety record. Appropriate intervention
in SCI depends on the nature, extent, and duration of the
disease state, as pathophysiology can dramatically evolve over
time. The initial mechanical damage occurs immediately after
SCI followed by a cascade of potentially harmful secondary
events that include the formation of free radicals, detrimental
inflammatory responses and death of neurons and glia. A
drug counteracting the induction of the secondary damage and
promoting neuroregeneration is for major importance in the
treatment of patients suffering from acute or chronic CNS
diseases. Acute SCI causes immediate mechanical damage to
the microvasculature of the cord followed by a secondary
injury to the vessels, this combination produces spinal cord
ischemia. Thus, angiogenesis is critically important to reduce
secondary damage to the spinal cord vasculature. G-CSF
plays a major function in the induction of angiogenesis
and arteriogenesis which may promote neuroregeneration via
the induction of a regeneration-friendly environment. How
endogenous neurogenesis can contribute to SCI regeneration is
unclear at present, spinal cord neurogenesis does not appear to
play a significant role—central neurogenesis may however well-
contribute to recovery processes due to an increased level of
plasticity for central “rewiring” of descending motor pathways.
Local transplantation approaches together with G-CSF appear
as an attractive way toward exploiting neurogenesis as a repair
mechanism.

Clinical trials conducted so far look promising, and at least
G-CSF treatment appears feasible and safe. However, proper
controlled and randomized trials are lacking to draw sound
conclusions. Many questions are on the table regarding the
timing of treatment post-injury: (acute vs. delayed), G-CSF
dosing (high dose, low dose), the treatment mode (chronic
continuous vs. intermittent; intravenous vs. subcutaneous or
even locally applied). For ALS, the antiapoptotic properties,
protection of the neuromuscular junction, immune modulating,
as well as angiogenic properties appear key in counteracting
the pathology. As in SCI, a multitude of pathophysiological
processes need to be addressed together, which is an argument
for a growth factor as therapeutic agent (Henriques et al., 2010).
The direct impact of the neurogenic potential of G-CSF for
modifying the disease course is not so clear at the present state
of knowledge. As is the situation with SCI, there are interesting
clinical studies that indicate feasibility and safety of treatment,
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TABLE 3 | Published preclinical studies in the use of G-CSF for ALS.

Drug/dosage Application/treatment
duration

Outcome SCI Model References

Filgrastim 30μg/kg/day sc. injection for 8 weeks via
osmotic minipumps, mice at
11 weeks of age

• Prolonged survival of SOD1 mice
• Delayed disease onset
• Flattened disease progression
• Flattened loss of grip strength
• Reduced muscle atrophy
• Larger muscle diameter
• Decreased fibrillations
• Ameliorated loss of motor neurons
• No effect on microglial (Iba1) and astroglial
(GFAP) markers

• Reduced decrease of oligodendroglial
markers (PLP)

• Trend toward increased pan-neuronal
markers (NSE)

SOD1-G93A mice Pitzer et al., 2008

Filgrastim 30μg/kg/day sc. injection for 4 weeks via
osmotic minipumps, mice at
11 weeks of age

• Restored transcriptomic deregulations of
SOD1 mice

• Transcriptome close to presymptomatic
SOD1 mice or wild type animals

• Modulation of genes closely related to
neuromuscular functions (CCR4-NOT,
Prss12)

SOD1-G93A mice Henriques et al., 2014

Filgrastim 100μg/kg/day Week 10 of age until death
via single sc. injections for 5
consecutive days per week

• Increased survival of SOD1 mice
• Higher amount of surviving α-motoneurons
• Increased amount of large myelinated axons
• Increased microglia recruitment around
neurons

• Splenomegaly

SOD1-G93A mice Yamasaki et al., 2010

Filgrastim 200μg/kg/day ±
surgery

Week 12 of age, single sc.
injections from 5 days
before hypoglossal axotomy
until po. day 20 or day 40

• Increased viability rate of hypoglosal neurons
• Increased number of Iba1-positive microglia

SOD1-G93A mice Yamasaki et al., 2010

Pegfilgrastim
300μg/kg/week

Week 12–16 of age, until
clinical end stage via sc.
single injections

• Prolonged survival of SOD1 mice
• More sustained motoric capacity
• No effect on spinal cord neuronal survival
• Attenuated astrogliosis and microgliosis in the
spinal cord

• Attenuated production of inflammatory
cytokines in microglia and peripheral
monocytes

• Reduced severity of muscle denervation

SOD1-G93A mice Pollari et al., 2011

Pegfilgrastim
300μg/kg/week

Week 12 of age until
scarification via single sc.
injections once per week

• Gender specific alterations
• Reduced levels of reactive oxygen species in
males but not females

• No effect on survival rate or motor
performance in females

SOD1-G93A mice Naumenko et al., 2011

Adeno associated virus
upregulation of endogenous
G-CSF expression

One viral im. or is. injection
(bilaterally at the L1 level)

• Delayed body mass decrease
• Delayed paresis
• Increased survival of SOD1 mice
• Delayed clinical end point
• Improved neuromuscular junction integrity
and enhanced motor axon regeneration
following nerve crush injury

SOD1-G93A mice Henriques et al., 2011

Iba1, ionized calcium-binding adapter molecule; IM, intramuscular; IS, intraspinal; GFAP, glial fibrillary acidic protein; NSE, neuron specific enolase; PLP, proteolipid protein; PO, post
operation; SC, subcutaneous.
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and show promising hints for efficacy, but larger randomized
controlled studies are needed to get definite answers. Imaging
(Duning et al., 2011) and potentially other biomarkers may help
in clinical development in ALS. Several questions for clinical

development remain open, in particular feasibility and safety
of a potentially yearlong treatment. Very recent and promising
data support this (Grassinger et al., 2014; Khomenko et al.,
2015).
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