Atmos. Meas. Tech., 2, 67901, 2009 y —K .

www.atmos-meas-tech.net/2/679/2009/ Atmospherlc
© Author(s) 2009. This work is distributed under G Measure_ment
the Creative Commons Attribution 3.0 License. Techniques

The GRAPE aerosol retrieval algorithm

G. E. Thomas, C. A. Poulserf, A. M. Sayer!, S. H. Marsh®*, S. M. Dear-™, E. Carbonil, R. Siddang,
R. G. Grainger?, and B. N. Lawrencé

1Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK

2Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, UK
“present address: Department of Medical Physics and Bioengineering, Christchurch Hospital, New Zealand
* present address: National Institute of Water and Atmospheric Research, Wellington, New Zealand

Received: 12 March 2009 — Published in Atmos. Meas. Tech. Discuss.: 8 April 2009
Revised: 22 October 2009 — Accepted: 23 October 2009 — Published: 6 November 2009

Abstract. The aerosol component of the Oxford-Rutherford (Veefkind and de Leeuwl998 Mishchenko et a).1999
Aerosol and Cloud (ORAC) combined cloud and aerosol re-Martonchik et al. 1998 2002 von Hoyningen-Huene et al.
trieval scheme is described and the theoretical performanc2003 Remer et al.2005 Grey et al, 2006. In this paper

of the algorithm is analysed. ORAC is an optimal estima- an optimal estimation algorithm for the retrieval of aerosol
tion retrieval scheme for deriving cloud and aerosol proper-loading from space-borne visible/near-infrared radiometers,
ties from measurements made by imaging satellite radiomeis described and an indepth characterisation of its theoretical
ters and, when applied to cloud free radiances, provides estperformance when applied to nadir-view measurements from
mates of aerosol optical depth at a wavelength of 550 nmthe Along Track Scanning Radiometer 2 (ATSR-2) is given.
aerosol effective radius and surface reflectance at 550 nm. The retrieval of aerosol properties from satellite radiome-
The aerosol retrieval component of ORAC has several in-ters is a challanging problem for three main reasons:
carnations — this paper addresses the version which operates

in Conjunction with the cloud retrieval component of ORAC 1. Aerosol retrievals are hlghly sensitive to cloud contami-

(described bywatts et al. 1998, as applied in producing the nation. The much greater particle size and optical thick-
Global Retrieval of ATSR Cloud Parameters and Evaluation ~ Nness of clouds compared to background aerosol means
(GRAPE) data-set. that even a small amount of cloud contamination will

The algorithm is described in detail and its performance  greatly effect the retrieved aerosol properties.
examined. This includes a discussion of errors resulting
from the formulation of the forward model, sensitivity of
the retrieval to the measurements amgbriori constraints,
and errors resulting from assumptions made about the atmo-
spheric/surface state.

2. It is difficult to disentangle the top-of-atmosphere
(TOA) radiance contribution of aerosol from the sur-
face contribution. This is particularly true over bright
and heterogeneous land surfaces, where the TOA signal
can dominated by the surface.

3. Even taking the above two factors as read, there are still

1 Introduction many more factors effecting the TOA signal than cur-
rent measurement systems can unambiguously distin-
Despite the important role that atmospheric aerosols play  guish. These factors include the gaseous composition

in both climate forcing (both direct and through their inter- of the atmosphere as well as properties of the aerosol it-
actions with clouds)IPCC, 2007 Lohmann and Feichter self (composition, variation with height, particle shape,
2005 and air quality, there are relatively few long term mixing state, etc.)

data sets showing their spatial distribution and evolution _
through time. Imaging satellite instruments offer the abil- In order to overcome these p_roblems, a number O_f differ-
ity to provide such measurements and many algorithms hav&nt approaches to aerosol retrieval from satellite radiometers

been developed to exploit this ability for specific instruments have been developed. All of these algorithms rely on emper-
ical thresholds of the measured radiance (be it magnitude, ra-

tios at different wavelengths or spatial variability) to remove

Correspondence td5. E. Thomas cloudy pixels Ackerman et a.1998 Gomez-Chova et al.
BY (gthomas@atm.ox.ac.uk) 2007 Birks, 2007). The main parameter retrieved by most
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algorithms is the aerosol optical depth (AOD) at some mea-Multi-angle Imaging Spectro-Radiometer (MISR), on board
surement wavelength. Many also use the spectral variance dfASA's terra platfrom, and the ATSR series of instruments
the AOD to give an indication of the size and composition launched on ESA satellites. Both instruments not only pro-
of aerosols by using a range of representative aerosol typegide measurements in the nadir direction but also viewing at
or mixtures of components (for which the size and compo-an angle along the orbital track of the instrument. Due to the
sition is fixed) and picking the one that best reproduces thehigh orbital velocity of low Earth orbit satellites, such instru-
observed radiance. ments thereby provide multiple measurements of the same
Perhaps the biggest difference in the various algorithmssurface point at different viewing zenith angles, separated by
is in how they separate the surface and atmospheric contrienly a few tens of seconds. ATSR provides two views, one in
butions to TOA signal. The approach taken is largely de-the nadir and one centred at*5long the orbital track, while
termined by the capabilities of the instrument being used.MISR provides a total of nine views with maximum viewing
Where the instrument has relatively high spectral resolutionzenith angles of approximately70°. Over land, such mea-
such as the MODerate resolution Imaging Spectroradiometesurements allow the separation of the atmospheric contribu-
(MODIS) or the MEdium Resolution Imaging Spectrometer tion to the TOA radiance from that from the surface because
(MERIS), so called dark-target algorithms are used. Thesehe ratio of the surface reflectance at different viewing ge-
use an assumption of either the surface reflectance, or themetries shows little angular dependance, since the size of
extinction coefficient of aerosol, being effectively zero at a the surface scattering elements are so much larger than the
given wavelength. Using this assumption the AOD, or sur-wavelengths being useé&lpwerdew and Haighl995. The
face reflectance (depending on which assumption is usedjgimplest approach is to assume that this ratio is in fact con-
can be unambiguously defined, allowing the optical depthstant with respect to wavelength, as is used/egfkind and
and surface reflectance to be derived at different wavelengthde Leeuw(1998 for ATSR retrievals.North (2002 shows
on the basis of assumed aerosol properties and a model of tHeow it is also possible to use the angular constraint to fit a
spectral reflectance of the surface. For example, the starsimple empirical surface BRDF model to ATSR measure-
dard MODIS aerosol product makes use of both of thesements, providing a retrieval of spectral surface reflectance.
approaches. Over the oceaRefmer et al.2005 the as-  In both approaches, the atmospheric path radiance for each
sumption is made that the surface reflectance at wavelengthiastrument channel and view is fitted using a range of aerosol
greater than 0.66m is zero, thus allowing the clear sky TOA types, thus providing an estimate of the AOD.
signal at such wavelengths to be entirely modelled as a prod- This angular constraint approach is also used in MISR re-
uct of aerosol and Rayleigh scattering, plus absorption. Atrievals Qinner et al, 2009, but only as a first step in reduc-
predefined set of bimodal aerosol models can thus be fiting the number of aerosol types made available to a second
ted to the observed radiance in 6 channels, incorporating aetrieval, based on a different assumption. In this second ap-
model of the ocean reflectance for shorter wavelength chanproach, described byartonchik et al (1998, the clear-sky
nels, by varying the mixing ratio between the two modes.atmosphere is assumed to be homogenous over a region of
The retrieval thus gives the AOD, the ratio between the finel7.6x17.6 km (containing 256 individual MISR pixels). Un-
and coarse modes of the aerosol distribution and, by pickder the assumption that the atmospheric and surface signals
ing the best fitting of the 20 fine and course mode combi-are additive, a spatial scatter matrix can be constructed that
nations, an indication of aerosol type. This basic approacldoesn’t depend on the atmospheric path radiance, by express-
is commonly used for aerosol retrievals over ocean by manyng the signal in each pixel as a bias relative to some refer-
other algorithms and instruments including MERFM{oine ence pixel within the retrieval area. The TOA radiance for
and More] 1999, ATSR (Veefkind and de Leeuwl1998), each pixel can then be reconstructed using a principal com-
AVHRR (Mishchenko et a).1999. ponent decomposition of this matrix and an atmospheric path
Over land MODIS evy et al, 2007 uses the approxima- radiance calculated using a range of aerosol types.
tion that the AOD at 2.12m is close to zero, and thus the  The ORAC algorithm is somewhat different than the al-
TOA signal is dominated by the surface contribution. This, gorithms described above, in that it is not built around any
along with assumptions of about the spectral variation of theparticular method of separating the surface and atmospheric
reflectance of vegitated surfaces, the so called dark-dense veeontributions to the TOA signal. Rather it makes use of an
gitation (DDV) approximation, allows the AOD to be esti- optimal estimation retrieval scheme to fit modelled radiances
mated from measuresments at shorter wavelengths. MERI&cross a series of wavelength bands (channels) to radiances

also uses a DDV approach over larfg@hiter et a).1999, al- measured by a satellite instrument, as a function of aerosol
though it lacks channels in the infrared, so has to rely solelyoptical depth, effective radius and surface reflectance, sub-
on constraints on the spectral shape of the surface. ject to constraint bya priori knowledge of these parame-

If measurements of the same air mass are available fronters. The algorithm was developed from the Enhanced Cloud
different viewing geometries it is possible to add angular Processor (ECP)Watts et al. 1998 and the version de-
constraints to the retrieval of aerosol. The main instru-scribed here is part of a unified cloud and aerosol algorithm.
ments which provide such multi-angle measurments are th@his algorithm uses a empirical cloud flagging scheme to

Atmos. Meas. Tech., 2, 67901, 2009 www.atmos-meas-tech.net/2/679/2009/



G. E. Thomas et al.: Aerosol retrieval algorithm 681

differentiate cloud and aerosol pixels. Pixels identified asaccuracy (i.e. with a random error ¢f0.1) to be scien-
cloud have the cloud retrieval algorithm applied, with the re-tifically interesting, particularly over the open ocean, and
maining pixels having the aerosol retrieval applied.The al-has been applied in the study of aerosol cloud interactions
gorithm has been applied to ATSR-2, Advanced-ATSR and(Bulgin et al, 2008 Quaas et al.2009. A validation of the
Spinning Enhanced Visible-InfraRed Imager (SEVIRI) data GRAPE oceanic AODs against ocean and coastal AERONET
(Kokhanovsky et a).2007 Thomas et a).20078, including sites, and comparisons with the Global Aerosol Climatology
the creation of the GRAPE global cloud and aerosol data-Project (GACP) AOD product derived from Advanced Very
set derived from the full ATSR-2 data-set, spanning 1995-High Resolution Radiometer measurements, is presented by
2001, For descriptions of the ATSR-2, AATSR and SEVIRI Thomas et al(20098. This study finds a correlation of 0.79
instruments the reader is referred Ntutlow et al. (1999, between the AERONET and GRAPE AODs over ocean pix-
Llewellyn-Jones et al(2001) and Aminou et al.(1997%, re- els, with a best fit line ofrg=(0.08+0.04)+(1.0£0.1)7a,
spectively. wheretg and ta are the 550 nm AODs from GRAPE and

It is important to emphasize that this version of the algo- AERONET, respectively. Over land pixels, however, the
rithm, hence referred to as the GRAPE algorithm to distin-GRAPE product AOD product has been found to be very
guish it from the wider family of algorithms which carry the noisey and has thus not been validated. T8 ®ffset in
name ORAC, is primarily a cloud retrieval. The inclusion of GRAPE oceanic AODs when compared to AERONET mea-
a simple aerosol retrieval can be considered a way of addingurements could be partially due to the coastal location of
value to the GRAPE cloud products and does not representnost of the AERONET sites, as the ocean surface model used
the state-of-the-art ORAC aerosol retrieval. There currentlyto set thea priori is most accurate when applied to the deep
exist two further versions of the ORAC aerosol algorihm, ocean. For an overview of all versions of the ORAC aerosol
which are more advanced stand alone aerosol retrievals. Thalgorithm, including a multiview algorithm that makes use of
GRAPE algorithm uses a relatively simple forward model, a BRDF description of the surface reflectance, the reader is
particularly in its treatment of the surface reflectance, whichreferred toThomas et al(20093.
(in common with the cloud retrieval) is treated as Lamber- In Sect.2 the ORAC forward model and numerical re-
tian, and in its treatment of different aerosol types. This re-trieval scheme are described. Sektis devoted to a dis-
sults in important limitations to the algorithm: cussion of the algorithm’s performance and limitations, in-

cluding the sensitivity of the algorithm and investigation of

— The algorithm is only applicable over surfaces which sources of error. The results are summarised and conclusions
can be reasonably approximated by a Lambertian regrawn from them in Sect.

flectance, such as the ocean surface far from the sunglint
region, and homogeneous land surfaces.

. . .. 2 Forward model and retrieval algorithm
— The use of a Lambertian surface reflectance prohibits g

the inclusion of near S|muIFane.,-ous observgtlons of the2_1 The forward model
same scene at different viewing geometries, such as

offered by the ATSR instruments’ dual-view system.
Even if a surface can be approximated with an effec-
tive Lambertain reflectance for a given viewing geom-

etry, this value can be different for different viewing 1 A model of aerosol radiative properties (single scat-
geometries. ter albedo, extinction coefficient and phase function)
at the required wavelengths as a function of aerosol
size distribution and spectral refractive indices. Ide-
ally the aerosol radiative properties should be computed
across the channel bandpass functions of the instrument
in question, but for most radiometers the width of each
channel is small compared to the scale over which the
aerosol radiative properties vary and thus the computa-
tion can be done for the weighted centre wavelength of
each channel.

The GRAPE algorithm aerosol forward model can be thought
of as being composed of four components:

— In the case of instruments such as ATSR-2 and SE-
VIRI, which have a small number of channels in the
visible and near-infrared, the retrieval becomes highly
dependant on good priori knowledge of the surface
reflectance. This is because the measurements do not
contain enough information to decouple the surface and
atmospheric components of the signal.

Despite these limitations, the GRAPE dataset has shown

that the algorithm can provide aerosol properties of suffient . .
g P prop 2. A model of gas absorption (or emission) over the band-

1GRAPE was a UK Natural Environment Research Council pass of each channel.
project. The full GRAPE data-set is freely available for download
from the British Atmospheric Data Centre. Seép://badc.nerc.ac. 3. A model or measurements of the surface reflectance,

uk/data/grapefor further details. both of the land and ocean.
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4. A radiative transfer model, which predicts the top of at- Each aerosol class will have a prescribgddefined by the
mosphere radiance as a function of the radiative propers,, and x of each component). Optical properties are pro-
ties produced by the aerosol and gas models, the surfacguced for a range of effective radii by changing the mixing
reflectance, and illumination and viewing angle. ratios of the components. If an is desired that is either

For reasons of numerical efficiency, radiative transfer cal-Smaller than that of the smallest component, or larger than

culations are done off-line for a range of aerosol propertiedat of the largest component, the aerosol class becomes a
and viewing geometries to produce look-up tables, which aresi"gl€ component aerosol (since thewill have been min-
then used to predict the radiance during retrieval runs. ThdMiSed, or maximised, by setting the mixing ratio of the ap-
GRAPE algorithm uses Mie scattering to relate aerosol mi-ProPriate component to 100%). In such a case, the desired
crophysical properties to their radiative properties. It should’e 1S @chieved by scaling the median radius of the one re-
be noted that Mie scattering is only applicable to sphericalM&ining component. It is obvious that by changing the ef-
particles and thus its use will introduce errors in the radia-[€ctive radius in this fashion, the aerosol class will quickly
tive properties of non-spherical aerosol particles (the mosf{OS€ its resemblance (not only in terms of size, but compo-
notable example being mineral dust). Although not includedSition) 10 its source class as defined by the literature. Thus,
in this analysis, the development of non-spherical scatteringjhe GRA_‘PE algorithm works on the implicit assumption that
code for use with the ORAC scheme is underway. our a priori knowledge of the aerosol we expect to observe
Microphysical properties are taken from published de- is rgasonably accurate, so that large changes to th.e effective
scriptions of typical atmospheric aerosol types, such as thosEAdiUs are not needed to matich the observed radiances. In
found in the Optical Properties of Aerosols and Clouds Practice, retrievals done using real data show that retrieved
(OPAC) databaseHess et al. 1999. Such models typi- effective radii are very rarely so different from tlaepriori
cally describe a range of atmospheric aerosol classes, eadfat the aerosol becomes a single component, at 0.01%-1%
of which is made up of an external mixture of multiple com- ©f rétrieved states, depending on the aerosol class.
ponents of a given refractive index, size distribution and mix- 1€ modelling of gas absorption or emission over the
ing ratio. In external mixtures each component is assumed t§'avelength bands of the instrument is performed using
exist separately from the others, with its own size distribu-MODTRAN (Berk et al, 199§. As the retrieval uses

tion. For use with the GRAPE algorithm, each component isViSiPlé/near-infrared wavelengths, the signal from atmo-
assumed to have a log-normal size distribution spheric gases is dominated by Rayleigh scattering rather than
absorption/emission. Thus temporal and spatial variation in

No 11 1_ (Inr —Inr,,)? ) the gas composition of the atmosphere can be neglected and
V27 InSr P 2In2s standard-atmosphere gas concentrations can bé.u3ém

i i modelled gas absorption is then convolved with the instru-
where the median radiug, and spread (where the stan- g P

dard deviati flnis | ken f h | ment filter function at each channel to produce an optical
dg':abag\:atlon of In is InS) are taken from the aeroso depth due to gas absorption/emission.

) . . . Both the aerosol radiative properties and the gas optical
Mie _s,cattenng theory_ is t_hen use_d_to produce the smgledepth are then passed to the DISORSTamnes et 311989
scattering albedax), etinction coefﬂment,@f ¥) and phase radiative transfer code, which models the radiance for each
function (p;) of each component, from which the vglues combination of aerosol effective radius and optical depth (de-
for the complete aerosol class can be calculated using: termined by the number density of aerosol) over the plausi-

n(r)=

EiXi,B,'eXt 5 ble range of illumination and viewing angles for the given
Pext = i Xi ) satellite. A 32 layer model of the atmosphere, extending to a
Eixiﬂiextwi height of 100 km is used for the DISORT calculations. In lay-
= ot €)) ers containing aerosol, the effects of molecular absorption,
X xiB; Rayleigh scatteri d | scatteri d absorpti
yleigh scattering and aerosol scattering and absorption are
i xi B w; pi (4y  combined using the following expressions:
i Xi B w; T = tat TR+ Tg (6)
wherey; is the mixing ratio of theth component. TR + Tawa
To enable the retrieval of aerosol size information, these®?! = ra+t—R+rg (@)
quantities must be calculated for a range of different aerosol TRPR+ Ta®apa
size distributions. The measure of the aerosol size used by, = BT (8)

the GRAPE algorithm is the effective radius, which is defined
as the ratio of the third and second moments of the aerosol 2This is particularly true for the ATSR series of instruments,
size distribution. For a log normal distribution this is which have channels designed specifically to avoid atmospheric gas
S 3 exnd.5In2s: spectral features. It has also been found to be an acceptable assump-
i Xil,i 4. 2 (5) tion for the SEVIRI instrument, despite its87m channel’s slight
% X,'rlfm. exp(2|n2 Si) ' sensitivity to water vapour.

Fe=
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Wherg Ta, TR, Tg al€ the optical depths du.e to fie_rOSOI' Table 1. Details of the lookup tables of atmospheric transmission
Rayleigh scattering and molecular absorption within the anq refiection used in the GRAPE algorithm forward model. The
layer, which combine to give a total optical depthepforthe  gashes indicate the dimensions spanned by each LUT, for example,
layer. The single scattering albedo for each laygis given Rqq is a function of logg(ta) and log(re). The LUTs use an

as the average of the single scattering albedo of the aerosatgually spaced grid in all dimensions.

Rayleigh scattering (for whiclvg = 1) and molecular ab-
sorption (Wherewg = 0), weighted by their optical depths.

Likewise, the phase function for each layer is also a weighted LUT name Flg”“'t(io:) of logr(re) o o .

. . . . . T T
mean, with weights being the fraction of the optical depth e o l0oalies 10values: 11 values.
for each process which is due to scattering @®). All of —2-0.301  -2-1 0-90 0-90 0-180

these calculations are performed assuming a black surfaceg,, - _ _ _ -
and assume a constant illumination, producing a set of ef- 7,/ - - -
fective transmissions and reflectances for diffuse and direct- 7, - - -
beam radiation for the atmosphere as a whole. Rad - -
This allows radiative transfer through the Earth’s atmo-
sphere to be treated as a series of partial reflections and trans-
missions. The first of these is a “reflection” of the solar
beam off the atmosphere itself, described by a bidirectiona

reflectanceRpp(6p, v, ¢), as a function of solar and viewing ¢ )
zenith anglesfo and 6, and the relative azimuth angte ~ (BRDF) product from MODIS Jin et al, 2003 is used to

The subscript bb indicates that this reflectance function take®"0duce a Lambertian reflectance at each channel. For ocean

a direct-beam input and provides a direct-beam output. ThifX€lS & sea surface reflectance modlyer 2007 is used,

is followed by a term composed of the transmission of the so2@s€d on Cox and Munk wave slope statistics as a perturba-

lar beam through the atmosphei?git(eo), where bt indicates tion to Fresnel refiection.
the transmission function accepts a direct beam as input ang 2 Retrieval algorithm
produces both beam and diffusely transmitted components),

reflection off a Lambertian surface with reflectane@nd ~ ORAC is an optimal estimation retrieval scheme, based on
transmission of the resulting diffuse radiation back throughthe formalism ofRodgers(2000. It uses a numerical min-
the atmosphereT{g(Hv)) to the satellite. Subsequent terms imisation to determine the maximuanposterisolution, that
result from multiple reflectances between the surface and thg the solution that has the maximum probability of being the

freated separately for land and ocean pixels. Over land the
MODA43B Bi-directional Reflectance Distribution Function

atmosphere (described by a diffuse reflectaRgg. The re-  “truth” according to Bayesian statistics, to the problem of
sulting geometric series: matching the observed and modelled radiances. This solu-
' " tion is given by minimising, via an iterative optimisation, the
R = Rpp(6o, 0y, @) + Ti5t(00) p Ty, (6v) cost function:
\ 271
F T 00" Tip ) R J0)=(¥ = F)” S71 (¥~ F(x) (11)
+ Tt (00) 0™ Ty (W) Rgg +x—x)7" St (x—x4)

+ .. (9)
whereY is the vector of measured radianc£%x) is the cor-

can be simplified using the appropriate series limit to give responding forward-modelled radiances &hdis the mea-
surement covariance matrix, which defines the uncertainty of

{ t . .
_ Tt (B0) p Ty, (B) each measurement and the correlations between theis.
R = Rpp(00,0v,¢) + ———F—. (10) ! . :
1—pRyd the vector of state variables (i.e. the values we are retriev-
N ' ing), with the a priori state vectorx, and corresponding
Lookup tables of the quantitieRpn(6o.0v.¢), T (60),  covariance matrixS,, defining our knowledge of the state

Ttg(é\,), and Ryq are created by DISORT as a function of before the measurement and the uncertainty in this knowl-

aerosol optical depth, effective radius, solar zenith anglegedge, respectively. The optimal estimation framework also

satellite zenith angle and relative azimuth angle, as detailedllows for the explicit inclusion of known errors in the for-

in Tablel. ward model, or parameters on which it depends, which both
The final aspect of the forward model is a description of effect the value ofF (x). This is achieved by modifyin.

the reflectance of the Earth’s surface across each of the ddsy the addition of a further covariance matrix characterising

sired channels. The GRAPE algorithm retrieves the surfacehe forward-modelling uncertainties.

albedo at ®5um but the spectral shape (i.e. the ratio of the

albedo at each channel to58um) is fixed by thea priori

spectral albedo. The determination of gaeriori albedo is

www.atmos-meas-tech.net/2/679/2009/ Atmos. Meas. Tech., 276792009
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The state vector for the GRAPE retrieval is made up of theHowever it has no mechanism to avoid becoming trapped in
aerosol optical depth at 550 nm, the aerosol effective radiugocal minima in the cost function. Furthermore, if the for-
and the surface reflectance at 550 nm: ward model is highly non-linear in the region surrounding
the solution, the optimal estimation error propagation will no

T, . . . .
= ra (12) longer be valid and uncertainties reported on the solution will
- e . .
R(550) be inaccurate.

The inclusion of prior knowledge of the state in a rigor-
ous way is a particular strength of the optimal estimation ap-3 Retrieval performance
proach. The retrieval can be viewed as a process of usin ) . ] )
the measurements to better define our prior knowledge of thgq this section we examine the theoretical performance of

state, whether that knowledge be based on a climatology ofhe ORAC aerosol retrieval algorithm in the configuration
on independent measurements of the state. used in the GRAPE project, using the results of retrieval

The other advantage of the optimal estimation framework'uns on simulated data that resembles measurements made

over other, more ad-hoc, retrieval methods is that it provided?Y the ATSR-2 (or AATSR) instrument. Two questions are
information on the quality of the retrieval. The first indica- addressed:

tor of a successful retrieval is that it has converged. Succes-
sive iterations each produce their own estimate of the state
and when the difference between these estimates becomes a
small fraction of their estimated precision, the retrieval can
be said to have converged. In practice, an upper limit is put
on the number of iterations the retrieval can take (in the case
of GRAPE this is set to 25): if a retrieval has not converged 2. How sensitive is the retrieval to errors in the forward
within this number of steps, it is deemed to have failed. In model and assumptions made about aerosol and surface
addition, the value of the cost function at the final solution properties.

and error estimates on the retrieved state provide indicators

as to the quality of the retrieval. The former indicates how The configuration of the ORAC processor used in the

1. How sensitive is the retrieval to changes in the state pa-
rameters? This gives us a measure of the best possi-
ble precision and accuracy we can expect the retrieval
scheme to achieve, given the measurements we are pro-
viding.

consistent the solution is with the measurementapdori GRAPE project uses channels 2—4 of the ATSR-2 instrument
information, while the latter defines how well constrained the (centred on wavelengths of 0.67, 0.87 and/n8). The
solution is. 0.55um channel is not used, as over the oceans it is either

To calculate uncertainties on the retrieved state, the asdisabled, or in aarrow-swath(where the swath width of the
sumption is made that for small changes in the state vectoinstrument is reduced from 512 to 256 km), due to down-link
the forward model can be considered linear, so that it can béandwidth limitations of the ERS-2 satellite. The retrieval
expressed as assumes an aerosol type based on the geographic location of
. n . each pixel and time of year, as shown in Figwith the pos-
F(x)—F@x)=K{x—x). (13) " sible types being maritime clean, continental average, desert
Here# andK are the state vector and weighting function ma- dust, Arctic and Antarctic classes from the OPAC database.
trix at the solution.The weighting function matrix contains  The retrieval of parameters at 550 nm when the retrieval

the derivatives of the forward model with respect to the statedoes not utilise a measurement at this wavelength may in-
vector: tially appear strange and it might be presumed thattthe

OF; (x) and Rs are actually being retrieved at 670 nm (or some other
= (14) wavelength) and then extrapolated to 550 nm. However, this
dx; is not the case. The optimal estimation retrieval fits all pa-

where the and subscripts denote elements of the measurefameters with all available measurements, weightecsdy

ments and state vectors, respectively. Under this assumptiogonstrained by the assumed aerosol properties. Thus, al-
we can relate the covariance of the measurementamd though the inclusion of the 550 nm channel would undoubt-

Kij=

ori state to the uncertainty in the retrieved statda, edly better constrain the retrieval and lead to smaller uncer-
L tainties on the retrieved parameters, the retrieved state would
5= (Knglk +S;1>_ . (15)  remain consistent with that retrieved without it.

It should be noted that the assumed aerosol microphysi-

ORAC uses the Levenburg-Marquardt algorithbeen-  cal properties are a key source of uncertainty in all aerosol

berg 1944 Marquardf 1963 to perform the minimisation remote sensing applications and that describing the global
of the cost function. This provides an extremely robust anddistribution of aerosol with a small number of descrete
numerically efficient method for minimisation which will classes is not a realistic reflection of its true diversity.
converge successfully even for highly non-linear problems.Further more, our knowledge of typical aerosol properties
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Continental Desert Maritime Arctic Antarctic
average dust clean

Fig. 1. The spatial distribution of aerosol types used in the GRAPE aerosol product. The left map shows the distribution used for Southern
Hemisphere summer (October—March), the Northern Hemisphere summer (April-September) is given on the right.

in different regions is improving continuously, particularly =~ The aerosol optical depth and effective radius are retrieved
thanks to Alumcantar retrievals from Aerosol Robotic Net- in logig space, while the surface reflectance is retrieved on a
work (AERONET) measurement®ybovik et al, 2002, linear scale. The priori and first guess surface albedo are
and some of the classes within the OPAC database (particset to the value defined by the sea-surface reflectance model
ularly those which contain absorbing components) are nowover the ocean or the MODIS white-sky albedo over the land,
known to be inaccurate. However, the small number of chanwith a 1o error of 0.01. The priori and first guess values for
nels used in the GRAPE retrieval means that there is nobptical depth are set to lgg(r) = —1.0+ 1.0, corresponding
enough information available to the retrieval to enable differ-to t=0.1 with 1o error bounds of @1<7<1.0. Thea priori
ent aerosol types to be distinguished. The magnitude of thand first guess effective radius is set to the value prescribed
errors introduced by this simplistic assumption of the aerosoin literature for each aerosol type, with error bounds-6f5
optical properties is investigated in Segi3. in logyo(r.). Table2 summaries the state varibles and their
Absolute measurement uncertainties are set at fixed valassociatea priori.
ues of 0.005, 0.009, and 0.018 for channels 2, 3 and 4. For
average cloud-free radiances these errors correspond to €8:1 Retrieval sensitivity
rors of approximately 2, 3 and 10% for each channel, respec-
tively. These values were determined for cloud retrievals butThe foremost limitation on the performance of a retrieval sys-
are in line with the expected noise on ATSR-2 measurementgem is the information content of the measurements them-
(Smith et al, 2002, except for channel 4 where itis an over- ge|ves and how sensitive each retrieved parameter is to per-
estimate. The larger uncertainty on channel 4 was originallyyyrhations in the state. This limitation can be investigated by
set because it was not subjected to the same pre-launch cajierforming the retrieval on simulated data, so that all sources
bration applied to the other channels. The use of fixed meéapf forward model and forward model parameter error can be
surement errors simplifies the retrieval code somewhat, buemoved from the problem. Figusshows the aerosol state
subsequent applications of ORAC retrieval will implement a parameters (optical depth and effective radius) which have
more rigerous scheme, based on the magnitude of the megween used to produce simulated ATSR-2 radiances using the
sured TOA reflectance and its spatial variablity. optical properties of the OPAC maritime clean aerosol class.
Additional forward model error to account for both the ¢ retrieval has been run on these data, assuming the cor-
Lambertian surface reflectance approximation and the CONact aerosol class and with tizepriori surface reflectance

straint of a fixed spectral shape to the surface reflectance i§et to the correct value of 0.02. The a priori effective ra-

also includeq irSe at 20% of thea priori surface ref!ectance dius for the maritime clean class i832.m, giving 1o er-

and co_rrelatlons betwegn the channels (i.e. off-dl_ag_onal elefor bounds of ®6<r,<2.63um. The results of applying

ments inS;) o_f 0.4. Again, these values were optimized for the retrieval to these data are given in Rgalong with er-

the cloud retrieval. ror estimates derived from the diagonal of the state covari-
ance matrix, the value of the cost function at the solution and
the number of iterations required for convergence. The first
thing to notice is that some retrievals have failed to converge
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Fig. 2. The optical depth and effective radius fields used to produce simulated radiances for the ORAC retrieval. The ranges have been
chosen to span the full range of optical depths and effective radii covered by the ORAC look-up tables. Ideally, the retrieval should reproduce
these plots when applied to the simulated radiances.

.at the loweSt_eﬁeCtive radi.us (as indicated- by white Sp"z_‘ce%’able 2. Retrieval state parameters aadriori assumptions.A
in Fig. 3). This can be attributed to the optical depth being priori errors are given asol

poorly constrained for the lowest size bin, as indicated by
the large uncertainty estimates in its value (R3g). Poor

performance of the retrieval in the lowest size bin is a re- State parameter a priori value a priori error
curring theme in th.e results presented in this paper for this jog, () 1.0 1.0
reason, and thus will not be discussed for each individual set log;(re) literature value 0.5
of retrievals. Rs MODIS over land, modelled over ocean 0.01

Figure 3g shows that the cost function at the solution has
a value which is always less than 6. The smooth dependence
on the state exhibited by the cost function is due toahe
priori portion of the cost function(¢ —x,)”S; *(x — x,)):
i.e. the retrieval is fitting the measurements extremely well
for all states, with the cost function being essentially deter- 9%,
mined by the distance from thee priori. Statistically, one Aij = ax; (17)
expects the cost function to follow @? distribution with a
single degree of freedo This is not the case in this ex- wherex; is the jth element of the retrieved state ands the
amp'e, because the simulated measurements used in the riéh element of the true state. The diagonal elements of this
trieval did not have noise added to them, while the retrievalMatrix can be thought of as an indication of the fraction of
was run using the error covariance matrix described earlier irfhe retrieved state which can be said to be determined by the
this section. Thus the forward model can consistently fit thetrue value of that quantity (with the rest being determined by
measurements more accurate|y than predicted by the meéhe Choice Oh priori and the Value Of the Other elements Of

surement covariance matrig, and the retrieved uncertain- the state). For a perfect retrieval systémvould be an iden-

Itis also very clear that the retrieval has failed to accuratelythat the corresponding state element is entirely determined
by thea priori and values of the other state elements. The

estimate the true fields for states with low optical and large \ _
effective radius. To further explore why this is the case, welrace of the averaging kernel also gives the degrees of free-
will examine the retrieval statistics furtheRodgers2009 ~ dom for signal for the given retrieval. This quantity gives
defines the averaging kernel for the maximanposteriori the r_1umber of pieces of mdependent |nf_ormat|or_1 retrieved.
solution as It is important to realise thai; is not a direct estimate of

the information content of the measurement, but rather in-
T (G BT -1, dicates how much the measurement is able to improve our
A=5K (KSaK +S€) K. (16) prior knowledge of the state. Figudeshows the diagonal
elements ofA, as well the overald; corresponding to the re-
3The cost function reported by ORAC is normalised by the num- trieval shown in Fig3. The first thing to note is thak < 2.5,
ber of measurements. If it were not, the degrees of freedom wouldndicating that the retrieved state is always somewhat influ-
equal the number of measuremerkRedgers2000). enced by the priori. Looking at Fig.4a—c, we can see that

This matrix gives the sensitivity of the retrieved state to per-
turbations in the true state,
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Fig. 3. The retrieval results when the GRAPE algorithm is applied to the simulated data field with the correct (OPAC maritime-clean class)
aerosol optical propertiega) and (b) show the retrieved optical depth and its uncertainty, respectively. Simi(ajland (d) show the
retrieved effective radius and its uncertainty, whié and (f) show the surface reflectance and its uncertai(dgy.shows the value of the

cost function, Eq.11), at the solution an¢h) shows the number of iterations required for convergence. White regions indicate where the

retrieval failed to converge.
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Fig. 4. The information content of the retrieval when applied to the simulated data field with the correct (OPAC maritime-clean class) aerosol
optical properties.(a)-(c) show the diagonal elements of the averaging kernel for optical depth, effective radius and surface reflectance,
respectively(d) shows degrees of freedom for signal (i.e. the trace of the averaging kernel) for each retrieval.

in general optical depth is most sensitive to the measurementhe effective radius errors show a similar pattern, although
as is effective radius at large optical depths, whereas the suthis is not apparent in Fighb, due to the relatively coarse
face reflectance is mostly dominated by ¢hpriori value. x-axis scale.

It can also be seen that the regions of the domain where The surface reflectance error distribution shows somewhat
the retrieval has done least well (in particular, where opticaldifferent behaviour, since the retrieval used the correct value
depth is low and effective radius high) correspond to regiongfor the first guess and priori. In addition, the surface re-
whered; is low and the effective radius shows poor sensi- flectance is retrieved on a linear scale, while thg jag op-
tivity to the true state. In such circumstances the effectivetical depth and effective radius are retrieved. Thus the maxi-
radius is held at tha priori value and this results in an error Mum of the retrieved surface reflectance error distribution is
in the retrieved optical depth, despite its good sensitivity todefined by the priori error (while the retrieved error for op-
the true state. tical depth and effective radius depends on the value of the
Figure5 shows the distribution of retrieved error estimates retrieved state and hence has a relative, rather than an abso-

lute, maximum). Itis clear from Fighc that the retrieval has

for each of the state elements, along with the distribution of ) .
. : somewhat narrowed the confidence interval on the value of
the difference between the retrieved and true states. It can
. . . .surface reflectance for many states, but many more have not
be seen that most retrievals provide optical depth to a precis

. . o . ~’been improved at all.
sion between 0.05 and 0.15, while the majority of effective . :
radii have a precision of less than 0.1. It is clear that for most Taken together, Figs, 4 andStell us several things about

states, the retrieved optical depth is more accurate than indit-he retrieval:

cated by the retrieved error estimate. As with the low values _ oyerall, the retrieval is working well as there is an im-
of the cost function shown in Fidg, this can be explained provement in our knowledge of almost all states (given
by the fact that no measurement noise was added to the simu-  py the narrowing of the uncertainties from thaipri-

lated radiances used in the retrieval. The retrieved error esti- i values) and the retrieved states almost always agree
mates give thed confidence interval on the retrieved values, with the true value within uncertainty estimates.

given the measurement aadoriori uncertainties: since the

simulated measurements actually contain no error, the accu- — The retrieval works best a high optical depths or effec-
racy of the retrieval is substantially better than this estimate. tive radii between approximately 0.015 and 0.10.
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Fig. 5. The black line shows distribution of retrieved uncertainties for each of the state parameters (i.e. standard deviations taken from the
state covariance matri%). The red line shows the distribution of the actual errors (absolute difference between true and retrieved state).
Note that 0.01 corresponds to thgriori error in the surface reflectance, which defines an upper limit on the retrieved uncertainty. The bin
for the largest value includes all values greater than that bin, e.g. optical depthssefrd& are included in the rightmost column of plot

(a).

— Where the retrieval is working well, optical depth and retrieval is able to compensate for errors of this scale and fit
effective radius are both retrieved with a precision of the measurements as well and as quickly as when the correct
<0.1. a priori surface reflectance is used.

Fig. 6 shows the results of increasing the first guess and

] h i k a priori surface reflectances to 0.05. In this case it is clear

mately 2.5 independent pieces of information t0 the ya¢ the retrieval is unable to compensate for the larger dis-

system at this level o& priori constraint —i.e. the re-  orenancy particularly at either large, or the smallest effective

trleyal IS under-con_s'gramed, since we are attemptlng tOradii, where the retrieved state is grossly different to the truth
retrieve more quantities than we have pieces of informa-

; and the retrieved surface has not moved from dhgriori

tion from the measurement. value. Despite this the retrieved uncertainty estimates are

similar to those in Fig3. Unsurprisingly, the retrieval deals

with an error in the assumed surface reflectance better when
the aerosol optical depth is high, as in this case the relative
contribution of the surface to the overall signal is reduced.

Figure 6g shows that for low effective radii, the cost func-

— The strange feature in the effective radius fields abovetion is slightly higher, suggesting a poorer fit to the measure-
a true effective radius of 1um (particularly evident ments; however for much of state space the cost is either sim-
in Figs. 3d and4b) indicates a region of state space ilar or smaller than when the correatpriori is used. This,
where effective radius is poorly constrained by the mea-along with the low retrieval-error estimates, demonstrates the
surements. Corresponding patterns in the surface redegeneracy in the retrieval system: the effect of the incorrect
flectance fields indicate some degeneracy between thessurface reflectance can be compensated for by changes in op-
two variables. It is also notable that the optical depthtical depth and effective radius.
retrieval remains quite stable throughout this region of These results indicate that the retrieval is able to compen-
state space. sate for errors in tha priori surface reflectance of the order

of the a priori error, but not much larger than this. Unfor-

The ficf::uracy of th:‘ priori surfacfe rr]eflect_anc%also has a ynately the retrieved state is still consistent with the mea-
strong influence on the accuracy of the retrieved parametersy, .o ments and priori (as indicated by very similar retrieval

Although the GRAPE algorithm retrieves the magnitude of costs) in both of these cases, meaning that it would not be

thg sur_face refle_ctqnce, |tl|s tightly constralneq t_o ahari- ossible to detect instances of pagoriori surface character-
on. This co_nstraln_t IS requwed because of the Im_"ted amoumipsation from the retrieval itself. However, it should be noted
of information available in the measurements —if the surfacy, ¢ cases of grossly inaccurate surface characterisation will
reflectar)ce IS not tightly con_stramed, th? retrieval is Prone o, evident from the retrieval results, since it will not be pos-
converging on highly unrealistic states: i.e. the cost functiongjp|e o correct for the surface reflectance by altering aerosol

hashmuluple. minima. (‘jl’he effects of.a ?]'01 error ('de' efqﬁal parameters. In such cases the retrieval will fail to converge,
to thea priori error) and a 0.03 error in the magnitude of the or will return an anomalously high cost.

a priori and first guess surface reflectance have been inves-
tigated. A 0.01 error in surface reflectance produces results
almost identical to those shown in Fig. showing that the

— The measurement is adding between 1 and approxi

— Surface reflectance is poorly retrieved, with ghpriori
accounting for 50% or more of the retrieved value. Op-
tical depth and effective radius show good sensitivity to
the true state throughout most of the range.
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3.2 Forward model errors Table 3. The range of viewing angles and particle properties used

The termf d del fers to i ies that in comparing DISORT and the GRAPE algorithm forward model.
e termiorward model errorrelers fo inaccuracies that re- ¢ range of viewing angles has been chosen to be typical for the

sult from incomplete or incorrect modelling of the relevant p1sR instruments.
physical processes by the forward model. In the case of
ORAC, these can be d|V|ded II’ltO fOUI’ ma'n Catego”es Aerosol Aerosol Solar Instrument Relative

. m h ing f h li optical effective zenith zenith azimuth
1. Errors in modelling the scattering from the aerosol it- depth radius angle angle angle

self; in particular, from the assumption of sphericity im-
plicit in the use of Mie scattering.

0.06-1.0 0.02-7.2om 36.0-72.06 0.0-22.3 0.0-162

2. Errors resulting in the discrete ordinates radiative trans-
fer approach, including the assumption that the surface

acts as a Lambertian reflector and the plane-parrallel apThe calculation was repeated for a wide range of view-
proximation. ing geometries, aerosol loading and surfaces ranging from

desert to dense forest. Results show that the Lambertian
3. Assumptions made in the formulation of the forward approximation generally over-estimates the directional sur-
model expression (E40) used in the retrieval. face reflectance (which will dominate the TOA signal from
the surface for typical background aerosol loadings) with
. . the mean difference being@®6 (median 14%) of the re-
up tables for the transmission and reflectance terms N ctance. or. in absolute terms 0.002 (0.001). For a sur-
Eq. 10). Y ; oA ;
face reflectance of 0.25 (typical for a bright desert surface)
As mentioned in Sec®, the first of these sources of error the TOA reflectance using the Lambertian approximation is
is not addressed in this paper, although work is ongoing towithin 0.015 of the BRDF for all viewing geometries.
investigate its effects and incorporate non-spherical scatter- The latter two of the error terms listed at the beginning of
ing into the ORAC system. The modelling of atmospheric this section can be quantified by comparing TOA reflectances
gas absorption, emission and Rayleigh scattering is anothetomputed directly from DISORT to those computed using
potential source of error, but the authors are confident thathe look-up tables and the forward model equation. Point 3
this is a minor contribution, particularly in the case of the can be investigated by comparing the two qualities for view-
ATSR instruments and SEVIRI, where the radiance error dugng geometries and aerosol properties which correspond to
to the assumptions made in the forward model is significantlypoints in the look-up tables (so that no interpolation is re-
smaller than the random error on the measurements. Simiquired). Point 4 can then be examined by doing the com-
larly, the error introduced by the plane-parrallel approxima-parison for values which lie half-way between the look-up
tion will be minor, as the retrieval is not run when the view- table points (where interpolation errors can be expected to
ing geometry is such that this approximation is inaccurate. [toeé maximum). This procedure has been followed for 4500
should be noted that forward model error is unavoidable, espoints across a wide range of viewing geometries and parti-
pecially if the retrieval algorithm is to be reasonably compu- cle states, as summarised in TaBle
tationally efficient. As long as the sum of the forward model ~ For values coincident with the look-up table points the for-
errors are kept well below the measurement noise level, howward model and DISORT agree to withir0.2% for 95% of
ever, their effects will be minimal. viewing geometry and aerosol loading combinations, and al-
The error due to the DISORT radiative transfer will be ways agree to within:0.6%. There is, on average, a small
dominated by the Lambertian surface reflectance approximapositive bias apparent in the forward model expression, with
tion, except at high zenith angles 75°) where the plane- the mean difference beingI% (median 14%). However,
parallel assumption of DISORT breaks down. This is a well it is clear that for a Lambertian surface, E§0) reproduces
known limitation of the DISORT method and is avoided by the DISORT modelled TOA radiances well.
only running the retrieval on data which meets the plane par- Comparisons made for values where the effects of look-up
allel criterion. In order to investigate the effect of the Lam- table interpolation are maximised show that the interpolation
bertian surface approximation, DISORT was used to modekrror can far out-weigh that from the approximations made
TOA reflectances (following a similar procedure to the cal- in Eg. 10. In some instances, it is possible for interpolation
culation of the look-up tables) for both a bi-directional sur- to introduce over 5% error into the modelled radiances, al-
face reflectance and an equivalent Lambertian reflectancdéhough for the vast majority of viewing angle/aerosol load-
The MODIS BRDF product was used to provide a variety ing combinations the discrepancy is much lower than this.
of surface reflectances which span the typical range for landFor this worst case ensemble of points the mean difference
surfaces (the ocean surface reflectance has been neglectegitween the forward model and DISORT-€.99% (me-
in this analysis, but it is generally far more isotropic than dian—0.72%).
land surfaces, except for areas effected by strong sun-glint).

4. Interpolation errors due to the use of discrete look-
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Fig. 6. Similar to Fig.3. In this case the retrieval has been run using the correct aerosol optical properties, but the first gagssoaind
surface reflectances were set to 0.05, while the simulated radiances were generated with a surface reflectance of 0.02.
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Smith et al.(2002 quotes errors on ATSR-2 visible/near- standard Gaussian error statistics. Indeed it is not even mean-
infrared radiances as being between 1 and 5%, based on praigful to attempt to define “typical” values for such errors,
launch calibration of the instrument and subsequent vicariousince their effects are likely to be so variable. Thus, the ap-
calibration of the visible channels using bright targets. Henceproach taken here is to test the retrieval in situations where
both the Lambertian surface approximation and look-up ta-the sources of error are completely known, in order to pro-
ble interpolation can introduce errors which are larger thanvide indications of the magnitudes of each effect.
the measurement noise, with typical error values of the same
order of magnitude. 3.3.1 Incorrect aerosol properties

3.3 Forward model parameter error Figure 7 shows retrieval results when the GRAPE algo-
rithm is applied to simulated radiances produced using the

Forward model parameter erroresults from uncertainties aritime-clean aerosol class from the states shown inig.

in the parameters used in the computation of the forwardyt ysing the OPAC desert dust aerosol class in the retrieval.

model that are not included in the retrieval process. Thergt s encouraging to see that the optical depth field still shows

are two main inputs into the modelled radiances which arey reasonable agreement with the input field. Overall how-

most likely to significantly affect the output radiances: ever, differences between the true and retrieved fields are

1. The aerosol properties used in the calculation of themuch greater than when the correct aerosol properties are
look-up tables (including the assumed size distribu-used in the the retrieval, particularly in effective radius. In

tion, refractive indices and vertical distribution of the this particular case, the use of the incorrect aerosol param-
aerosol). eters has resulted in differences in optical depth of between

10 and 30% for most states, while the effective radius shows

2. The spectral dependence of the surface reflectance. typical differences of 100% or more. Despite this, the re-
In this section the effects on the retrieval of errors in a trieved _uncerta|nt|es suggestahlgherde_gree of confidence in
range of forward model parameters will be examined with the retrieved values than was the case with the correct aerosol

a series of retrievals on simulated data, similar to that pre-£12ss, with the uncertainties on optical depth in particular be-

sented in SecB.1 The effects to be examined are: ing much smaller than in Fig. Although this may seem a
counter-intuitive result, it must be remembered that it simply

1. The effect of using an inappropriate aerosol class. Thendicates that the radiance shows a stronger dependence on
GRAPE algorithm does not include any ability to re- aerosol optical depth for the desert aerosol class than for the
trieve the composition of aerosol (aside from that im- maritime clean one. If the assumptions made in the retrieval
plied by the change in composition that accompaniesare incorrect, the retrieved uncertainties cannot be assumed
a change in effective radius) — it relies entirely on the to be an accurate reflection of the acutal error in the result.
accuracy of assumed optical properties, such as those Qverall the effect of assuming desert aerosol in place of
provided by the OPAC database. maritime can be summarised as resulting in dramatic errors

2. The effect of incorrect assumptions about the aerosolin retrieved effective radius, while the optical depth shows

size distribution. Although the aerosol effective radius smaller perturbations. Itis clear from Figthat the retrieved
is retrieved, the form of the size distribution is fixed (to state alone does not provide enough information to determine

that defined in the OPAC database, for example). whether the f_;lerosol class used in the retrieval is appropri-
ate — the retrieval has converged to reasonable values, with

3. The vertical distribution of aerosol used is an assumedJow costs, for the majority of the states tested. One might
fixed profile. One might assume that the TOA radianceexpect that if the aerosol optical properties assumed within

in the visible is largely insensitive to the height distribu- the retrieval are incorrect, the forward model would not be
tion of aerosol, but this should be quantified. able to provide a good fit to the measurements, resulting in

4. The effect of incorrect mptions about th ir Ithe cost function having a higher value at the solution. How-
- 1€ eliect ot ncorrect assumptions about e Spec aever, there is enough degeneracy in the system to allow incor-
dependence of the surface reflectance. Although th

Fect assumptions about the optical properties of the aerosol to

GRA.PE algorithm 1S gble to r etrieve ;urface re fle_ctancelead to a retrieval which is consistent with the measurements
to a limited degree, itis only its magnitude which is per- anda priori

mitted to vary. The spectral dependence is fixed aathe If the assumed aerosol properties are very far from the

priori value. truth however, the retrieval breaks down completely. For in-
Errors in any of these parameters will result in inaccuraciesstance, applying the highly absorbing OPAC urban aerosol
in the retrieved aerosol parameters. However, due to the norelass to the simulated radiances generated from the maritime-
linearity and complexity of the effects, and lack of knowl- clean class, results in the retrieval failing to converge for
edge about the accuracy of any one of them for a given remost high optical depths and those states which are retrieved
trieval, it is not practical to attempt to characterise them withhave very large uncertainty estimates (on the order of 100%
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Fig. 7. Similar to Fig.3, except in this case the retrieval has been done assuming the OPAC desert aerosol class rather than the maritime-clean
one. Plotqa) and(b) show the retrieved optical depth and its uncertaifdyand(d) show the effective radius and its uncertainty, while

(e) and(f) show the surface reflectance and uncertaifdgy.shows the cost function at the solution &l gives the number of iterations
required for convergence.
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or more in optical depth). However, even in such an extreme The two retrievals show strong similarities, with optical
case, when the retrieval has converges it has does so to a statepth showing average differences of 4% and effective radius
with a low cost — again demonstrating the high degeneracy of7%. These differences indicate that the retrieval is slightly

the problem. sensitive to the height distribution of the aerosol. The effect
is most notable at large effective radii, but unlike all the other
3.3.2 Aerosol size distribution effects examined in this study, the perturbation to the optical

depth is comparable that seen in the effective radius (with

The size distribution of an aerosol population can have goptical depth differning by as much as 20% at large effective
great impact on its optical properties, particularly for popu- radii). This is due to the interaction of the aerosol scattering
lations dominated by larger particles. Incorrect assumptionvith the background Rayleigh scattering by air molecules.
about the size and number of modes in an aerosol distribut larger particle sizes the aerosol scattering phase function
tion used to model the TOA radiance can thus be expectedecomes more peaked in the forward direction, thus a greater
to have a significant impact on retrieved aerosol propertiesProportion of the downwelling solar radiation is scattered to-
To investigate the scale of such errors simulated ATSR-2 rawards the surface where, due to the low surface reflectance
diances were produced in the same way as in Settbut ~ Used in the simulations, it is likely to be absorbed. If the
using an aerosol class consisting of a log-normal distributior@erosol layer is elevated, there is a layer of Rayleigh scat-
of sea salt particles (as defined by the accumulation modéering between the aerosol layer and the surface. Due to the
sea-salt component defined in OPAC). The retrieval was therSOtropic nature of Rayleigh scatter, this will effectively in-
run on these data using a bi-modal aerosol class consisting &fease the reflectance below the aerosol and hence produce
two log-normal sea-salt distributions (with the second modehigher TOA radiances. Thus if the forward model incorrectly
being defined from the OPAC coarse mode sea-salt compomakes the assumption of an elevated aerosol layer, it will
nent). The results of this retrieval are given in Fgy. It ~ over-predict the TOA radiance for a given optical depth, re-
is clear that the effect on the retrieved state can be drasticSulting in the retrieval under-predicting optical depth to com-
and the retrieval has failed to converge at all for states with Pensate. This will only be noticeable at large aerosol effec-
high optical depth and low effective radius. As might be ex- tive radii, because at lower effective radii the aerosol phase
pected it is the retrieval of effective radius itself which shows function becomes more isotropic. This effect will also de-
the greatest deviation from the truth: the retrieved field hasPend on viewing geometry, due to the angular dependence of
become nearly flat. Again, for much of state space, the rethe phase function of large particles. For example, for near-
trieved uncertainty estimates for the effective radius give lit- 0ack scattering geometries, tests have shown the effect is not
tle indication of the inaccuracy of the retrieval. Despite this @PParent, because the signal is dominated by the strong back
however, the retrieval of optical depth shows a remarkableScattering peak of the aerosol phase function.
robustness: indeed for values less than approximately one, it Although the retrieval is not very sensitive to the aerosol
is as accurate as the retrieval using correct assumptions.  heightitself Marsh et al(2004 shows that the TOA radiance
The improvement in the retrieval performance at larger ef-is dependent on the height distribution of aerosol properties.
fective radii can be attributed to the coarse mode dominating¥@riation of aerosol properties with height leads to effects
the bi-modal distribution used in the retrieval, which effec- Similar to those described above, but to a much greater de-
tively makes this distribution more mono-modal. However, 9"€€. An example analogous to the Rayleigh scattering effect
the effective radius retrieval is still poor, and as both the seadiscussed above would be that of a layer of absorbing aerosol
salt modes have the same prescribed width, this indicates th&@verlying scattering aerosol compared to situation where the
the retrieved effective radius is very sensitive to the form of tWo aerosol are mixed in a single layer. In the former case

the size distribution. the overlying absorbing layer will absorb a greater propor-
tion of the incoming solar radiation and upwelling radiation
3.3.3 Aerosol height distribution scattered from the scattering aerosol below than would be the

case if the aerosol were in a mixed layer, thus the TOA ra-
Figure 9 shows the difference between two retrievals usingdiation will be reduced. The size of this effect will depend
the same set of simulated ATSR radiances, created with thetrongly on the amount and distribution of each aerosol and
OPAC desert-dust aerosol class, but with differing assumpis thus difficult to quantify. Howevenviarsh et al.(2004)
tions about the height of the aerosol in the atmosphere. Irshows changes of up to 50% in TOA radiance over dark sur-
calculating the radiances, the aerosol was assumed to ligaces at high optical depths. Itis clear that such effects could
between 0-2 km (corresponding to the lowest two levels ofhave drastic effects on the retrieval of aerosol properties. In
the DISORT forward model), with 60% of the aerosol opti- extreme cases the retrieval would fail, as it would not be pos-
cal depth lying between 0—-1km. Two retrievals have beensible for it to reproduce the measurements, but for smaller
performed on these radiances, the first assuming the corregerturbations, it is likely that the result would be a highly
height distribution, the second assuming the aerosol lay in anaccurate retrieval of optical depth and effective radius.
layer between 4-5 km altitude.
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3.3.4 Spectral surface reflectance tween 60 and 100% of the priori values. It should be em-
phasised that these values do not represent the accuracy of
The final parameter to be examined is the spectral shape daderosol properties derived from real measurements using this
the surface reflectance. This was tested by generating sinretrieval scheme, but represent how well constrained the re-
ulated AATSR radiances using the OPAC maritime cleantrieval of each of these parameters is, subject to the approxi-
aerosol class with surface reflectances of 0.02, 0.016, 0.01ghations and assumptions made in the retrieval. To gauge the
and 0.008 at 550, 670, 870 and 1600 nm, respectively (i.eaccuracy of the GRAPE aerosol products comparisons of real
the reflectance has been reduced by 20, 40 and 60% from theata to ground-truth measurments is required. This analysis
550 nm value in the subsequent channels). The retrieval wais presented bffhomas et al(20095.
then applied to the resulting data assuming a spectrally flat The degrees of freedom for signal and the averaging ker-
surface reflectance of 0.02 in all channels. Figl@eshows nel of the retrieval solution have been examined. At high
that the retrieved optical depth and effective radius fields areaerosol optical depth and/or low aerosol effective radii, the
almost as close to the input data as is the case when the reacheme shows between 2-3 degrees of freedom, showing
trieval is run with correct assumptions. The retrieved 550 nmthat the problem is under constrained. For the lowest opti-
surface reflectance shows that the retrieval has produced @al depths, the degrees of freedom drops to approximately
lower reflectance at this wavelength in order to compensaté. and this poorly constrained region extends to higher op-
for the over-estimate in reflectance at lower wavelengths protical depths for larger effective radii. Optical depth shows
duced by the assumed flat spectral shape. It should be notatle greatest sensitivity to its true value for all states except
that the sensitivity to tha priori 0.55um surface reflectance those with the lowest optical depth, where it is the surface
discussed in SecB.1 will limit the ability of the retrieval to  reflectance. Retrieved effective radius shows good sensitiv-
deal with very large discrepancies in the surface reflectancéty to the true value in the region of state space with 2—3
spectrum, as the algorithm is unlikely to retrieve a surfacedegrees of freedom, but this sensitivity drops to zero for the
reflectance outside therla priori confidence interval. lowest optical depths. Surface reflectance shows relatively
poor sensitivity, especially a higher optical depths. These
patterns of measurement information content are reflected in
4 Conclusions the retrieved values of the state, and its dependence on the
a priori constraints. Thus, errors in tlgepriori surface re-
An optimal estimation retrieval of aerosol properties from flectance which are greater than the a priori error esti-
visible/near-IR satellite imagery, part of the Oxford-RAL mates cannot be corrected for by the retrieval and result in
Aerosol and Cloud retrieval scheme (ORAC), has been prepoor estimates of optical depth and effective radius.
sented. The algorithm was developed to work within the Errors due to the approximations made in the forward
ORAC cloud retrieval scheme for application to the ATSR model, such as the use of a Lambertian land surface re-
series of instruments and SEVIRI, but should be applicableflectance in DISORT and the interpolation of the look-up ta-
to the majority of near nadir viewing visible/near-infrared ra- bles used, have been found to result in errors in forward mod-
diometers. The algorithm is based around a forward modeklled radiance that are typically of the same order of mag-
using look-up tables calculated using the DISORT radiativenitude as the measurement noise of the ATSR instruments
transfer method with predefined aerosol properties. The re¢~1-5%), and can produce maximum errors of up-t6%.
trieved parameters are aerosol optical depth at 550 nm, th&his is not ideal, as it could result in biases in the retrieved
aerosol effective radius and the surface albedo at 550 nm (thparameters. Although not implemented in time for process-
spectral shape of the surface is fixed). ing of the version 3 GRAPE products, a new ORAC forward
Retrievals using simulated radiances have been used to asmodel has been created which uses a BRDF description of
sess the sensitivity of the retrieval, as well as its susceptibilthe surface reflectanc&lfomas et aJ.2009g, while new
ity to error in assumptions made in the forward model (for- look-up tables with a finer spacing have been generated to
ward model error) and non-retrieved forward model parame-address the interpolation errors. These improvements have
ters (forward model parameter errors). The retrieval is underreduced the associated errors to well below the measurement
constrained, requiring the surface reflectance to be tightlynoise threshold of the ATSR instruments.
constrained bya priori information. If the assumed non- A more fundamental limitation of ORAC, which it shares
retrieved aerosol properties aagriori surface reflectances with all satellite aerosol retrieval algorithms, is its depen-
are correct, optical depth is retrieved to a precision of ap-dence on assumptions regarding the aerosol state. A vari-
proximately 0.01 (with a range between approximately 0.05ety of perturbations to the assumed aerosol properties and
and 0.14). The uncertainty on the retrieved effective radiusthe spectral shape of the surface reflectance have been tested
depends strongly on its value, with typical errors being ap-with the GRAPE algorithm using simulated ATSR-2 data.
proximately 50%. Despite the tiglat priori constraint, the  Several conclusions can be drawn from the results of these
precision of the surface reflectance is improved somewhatests. The aerosol optical depth is, in general, a far more ro-
by the retrieval, with post retrieval error estimates being be-bustly retrieved parameter than aerosol effective radius: in all
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Fig. 10. Similar to Fig.7, except in this case the simulated radiances have been produced using a surface reflectance that decreases with
increasing wavelength, while the retrieval as assumed a spectrally flat surface reflectance.
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tests except for perturbing aerosol layer height, the change iwith each other. At present, most satellite derived aerosol
effective radius was far greater than in optical depth. products show correlations with each other00.5 or less

The retrieval was found to be somewhat sensitive to all(Kokhanovsky et a).2007 — without a contrived agreement
changes tested, with the greatest effects being caused lLig the assumptions used in different algorithms, it is unlikely
changes to the aerosol size distribution and assumed aerosthlat this can be improved upon, and probably reflects the true
class (a combination of differing size distribution and com- accuracy of remotely sensed aerosol properties.

position). The lowest sensitivities were found for changes toA knowledgementsThe work presented here was supported by
the spectral shape of the surface reflectances and the height 81{; European Commission Framework 5 project PARTS the NERC

the aerosol layer. In the case of surface reflectance spectru GARD project and the ESA Globaerosol project. The NERC

it was found that the aerosol properties (optical depth andsrapE project funded the creation of the GRAPE data-set.
effective radius) were well retrieved, but that the retrieved

surface reflectance was offset. Also, although the retrieval isdited by: O. Torres
not particularly sensitive to changes in the aerosol height di-
rectly, it will be sensitive to changes in aerosol composition
with height, due to the large changes in TOA radiance that
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