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A
 s is the case in many parts of the world, agri- 

 cultural production in California faces the dual  

 challenges of growing demand for limited water 

resources and increasing interannual variability in 

rainfall and water availability. As a result, both the 

state and its agricultural community recognize 

the need to develop sustainable long-term water 

management strategies. For example, in response 

to the recent multiyear drought that has severely 

depleted both surface and groundwater stores, the 

California Department of Water Resources enacted 

the Sustainable Groundwater Management Act 

(SGMA) in 2014, mandating measures to curtail 

the severe overdraft of water in regions dependent 

on groundwater resources. At the same time, many 

in the agricultural community have taken proactive 

steps to develop and implement robust water man-

agement plans that both reduce consumptive water 

use and enhance resilience against future droughts 

and water shortages. As an example, producers of 

wine grapes—a California crop valued at nearly 

$6 billion annually—have actively sought tools to 

better monitor crop water status and manage water 

use.

Currently, the irrigation management decisions for 

many California crops are based on a combination of 

in situ observations of soil moisture, remote sensing–

based estimates of normalized difference vegetation in-

dex (NDVI), and the application of the Food and Agri-

culture Organization of the United Nations (FAO) crop 

model using crop coefficients that have been tuned 

for specific crops (Allen et al. 1998). Unfortunately, 

these methods are not sufficiently robust, particularly 

for highly structured canopies such as vineyards and 

tree orchards. They cannot accurately separate crops 

and the combined interrow soil and cover crop water 

use, and the crop coefficients are not easily adjustable 

for stressed conditions (e.g., Ting et al. 2016). As a 

result, significant errors in the timing and amount of 

irrigation relative to crop water needs have led to an 

overprescription of irrigation applications. Moreover, 

later in the growing season when deficit irrigation is 
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preferred to conserve water, ensure crop quality, or 

facilitate harvest, the current approach cannot reliably 

determine the degree of crop stress. This has led to the 

development of thermally based methods for irrigation 

scheduling (e.g., Bellvert et al. 2015, 2016)

In 2012, researchers from E. & J. Gallo Winery 

approached scientists with the U.S. Department of 

Agriculture Agricultural Research Service (USDA 

ARS) Hydrology and Remote Sensing Laboratory 

(HRSL) seeking advice on practical methods for using 

remote sensing from satellites or airborne systems to 

guide irrigation decisions. Critical decisions in wine 

grape production include when to begin irrigating 

in the spring and the timing and amount of water to 

apply during the growing season that balances vine 

health with carefully timed periods of mild stress to 

improve berry quality for wine production. Spatially 

detailed information regarding vine stress variations 

across the field is also needed to ensure the judicious 

application of water only where it is needed. The 

scientists at E. & J. Gallo Winery realized that accurate 

maps of evapotranspiration (ET) at daily to weekly 

increments and subfield spatial resolutions could help 

both reduce water use and enhance crop quality.

This collaboration has evolved into the ongoing 

Grape Remote Sensing Atmospheric Profile and 

Evapotranspiration eXperiment (GRAPEX) proj-

ect and has been expanded to include personnel 

from other USDA ARS laboratories, the National 

Aeronautics and Space Administration (NASA), 

universities, and industry. The ultimate goal of the 

project is to provide wine grape producers and, in 

the longer term, fruit and nut orchard growers with 

the tools needed to generate high-resolution ET 

data that can be used to guide water management 

decisions. These tools will have the advantage over 

the current “business as usual” approach for assessing 

water needs by being applicable year-round and by 

providing water-use information with higher spatial 

and temporal detail. The tools will also differentiate 

between the water used by the grass cover crop, active 

early in the growing season, and water uptake by the 

grapevines themselves. In addition, the project will 

demonstrate the utility of using very high-resolution 

imagery collected via unmanned aerial vehicles 

(UAVs) at critical times during the growing season 

to assess in-field variability in vine condition and 

facilitate precision management.

The two-source energy balance (TSEB) developed 

by HRSL scientists and colleagues takes advantage of 

land surface temperature (LST) measurements from 

thermal infrared (TIR) imagery to monitor ET and 

has the potential to provide additional information 

regarding crop stress and soil moisture conditions. 

The model framework is well suited to the goals of 

the GRAPEX project because it partitions evaporative 

fluxes between the crop canopy and substrate surface 

(in this case, the soil or cover crop between the vine 

rows). TSEB can also be run across a range of spatial 

scales: from subfield resolutions using airborne data to 

larger scales using satellite imagery from both polar-

orbiting and geostationary platforms. Nonetheless, 

the unique canopy architecture of vineyards and 

orchards, which is characterized by strongly clumped 

vegetation separated by significant interrow spaces 

containing bare soil or a cover crop, leads to several 

intriguing modeling and measurement challenges. 

First, the ET models must be able to partition the bulk 

moisture flux and crop stress derived from remote 

sensing–based products (typically at resolutions of 

30 m or coarser) between the vine canopy and the 

interrow—environments that will likely have very 

different thermal characteristics and atmospheric 

couplings. Also, the structural characteristics of the 
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canopy can significantly inf luence the turbulent 

flow and exchange of heat and water vapor from the 

vineyard, for example, by imposing dependencies on 

wind direction. Finally, radiation transport through 

structured canopies can be complex, leading to highly 

variable shadowing and soil surface fluxes that can 

confound simple modeling approaches.

To address the effects of these unique characteris-

tics, the standard form of the TSEB model will require 

modification to optimize its performance over highly 

structured crops. Identifying the key factors affecting 

exchange processes over vineyards will guide the 

refinements to the remote sensing–based modeling 

scheme. This project uses in situ data to investigate 

the physical processes controlling turbulent transport 

and exchange in highly structured canopies. The 

GRAPEX project also seeks to use ground-based and 

UAV data to improve the model parameterization and 

design for routine application using satellite imagery. 

One advancement under investigation is the fusion 

of ET estimates retrieved using satellite data with 

differing spatial and temporal resolutions to generate 

“ET datacubes,” that is, a gridded time series dataset 

with both high spatial (30 m) and high temporal reso-

lutions (daily time steps) that can be used to inform 

daily water management decisions at field scales.

This paper provides an overview of the measure-

ments collected during GRAPEX along with some 

preliminary analyses conducted with the data col-

lected to date. We also describe the initial evaluation 

of the modeling system and discuss plans for future 

research.

SITE AND DATA DESCRIPTION. Study site 

and vineyard management. The data used to refine and 

evaluate the models were collected in two pinot noir 

blocks located within Borden Ranch vineyard near 

Lodi, California (38.29°N, 121.12°W), in Sacramento 

County (see Fig. 1), as part of the GRAPEX project. 

The two adjacent vineyards differ in the age and 

maturity of the vines, with the north and south 

vineyards being 6 and 3 years old, respectively, at the 

beginning of the 2013 growing season. The manage-

ment of the two vineyards—for example, the timing 

and amount of irrigation, pruning activities, cover 

crop, and application of agrochemicals—can also 

differ between blocks and from season to season. 

Intensive observation periods (IOPs) described below 

occurred at different cover crop and vine phenologi-

cal stages, namely, flowering (IOP1), fruit set (IOP2), 

and veraison (IOP3).

In both fields, the configuration of the trellising 

system and interrow (Fig. 1) is the same. The vine 

trellises are 3.35 m apart and run east–west. There is 

a vine planted every 1.5 m, with the two main vine 

stems attached to the first cordon at a height of 1.45 m 

above ground level (AGL). There is a second cordon at 

1.9 m AGL where vine shoots are managed. Typically, 

the vines reach a maximum height of 2.0–2.5 m AGL 

during the growing season with the vine biomass 

concentrated in the upper half of the total canopy 

height. The typical vine canopy width is nominally 

1 m midseason. Pruning of the vines is mainly per-

formed to remove shoots growing significantly into 

the interrow. However, the amount and timing of 

pruning has varied year to year.

Drip irrigation lines run along the base of the 

trellis at about 30 cm AGL with two drip emitters 

(4 L h−1) between each vine. In the interrow, the 

cover crop (a mixture of grasses) is approximately 

2 m in width with bare soil on either side (i.e., berm) 

approximately 0.7 m in width. The cover crop is typi-

cally mowed two to three times per year and senesces 

by early June. The berm beneath the vines is kept bare 

through the use of a herbicide.

Continuous measurements. Beginning with the 2013 

growing season, surface fluxes (including ET) and 

environmental conditions have been measured con-

tinuously at both vineyards using eddy covariance 

micrometeorological systems. These sensor systems 

are summarized in a schematic and photo of the 

tower configuration in Fig. 2. The tower at each site is 

instrumented with an infrared gas analyzer (EC150, 

Campbell Scientific, Logan, Utah)1 and a three-

dimensional sonic anemometer (CSAT3, Campbell 

Scientific) collocated at 5 m AGL to measure the 

concentrations of water and carbon dioxide and wind 

velocity, respectively. During the growing season, 

three additional sonic anemometers mounted at 2.50, 

3.75, and 8 m AGL are included on the tower to inves-

tigate effects of the canopy structure on near-surface 

turbulence. Other measurements at the tower include 

the full radiation budget using a four-component 

net radiometer (CNR-1, Kipp and Zonen, Delft, 

Netherlands) mounted at 6 m AGL; incident and 

reflected photosynthetically active radiation (PAR) 

measured via quantum sensors (LI-190, LI-COR, 

Lincoln, Nebraska) also mounted at 6 m AGL; air tem-

perature and water vapor pressure measured using 

1 The mention of trade names of commercial products in this 

article is solely for the purpose of providing specific informa-

tion and does not imply recommendation or endorsement by 

the U.S. Department of Agriculture.
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three temperature and humidity probes (HMP45C, 

Vaisala, Helsinki, Finland) mounted at 2.5, 5, and 8 m 

AGL; and precipitation measured using a tipping-

bucket rain gauge (TE-525, Texas Electronics, Dallas, 

Texas) mounted at 5.5 m AGL. Both vine canopy and 

interrow surface temperatures are measured using 

a pair of thermal infrared thermometers (SI-111, 

Campbell Scientific) mounted at 2.5 m AGL.

FIG. 1. (a) (left) A county-level map of California gives the location of the pinot noir vineyards in 

Sacramento County and (right) a Landsat-8 NDVI map showing the location of the vineyards (yellow 

boundaries) and the approximate location of the flux towers (solid yellow circles). (b) The photos 

of the vine and cover crop are indicative of their phenology during the IOPs involving an extensive 

set of ground and airborne measurements (see text). (c) The vine trellis and interrow cropping 

design and dimensions are illustrated and listed.
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Subsurface measurements include the soil heat 

flux measured via a cross-row transect of five plates 

(HFT-3, Radiation Energy Balance Systems, Bellevue, 

Washington) buried at a depth of 8 cm, soil tempera-

ture measured via thermocouples buried at depths of 

2 and 6 cm, and soil moisture content measured via 

a soil moisture probe (SDI-12 HydraProbe, Stevens 

Water Monitoring Systems, Portland, Oregon) buried 

at a depth of 5 cm. In addition, beginning in 2016, 

a second array of sensors were installed to provide 

more detailed spatial sampling of soil heat f lux 

(HFT-3, Radiation Energy Balance Systems), water 

content (HydraProbe, Stevens Water Monitoring 

Systems), and temperature under the vine canopy and 

across the interrow. This array consists of 11 sets of 

sensors deployed in a hexagonal pattern centered at 

the midrow and extended to the vines on either side. 

An additional profile of temperature, water content, 

and thermal properties was deployed with the array 

in order to facilitate the calorimetric approach for 

determining soil heat flux.

Profiles of soil water content and temperature 

are also measured under the vines at three locations 

near each f lux tower (Fig. 2) using soil moisture 

temperature probes (HydraProbe, Stevens Water 

Monitoring Systems) at depths of 30, 60, and 90 cm. 

In the north vineyard there are also soil moisture 

profile measurements at six locations using Decagon 

(MPS-2 Decagon Pullman Washington) dielectric 

water potential sensors at depths of approximately 

5, 50, 90, and 125 cm, with two Decagon 10HS large 

soil moisture sensors at 45-cm depth. Additionally, 

Decagon model G2 and G3 passive capillary lysime-

ters were installed at two interrow locations (Fig. 2) in 

the north vineyard for estimating interrow water use.

Sap-flow measurements using a thermal dissipa-

tion probe (TDP30, Dynamax Inc., Houston, Texas) at 

five locations in both the north and south vineyards 

(see Fig. 2) are collected to estimate the spatial and 

temporal variability of vine water use and status. 

The sap-flow measurements that lie within the eddy 

covariance f lux footprint are being used together 

with eddy covariance data in an attempt to separate 

interrow versus vine plant water use. The passive 

capillary lysimeter measurements in the interrow will 

also be helpful in this separation.

In the 2015 and 2016 growing seasons, flowmeter 

sensors (manufactured by Mark Battany, University 

of California Cooperative Extension viticulture advi-

sor) for monitoring irrigation (initiation and dura-

tion) were used to estimate the amount of irrigated 

water that was applied in both vineyards.

Vine and cover crop development through the 

growing season as well as throughout the whole year 

FIG. 2. (a) A photo of the tower installation and sensor locations on the tower is provided, along with (b) a 

schematic of the soil heat flux sensor measurement design (see text for details). (c) GRAPEX sensor locations 

in the north (site 1) and south (site 2) vineyards, along with leaf area sampling locations during the IOPs.
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were visually tracked using phenocams located across 

the road on the east side (see Fig. 2) starting in 2013 at 

the north vineyard and starting in 2015 at the south 

vineyard. [A video of the daily photos collected in the 

morning (~0900 local time) for the years 2014–16 for 

the north vineyard can viewed at www.ars.usda.gov 

/grapex/phenocam.] Approximately 50 m due west 

of the flux towers in the north and south vineyards, 

instrumentation was deployed to measure the surface 

energy balance following the surface renewal (SR) ap-

proach (Paw U et al. 1995). The instruments included 

a 3D sonic anemometer (81000RE, R. M. Young Com-

pany, Traverse City, Michigan), a 76-µm-diameter 

Type E fine-wire thermocouple (FW3, Campbell 

Scientific, Inc.), and a net radiometer (NRLite, Kipp 

and Zonen), deployed at 2.5 m AGL. The SR station 

design is described in McElrone et al. (2013).

IOPs. TIMING OF IOPS. Episodic and intensive data 

collections, called IOPs, were conducted at different 

vineyard phenological stages during the growing 

season (see Fig. 1b). In each growing season, the first 

IOP usually occurred in late April or early May after 

bud break (grape f lowering stage) with low vine 

cover but significant cover crop biomass. Another 

IOP often occurred in early to mid-June at the start 

of the dry season, with rapidly growing vines and 

fruit (preveraison, or berry development stage) and 

cover crop going through senescence. A third IOP 

typically occurred in mid- to late July or early August, 

with vines and fruit fully developed (veraison to 

postveraison stage) and cover crop fully senescent and 

now acting as a thatch layer. During this period the 

vines are still actively growing, but, through pruning 

and ripening of the fruit, they are now in a later stage 

of development. By late August or early September 

each year, the vineyard grapes reached the required 

sugar content and were harvested. In 2014, a fourth 

IOP was conducted in late September after harvest to 

evaluate vine and interrow cover conditions.

IOP BIOPHYSICAL OBSERVATIONS. During the IOPs, mea-

surements of leaf area index (LAI; LAI-2200, LI-COR, 

Lincoln, Nebraska), leaf stomatal conductance, 

photosynthesis, and leaf water potential were col-

lected using either a LI-COR (LI6400, LI-COR) or PPS  

(CIRAS-3, PP Systems, Amesbury, Massachusetts) 

portable photosynthesis system and a pressure 

chamber (615, PMS Instrument Company, Albany, 

Oregon) along transects across the vineyard (Fig. 2) 

to determine variability in vine biomass, water use, 

and stress. Multispectral measurements in the visible 

and near-infrared (NIR) wavelengths, along with 

leaf-level hyperspectral measurements (FieldSpec 4 

Spectroradiometer, ASD Inc., Boulder, Colorado), 

were also collected so that satellite and airborne 

multispectral retrievals could be related to in situ 

canopy conditions. Multispectral (four band) visible 

and near-infrared measurements using a CROPSCAN 

(MSR16R, CROPSCAN, Inc., Rochester, Minnesota) 

instrument mounted on a pole for measuring above 

the vine canopy were collected over vine and interrow 

areas as well as a gravel lot surrounding the vineyard 

garage and the fallow field separating north and 

south vineyards (see Fig. 2). The reflectance values 

are being used to evaluate and calibrate the airborne 

and satellite spectral observations. At the sap-flow 

sites (see Fig. 2), leaf-level hyperspectral measure-

ments were made for the same leaves used to measure 

plant conductance, photosynthetic activity, and leaf 

water potential to explore relationships between plant 

physiology and spectral response.

IOP MICROMETEOROLOGICAL OBSERVATIONS. During 

the IOPs, measurements were also collected in the 

interrow region within the north and south vineyard 

flux tower footprints to establish micrometeorological 

conditions between the vine canopies, near the sub-

strate surface. Solar radiation was measured at ground 

level to determine radiation divergence within the vine 

canopy. Specifically, solar radiation in the interrow 

was measured within 75 m of the flux towers during 

the IOPs using a transect of five to eight radiation 

sensors from Kipp and Zonen (CMP3 and CMP11), 

Eppley (PSP, Eppley Laboratory Inc., Newport, Rhode 

Island), and Apogee (SP 212, Apogee Instruments, 

Inc., Logan, Utah) installed at ground level. Multiple 

radiometric temperature measurements of the top-, 

east-, and south-facing sides of the vine canopy and the 

interrow were collected. The two near-nadir viewing 

sensors at the canopy top (SI-1H1, Apogee Instru-

ments, Inc.) were pointed north and south, while 

two additional Apogee SI-1H1sensors were angled at 

90° for viewing the north and south sides of the vine 

canopy, and two thermal-infrared sensors were east 

facing at an oblique angle for viewing the interrow 

cover crop and bare soil underneath the vines. In 2015, 

micro–Bowen ratio (micro-BR) systems (Holland 

et al. 2013) were deployed for the three IOPs. There 

were three micro-Bowen ratio systems located on 

the north- and south-facing locations under the vine 

canopy sampling the bare soil strip and a third in the 

center of the interrow. Locations of these measurement 

sites for both the continuous measurements collected 

throughout the year and observations collected during 

IOPs are depicted in Fig. 2.
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IOP UAV ACQUISITIONS. Airborne high-resolution 

(<1 m) remote sensing imagery was collected during 

several of the IOPs in 2013–16 to evaluate and im-

prove performance of TSEB applications at the satel-

lite pixel scale (30 m). In 2013, a manned aircraft col-

lected imagery at nominally 0.1-m pixel resolution in 

the visible and near-infrared and 0.5 m in the thermal 

infrared for three IOPs. A detailed description of the 

processing and analysis of the data is provided in 

Ting et al. (2016).

In the 2014–16 growing season, we moved from 

manned to unmanned systems, which are easier 

to deploy and are increasingly used in agricultural 

monitoring. The UAV system used in GRAPEX and 

its sensors are described in detail at the Utah State 

University (USU) Aggie Air website (http://aggieair 

.usu.edu/). During the IOPs, the UAV flew at a nomi-

nal altitude of 400 m AGL, resulting in 0.15-m pixel 

resolution in the visible and near-infrared bands and 

0.60-m resolution in the thermal infrared. Ground 

control points collected using a survey-grade Trimble 

real-time kinematic (RTK) GPS with subcentimeter 

absolute accuracy were used to georeference the 

imagery. Ground-based spectral and thermal-

infrared measurements of distinct land surface fea-

tures were used for image calibration. Atmospheric 

transmissivity was also collected and used to correct 

at-sensor radiances to surface values.

The manned and unmanned aircraft were em-

ployed to capture microscale spatial information 

concurrent with Landsat overpasses during the 

IOPs, facilitating detailed comparisons between 

satellite and aerial information. In addition, both 

aerial systems were flown approximately an hour after 

sunrise and during the afternoon, thus providing 

the opportunity for a more complete description of 

energy fluxes over the diurnal cycle.

REMOTE SENSING OF EVAPOTRANSPI-

RATION. Over the past decades, remote sensing 

approaches for mapping ET have advanced sig-

nificantly (Kalma et al. 2008; Wang and Dickinson 

2012), particularly surface energy balance methods 

using TIR observations of LST (Kustas and Anderson 

2009). Using LST data from geostationary and polar-

orbiting satellites, or airborne imaging systems, the 

Atmosphere–Land Exchange Inverse model (ALEXI) 

framework and associated flux disaggregation tech-

nique (DisALEXI) can be used to map ET from global 

scales for regional water-use assessments down to 

subfield spatial scales for precision agricultural man-

agement (Anderson et al. 2011). Based on the two-

source (soil and canopy) energy balance land surface 

representation, ALEXI and DisALEXI provide 

estimates of E (evaporation) and T (transpiration) 

partitioning as well as total ET. Using a multisensor 

data fusion methodology, ALEXI and DisALEXI 

can provide daily ET estimates at field-scale resolu-

tions (Camalleri et al. 2013). This modeling system 

is briefly described below.

TSEB model. The TSEB land surface energy balance 

scheme was developed to explicitly account for the 

differences in aerodynamic coupling between the soil 

substrate and the canopy layer (Norman et al. 1995). 

Figure 3 illustrates the basic set of equations used in 

TSEB to solve for the energy balance of both the soil 

substrate and vegetation canopy layers. Key inputs 

are the surface radiometric temperature T
RAD

(θ) 

at a view angle θ and the canopy cover fraction f
C
, 

which is related to the leaf area index. The system of 

equations for the energy balance of the soil/substrate 

and canopy are solved in parallel with the radiomet-

ric temperature balance equation in Fig. 3, which 

partitions T
RAD

 into effective soil (T
S
) and canopy 

(T
C
) temperatures. As part of this system, the soil 

(R
soil

) and canopy (R
canopy

) aerodynamic resistances 

are used to compute sensible heat f luxes from the 

soil and canopy surfaces (H
S
 and H

C
, respectively). 

These combine to yield the total sensible heat flux H 

determined by the temperature difference between 

the canopy air space T
AC

 and the surface-layer T
A
 

and associated surface-layer aerodynamic resistance 

R
aero

. The soil and canopy temperatures constrain the 

sensible heat fluxes, net radiation (RN), and soil heat 

flux G with the added initial estimate of canopy latent 

heat flux (LE
C
) or transpiration based on either the 

Priestley–Taylor (PT), Penman–Monteith (PM), or 

light-use efficiency (LUE) parameterization (Kustas 

and Norman 1999; Colaizzi et al. 2014; Anderson et al. 

2008). Finally, the latent heat flux from the soil (LE
S
) 

is computed as the residual flux.

Regional implementation of the TSEB. The TSEB land 

surface scheme is implemented within a regional 

model called ALEXI (Anderson et al. 1997, 2007). The 

regional ALEXI system exploits the time-differential 

morning surface temperature signal provided by 

geostationary satellites to generate coarse regional 

maps that are reasonably robust to errors in absolute 

(instantaneous) LST retrieval. The associated disag-

gregation tool, DisALEXI, uses higher-resolution 

imagery from polar-orbiting Moderate Resolution 

Imaging Spectroradiometer (MODIS) or Landsat LST 

or even airborne thermal data to disaggregate ALEXI 

fluxes to finer spatial scales. These outputs, which 
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have been validated against surface measurements, 

provide field-scale estimates of crop water use and 

stress (Anderson et al. 2004, 2007, 2011, 2012).

Multisensor data fusion. The ALEXI–DisALEXI mod-

eling system has been integrated within a data fusion 

methodology (see Fig. 4a) to combine approximately 

daily 1-km MODIS retrievals with biweekly Landsat 

(sharpened to 30 m) resolution retrievals to produce 

ET datacubes with both high spatial (30 m) and 

temporal (daily) resolution (Cammalleri et al. 2013, 

2014). The fusion is performed using the Spatial 

and Temporal Adaptive Reflectance Fusion Model 

(STARFM; Gao et al. 2006). STARFM develops spa-

tially distributed weighting factors describing the 

spectral and spatial relationship between existing 

Landsat and MODIS image pairs, which are then used 

to define the disaggregation weighting functions used 

with the MODIS images on days when Landsat data 

are not available. A new data fusion procedure under 

development will utilize higher-resolution LST data 

from the VIIRS satellite (Fig. 4b). ET fusion experi-

ments in different land-cover types are described by 

Cammalleri et al. (2013, 2014), Semmens et al. (2016), 

Yang et al. (2017a,b), and Sun et al. (2017b).

ANALYSIS AND PRELIMINARY RESULTS. 

Measurements. FLUX AND LAI OBSERVATIONS. With the 

flux towers at the north and south vineyards separated 

by only a kilometer, there were no significant differ-

ences in the meteorological forcings—namely, radia-

tion, rainfall, air temperature, vapor pressure deficit, 

and wind speed. However, we do expect to see differ-

ences in surface energy balance components between 

the north and south vineyards because of differences 

in irrigation, vine maturity, leaf area, and biomass.

Biomass variations are summarized by IOP in 

Fig. 5, showing averages of ground measurements of 

vine and cover crop LAI over the years 2013–16. The 

cover crop is most active in IOP1; however, sometimes 

overirrigation results in lateral water f low into the 

interrow causing the cover crop to thrive even in June. 

Over this time period, the total LAI of both the com-

bined vine and cover crop is on the order of 0.5 units 

higher in the north vineyard during IOP2 (mid- to 

late June) and IOP3 (late July to early August).

To more easily visualize and contrast the main 

temporal dynamics in the surface energy balance at 

the two sites, monthly daytime fluxes were computed 

from the daily observations, and then these monthly 

fluxes were averaged over the period from 2013 to 2016 

to generate normal flux curves associated with each 

site (Fig. 6). These normal curves show little difference 

in RN between the two sites at the monthly time step. 

However, it is apparent that the north vineyard (site 1) 

with greater biomass than the south (site 2) vineyard 

has lower sensible heat flux 

H and higher latent heat flux 

(LE) during the growing 

season. Most noteworthy 

is the decrease in H at site 

1 during the period of peak 

incident solar radiation, 

which is also a period when 

air temperature and vapor 

pressure deficit (VPD) are 

near their maxima. This is 

likely due to the higher bio-

mass in site 1 (Fig. 5), with 

larger evaporative response 

to VPD and resulting in a 

depression in H.

T he  nor ma l  G  f lu x 

curves also show interesting 

temporal behavior, indicat-

ing bimodal peaks: one 

in March before the vine 

leaves have emerged and the 

second in September after 

the vines have senesced. 

The higher values of G at 

FIG. 3. Schematic diagram of the TSEB model resistance network for sensible 

heat flux and the basic set of equations used to obtain an iterative solution. 

Terms include net radiation (RN), soil heat flux G, sensible heat flux H, latent 

heat flux (LE), temperature T (subscripts C and S refer to crop and soil/

substrate, respectively), radiometric surface temperature TRAD, radiometer 

viewing angle θ, fraction vegetation cover fC, soil/substrate aerodynamic 

resistance RS, canopy aerodynamic resistance RC, surface-layer aerodynamic 

resistance RA, canopy-air temperature TAC, and surface-layer air temperature 

TA. To achieve an iterative solution TSEB initially computes canopy transpi-

ration or canopy latent heat flux (LEC) using PT, PM, or LUE formulation.
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site 1 during March are likely due to more frequent 

mowing of the cover crop in that field. Bud break 

normally occurs in mid- to late March; consequently, 

there is very little if any influence on shading from 

the vines at that time.

SOIL MOISTURE MEASUREMENTS. Temporal variations in vine 

and cover crop biomass and associated rooting depths, 

along with irrigation and evaporative demand, impact 

patterns in the soil water profile. This is demonstrated 

in Fig. 7, showing evolution in soil moisture observations 

at 30-, 60-, and 90-cm depths collected beneath a vine in 

the north vineyard along with precipitation and irriga-

tion events during 2016. The 30- and 60-cm sensors tend 

to be most responsive to rainfall, which largely occurs 

in the fall, winter, and early spring, while during irriga-

tion events starting in the late spring (May) and much 

more frequently starting in early summer (June), only 

the 30-cm sensor shows a response to irrigation (and a 

few instances with the 60-cm sensor). The response at 

30-cm depth in the fall and winter may be caused in 

part by the interrow cover crop, which remains green 

and active during these periods. The 60-cm sensor 

variation in soil moisture is not as dynamic, while the 

90-cm moisture sensor registers an increase in moisture 

after multiple precipitation events in the fall and early 

winter, presumably when the vines have undergone 

senescence. Interestingly, 

the highest moisture values 

are with the 90-cm sensor 

from March through May, a 

period with active cover crop 

water use and with vines in 

early development. There 

is a decline in moisture at 

all three depths over this 

time frame, but only the 

30-cm sensor responds to 

the frequent irrigation events 

starting in June suggesting 

the vine root zone is mainly 

in the upper 30 cm. This pat-

tern is similar to other years.

S O I L  M O I S T U R E – E T 

RELATIONSHIP. Daily mean 

soil moisture from the three 

profile sensors averaged 

over all depths is compared 

to measured daily ET from 

the tower normalized by 

potential or reference ET 

(ET
O
) using the Penman–

Monteith equation from FAO Irrigation and Drainage 

Paper 56 (Allen et al. 1998) in Fig. 8. The daily data 

from all 4 years (2013–16) are plotted with differ-

ent symbols indicating different vine phenological 

and seasonal stages or conditions. Although there is 

considerable scatter, an exponential equation using a 

FIG. 5. Average of the ground-based LAI measurements 

near the flux towers collected from the GRAPEX IOPs 

over the 2013–16 growing seasons in the north (site 1) 

and south (site 2) vineyards. Also shown is the addi-

tional LAI contributed by the cover crop when active 

and growing early in the spring and early summer.

FIG. 4. A schematic overview of the inputs and processing steps of the ET data 

fusion package for (left) the current processing method and (right) the new 

processing method under development.
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least squares fit indicates a decrease in the ratio of ET 

to ET
O
 starts to occur at a profile soil moisture aver-

age of 0.35. However, this depends to some extent on 

vine phenology. For example, during the period from 

veraison to harvest ET/ET
O
 shows little change with 

the average profile of soil moisture decreasing from 

0.35 to 0.25. A significantly greater change with daily 

average soil moisture is observed with changes in ET/

ET
O
 at the postharvest stage, while for bud break to 

bloom or flowering there is little relationship. This lack 

of a relationship stems from the fact that ET is largely 

coming from the cover crop in the spring, from prior to 

and several weeks after bud break, and is accessing very 

little of the available water in the profile underneath 

the vines.

MICRO-BR AND RADIATION MEASUREMENTS IN THE INTERROW. 

To better understand the microclimate of the vine and 

interrow system, three micro-Bowen ratio stations 

were deployed during three IOPs in 2015. Addition-

ally, for all years and IOPs, measurements of solar 

radiation reaching the ground were made across the 

vine–interrow system. These measurements will help 

to improve our understanding of radiation divergence 

through the canopy layer and to determine whether the 

model formulations for below-canopy flux exchange 

properly account for the unique effects of the vineyard 

architecture and microclimate (Kool et al. 2016).

An example of the diurnal fluxes from the three 

micro-BR systems is illustrated in Fig. 9, along with 

a photo and schematic illustrating the measurement 

design during IOP 2 (June 2015). There is significant 

spatial and temporal variation in the below-canopy 

f luxes due primarily to variability in radiation. 

The micro-BR unit located in the north-facing row 

underneath the vines receives little radiation over 

the course of the day and hence produces low fluxes. 

On the other hand, the micro-BR system under the 

south-facing vine row receives high radiation load-

ing during midday and afternoon periods and yields 

significant soil heat and latent heat f luxes due to 

relatively wet soil conditions from the drip irrigation 

system. Interestingly the micro-BR unit in the center 

of the interrow yields large deviations in radiation 

and sensible heat flux values but with little temporal 

variation and magnitude in soil heat f lux. In large 

part, this is due to a residue layer of senescent cover 

crop insulating the dry soil in the interrow.

The variation in solar radiation reaching the 

ground in the interrow and underneath the vines 

has great spatial and temporal variability as seen in 

the example from 11 July 2015 in Fig. 10, showing 

radiation measurements from five to eight sensors 

deployed across the interrow in the north vineyard 

(site 1) and south vineyard (site 2). These are fifteen  

min-average radiation values during peak vine cover 

FIG. 6. Daytime monthly average (mean of 2013–16) surface energy balance components: (top left) net radia-

tion, (top right) soil heat flux, (bottom left) sensible heat flux, and (bottom right) latent heat flux for the north 

(site 1; solid line) and south (site 2; dashed line) vineyards.
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and demonstrate that the greater biomass and leaf 

area of site 1 results in significantly less radiation 

reaching the ground surface. The heterogeneity in 

the vine canopy cover across the interrow results in 

the lack of a “smooth” sinusoidal radiation curve 

measured below the vine canopy.

SAP-FLOW MEASUREMENTS. To evaluate model partition-

ing of ET into soil evaporation E and cover crop and 

vine transpiration T, vine sap-flow measurements 

were deployed at several locations in the vineyard to 

estimate vine T (see Fig. 2). The upscaling of sap-flow 

measurement to canopy 

level is challenging and 

will use LAI data collected 

in situ along with remote 

sensing–based estimates of 

daily LAI described below 

(Sun et al. 2017a). Tran-

spiration estimates from 

sap-flow data will be com-

pared to estimates from a 

new micrometeorological 

technique using turbulence 

data from eddy covariance 

flux towers that provide E 

and T at field scale. This 

method is based on f lux-

variance similarity theory 

and uses parameterized 

leaf-level water-use efficien-

cy and analysis of the cor-

relation structure of high-

frequency carbon and water 

vapor concentration time 

series observations from 

each f lux averaging inter-

val (Scanlon and Kustas 

2010, 2012). A preliminary 

analysis of the f lux parti-

tioning estimates using EC 

data for the month of June 

2015 yielded a ratio of T to 

ET of 0.80 from sap-f low 

measurements versus 0.83 

from the flux-variance ap-

proach. Other months and 

years during the growing 

season are currently being 

analyzed.

SURFACE RENEWAL. The SR 

technique was proposed 

by Paw U et al. (1995) as a less expensive alternative 

to EC for estimating sensible heat f lux. SR uses a 

fast-response thermocouple near the land surface 

to analyze the energy budget of air parcels that 

reside ephemerally within the crop canopy during 

the turbulent exchange process. The air parcels are 

manifested as ramp-like shapes in turbulent tempera-

ture time series data, and the amplitude and period 

of the ramps are used to calculate the sensible heat 

flux density. With an estimate of H, LE (and therefore 

ET) is computed as the residual of the energy balance 

equation (top equation in Fig. 3).

FIG. 7. Soil moisture from the 30-, 60-, and 90-cm-depth profile sensors located 

underneath a vine for the north (site 1) vineyard in 2016 along with observa-

tions of precipitation (mm) and irrigation (mm per vine).

FIG. 8. A comparison of profile average daily soil moisture vs ratio of actual 

to potential ET (ET/ETO) for 2013–16. The symbols represent data from dif-

ferent vine phenological stages. The curve is an exponential least squares fit 

through all the data.
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In early studies, the SR method required calibra-

tion when applied to different land-cover conditions 

(French et al. 2012) using 3D sonic measurements of 

H. However, it was recently shown that the calibration 

factor converges near the theoretically predicted value 

after compensating for the frequency response char-

acteristics of the SR thermocouple (Shapland et al. 

2014). This led to the development of an inexpensive, 

stand-alone SR method to measure sensible heat flux 

without the need for EC calibration.

Estimates of H from the SR station in the south 

vineyard were computed according to Shapland 

et al. (2014). The SR estimates of sensible heat flux 

collected over the 2015 growing season (from April 

through September) in the south vineyard showed 

good agreement with EC sensible heat flux (Fig. 11), 

yielding a least squares regression slope near 1 and 

a coefficient of determination R2 of 0.9. For daytime 

conditions with H > 50 W m-2, the mean absolute per-

centage error (MAPE), calculated as mean absolute 

error (MAE) divided by the mean of the observations 

multiplied by 100, was 20%. These results are consis-

tent with recent findings showing strong correlation 

between stand-alone SR, EC, and weighing lysimetry 

in another experimental vineyard (Parry et al. 2018, 

manuscript submitted to Irrig. Sci.).

Evaluation of canopy formulations. RADIATION DIVERGENCE 

WITHIN THE CANOPY. The downwelling shortwave 

radiation measurements below the vine canopy and 

FIG. 9. (top) The surface energy balance components for a day during IOP2 in June 2015 as measured by micro-

BR systems located under the vines in bare soil area for the (left) north-facing vine row (the vine row south 

of the center of the interrow), (center) interrow, and (right) south-facing vine row (the vine row north of the 

center of the interrow). (bottom) Additionally, a schematic with photo illustrating the micro-BR deployment 

and measurement design.
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FIG. 10. Diurnal radiation measurements above and below the vine canopy using five to eight radiation sensors 

at the north (site 1) and south (site 2) vineyards, respectively, for a clear day during IOP3 (11 Jul) in 2015.

across the interrow are being used to evaluate radia-

tion divergence models of varying levels of complex-

ity and methods for computing transmitted solar 

radiation through the canopy to the ground level. 

Modeled–measured differences are indicated by the 

scatterplots for selected models and error histograms 

for all models in Fig. 12. Models 1–3 use the Campbell 

and Norman (1998) radiation transfer model, while 

model 4 uses the four-stream Scattering by Arbitrary 

Inclined Leaves (4SAIL) model (Verhoef et al. 2007) 

and model 5 uses the Discrete Anisotropic Radiative 

Transfer (DART) model (Gastellu-Etchegorry et al. 

1996). Four of the five models being tested (models 

2–5) account for the unique canopy distribution 

of the vineyard-row-structured canopies. Models 

2–4 use a geometric view factor approach (treating 

the canopy as either an elliptical or rectangular 

hedgerow), and model 5 characterizes the canopy as a 

three-dimensional structure. Model 1, which does not 

account for the canopy row crop distribution, uses an 

empirical clumping index meant for randomly placed 

canopies such as forests.

While all five models had good agreement with 

the measured values (R2 ranging from 0.95 to 0.97), 

the models that treat row structure with greater 

geometric fidelity (models 2–5) showed significant 

improvement in comparison with the baseline (model 

1) based on the error histograms. Of these, model 3 

based on Colaizzi et al. (2010; 2012a) and model 5 (the 

most complex DART model) performed best, yielding 

the least bias and lowest overall error.

CANOPY WIND PROFILE MODEL. A new canopy wind 

profile model proposed by Massman et al. (2017) 

accommodates nonuniform canopy structure and 

wind attenuation with depth throughout the canopy. 

Within-canopy wind measurements collected during 

GRAPEX IOPs are being used to investigate whether 
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this new model provides a more physically realistic 

method for calculating wind speed attenuation for 

canopies of arbitrary foliage distribution and leaf 

area. In comparison with previously used canopy 

wind profiles in TSEB such as Goudriaan (1977) or 

Massman (1987, 1997), the new method uses an ad-

ditional input describing the relative canopy foliage 

vertical distribution. In the case of our study site, the 

foliage distribution function is considered as a combi-

nation of Gaussian curves representing the foliage for 

the vine canopy and the cover crop layer underneath.

Preliminary results illustrated in Fig. 13 (top row) 

compare modeled below-canopy wind speed at 1.5 m 

AGL from the new Massman et al. (2017) model and 

the Goudriaan (1977) uniform-canopy wind model, 

originally used in TSEB, with measured horizontal 

wind speed from the 3D sonic anemometer de-

ployed during the 2015 IOPs in the north and south 

vineyards. The new Massman formulation better 

reproduces below-canopy wind speed measurements 

in comparison with the Goudriaan approach, improv-

ing R2 from 0.42 and 0.69 at sites 1 and 2, respectively, 

to 0.54 and 0.76. When embedded within the TSEB, 

FIG. 12. Comparison of solar radiation divergence model estimates with different levels of complexity (models 

1–5) vs the below-vine-canopy solar radiation measurements (15-min averages). Error histograms for all the 

models indicate that the least bias and smallest error with the observations are from using models 3 and 5. 

Scatterplots for models 3 and 5 are provided with a dashed gray line indicating perfect agreement with obser-

vations (1:1 line).

FIG. 11. Hourly sensible heat flux H from eddy covari-

ance measured at the south (site 2) vineyard flux tower 

and hourly H from the stand-alone surface renewal for 

the 2015 growing season. Dashed line indicates perfect 

agreement (1:1 line).
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the Massman et al. (2017) model improved agree-

ment with measured H f luxes (Fig. 13, bottom row) 

in comparison with the Goudriaan model, increasing 

R2 from 0.6 to 0.7 and reducing daytime MAPE from 

~30% to ~20% at both sites.

Evaluation of remote sensing products. UAV DATA PRODUCTS. 

For the AggieAir flights, an intermediate product from 

photogrammetric procedures applied to aerial imagery 

is the estimation of digital surface models (DSMs) de-

scribing surface topography. Because of the nature of the 

information (sunlight surface reflection or reflectance), 

these DSMs provide a topographic description of the 

illuminated objects in the aerial imagery, and with 

ground control points provided the DSM accuracy can be 

close to that of lidar products (vertical accuracy < 0.05 m).

Canopy volume estimations (Fig. 14) were made 

for individual vines in the vineyard using the DSM, 

derived from optical camera images at 0.1–0.15-m 

pixel resolution. To discriminate only canopy volume, 

a description of the vine spacing and trellis system, 

bare-vine trunk height, and survey-grade GPS coor-

dinates of multiple bare soil locations were necessary. 

In operations, these canopy volume maps, which cor-

relate well with the yield map (Fig. 14), may facilitate 

identification of dead/unproductive vines and within-

FIG. 13. Comparison of (top) measured 1.5-m wind speeds vs TSEB values (15-min averages) derived using the 

Goudriaan and Massman within-canopy wind-extinction formulations for the north and south vineyards (sites 1 

and 2) and (bottom) resulting impact on daytime-integrated sensible heat flux estimates over the 2015 growing 

season. Dashed line represents perfect agreement with the observations (1:1 line).
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season prediction of grape 

yield and its variability.

The DSM maps a lso 

offer a detailed analysis 

of the influence of canopy 

structure and topography 

on signals recorded by im-

aging sensors. For example, 

vegetation oriented away 

from or toward the sun will 

appear darker or brighter, 

respectively, when com-

pared to a horizontal f lat 

surface. This microscale 

sun angle–canopy orienta-

tion affects the reflectance 

and temperature of images 

and introduces uncertainty 

in the analytic results ob-

tained from the imagery 

(from simple vegetation indices to much 

more complicated ET or soil moisture 

estimates). Few studies are found in the 

literature that use airborne very high-

resolution imagery to assess these issues, 

although correction methods have been 

developed to reduce the topographic 

inf luence on satellite data [e.g., Li et al. 

(2012) for Landsat-8 and Szantoi and 

Simonetti (2013) for Landsat-5, Landsat-7, 

and Système Pour l’Observation de la Terre 

5 (SPOT-5)].

Related effects of canopy shadowing 

introduce another level of complexity 

to image processing known as shadow 

identification, deshadowing, or shadow 

correction (Fig. 15). Researchers have in-

vestigated shadow detection and removal 

from satellite imagery (e.g., Richter and 

Muller 2005; Arevalo et al. 2008). However, 

there are no analogous procedures devel-

oped for detection and removal of shadow-

affected pixels for high-resolution airborne 

imagery. The impact of shadowing on ET 

estimation at high resolution is also being 

evaluated as part of GRAPEX (Fig. 15).

TSEB APPLICATIONS TO UAV DATA . The 

UAV imagery was used to test the performance 

of the TSEB at very high resolution, similar to the 

study by Hoffman et al. (2016). The original TSEB 

version, which assumes the canopy transpires at 

the Priestley–Taylor rate (Norman et al. 1995) as 

an initial f irst approximation (TSEB-PT), was 

applied to UAV-acquired thermal radiance data 

aggregated from the original 0.6-m resolution to 

3.6-m resolution, approximately the scale of a single 

vine–interrow system (3.35 m wide). The submeter 

FIG. 14. Example of (left) canopy volume estimated for individual vines for an 

AggieAir UAV flight in Aug 2014 and (right) the 2014 yield map for the north 

vineyard. Note the variability in canopy volume across the field and an area 

of highly stressed or dead vines in the upper left with little or no biomass.

FIG. 15. (top) Variation in modeled ET due to shadow/microto-

pography effects, generated using a DSM for a vine row viewed 

at different angles. Black and gray dots are the point cloud data. 

(bottom) Automated identification of shadow locations (light 

green color) along several rows overlay red–blue–green (RGB) 

and NIR false-color UAV imagery, respectively.
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native resolution of the UAV imagery also allows 

the retrieval of the component canopy and soil/

interrow temperatures that can be used directly in a 

two-temperature version of TSEB (TSEB-2T; Kustas 

and Norman 1997; Colaizzi et al. 2012b; 2016), which 

does not require an initial assumption of the canopy 

transpiration. Comparisons of EC flux observations 

with f lux estimates from each modeling approach, 

generated using UAV data from 2014 and 2015, are 

shown in Fig. 16.

The TSEB-2T provides improved estimates 

of H and LE, with MAEs of 30 and 50 W m–2, 

respectively—nearly half of the MAE from TSEB-

PT. For LE, the MAPE values were 25% and 15% 

for TSEB-PT and TSEB-2T, respectively. ET images 

generated by TSEB-PT and TSEB-2T for a UAV 

f light in early August of 2014 are illustrated in 

Fig. 17, indicating that both model versions produce 

similar ET patterns. The tendency is for TSEB-2T 

to have lower LE values in certain areas within the 

vineyards, indicating lower vine water use and per-

haps some degree of stress. Tan areas, with LE close 

to zero, are found on roads, a paved residential area, 

and an area between the north and south vineyards 

composed of senescent grass. The small rectangular 

blocks of low ET in the north and south vineyards 

are protected vernal pools containing grasses and 

ephemeral wetlands, where vines are not allowed 

to be planted.

SATELLITE-BASED LAI RETRIEVAL. Leaf area index is 

a key input to TSEB (as well as many other land 

surface models) and a quantity associated with 

many biophysical applications (Myneni et al. 2002). 

Seasonal maps of LAI may also be useful for 

FIG. 17. LE maps at 3.5-m resolution computed using (left) 

TSEB-PT and (right) TSEB-2T from the UAV imagery 

collected at the time of Landsat overpass on 9 Aug 2014.

FIG. 16. Comparison of TSEB flux estimates with energy balance components (RN, G, H, and LE) measured 

at the time of UAV overpass during flights in 2014 and 2015. Model results are shown (left) using composite 

temperatures and TSEB-PT and (right) using component temperatures and TSEB-2T. In both cases, the TSEB 

models were modified to account for radiation and wind transmission through row crops.
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FIG. 18. (left) A map of LAI at 30-m resolution for the north and south vineyards within the yellow boundaries 

at around peak LAI for year 2014 growing season, and (right) a comparison of ground-measured vs satellite-

derived daily LAI near the flux towers in the north and south vineyards over the 2014 growing season [see Sun 

et al. (2017a) for details].

FIG. 19. (top) Cumulative ET (mm) map at 30-m resolution over the growing season (1 Mar–1 Sep) for a 9 km × 

9 km area surrounding the north and south GRAPEX vineyards and (middle),(bottom) daily ET modeled over 

the estimated tower footprint (black line) as well as the maximum and minimum (range; gray shading) in ET 

vs observed (red dots) for the north (site 1) and south (site 2) vineyards, respectively.
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estimating grape yield in vineyards (Sun et al. 2017a). 

A machine learning approach (Gao et al. 2012) was 

applied to generate daily LAI maps at 30-m resolution 

over the GRAPEX field sites using Landsat surface 

ref lectance and the MODIS LAI products. In this 

approach, the Cubist regression tree software was 

applied to train LAI and surface reflectance at the 

MODIS 1-km resolution. The resulting regression 

trees were then applied to the 30-m resolution 

Landsat data to generate LAI maps at Landsat scale 

(see example in Fig. 18). Comparison of retrieved 

Landsat LAI with ground LAI measurements in 

the north and south vineyards from 2013 to 2016 

yielded an MAE of 0.44 and an MAPE of ~25% (Sun 

et al. 2017a). An example of the time series in daily 

LAI estimated from Sun et al. (2017a) versus the 

LAI ground sampling in 2014 near the flux towers 

indicates good agreement (Fig. 18). Also shown is a 

LAI map for the north and south vineyards at 30-m 

resolution near the time of peak LAI.

SATELLITE-BASED ET RETRIEVALS. The performance of a pro-

totype ALEXI–DisALEXI–data fusion ET modeling 

system was evaluated for the 2013 growing season by 

Semmens et al. (2016), yield-

ing MAEs of 0.7 and 0.75 

mm day–1 and MAPEs of 

~19% and 23% in compari-

son with daily flux observa-

tions from the north and 

south vineyards, respec-

tively. With additional years 

of data and model improve-

ments based on GRAPEX 

field observations, model 

performance has improved, 

particularly in the ability to 

recover springtime evapora-

tive fluxes, which are critical 

to decisions on when to start 

irrigation. We can now com-

pare daily ET over multiple 

full annual cycles, yielding 

MAE values of 0.6 mm day–1 

and MAPE values of 18% 

for both sites for the period 

2013–16 (Fig. 19). The model 

will continue to be refined, 

testing the new formula-

tions for in-canopy wind 

profile and radiation di-

vergence described above, 

which are likely to improve 

agreement with the ET observations. We will also use 

sap-flow-based estimates of vine transpiration to test 

the ET partitioning capabilities of TSEB at the 30-m 

Landsat pixel scale. Additionally, with multiple years 

of daily ET maps at 30-m resolution, we can begin to 

investigate changes in water use that are occurring over 

the landscape due to varying climate as well as changes 

in land-use and water management strategies (Fig. 19).

FUTURE OF GRAPEX. Domain expansion—

Capturing the climatic gradient in the Central Valley. In 

2017, the GRAPEX project has extended observations 

both north (Barrelli vineyard; 38.75°N, 122.98°W) 

near Cloverdale, California, and south (Ripper-

dan vineyard; 36.84°N, 120.21°W) near Madera, 

California, of the current vineyards (Borden Ranch 

vineyard; 38.29°N, 121.12°W) near Lodi, California 

(Fig. 20). This network samples a significant north–

south climate gradient, with degree-day (DD) 

accumulations for the growing season of 2,500 DD for 

Barrelli, 3,700 DD for Borden Ranch, and 4,200 DD 

for Ripperdan. In addition, three different varieties 

and trellis designs are used at these sites, providing a 

wide range in canopy structure and vine physiology 

FIG. 20. The expansion of 2017 GRAPEX experimental vineyard sites from the 

Borden site to the Barrelli vineyard to the north and the Ripperdan vineyard 

to the south, spanning a large range in degree-day accumulations (see text), 

vine varieties, and trellis designs.
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for evaluating the land surface scheme of TSEB 

and the data fusion ET toolkit. For 2017, IOPs were 

conducted from mid-July to early August (veraison 

period) when there was high evaporative demand.

Operational applications of technologies. As the inte-

grated ET toolkit matures, the GRAPEX team will be 

working with the E. & J. Gallo Viticulture, Chemistry 

and Enology and GIS teams, along with growers, to 

evaluate its utility and application, including modes 

of effective information transfer and how specific 

irrigation and water management decisions are to be 

triggered by this information. In addition, this ET 

toolkit will be readily available to other commodity 

groups, particularly high-value perennial crops such 

as orchards, a major water user in California.

E. & J. Gallo has estimated that if a more robust 

ET monitoring system resulted in a 10% reduction 

in water use for the vineyards in California, there 

would be considerable economic savings of up to 

$200 million based on the value of irrigated water, 

which in 2014 and 2015 reached $1,000 or more per 

acre foot in some parts of California. Pumping costs 

in 2017 are projected to be around $150 per acre, so 

a 10% savings would yield about $14 million across 

the entire vineyard acreage of the state.

The GRAPEX project will also help define how 

UAV data can be integrated into the comprehensive 

monitoring system, providing important information 

about the condition of the vines and interrow soil/

cover crop, which cannot be discriminated at satellite 

pixel resolutions. Does having periodic UAV imagery 

complement the satellite data stream? What are criti-

cal times in vine phenology stages (berry formation, 

veraison, postveraison berry ripening) when this 

higher-resolution information may be most useful 

for vineyard management?
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