
LARGE-SCALE BIOLOGY ARTICLE

The Grapevine Expression Atlas Reveals a Deep
Transcriptome Shift Driving the Entire Plant into
a Maturation ProgramW OA

Marianna Fasoli,a Silvia Dal Santo,a Sara Zenoni,a Giovanni Battista Tornielli,a Lorenzo Farina,b

Anita Zamboni,a Andrea Porceddu,c Luca Venturini,a Manuele Bicego,d Vittorio Murino,e

Alberto Ferrarini,a Massimo Delledonne,a and Mario Pezzottia,1

aDipartimento di Biotecnologie, Università degli Studi di Verona, 37134 Verona, Italy
bDipartimento di Informatica e Sistemistica Antonio Ruberti, Università degli Studi di Roma La Sapienza, 00185 Rome, Italy
cDipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy
dDipartimento di Informatica, Università degli Studi di Verona, 37134 Verona, Italy
e Istituto Italiano di Tecnologia, 16163 Genoa, Italy

We developed a genome-wide transcriptomic atlas of grapevine (Vitis vinifera) based on 54 samples representing green and

woody tissues and organs at different developmental stages as well as specialized tissues such as pollen and senescent

leaves. Together, these samples expressed ;91% of the predicted grapevine genes. Pollen and senescent leaves had unique

transcriptomes reflecting their specialized functions and physiological status. However, microarray and RNA-seq analysis

grouped all the other samples into two major classes based on maturity rather than organ identity, namely, the vegetative/

green and mature/woody categories. This division represents a fundamental transcriptomic reprogramming during the

maturation process and was highlighted by three statistical approaches identifying the transcriptional relationships among

samples (correlation analysis), putative biomarkers (O2PLS-DA approach), and sets of strongly and consistently expressed

genes that define groups (topics) of similar samples (biclustering analysis). Gene coexpression analysis indicated that the

mature/woody developmental program results from the reiterative coactivation of pathways that are largely inactive in

vegetative/green tissues, often involving the coregulation of clusters of neighboring genes and global regulation based on

codon preference. This global transcriptomic reprogramming during maturation has not been observed in herbaceous annual

species and may be a defining characteristic of perennial woody plants.

INTRODUCTION

Grapevine (Vitis spp) is the most cultivated fruit crop in the

world, covering nearly 7.8 million hectares in 2011 and pro-

ducing 67.5 million tons of berries (http://www.oiv.int/). The

berries are harvested primarily for wine making (68%) but also to

provide fresh table grapes (30%), raisins (2%), and minor

products, such as grape juice, jelly, ethanol, vinegar, grape seed

oil, tartaric acid, and fertilizers. Grape berries contain anti-

oxidants such as polyphenols (e.g., resveratrol) with important

health benefits that are valued in the food, cosmetic, and phar-

maceutical industries.

Grapevine is a perennial from the family Vitaceae, which in-

cludes woody deciduous plants within the basal eudicots (Judd,

1999). It has a biennial reproductive cycle, and its growth

characteristics and patterning during development are distinct

from annual herbaceous and woody polycarpic plants (Mullins

et al., 1992; Carmona et al., 2007; Roubelakis-Angelakis, 2009).

To provide insight into the transcriptional programs controlling

the development of different organ systems, we generated a

global gene expression atlas for the common grapevine species

Vitis vinifera (cv Corvina). Comparable resources for other plant

species have been described but none representing perennial

woody crops. Functional developmental modules based on

expression profiling have been described in Arabidopsis thaliana

(Schmid et al., 2005), and dynamic transcriptional profiles rep-

resenting different cell types and developmental processes have

been identified through the analysis of gene expression atlases

in rice (Oryza sativa) (Li et al., 2006; Jiao et al., 2009) and barley

(Hordeum vulgare) (Druka et al., 2006). A recent atlas of tobacco

(Nicotiana tabacum) development based on gene expression

profiles from seed to senescence provided new regulatory tar-

gets and allowed the manipulation of specific pathways involved

in quality control (Edwards et al., 2010). Most recently, whole-

plant transcriptome surveys were published for soybean (Gly-

cine max), potato (Solanum tuberosum), tomato (Solanum

lycopersicum), and maize (Zea mays) (Aoki et al., 2010; Severin
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et al., 2010; Massa et al., 2011; Sekhon et al., 2011). Our com-

prehensive grapevine transcriptome map combined with the

complete genome sequence (Jaillon et al., 2007) provides the

basis for gene functional analysis on a global scale and elevates

grapevine to the status of a model fruit species.

RESULTS AND DISCUSSION

Defining the Grapevine Transcriptome

To study the entire grapevine transcriptome, we collected

triplicates of 54 diverse samples representing different vege-

tative and reproductive organs at various developmental stages.

In addition to developing and ripening berries, we included

berries that had undergone postharvest withering, a common

winemaking process. This represented the only stress condition

imposed in our survey (Figure 1; see Supplemental Table 1

online).

The expression of >98% of grapevine genes (http://srs.ebi.ac.

uk/) was monitored using the NimbleGen 090918_Vitus_exp_HX12

array. Robust multichip average data were used to evaluate the

number of expressed genes, allowing us to identify significant

signals representing gene expression and to hypothesize a posi-

tive correlation between the number of expressed genes and the

degree of bimodal distribution (see Supplemental Figure 1 online).

We detected the expression of 27,435 genes in at least one of

the 54 samples, representing ;91% of all genes on the array

(Figure 1A; see Supplemental Data Set 1 online). The number of

transcripts detected during organ development varied sub-

stantially in most of the systems we sampled, fluctuating be-

tween 5864 and 24,059 (representing 20 to 81% of all genes on

the array). The greatest fluctuations were seen in bud and leaf

samples, where more transcripts were detected during active

growth and fewer in autumn/winter months when the buds be-

come dormant and the leaves undergo senescence. By con-

trast, the number of transcripts detected in the seeds remained

Figure 1. Overview of the V. vinifera cv Corvina Samples Used for Microarray Analysis.

The photographs and diagrams show the shoot/cane organs (A) and berry cluster (B) from clone 48. The exact developmental stages are indicated by

the modified E-L classification keys on each picture. Rachis, seed, berry flesh, and skin samples were taken at the stages indicated in (B). Schematic

illustrations were modified from Jackson (2000).
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constant, and there were only minor fluctuations in the number

of transcripts detected in the rachis. The distribution of tran-

scripts among grapevine samples, despite their biological

complexity, was similar to that previously reported for different

rice cell types (Jiao et al., 2009) (see Supplemental Figure 2

online).

To identify and characterize organ-specific genes, we con-

structed a reduced 38-sample data set, excluding from the

analysis samples with redundant organ identity and those col-

lected during senescence and withering (see Supplemental

Table 2 online). The floral organs and buds expressed the

greatest number of organ-specific transcripts (Figure 2B). Seeds

and roots expressed more organ-specific transcripts than

leaves, as previously reported (Schmid et al., 2005). Surprisingly,

a large number of rachis-specific genes were identified, sug-

gesting this organ is particularly important during grapevine

fruiting. By contrast, there were very few genes expressed ex-

clusively in berries, tendrils, or stems.

Organ-specific transcripts were analyzed in more detail to

identify those expressed in multiple organs (i.e., within the

flower) and/or at multiple developmental stages (Figures 2C and

2D; see Supplemental Figure 3 online). Shared expression pro-

files were more common among different organs than at differ-

ent developmental stages in the same organ (e.g., no common

organ-specific genes were expressed in the developing bud or

berry at the different stages we tested). Few organ-specific

genes were shared among the different developmental stages of

the rachis and seed, but up to 16% of the organ-specific genes

expressed in the flower were common to the different floral or-

gans. These data imply that organ identity in the grapevine

transcriptome is less important than the developmental stage.

We assessed the function of the organ-specific transcripts

and found that bud-specific transcripts were primarily represented

by transcription factors, signaling proteins, and transporters (see

Supplemental Data Set 2 online). Many of the flower-specific

transcripts represented transport functions, including several ABC

Figure 2. Global Gene Expression Patterns in the Different Samples.

(A) Number of genes expressed in each of the 54 samples. Total: number of gene expressed in at least one organ (27,453; ;93% of all genes on the

array). Common: genes expressed in all 54 organs (2948; ;10% of all genes on the array).

(B) Number of organ-specific genes. Only samples with nonredundant organ identity were analyzed (see Supplemental Table 2 online).

(C) Shared and specific expression profiles of genes expressed in multiple floral organs.

(D) Shared and specific expression profiles of genes expressed at multiple bud developmental stages.
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transporters, some of which may be required to form a cuticular

layer in the petals to act as a diffusion barrier (Bessire et al.,

2011). Several of the seed-specific transcripts represented

transcription factors, including a TT2-like Myb factor (present at

the postfruit set [PFS] and veraison stages) required for seed

coat proanthocyanidin biosynthesis in Arabidopsis (Baudry

et al., 2004). Many of the root-specific transcripts represented

secondary metabolic functions, predominantly monolignol and

monoterpene biosynthesis. The roots also expressed six tran-

scripts encoding germin-like proteins, which may help to form

a defensive barrier during emergence from the soil but are also

implicated in symbiosis (Himmelbach et al., 2010). Only a few

tendril-specific transcripts were identified, including several re-

lated to auxin signaling/responses and one encoding a TT16-like

MADS transcription factor that is thought to control organ

growth in Arabidopsis (Prasad et al., 2010). Most of the rachis-

specific transcripts were identified at the mature stage (Rachis-

R). Approximately 30% of these transcripts encoded proteins

involved in stress responses, but others were related to trans-

port and signal transduction (e.g., kinases and annexins), indi-

cating that the rachis is not solely a structural organ. Remarkably,

more than half of the berry-specific genes we identified do not

have an assigned function yet, suggesting that berry development

has unique characteristics that are not well understood at the

molecular level.

Tissue Transcriptome Relationships

To score the quality of our expression data set, we performed

coexpression analysis using selected grapevine genes as

queries to identify correlations between genes involved in the

same process. We used the closest grapevine homologs of

Arabidopsis PSAD1 (photosystem I reaction center subunit II)

and LHCII (for light-harvesting complex II), both related to

photosynthesis, as well as a regulatory gene (MYBA1) and

a structural gene (FLAVANONE 3-HYDROXYLASE1 [F3H1]) from

the flavonoid pathway. This identified several photosynthesis-

related genes that correlated with PSAD1 and LHCII, and several

additional flavonoid pathway genes correlated with MYBA1 and

F3H1, with some of them representing known transcriptional

hierarchies (see Supplemental Figure 4 online). We generated

a Pearson’s distance correlation matrix to compare the tran-

scriptomes from each sample (Figure 3A). This showed a strong

correlation among the mature/woody samples and a clear dis-

tinction between the mature/woody and vegetative/green sam-

ples. The pollen transcriptome was highly distinctive as was the

transcriptome of the leaf undergoing senescence, both showing

little resemblance to the other samples. The resulting dendro-

gram showed that samples clustered predominantly in relation

to temporal dynamics and that organ identity was less important

(Figure 3B; see Supplemental Figure 5A online). Remarkably,

this distribution did not depend on the expression levels of the

corresponding genes (see Supplemental Figure 5B online). We

also noted a separation between ripened berries and vegetative/

green tissues when overrepresented berry samples were ex-

cluded from the analysis (see Supplemental Figure 5C online).

This was confirmed by generating a Pearson’s distance corre-

lation matrix using previously released RNA-seq data mapped

onto the 12x Grape Genome, V1 Gene Prediction (Denoeud

et al., 2008; Zenoni et al., 2010) (Figures 3C and 3D; see

Supplemental Table 3 online). These results confirmed that or-

gan maturity was more important than organ identity in defining

a common transcriptome, and the same effects were observed

regardless of the analytical method employed and the over-

representation of particular samples.

The partition between mature/woody and vegetative/green

samples was also maintained for gene expression profiles (Figure

3E; see Supplemental Figure 6 online). Hierarchical clustering

(HCL) analysis revealed four major groups of genes whose tran-

scriptional profiles defined the mature/woody samples, vegeta-

tive/green samples, pollen, and leaves undergoing senescence.

The last two samples were typified by their characteristic tran-

script profiles, validating our hypothesis that these two organs

possess highly distinguishable physiological traits based on

their unique transcriptomes.

Molecular Biomarkers

To gain insight into the physiological and molecular factors un-

derlying the separation between samples, we performed prin-

cipal component analysis (PCA) on the complete data set. We

used the first 11 principal components to explain 70.65% of the

variability. The second component (11.40%) represented leaves

undergoing senescence and the third component (7.99%) rep-

resented pollen (see Supplemental Figure 7A online). The rela-

tionships among the other samples were investigated in more

detail by carrying out a second PCA on the 52-sample reduced

data set (without pollen and senescent leaves). The first principal

component (19.27%) included four clusters of gene expression

profiles (see Supplemental Figure 7B online). We used orthogonal

bidirectional projections to latent structures discriminant analysis

(O2PLS-DA) (Trygg, 2002) to confirm the PCA data, which verified

the four-class distribution: withered berries, mature/woody sam-

ples, flowers/stamens, and all the remaining vegetative/green

samples (Figure 4A). Samples of berries treated by postharvest

withering were clearly separated from the other mature/woody

samples, and flowers and stamens were clearly separated from

the other vegetative/green samples.

Putative molecular biomarkers (i.e., transcripts whose pres-

ence or absence defines the samples in a given class) were

identified by applying four distinct two-class O2PLS-DA models,

using in each case the observations from one class as a refer-

ence and grouping the other three observations in one unique

class (Zamboni et al., 2010). An S-plot (Wiklund et al., 2008) was

then used to select putative biomarkers within the first (positive

biomarkers) and last (negative biomarkers) percentiles (Figures

4B and 4C; see Supplemental Data Set 3 online). Positive bio-

markers representing the flowers and stamens included tran-

scripts corresponding to enzymes in the monoterpenoid and

sesquiterpenoid biosynthesis pathways (e.g., enzymes that syn-

thesize germacrene, cadinene, terpineol, pinene and myrcene,

which are prominent components of floral scents) (Martin et al.,

2010). There were also eight pectinesterase and seven poly-

galacturonase transcripts encoding cell wall–modifying enzymes

involved in flower abscission (van Doorn and Stead, 1997) and

pollen tube elongation (Bosch and Hepler, 2005). Notably,
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Figure 3. Tissue Transcriptome Relationships.

(A) Correlation matrix of the whole data set. The analysis was performed by comparing the values of the whole transcriptome (29,549 genes) in all 54

samples, using the average expression value of three biological replicates and Pearson’s distance as the metric. Correlation analysis was performed

using R software.



a homolog of Arabidopsis galacturonosyltransferase-like 4,

which scored the highest p(corr) value, was previously shown to

be expressed specifically in Arabidopsis stamens and pollen

grains (Kong et al., 2011). Pectinesterase and stilbene synthase

transcripts were identified as biomarkers of withered berries,

agreeing with previous studies showing that cell wall modifica-

tion and resveratrol biosynthesis are important aspects of the

withering process (Versari et al., 2001; Zamboni et al., 2008). We

also identified the Ras GTP binding protein RAN3, which regu-

lates RNA and protein transport through nuclear pores and has

Figure 3. (continued).

(B) Cluster dendrogram of the whole data set. The Pearson’s correlation values were converted into distance coefficients to define the height of the

dendrogram.

(C) Correlation matrix for the RNA-seq data set. Reads generated in previous experiments (Denoeud et al., 2008; Zenoni et al., 2010) were remapped on

the 12x grapevine genome, V1 gene prediction.

(D) Cluster dendrogram for the RNA-seq data set. Reads generated in previous experiments (Denoeud et al., 2008; Zenoni et al., 2010) were remapped

on the 12x grapevine genome, V1 gene prediction.

(E) HCL analysis on the whole 54-sample data set. Pearson’s correlation distance was used as the metric, and TMeV 4.3 software was used to create

the transcriptional profiles dendrogram.

Figure 4. Global Gene Expression Trends in Grapevine.

(A) Variables and scores scatterplot of the O2PLS-DA model (3 + 5 + 0, UV, R2Y = 0.967, Q2 = 0.868) applied to 52 samples, confirming the separation

into four classes sharing similar expression signatures. Components 3 and 5 represent the predictive and orthogonal components identified by the

model, whereas 0 represents the background variation (UV = unit variance scaling method).

(B) and (C) The expression profiles of positive (B) and negative (C) putative molecular biomarkers were selected using an S-plot (Wiklund et al., 2008)

within the first (positive) and the last (negative) percentile.
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previously been identified as a positive biomarker of withering

in Corvina berries (Zamboni et al., 2010). Several transcripts

encoding stress response, ethylene response, and protein re-

cycling functions were strongly represented in mature/woody

samples, along with a population of (predominantly zinc finger)

transcription factors, suggesting that significant transcriptional

reprogramming is required for the transition to the mature

phase. As expected, vegetative/green sample markers were

rich in photosynthesis-related transcripts, including those en-

coding 11 light-harvesting complex subunits, five photosystem

reaction center subunits, and the COP-1–interacting protein

CIP-7, a positive regulator of light-induced genes (Yamamoto

et al., 1998).

Division of Samples into Topics Defined by High-Level

Gene Expression

Potential correlations between samples in terms of the magni-

tude and consistency of gene expression were evaluated using

a biclustering analysis method based on a probabilistic topic

model called probabilistic latent semantic analysis (PLSA),

which allows data sets to be modeled in terms of hidden topics

or processes that can reflect underlying meaningful structures

(Hofmann, 2001; Joung et al., 2006; Bicego et al., 2010). We

applied this method to the entire data set to discover groups of

genes sharing compatible expression patterns across subsets

of samples (Madeira and Oliveira, 2004; Preli�c et al., 2006). The

basic idea in the gene expression scenario is that a topic may be

roughly intended as a biological process, which can characterize

a subset of samples (namely, the samples in which the process

is active). At the same time, a topic may be related to the acti-

vation of a particular set of genes (namely, the genes related to

the particular process). Following this reasoning, the relation

between gene expression and samples is said to be mediated

through the probabilistic presence of the topics (Joung et al.,

2006; Bicego et al., 2010). Penalized likelihood statistical anal-

ysis (Bayesian information criterion) (Schwarz, 1978) was used

to define the optimal number of topics containing highly cor-

related samples (see Supplemental Figure 8 online). The eight-

topic model confirmed the modulation of the grapevine

transcriptome in relation to temporal dynamics, reflecting specific

metabolic processes rather than organ identity (Figure 5A).

Topic 1 (pollen, stamen, and, with lower probability, whole

flower samples) was characterized by the strong expression of

genes related to transport, cell wall structure, and lipid metab-

olism (Figure 5B; see Supplemental Data Set 4 online). The cell

wall group included several pectin metabolism genes, the cel-

lulose synthase gene CSLG2 (associated with the inner pollen

grain wall or intine), and ECERIFERUM1, whose product is as-

sociated with the anther cuticle and the outer pollen grain wall or

exine in Arabidopsis, suggesting a protective role during grape-

vine pollen grain development (Jung et al., 2006). The lipid me-

tabolism group included transcripts for three Gly-Asp-Ser-Leu

esterases/acylhydrolases that may regulate changes in lipid

composition at the pollen-stigma interface (Updegraff et al.,

2009). We also identified a transcription factor homologous to

Arabidopsis MYB24, which plays a role in anther development

(Matus et al., 2008). Topic 2 (leaves undergoing senescence)

was characterized by the strong expression of stress response

genes, including those encoding several ribosomal proteins and

histones that may control stress-induced gene expression and

protein synthesis (Pandey et al., 2008; Falcone Ferreyra et al.,

2010), abiotic stress response enzymes, such as stilbene syn-

thase, glutathione S-transferase (oxidative stress), and EARLY

LIGHT-INDUCED PROTEIN1 (illumination stress), and patho-

gen response factors, including metallothionein (Breeze et al.,

2011), PATHOGENESIS-RELATED10-like proteins, and two

ADP-ribosylation factors (Nomura et al., 2011). Samples from

mature/woody samples were distributed over three topics: rip-

ening berries (topic 3), withering berries (topic 5), and veraison

and mid-ripening seeds, winter buds, and woody stems (organs

related to woody structures or to the dormant state; topic 4).

Topics 3 and 5 were characterized by the strong expression of

genes related to carbohydrate metabolism (particularly starch

and sugar), but remarkably no genes representing secondary

metabolism were included. Topics 3 and 5 also included stress

response genes relevant to dehydration and/or pathogens,

which characterize berry ripening and withering (Davies and

Robinson, 2000; Zamboni et al., 2010). Topic 5 also included

the high-level expression of polyubiquitin, protease, and pro-

teasome subunit genes, representing the transcriptional con-

trol of protein degradation and recycling during withering, where

dehydration and sugar concentration lead to significant physiol-

ogical changes. Topic 4 was represented by a small number of

genes, mainly encoding stress and hormone response pro-

teins, such as metallothionein and dehydrin, an ABA-INDUCED

WHEAT PLASMA MEMBRANE-19 protein homolog that could

mediate ABA-induced freezing tolerance, and the dormancy

regulator DRM1. Topic 4 also contained an AtMYB73 homolog,

which is related to cold acclimation in Arabidopsis (Jung et al.,

2008).

Samples from vegetative/green samples were also distributed

over three topics: green leaves (topic 6), rachis and tendrils at

fruit set and rachis at postfruit set (topic 7), and young green

tissues (topic 8). Topic 6 was characterized by the high-level

expression of genes related to photosynthesis and glycolysis,

as expected for a grouping of young and mature leaves and

(as minor contributors) petals, including those encoding several

apoproteins of the light-harvesting complex associated with

photosystem II (Lhcb) and a homolog of the Arabidopsis circa-

dian clock Myb transcription factor CCA1, supporting its role in

the regulation of Lhcb expression and its close association with

circadian rhythms in the grapevine leaf (Wang and Tobin, 1998).

Topic 7 grouped the first two rachis stages and the last tendril

stage, confirming the ontogenic relationship between these two

organs, which are peculiar to grapevine. The three last rachis

stages, the berry pericarp, skin, and flesh at PFS, the green

stem, and root samples were also represented (albeit with

a lower probability) in this topic. All these organs are charac-

terized by reaching their final shape and size and by a forth-

coming metabolic shift to the mature phase. Many of the

strongly expressed genes included in this topic are involved in

transport and stress responses, including at least four encoding

aquaporins that regulate the movement of water across mem-

branes. This is consistent with the translocation activity of most

of the organs represented in this topic (Shatil-Cohen et al.,
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Figure 5. Biclustering Analysis with the PLSA Algorithm.

(A) Samples were divided into eight topics defined by high-level gene expression.

(B) Functional category distribution of topic-specific transcripts. The V1 version of the 12x draft annotation of the grapevine genome allows the

identification of ;70% of genes. This was manually verified and transcripts were grouped into the 18 most represented functional categories, based on

Plant GO Slim biological processes classification.



2011). Transcripts representing the grape homologs of the

Arabidopsis transcription factors ETHYLENE INSENSITIVE3

(EIN3) and JASMONATE-ZIM DOMAIN1 (JAZ1), which may in-

tegrate ethylene and jasmonate signaling during development

(Zhu et al., 2011), were also strongly expressed in this topic. The

JAZ1 homolog (but not the EIN3 homolog) was also strongly

expressed in topic 6, perhaps reflecting a role in the repression

of epidermal differentiation as previously established in Arabi-

dopsis (Qi et al., 2011). Topic 8 included the two inflorescence

stages, seeds at fruit set and postfruit set, berry pericarp at fruit

set, latent bud, bud at burst, bud after burst, green stem, and

young and well-developed tendrils. These growing organs were

characterized by the high-level expression of genes involved in

growth (e.g., carbohydrate and cell wall metabolism, photo-

synthesis, and ribosomal activity). The protection of such de-

veloping organs is underlined by the strong expression of genes

encoding flavanone-3-hydroxylase and leucoanthocyanidin di-

oxygenase, which contribute to the accumulation of flavonoid

compounds that protect plants against UV radiation.

Gene Coexpression Dynamics Contribute to the Division

between Green/Vegetative and Mature/Woody Samples

We studied the transcriptomic behavior of clustered samples in

more detail by analyzing the coexpression of genes previously

identified by HLC analysis as typical representatives of vege-

tative/green or mature/woody samples (Figure 3E). We looked at

the correlation among gene pairs from these selected groups

independently (see Supplemental Data Set 5 online). Tran-

scriptome correlation analysis in vegetative/green samples re-

vealed genes potentially involved in diverse processes, such as

photosynthesis, secondary metabolism, and hormone signaling.

A clear example of genes from the same pathway with a high

degree of gene pair correlation is provided by two linalool syn-

thases and three 1,8-cineole synthases from the plastidial 2-

methyl-D-erythritol-4-phosphate pathway (Bohlmann et al., 1998;

Emanuelli et al., 2010). In mature/woody samples, transcriptome

correlation revealed several genes potentially involved in defense/

stress responses, lipid metabolism, and cell wall assembly. For

example, the dehydration-responsive protein RD22 was highly

correlated with many late embryogenesis abundant proteins,

which protect tissues from water loss (Hanana et al., 2008;

Olvera-Carrillo et al., 2010). The expression profiles of mature/

woody genes in the mature/woody samples were evidently more

correlated than those of green/vegetative genes in green/

vegetative samples (Figure 6). Surprisingly, the most correlated

gene pairs in vegetative/green samples (>99 percentile) showed

a higher correlation in the mature/woody samples sub–data set

than the converse analysis in which the most correlated mature/

woody gene pairs were investigated in the vegetative/green

samples sub–data set (see Supplemental Figure 9 online). Fur-

thermore, the 1000 best-correlated gene pairs in mature/woody

samples represented only 105 single genes, whereas those in

green/vegetative samples represented 163 single genes, indi-

cating that individual mature/woody genes participate on aver-

age in more gene pairs to establish tightly correlated groups

or small networks (see Supplemental Figure 10 online). This

suggests that the onset of the mature/woody developmental

program is characterized by the coexpression of a few genes

belonging to the same metabolic pathways.

The chromosomal locus of a gene influences its transcription

in higher eukaryotes (Williams and Bowles, 2004; Weber and

Hurst, 2011), so we integrated the pairwise correlation analysis

with a sliding-window analysis of coexpressed neighboring

genes. This identified several chromosome regions containing

neighboring genes coexpressed at a higher frequency (over a

threshold P value) than would be expected by chance (see

Supplemental Figures 11A and 12 and Supplemental Data Set 6

online). Most of these regions contained duplicated genes, as

previously reported in other eukaryotes (Williams and Bowles,

2004; Weber and Hurst, 2011). A remarkable example is pro-

vided by cluster 34 on chromosome 16 (chr16-clA34), which

Figure 6. Coexpression Distribution among Green/Vegetative Samples and Ripe/Woody Samples.

Pairwise gene correlation analysis was computed by calculating the Pearson’s correlation for each gene pair in both specific subsets of organs. Curve

distributions are represented by the areas under the curves normalized to 1. Green curve, green/vegetative samples; red curve, ripe/woody samples.
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includes 35 stilbene synthase genes. Some groups of coex-

pressed neighboring genes identified during the whole data set

analysis were found to be coexpressed in a particular subset of

samples following a more detailed analysis (e.g., chr3-clA5 in

withered berries, roots, and seeds and chr10-clA18 in green

buds and other vegetative samples). To determine whether

vegetative/green or mature/woody samples could be charac-

terized specifically by the coexpression of neighboring genes,

we analyzed changes in coexpression between the two groups

of samples (see Supplemental Figures 11B, 11C, and 13 on-

line). Significant coexpression peaks found on chromosome 2

during the whole data set analysis were shown to be confined

predominantly to mature/woody samples, such as cluster chr2-

clMW5, which contained R2R3 Myb family genes involved in the

control of anthocyanin synthesis (Matus et al., 2008). Conversely,

coexpression peak chr2-clVG5 contained thaumatin and osmotin

genes that are likely to be involved in defense responses during

vegetative growth (de Freitas et al., 2011a, 2011b) (Figure 7; see

Supplemental Data Sets 7 and 8 on line). Several Phe ammonia

lyase (PAL) genes were clustered on chromosome 16, one group

coexpressed in mature/woody organs, and another in vegetative/

green samples, suggesting phenylpropanoid-derived compounds

are abundant in both types of samples. The presence of mul-

tiple segmental duplications in this region could explain the

divergence of PAL gene expression profiles within the cluster

(Giannuzzi et al., 2011). The coexpression of neighboring genes

with apparently uncorrelated functions was observed in both

vegetative/green and mature/woody samples, which contrasts

with the coexpression analysis data covering the entire data set.

This may suggest a partnership between genes in the same

Figure 7. Sliding-Window Analysis of Coexpression along Grapevine Chromosomes 2 and 16.

Red and green lines correspond to positions on the chromosome where coexpression is specific for nonvegetative samples (positive variation) and

vegetative samples (negative variation), respectively (see Supplemental Methods 1 online for further details on sliding-window analysis).

Figure 8. Mutual Information of Synonymous Codon Usage in Grapevine Gene Coexpression Clusters.

Each row represents a coexpression cluster, whereas each column represents a synonymous codon. Significant mutual information is shown in blue

(P # 1024).
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cluster and a given developmental process, despite their ap-

parently unrelated molecular or cellular functions, and may be

related to epigenetic regulatory mechanisms that exert their

effects over genes in the same chromatin domain and recruit

them into coregulated pathways.

Vegetative/Green and Mature/Woody Samples Have

Different Codon Usage Preferences

Cellular tRNA pools can be highly dynamic, helping to tune

protein synthesis to meet specific physiological or develop-

mental requirements (Najafabadi et al., 2009). The analysis of

mutual information (MI) between codon usage and 60 transcrip-

tional clusters revealed the nonrandom use of many codons in

genes with the same expression profiles (see Supplemental Figure

14 online). This suggested that tRNA availability may contribute to

the regulation of gene expression in grapevine leading to the hy-

pothesis that transcriptomic differences between vegetative/green

and mature/woody clusters may be associated with differences in

tRNA availability. Indeed, we found that genes belonging to the

green/vegetative and mature/woody clusters (Figure 3E) have

significantly (P < 0.0001) different codon usage preferences (see

Supplemental Table 4 online).

To gain more insight into the expression profiles that con-

tribute most to the codon usage diversity, we grouped vege-

tative/green and mature/woody samples into 12 clusters and

tested coclustering genes for their codon usage preferences.

Genes expressed in either the vegetative/green or mature/

woody samples were compositionally diverse, confirming an

association between transcriptional and compositional clus-

tering (Figure 8; see Supplemental Figure 15 online). This means

that grapevine genes defining vegetative/green and mature/

woody samples not only have distinct expression profiles but

also different codon usage preferences and implies that a typi-

cal green/vegetative gene is disadvantaged if expressed in

mature/woody samples and vice versa. Clusters with the most

significant preferential codon usage often represented specific

developmental phases in certain samples (e.g., rachis and ten-

dril, cluster 4; berry withering, clusters 13 and 22; and seeds,

cluster 24).

Summary and Conclusions

We constructed a genome-wide transcriptomic atlas of a woody

fruit crop, using grapevine as a model because it is the most

widely cultivated fruit crop in the world. We analyzed gene

expression profiles in 54 diverse organ/tissue samples using

a comprehensive grapevine genome microarray and detected

the expression of ;91% of the predicted genes from the latest

12x grapevine genome annotation in at least one sample. The

remaining genes are probably expressed uniquely under con-

ditions that were not evaluated in our survey (i.e., different forms

of biotic and abiotic stress) (see Supplemental Data Set 1 and

Supplemental Figure 16 online). Microarray analysis revealed

that samples with unique characteristics (such as pollen grains

and leaves undergoing senescence) were clearly distinguishable

at the transcriptomic level from all other samples, which grouped

more according to their maturity and developmental stage

than their organ or tissue identity, as also supported by the in

silico analysis of RNA-seq data. Previous studies have fo-

cused mostly on berry development and ripening (Zamboni

et al., 2010; Zenoni et al., 2010; Tornielli et al., 2012), but

our transcriptomic atlas presents a comprehensive grapevine

transcriptome.

The fundamental reprogramming of the transcriptome during

maturation was highlighted by all three statistical approaches

we used to mine our microarray data. These different methods

also allowed us to identify the transcriptional relationships

among samples (Pearson’s correlation distance approach), pu-

tative biomarkers (O2PLS-DA approach), and sets of strongly

and consistently expressed genes that define groups (topics) of

similar samples (biclustering analysis based on a topic model

approach).

Coexpression analysis provided further insight into the dy-

namic reprogramming of the transcriptome during maturation by

revealing specific characteristics that defined vegetative/green

and mature/woody samples. The shift to the mature/woody

developmental program results from the reiterative coactivation

of particular pathways that are inactive or minimally active in

vegetative/green samples, whereas some pathways that are

active in vegetative/green samples remain at least partially ac-

tive after maturation. In many cases, the coexpression of genes

and, indeed, pathways involved in the maturation process in-

volved the coregulation of neighboring genes in clusters as well

as global regulation based on codon usage preference. This

peculiar behavior of the grapevine transcriptome might be

shared with other perennial woody plants, but it has not been

reported previously in the transcriptomes of herbaceous annual

species.

The grapevine genome sequence revealed several exam-

ples of expanding gene families (Jaillon et al., 2007; Velasco

et al., 2007; Matus et al., 2008), and some of which may have

an impact on ripe berry quality and the organoleptic proper-

ties of wine. Our gene expression atlas provides further insight

into the molecular mechanisms underlying berry development,

particularly the biclustering topic model analysis that identi-

fied both structural and regulatory genes that are potentially

the key players defining groups of organs with similar de-

velopmental and metabolic features. Many genes that define

the ripe berry topic currently have no known function and

therefore are important targets for functional annotation to

increase our knowledge of the processes that control berry

ripening.

Combined with the complete grapevine genome sequence,

our comprehensive transcriptome atlas elevates grapevine to

the status of a model fruit tree species, facilitating large-scale

investigations of gene function in the future. Our gene expres-

sion survey could be used to infer the specific metabolic pro-

cesses and cellular structures within each of the samples, as

recently reported in tomato (Matas et al., 2011). The tran-

scriptome atlas will also support vineyard management by

providing the means to pinpoint molecular changes that affect

yield, quality, environmental responses, and molecular factors

that underlie the phenotypic plasticity of different grapevine

varieties during cultivation.
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METHODS

Vineyard Features

Grapevine (Vitis vinifera cv Corvina, clone 48) samples were collected from

a 7-year-old vineyard (45° 279 1799 N, 11° 039 1499 E, Montorio, Verona

Province, Italy) during the 2008/2009 growing seasons at the same time of

day (;9:30 AM). The vineyard was 130 m above sea level, and the soil

comprised 36% sand, 36% clay, and 28% silt. The replacement cane

Guyot rows were north–south oriented, and 41B was used as the root-

stock.

Sample Collection

We collected 54 grapevine samples (bud, inflorescence, tendril, leaf, stem,

root, developing berry, withering berry, seed, rachis, anther, carpel, petal,

pollen, and seedling) covering most organs at several developmental

stages (see Supplemental Table 1 online). Three biological replicates were

taken for each sample. Buds were collected at five developmental stages,

the first corresponding to the first-season latent bud (E-L 23), the second

representing the winter dormant bud (E-L 1), the third corresponding to

the bud-swelling stage (E-L 2), the fourth representing the initial bud burst,

showing a green tip (E-L 4), and the last representing bud burst, when

a rosette of leaf tips is visible (E-L 5). Inflorescences were collected at two

developmental stages, the first representing the young inflorescence with

single flowers in compact groups (E-L 14) and the second representing

a well-developed inflorescence with separated flowers (E-L 17). Flowers

were collected at the beginning of flowering (10% of caps off; E-L 20) and

at the 50% caps off stage, which is considered the flowering phase (E-L

23). Floral organs were collected from undisclosed flowers collected at

two time points corresponding to E-L 20 (10% caps off, 16 to 18 leaves)

and E-L 23 (50% caps off, 17 to 20 leaves). A pool of these two de-

velopmental stages was created for each sample of petal, anther, and

carpel. Pollen was collected from opened flowers (>50% caps off, E-L 25).

Tendrils are slender structures with the same developmental origin as the

inflorescence. They grow opposite the leaf at each node, except for the

first two to three supporting leaves at the base of the shoot. Tendrils were

collected at three developmental stages, the first corresponding to a pool

of tendrils collected when the shoot bears seven separated leaves (E-L

14), the second corresponding to a pool of well-developed tendrils col-

lected when the shoot bears 12 separated leaves (E-L 17), and the last

corresponding to a pool of mature-coiled tendrils collected at fruit set

(berry diameter ;4 mm; E-L 29). Leaves were collected at three de-

velopmental stages, the first representing a pool of young light-green

leaves starting from the second from the tip, when the shoot bears ap-

proximately five well-separated leaves (E-L 14), the second corresponding

to mature leaves collected when the berry size was;4 mm diameter (E-L

29), and the third representing leaves undergoing senescence collected

before the beginning of leaf fall (E-L 43). Berries (pericarp) were sampled at

five developmental time points by freezing whole berries and removing the

seeds. The first stage (15 d after flowering [DAF]; E-L 29) corresponds to

the fruit set, when young berries are enlarging (>3 mm diameter); the

second stage (35 DAF; E-L 32) is the PFS, when berries (>7 mm diameter)

start touching; the third stage (70 DAF; E-L 35) is the veraison, when

berries begin to change color and enlarge (10.4° Brix); the fourth stage (84

DAF; E-L 36) corresponds to the mid-ripening stage (15.5° Brix); and the

final stage (115 DAF; E-L 38) represents complete ripening (20.0° Brix).

The sugar content (mean Brix degree value) was recorded at each time

point using a PR-32 bench refractometer (Atago Co.). Starting from the

PFS stage, berries were further dissected into skin and flesh tissues. After

harvest, clusters were placed for three months in single layers in a nat-

urally ventilated room with no automated temperature or humidity control.

Withered berries were sampled each month, and weight percentages of

the withering samples were compared with the weight of the ripening

berries (E-L 38). The sugar content was recorded as above. At the first

withering stage (WI), berry weight was 76.4% the ripe value and the sugar

content was 24.5° Brix. The second stage (WII) was characterized by

69.7% berry weight and 25.9° Brix, and the last stage (WIII) was char-

acterized by 67.3%berry weight and 26.7° Brix. At each time point, berries

were further dissected into skin and flesh tissues. Seeds were collected at

the first four stages of berry development, corresponding to E-L 29, E-L

32, E-L 35, and E-L 36. The rachis is the main inflorescence axis of the

grape berry cluster, and rachis samples were collected along with the

berry samples. Stems were collected at two developmental stages,

the first representing a pool of stems collected starting from the second

node from the tip (E-L 14) and the second representing a pool of woody

stems (cane) collected at E-L 43. Corvina roots were collected from in vitro

cuttings. The growth medium (HB) was prepared as described by Blaich

(1977). Developing young roots were pooled to create three biological

replicates. Ripened seeds were stored a 4°C for at least 2 weeks and then

planted in soil under normal greenhouse conditions. Seedlings were

collected after 2 months to create three pools at three different de-

velopmental stages. Cotyledons were still closed in the first stage, just

opened in the second stage, and wide open at the third stage.

RNA Extraction

For most samples, ;100 mg of tissue was ground under liquid nitrogen,

and total RNA was extracted using the Spectrum Plant Total RNA kit

(Sigma-Aldrich) following the manufacturer’s protocol. For berry flesh,

senescing leaves, and woody stems, ;400 mg of ground material was

required, and for berry pericarp and skin, seed, rachis, root, and latent and

winter buds, ;200 mg of ground material was required. We precipitated

the total RNA from winter buds, seeds, woody stems, and rachis at

veraison and mid-ripening with LiCl to remove contaminants that ab-

sorbed at 230 nm. LiCl was mixed with total RNA to a final concentration

of 2.5 M, incubated overnight at 4°C, and centrifuged at 13,000g, and the

pellet was washed with 70% ethanol before resuspending in water. RNA

quality and quantity were determined using a Nanodrop 2000 spectro-

photometer (Thermo Scientific) and a Bioanalyzer Chip RNA 7500 series II

(Agilent).

Microarray Hybridization and Data Extraction

Weperformed cDNA synthesis, labeling, hybridization, andwashing steps

according to the NimbleGen Arrays User’s Guide (version 3.2). Each

sample was hybridized to a NimbleGen microarray 090818 Vitis exp HX12

(Roche, NimbleGen), which contains probes targeted to 29,549 predicted

grapevine genes (http://ddlab.sci.univr.it/FunctionalGenomics/), repre-

senting;98.6% of the genes predicted from the V1 annotation of the 12x

grapevine genome (http://srs.ebi.ac.uk/) and 19,091 random probes as

negative controls. Each microarray was scanned using an Axon GenePix

4400A (Molecular Devices) at 532 nm (Cy3 absorption peak) and GenePix

Pro7 software (Molecular Devices) according to the manufacturer’s in-

structions. Images were analyzed using NimbleScan v2.5 software

(Roche), which produces pair files containing the raw signal intensity data

for each probe and calls files with normalized expression data derived

from the average of the intensities of the four probes for each gene. All mi-

croarray expression data are available in the Gene Expression Omnibus

under the series entry GSE36128 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?token=lfcrxesyciqgsjoandacc=GSE36128).

Statistical Evaluation of Gene Expression and Tissue Specificity

To find the threshold expression level, which defines a gene as “ex-

pressed” or “nonexpressed,” we computed the log2 data and estimated

the control group probability density for the 19,091 random probes in

each experiment using a normal kernel smoothing method with the
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threshold P = 0.05 and averaged the biological replicates only if at least

two (out of three) expression values exceeded the threshold. For each

group of samples (see Supplemental Table 2 online), we defined a tran-

script as tissue specific if its mean expression value exceeded the

threshold in at least one sample form a given organ.

Functional Category Distribution and GO Enrichment Analysis

All transcripts were annotated against the V1 version of the 12x draft

annotation of the grapevine genome (http://genomes.cribi.unipd.it/DATA/),

allowing 70% of the genes to be identified. This was verified manually and

integrated using gene ontology (GO) classifications. Transcripts were

then grouped into the 16 most represented functional categories

(GO:0008150, other processes; GO:0051090, transcription factor activity;

GO:0009725, response to hormone stimulus; GO:0019725, cellular ho-

meostasis; GO:0007165, signal transduction; GO:0006950, response to

stress; GO:0032502, developmental process; GO:0006810, transport;

GO:0015979, photosynthesis; GO:0006091, generation of energy;

GO:0090304, DNA/RNA metabolic process; GO:0044036, cell wall me-

tabolism; GO:0019748, secondary metabolic process; GO:0006629, lipid

metabolic process; GO:0006520, cellular amino acids and derivative

metabolic process; GO:0005975, carbohydrate metabolic process),

based on GO biological processes. Genes with unknown functions or with

a “no hit” annotation were also included. The distribution of functional

categories is represented in a histogram showing the percentage of the

genes in each topic (Figure 6B).

GO annotation analysis was applied to gene clusters and organ-

specific genes using the BiNGO 2.3 plug-in tool in Cytoscape version 2.6

with PlantGOslim categories, as described by Maere et al. (2005).

Overrepresented PlantGOslim categories were identified using a hyper-

geometric test with a significance threshold of 0.05 for gene clusters and

of 0.5 for organ-specific genes, after Benjamini and Hochberg false

discovery rate correction (Klipper-Aurbach et al., 1995).

Estimation of Bimodal Distribution

For each sample experiment, we first averaged the replicate genome-wide

data andestimated theprobability distribution usinganormal kernel smoothing

method. We then calculated the mean and SD by optimally fitting the data to

a unimodal normal distribution. Finally, we computed the mean square of the

difference between the estimated distribution and the normal unimodal dis-

tributionwith the estimatedmean and variance. Themean square is ameasure

of the “distance” of data from a unimodal normal distribution.We then ordered

these error data according to the number of expressed genes in each organ

and found a positive trend (see Supplemental Figure 1 online).

Correlation Analysis

A correlation matrix was prepared using R software and Pearson’s cor-

relation coefficient as the statistical metric to compare the values of the

whole transcriptome (29,549 genes) in all 54 samples, using the average

expression value of the three biological replicates. Correlation values were

converted into distance coefficients to define the height scale of the

dendrogram. FPKM (fragments per kilobase per million of reads mapped)

values were used to create the correlation matrix and the cluster den-

drogram from the RNA-seq data set. MATLAB scripts were used to

analyze the correlation among samples at different statistical metrics

(euclidean, spearman rank, cityblock, and cosine) and at three expression

levels (top 20%, between 20% and 80%, and bottom 20%).

Remapping Reads on the 12x Grapevine Genome Prediction

Illumina sequences derived from poly(A+) RNA isolated from four Pinot

noir tissues (in vitro–cultivated juvenile leaf, juvenile stem, juvenile root,

and embryonic callus) and three developmental stages of Corvina berry

pericarp (PFS, veraison, and ripening) were previously generated using

the Solexa/Illumina technology (Denoeud et al., 2008) and Illumina ge-

nome analyzer II (Zenoni et al., 2010) platforms, respectively. Sequence

alignments were generated with TopHat version 1.0.14 (Trapnell et al.,

2009) (see Supplemental Data Set 2 online). The V. vinifera RefSeq se-

quences were based on the 12-fold PN40024 genome newer Version 1

(http://srs.ebi.ac.uk/). Gene expression was evaluated using Cufflinks

software (version 0.9.2; http://cufflinks.cbcb.umd.edu/) (Trapnell et al.,

2010). Briefly, Cufflinks uses the alignment information at each gene locus

to assign multimapping reads to a specific locus using a maximum

likelihood estimation. On the basis of the relative abundance of fragments

(defined as a single read in single-end experiments or as two reads from

the same cDNA in paired-end experiments), the software is able to

compute the normalized expression measure as FPKM. The number of

reads falling in a given gene locus can be estimated from the FPKM value

as follows: n = FPKM 3 L 3 NTot 3 1029, where n = number of mapping

reads at a given gene locus, L = estimated length (bp) of the gene locus,

NTot = number of total mapping reads, and FPKM 5 gene locus FPKM

value.

PCA, O2PLS, and Putative Marker Genes

PCA was performed using SIMCA P+ (Umetrics). O2PLS-DA was used to

integrate the PCA data and reduce experimental variability. The latent

structures of the joint X-Y correlated variation were used to identify small

groups of correlated variables belonging to the two different blocks by

evaluating the similarity between each variable and the predictive latent

components of the X-Y O2PLS model by means of their correlation. The

significance threshold for the similarity was set using a permutation test,

and data integration was performed on each small group of X-Y variables

with significant correlation. O2PLS-DA allowed the identification of latent

variables yielding a parsimonious and efficient representation of the

process. To define the number of latent components for our O2PLS-DA

models, we applied partial cross-validation and a permutation test to

reveal overfitting. Multivariate data analysis was performed using SIMCA

P+ (Umetrics). Putative biomarker transcripts were selected from the

class-specific S-plots within the first (positive biomarkers) and the last

(negative biomarkers) percentile (Wiklund et al., 2008). Gene expression

values from the 52-sample data set of each group were log2 transformed

and normalized. Expression profiles were plotted in two different graphs

describing the peculiar trends of positive and negative biomarker genes

(R software).

Hierarchical Clustering

Cluster analysis was performed by the k-means method with Pearson’s

correlation distance (TMeV 4.3; http://www.tm4.org/mev) on the 54-

sample data set. HCL was performed on each cluster to represent gene

relationships in dendrograms (TMeV), with Pearson’s correlation distance

as themetric. An entire HCL representation was created by joining the four

groups. Supplemental Data Set 1 online provides information about the

membership of different clusters.

Biclustering Analysis with the PLSA Algorithm

Biclustering analysis aims to discover groups of genes sharing com-

patible expression patterns across subsets of samples (Madeira and

Oliveira, 2004; Preli�c et al., 2006).We used a technique (Joung et al., 2006;

Bicego et al., 2010) that employs PLSA, which allows data sets to be

modeled in terms of hidden topics or processes that can reflect underlying

meaningful structures. The basic idea in the gene expression scenario is

that a topic may be roughly intended as a biological process, which can

characterize a subset of samples (namely, the samples where the process
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is active). At the same time, a topic may induce the activation of a par-

ticular set of genes (namely, the genes related to the particular process).

Following this reasoning, it can be said that the relation between gene

expression and samples is mediated through the probabilistic presence of

the topics (Joung et al., 2006; Bicego et al., 2010). Given the expression

matrix, the relation topics/samples and genes/topics were learned using

the expectation maximization algorithm (Hofmann, 2001). To avoid local

minima, we performed 20 different training scenarios starting from dif-

ferent random initializations and retained the best model. The number of

topics (representing the free parameter of the model) was set using the

classic Bayesian information criterion, a penalized likelihood criterion

(Schwarz, 1978), and training the model with two to 30 topics (see

Supplemental Figure 8 online). The first type of information (relation topic/

samples) is completely encoded in the probability distribution p(z|d),

representing the probability of finding the topic “z” in the sample “d.” The

second type of information (relation topic/genes) was inferred by selecting

the 500 highest entries of the p(w|z) matrix, which describes the prob-

ability of the gene “w” given the topic “z,” namely, the level of presence of

such gene in such topic. Subsequently, for every topic, the selected genes

were grouped by their functional category.

Coexpression Analysis

Coexpression analysis of the whole data set was performed as sanity test

to score the quality of the expression data with a small number of selected

genes as queries, using the Pearson correlation distance (CorTo; http://

www.usadellab.org/cms/index.php?page=corto).

Pairwise Gene Correlation Analysis

We averaged replicate genome-wide data and computed the Pearson

correlation for each gene pair of a specific group of genes, using data

relative to a specific group of samples. This was achieved by computing

four pairwise gene correlation analyses: mature/woody cluster genes over

mature/woody samples, mature/woody cluster genes over vegetative/

green samples, vegetative/green cluster genes over vegetative/green sam-

ples, and vegetative/green cluster genes over mature/woody samples.

Sliding-Window Analysis of Chromosomal Coexpression

As previously described (Williams and Bowles, 2004), we averaged

replicate genome-wide data and computed the mean Pearson’s corre-

lation coefficient (R) of all possible pairs of neighboring genes for each

group over a sliding window of size 10 to give a measure of similarity in

expression profiles. We therefore assessed 45 different correlations, and

the mean R was used as a measure of the level of coexpression for each

particular block. Thesemean R values may be interpreted as the degree of

coexpression for each chromosomal region of 10 genes. Neighboring

genes were defined as genes that were immediately adjacent in the

grapevine genome. Themean R calculated from the real data set was then

compared with the mean R calculated from 10,000 data sets, in which the

order of both the genes and experiments were randomized. The distance

between genes was defined as the distance in base pairs on either strand

between the last coding position of the first gene and the first coding

position of the second. In the case of gene families, the specificity of the

probe set for each single gene was assessed to exclude the possibility of

cross-hybridization signals and misleading coexpression results.

Codon Usage Preference Analysis

MI between codon usage and expression profile was calculated by

comparing variable g (i.e., the normalized genic frequency of each codon)

and cluster a (a list of genes assigned to a given cluster) to determine any

nonrandom distribution (Elemento et al., 2007; Najafabadi et al., 2009).

The number of bins was set to five and gene cluster assignments were

shuffled 104 times for the assessment of MI significance. The normalized

frequency of a synonymous codon in a given gene was calculated as the

usage of that codon divided by the usage of the corresponding amino acid

in the same gene product. This statistic was calculated only when the

corresponding amino acid was present more than five times the de-

generacy of the encoded amino acid. Gene clusters were defined by the

k-means method with Pearson’s correlation distance (TMeV 4.3; http://

www.tm4.org/mev). The MI-RSCU package of the ICodPack suite was

used to calculate the mutual information of each codon. More information

can be found in Supplemental Methods 1 online. The codon usage di-

versity between genes belonging to the green/vegetative and mature/

woody was calculated using the PIRSCU script (Najafabadi et al., 2009). In

brief, the normalized frequency of each codon in each gene was cal-

culated as the usage of that codon divided by the usage of the amino acid

it codes for. The distance (d) of a pair of genes was calculated as the

absolute value of the difference between the normalized codon usage

frequencies in the two genes. The distance of all gene pairs was calculated

andgenepairswere sorted according to their d values. Then, the sorted gene

pairs were divided into 50 several equally populated bins and for each bin the

likelihood of being in the same cluster was calculated as by Najafabadi et al.

(2009). Pearson correlation coefficient betweenminimumdvalue for each bin

and the L values associatedwith that bin were calculated. The significance of

Pearson correlation coefficient was estimated by randomly shuffling gene

cluster assignments 104 times, each time repeating the calculations and

comparing with the original correlation coefficient.
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