
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

2009 

The graph neural network model The graph neural network model 

Franco Scarselli 
University of Siena 

Marco Gori 
University of Siena 

Ah Chung Tsoi 
Hong Kong Baptist University, act@uow.edu.au 

Markus Hagenbuchner 
University of Wollongong, markus@uow.edu.au 

Gabriele Monfardini 
University of Siena 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 

Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner, Markus; and Monfardini, Gabriele: The 

graph neural network model 2009. 

https://ro.uow.edu.au/infopapers/3165 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F3165&utm_medium=PDF&utm_campaign=PDFCoverPages


The graph neural network model The graph neural network model 

Abstract Abstract 
Many underlying relationships among data in several areas of science and engineering, e.g., computer 
vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in 
terms of graphs. In this paper, we propose a new neural network model, called graph neural network 
(GNN) model, that extends existing neural network methods for processing the data represented in graph 
domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., 

acyclic, cyclic, directed, and undirected, implements a function tau(G,n) isin IRm that maps a graph G and 
one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to 
estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm 
is also considered. Some experimental results are shown to validate the proposed learning algorithm, and 
to demonstrate its generalization capabilities. 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M. & Monfardini, G. 2009, 'The graph neural network model', 
IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61-80. 

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/3165 

https://ro.uow.edu.au/infopapers/3165


IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009 61

The Graph Neural Network Model
Franco Scarselli, Marco Gori, Fellow, IEEE, Ah Chung Tsoi, Markus Hagenbuchner, Member, IEEE, and

Gabriele Monfardini

Abstract—Many underlying relationships among data in several
areas of science and engineering, e.g., computer vision, molec-
ular chemistry, molecular biology, pattern recognition, and data
mining, can be represented in terms of graphs. In this paper, we
propose a new neural network model, called graph neural network
(GNN) model, that extends existing neural network methods for
processing the data represented in graph domains. This GNN
model, which can directly process most of the practically useful
types of graphs, e.g., acyclic, cyclic, directed, and undirected,
implements a function � � that maps a graph
and one of its nodes into an -dimensional Euclidean space. A
supervised learning algorithm is derived to estimate the param-
eters of the proposed GNN model. The computational cost of the
proposed algorithm is also considered. Some experimental results
are shown to validate the proposed learning algorithm, and to
demonstrate its generalization capabilities.

Index Terms—Graphical domains, graph neural networks
(GNNs), graph processing, recursive neural networks.

I. INTRODUCTION

D
ATA can be naturally represented by graph structures in

several application areas, including proteomics [1], image

analysis [2], scene description [3], [4], software engineering [5],

[6], and natural language processing [7]. The simplest kinds of

graph structures include single nodes and sequences. But in sev-

eral applications, the information is organized in more complex

graph structures such as trees, acyclic graphs, or cyclic graphs.

Traditionally, data relationships exploitation has been the sub-

ject of many studies in the community of inductive logic pro-

gramming and, recently, this research theme has been evolving

in different directions [8], also because of the applications of

relevant concepts in statistics and neural networks to such areas

(see, for example, the recent workshops [9]–[12]).

In machine learning, structured data is often associated with

the goal of (supervised or unsupervised) learning from exam-
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ples a function that maps a graph and one of its nodes to

a vector of reals1: . Applications to a graphical

domain can generally be divided into two broad classes, called

graph-focused and node-focused applications, respectively, in

this paper. In graph-focused applications, the function is in-

dependent of the node and implements a classifier or a re-

gressor on a graph structured data set. For example, a chemical

compound can be modeled by a graph , the nodes of which

stand for atoms (or chemical groups) and the edges of which

represent chemical bonds [see Fig. 1(a)] linking together some

of the atoms. The mapping may be used to estimate the

probability that the chemical compound causes a certain disease

[13]. In Fig. 1(b), an image is represented by a region adjacency

graph where nodes denote homogeneous regions of intensity of

the image and arcs represent their adjacency relationship [14]. In

this case, may be used to classify the image into different

classes according to its contents, e.g., castles, cars, people, and

so on.

In node-focused applications, depends on the node , so

that the classification (or the regression) depends on the proper-

ties of each node. Object detection is an example of this class of

applications. It consists of finding whether an image contains a

given object, and, if so, localizing its position [15]. This problem

can be solved by a function , which classifies the nodes of the

region adjacency graph according to whether the corresponding

region belongs to the object. For example, the output of for

Fig. 1(b) might be 1 for black nodes, which correspond to the

castle, and 0 otherwise. Another example comes from web page

classification. The web can be represented by a graph where

nodes stand for pages and edges represent the hyperlinks be-

tween them [Fig. 1(c)]. The web connectivity can be exploited,

along with page contents, for several purposes, e.g., classifying

the pages into a set of topics.

Traditional machine learning applications cope with graph

structured data by using a preprocessing phase which maps the

graph structured information to a simpler representation, e.g.,

vectors of reals [16]. In other words, the preprocessing step first

“squashes” the graph structured data into a vector of reals and

then deals with the preprocessed data using a list-based data

processing technique. However, important information, e.g., the

topological dependency of information on each node may be

lost during the preprocessing stage and the final result may de-

pend, in an unpredictable manner, on the details of the prepro-

cessing algorithm. More recently, there have been various ap-

proaches [17], [18] attempting to preserve the graph structured

nature of the data for as long as required before the processing

1Note that in most classification problems, the mapping is to a vector of inte-
gers �� , while in regression problems, the mapping is to a vector of reals �� .
Here, for simplicity of exposition, we will denote only the regression case. The
proposed formulation can be trivially rewritten for the situation of classification.

1045-9227/$25.00 © 2008 IEEE
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Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured

data using the topological relationships among the nodes of the

graph, in order to incorporate graph structured information in

the data processing step. Recursive neural networks [17], [19],

[20] and Markov chains [18], [21], [22] belong to this set of tech-

niques and are commonly applied both to graph and node-fo-

cused problems. The method presented in this paper extends

these two approaches in that it can deal directly with graph struc-

tured information.

Existing recursive neural networks are neural network models

whose input domain consists of directed acyclic graphs [17],

[19], [20]. The method estimates the parameters of a func-

tion , which maps a graph to a vector of reals. The approach

can also be used for node-focused applications, but in this case,

the graph must undergo a preprocessing phase [23]. Similarly,

using a preprocessing phase, it is possible to handle certain types

of cyclic graphs [24]. Recursive neural networks have been ap-

plied to several problems including logical term classification

[25], chemical compound classification [26], logo recognition

[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector

machines [30]–[32], which adopt special kernels to operate on

graph structured data. For example, the diffusion kernel [33] is

based on heat diffusion equation; the kernels proposed in [34]

and [35] exploit the vectors produced by a graph random walker

and those designed in [36]–[38] use a method of counting the

number of common substructures of two trees. In fact, recursive

neural networks, similar to support vector machine methods,

automatically encode the input graph into an internal represen-

tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed

by the user.

On the other hand, Markov chain models can emulate

processes where the causal connections among events are

represented by graphs. Recently, random walk theory, which

addresses a particular class of Markov chain models, has been

applied with some success to the realization of web page

ranking algorithms [18], [21]. Internet search engines use

ranking algorithms to measure the relative “importance” of

web pages. Such measurements are generally exploited, along

with other page features, by “horizontal” search engines, e.g.,

Google [18], or by personalized search engines (“vertical”

search engines; see, e.g., [22]) to sort the universal resource

locators (URLs) returned on user queries.2 Some attempts have

been made to extend these models with learning capabilities

such that a parametric model representing the behavior of

the system can be estimated from a set of training examples

extracted from a collection [22], [40], [41]. Those models are

able to generalize the results to score all the web pages in the

collection. More generally, several other statistical methods

have been proposed, which assume that the data set consists of

patterns and relationships between patterns. Those techniques

include random fields [42], Bayesian networks [43], statistical

relational learning [44], transductive learning [45], and semisu-

pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,

which is suitable for both graph and node-focused applications.

This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].
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framework. We will call this novel neural network model a

graph neural network (GNN). It will be shown that the GNN

is an extension of both recursive neural networks and random

walk models and that it retains their characteristics. The model

extends recursive neural networks since it can process a more

general class of graphs including cyclic, directed, and undi-

rected graphs, and it can deal with node-focused applications

without any preprocessing steps. The approach extends random

walk theory by the introduction of a learning algorithm and by

enlarging the class of processes that can be modeled.

GNNs are based on an information diffusion mechanism. A

graph is processed by a set of units, each one corresponding to a

node of the graph, which are linked according to the graph con-

nectivity. The units update their states and exchange informa-

tion until they reach a stable equilibrium. The output of a GNN

is then computed locally at each node on the base of the unit

state. The diffusion mechanism is constrained in order to en-

sure that a unique stable equilibrium always exists. Such a real-

ization mechanism was already used in cellular neural networks

[47]–[50] and Hopfield neural networks [51]. In those neural

network models, the connectivity is specified according to a pre-

defined graph, the network connections are recurrent in nature,

and the neuron states are computed by relaxation to an equilib-

rium point. GNNs differ from both the cellular neural networks

and Hopfield neural networks in that they can be used for the

processing of more general classes of graphs, e.g., graphs con-

taining undirected links, and they adopt a more general diffusion

mechanism.

In this paper, a learning algorithm will be introduced, which

estimates the parameters of the GNN model on a set of given

training examples. In addition, the computational cost of the pa-

rameter estimation algorithm will be considered. It is also worth

mentioning that elsewhere [52] it is proved that GNNs show a

sort of universal approximation property and, under mild condi-

tions, they can approximate most of the practically useful func-

tions on graphs.3

The structure of this paper is as follows. After a brief de-

scription of the notation used in this paper as well as some pre-

liminary definitions, Section II presents the concept of a GNN

model, together with the proposed learning algorithm for the

estimation of the GNN parameters. Moreover, Section III dis-

cusses the computational cost of the learning algorithm. Some

experimental results are presented in Section IV. Conclusions

are drawn in Section V.

II. THE GRAPH NEURAL NETWORK MODEL

We begin by introducing some notations that will be used

throughout the paper. A graph is a pair , where is

the set of nodes and is the set of edges. The set stands

for the neighbors of , i.e., the nodes connected to by an arc,

while denotes the set of arcs having as a vertex. Nodes

and edges may have labels represented by real vectors. The la-

bels attached to node and edge will be represented

by and , respectively. Let denote the

vector obtained by stacking together all the labels of the graph.

3Due to the length of proofs, such results cannot be shown here and is included
in [52].

The notation adopted for labels follows a more general scheme:

if is a vector that contains data from a graph and is a subset of

the nodes (the edges), then denotes the vector obtained by se-

lecting from the components related to the node (the edges) in

. For example, stands for the vector containing the labels

of all the neighbors of . Labels usually include features of ob-

jects related to nodes and features of the relationships between

the objects. For example, in the case of an image as in Fig. 1(b),

node labels might represent properties of the regions (e.g., area,

perimeter, and average color intensity), while edge labels might

represent the relative position of the regions (e.g., the distance

between their barycenters and the angle between their principal

axes). No assumption is made on the arcs; directed and undi-

rected edges are both permitted. However, when different kinds

of edges coexist in the same data set, it is necessary to distin-

guish them. This can be easily achieved by attaching a proper

label to each edge. In this case, different kinds of arcs turn out

to be just arcs with different labels.

The considered graphs may be either positional or nonposi-

tional. Nonpositional graphs are those described so far; posi-

tional graphs differ since a unique integer identifier is assigned

to each neighbors of a node to indicate its logical position.

Formally, for each node in a positional graph, there exists an

injective function , which assigns to

each neighbor of a position . Note that the position

of the neighbor can be implicitly used for storing useful infor-

mation. For instance, let us consider the example of the region

adjacency graph [see Fig. 1(b)]: can be used to represent the

relative spatial position of the regions, e.g., might enumerate

the neighbors of a node , which represents the adjacent regions,

following a clockwise ordering convention.

The domain considered in this paper is the set of pairs of

a graph and a node, i.e., where is a set of the

graphs and is a subset of their nodes. We assume a supervised

learning framework with the learning set

where denotes the th node in the set and

is the desired target associated to . Finally, and

. Interestingly, all the graphs of the learning set can be

combined into a unique disconnected graph, and, therefore, one

might think of the learning set as the pair where

is a graph and a is set of pairs

. It is worth mentioning that this com-

pact definition is not only useful for its simplicity, but that it

also captures directly the very nature of some problems where

the domain consists of only one graph, for instance, a large por-

tion of the web [see Fig. 1(c)].

A. The Model

The intuitive idea underlining the proposed approach is that

nodes in a graph represent objects or concepts, and edges rep-

resent their relationships. Each concept is naturally defined by

its features and the related concepts. Thus, we can attach a state
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Fig. 2. Graph and the neighborhood of a node. The state ��� of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-

tained in the neighborhood of (see Fig. 2). The state con-

tains a representation of the concept denoted by and can be

used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-

tion, that expresses the dependence of a node on its neighbor-

hood and let be the local output function that describes how

the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels

of its edges, the states, and the labels of the nodes in the neigh-

borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.

For example, one may wish to remove the labels , since

they include information that is implicitly contained in .

Moreover, the neighborhood could contain nodes that are two

or more links away from . In general, (1) could be simplified

in several different ways and several minimal models4 exist. In

the following, the discussion will mainly be based on the form

defined by (1), which is not minimal, but it is the one that more

closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.

When dealing with directed graphs, the function can also ac-

cept as input a representation of the direction of the arcs. For ex-

ample, may take as input a variable for each arc

such that , if is directed towards and , if

comes from . In the following, in order to keep the notations

compact, we maintain the customization of (1). However, un-

less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and

undirected links.

Remark 3: In general, the transition and the output functions

and their parameters may depend on the node . In fact, it is

plausible that different mechanisms (implementations) are used

to represent different kinds of objects. In this case, each kind of

nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes

and .

However, for the sake of simplicity, our analysis will consider

(1) that describes a particular model where all the nodes share

the same implementation.

Let , , , and be the vectors constructed by stacking all

the states, all the outputs, all the labels, and all the node labels,

respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global

output function are stacked versions of instances of and

, respectively.

We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph

as input and returns an output for each node. The Banach

fixed point theorem [53] provides a sufficient condition for the

existence and uniqueness of the solution of a system of equa-

tions. According to Banach’s theorem [53], (2) has a unique so-

lution provided that is a contraction map with respect to the

state, i.e., there exists , , such that

holds for any , where denotes

a vectorial norm. Thus, for the moment, let us assume that

is a contraction map. Later, we will show that, in GNNs, this

property is enforced by an appropriate implementation of the

transition function.

Note that (1) makes it possible to process both positional and

nonpositional graphs. For positional graphs, must receive the

positions of the neighbors as additional inputs. In practice, this

can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-

sitions and is properly padded with special null values in po-

sitions corresponding to nonexisting neighbors. For example,

, where is the max-

imal number of neighbors of a node; holds, if is the

th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.

However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,

which has been successfully used in recursive neural networks

[54], is not affected by the positions and the number of the chil-

dren. In the following, (3) is referred to as the nonpositional

form, while (1) is called the positional form. In order to imple-

ment the GNN model, the following items must be provided:

1) a method to solve (1);
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Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing � and � (the squares). When � and � are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples

from the training data set5;

3) an implementation of and .

These aspects will be considered in turn in the following

sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the

existence and the uniqueness of the solution of (1) but it also

suggests the following classic iterative scheme for computing

the state:

(4)

5In other words, the parameters��� are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system

(4) converges exponentially fast to the solution of (2) for any ini-

tial value . We can, therefore, think of as the state that

is updated by the transition function . In fact, (4) implements

the Jacobi iterative method for solving nonlinear equations [55].

Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted

as the representation of a network consisting of units, which

compute and . Such a network will be called an encoding

network, following an analog terminology used for the recursive
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neural network model [17]. In order to build the encoding net-

work, each node of the graph is replaced by a unit computing the

function (see Fig. 3). Each unit stores the current state

of node , and, when activated, it calculates the state

using the node label and the information stored in the neigh-

borhood. The simultaneous and repeated activation of the units

produce the behavior described in (5). The output of node is

produced by another unit, which implements .

When and are implemented by feedforward neural net-

works, the encoding network turns out to be a recurrent neural

network where the connections between the neurons can be di-

vided into internal and external connections. The internal con-

nectivity is determined by the neural network architecture used

to implement the unit. The external connectivity depends on the

edges of the processed graph.

C. The Learning Algorithm

Learning in GNNs consists of estimating the parameter

such that approximates the data in the learning data set

where is the number of supervised nodes in . For graph-fo-

cused tasks, one special node is used for the target (

holds), whereas for node-focused tasks, in principle, the super-

vision can be performed on every node. The learning task can

be posed as the minimization of a quadratic cost function

(6)

Remark 4: As common in neural network applications, the

cost function may include a penalty term to control other prop-

erties of the model. For example, the cost function may contain

a smoothing factor to penalize any abrupt changes of the outputs

and to improve the generalization performance.

The learning algorithm is based on a gradient-descent

strategy and is composed of the following steps.

a) The states are iteratively updated by (5) until at time

they approach the fixed point solution of (2): .

b) The gradient is computed.

c) The weights are updated according to the gradient com-

puted in step b).

Concerning step a), note that the hypothesis that is a

contraction map ensures the convergence to the fixed point.

Step c) is carried out within the traditional framework of gra-

dient descent. As shown in the following, step b) can be carried

out in a very efficient way by exploiting the diffusion process

that takes place in GNNs. Interestingly, this diffusion process

is very much related to the one which takes place in recurrent

neural networks, for which the gradient computation is based

on backpropagation-through-time algorithm [17], [56], [57]. In

this case, the encoding network is unfolded from time back to

an initial time . The unfolding produces the layered network

shown in Fig. 3. Each layer corresponds to a time instant and

contains a copy of all the units of the encoding network. The

units of two consecutive layers are connected following graph

connectivity. The last layer corresponding to time includes

also the units and computes the output of the network.

Backpropagation through time consists of carrying out the

traditional backpropagation step on the unfolded network to

compute the gradient of the cost function at time with respect

to (w.r.t.) all the instances of and . Then, is

obtained by summing the gradients of all instances. However,

backpropagation through time requires to store the states of

every instance of the units. When the graphs and are

large, the memory required may be considerable.6 On the

other hand, in our case, a more efficient approach is possible,

based on the Almeida–Pineda algorithm [58], [59]. Since (5)

has reached a stable point before the gradient computation,

we can assume that holds for any . Thus,

backpropagation through time can be carried out by storing

only . The following two theorems show that such an intuitive

approach has a formal justification. The former theorem proves

that function is differentiable.

Theorem 1 (Differentiability): Let and be the

global transition and the global output functions of a GNN,

respectively. If and are continuously differ-

entiable w.r.t. and , then is continuously differentiable

w.r.t. .

Proof: Let a function be defined as

Such a function is continuously differ-

entiable w.r.t. and , since it is the difference of

two continuously differentiable functions. Note that the

Jacobian matrix of w.r.t. fulfills

where de-

notes the -dimensional identity matrix and , is

the dimension of the state. Since is a contraction map,

there exists such that ,

which implies . Thus, the de-

terminant of is not null and we can apply the

implicit function theorem (see [60]) to and point . As

a consequence, there exists a function , which is defined

and continuously differentiable in a neighborhood of , such

that and Since this

result holds for any , it is demonstrated that is continu-

ously differentiable on the whole domain. Finally, note that

, where denotes the operator

that returns the components corresponding to node . Thus,

is the composition of differentiable functions and hence is

itself differentiable.

It is worth mentioning that this property does not hold for

general dynamical systems for which a slight change in the pa-

rameters can force the transition from one fixed point to another.

The fact that is differentiable in GNNs is due to the assump-

tion that is a contraction map. The next theorem provides a

method for an efficient computation of the gradient.

Theorem 2 (Backpropagation): Let and be the tran-

sition and the output functions of a GNN, respectively, and as-

sume that and are continuously differen-

tiable w.r.t. and . Let be defined by

(7)

6For internet applications, the graph may represent a significant portion of
the web. This is an example of cases when the amount of the required memory
storage may play a very important role.
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Then, the sequence converges to a vector

and the convergence is exponential and in-

dependent of the initial state . Moreover

(8)

holds, where is the stable state of the GNN.

Proof: Since is a contraction map, there exists

such that holds. Thus,

(7) converges to a stable fixed point for each initial state. The

stable fixed point is the solution of (7) and satisfies

(9)

where holds. Moreover, let us consider again the

function defined in the proof of Theorem 1. By the implicit

function theorem

(10)

holds. On the other hand, since the error depends on

the output of the network , the gra-

dient can be computed using the chain rule for

differentiation

(11)

The theorem follows by putting together (9)–(11)

The relationship between the gradient defined by (8) and the

gradient computed by the Almeida–Pineda algorithm can be

easily recognized. The first term on the right-hand side of (8)

represents the contribution to the gradient due to the output func-

tion . Backpropagation calculates the first term while it is

propagating the derivatives through the layer of the functions

(see Fig. 3). The second term represents the contribution due to

the transition function . In fact, from (7)

If we assume

and , for , it follows:

TABLE I
LEARNING ALGORITHM. THE FUNCTION FORWARD COMPUTES THE STATES,

WHILE BACKWARD CALCULATES THE GRADIENT. THE PROCEDURE

MAIN MINIMIZES THE ERROR BY CALLING ITERATIVELY

FORWARD AND BACKWARD

Thus, (7) accumulates the into the variable

. This mechanism corresponds to backpropagate the gradients

through the layers containing the units.

The learning algorithm is detailed in Table I. It consists of a

main procedure and of two functions FORWARD and BACKWARD.

Function FORWARD takes as input the current set of parameters

and iterates to find the convergent point, i.e., the fixed point.

The iteration is stopped when is less than

a given threshold according to a given norm . Function

BACKWARD computes the gradient: system (7) is iterated until

is smaller than a threshold ; then, the gradient

is calculated by (8).

The main procedure updates the weights until the output

reaches a desired accuracy or some other stopping criterion is

achieved. In Table I, a predefined learning rate is adopted,

but most of the common strategies based on the gradient-de-

scent strategy can be used as well, for example, we can use a

momentum term and an adaptive learning rate scheme. In our

GNN simulator, the weights are updated by the resilient back-

propagation [61] strategy, which, according to the literature



68 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

on feedforward neural networks, is one of the most efficient

strategies for this purpose. On the other hand, the design of

learning algorithms for GNNs that are not explicitly based on

gradient is not obvious and it is a matter of future research.

In fact, the encoding network is only apparently similar to a

static feedforward network, because the number of the layers

is dynamically determined and the weights are partially shared

according to input graph topology. Thus, second-order learning

algorithms [62], pruning [63], and growing learning algorithms

[64]–[66] designed for static networks cannot be directly

applied to GNNs. Other implementation details along with

a computational cost analysis of the proposed algorithm are

included in Section III.

D. Transition and Output Function Implementations

The implementation of the local output function does not

need to fulfill any particular constraint. In GNNs, is a mul-

tilayered feedforward neural network. On the other hand, the

local transition function plays a crucial role in the proposed

model, since its implementation determines the number and the

existence of the solutions of (1). The assumption behind GNN

is that the design of is such that the global transition func-

tion is a contraction map w.r.t. the state . In the following,

we describe two neural network models that fulfill this purpose

using different strategies. These models are based on the non-

positional form described by (3). It can be easily observed that

there exist two corresponding models based on the positional

form as well.

1) Linear (nonpositional) GNN. Equation (3) can naturally be

implemented by

(12)

where the vector and the matrix

are defined by the output of two feedforward neural net-

works (FNNs), whose parameters correspond to the param-

eters of the GNN. More precisely, let us call transition net-

work an FNN that has to generate and forcing net-

work another FNN that has to generate . Moreover, let

and be the func-

tions implemented by the transition and the forcing net-

work, respectively. Then, we define

(13)

(14)

where and hold,

and denotes the operator that allocates the ele-

ments of a -dimensional vector into as matrix. Thus,

is obtained by arranging the outputs of the transition

network into the square matrix and by multiplication

with the factor . On the other hand, is just

a vector that contains the outputs of the forcing network.

Here, it is further assumed that

holds7; this can be straightforwardly verified if the output

neurons of the transition network use an appropriately

7The 1-norm of a matrix � � �� � is defined as ��� �
��� �� �.

bounded activation function, e.g., a hyperbolic tangent.

Note that in this case where is the

vector constructed by stacking all the , and is a block

matrix , with if is a neighbor of

and otherwise. Moreover, vectors and

matrices do not depend on the state , but only on

node and edge labels. Thus, , and, by simple

algebra

which implies that is a contraction map (w.r.t. )

for any set of parameters .

2) Nonlinear (nonpositional) GNN. In this case, is real-

ized by a multilayered FNN. Since three-layered neural

networks are universal approximators [67], can approx-

imate any desired function. However, not all the parameters

can be used, because it must be ensured that the corre-

sponding transition function is a contraction map. This

can be achieved by adding a penalty term to (6), i.e.,

where the penalty term is if and 0

otherwise, and the parameter defines the desired

contraction constant of . More generally, the penalty

term can be any expression, differentiable w.r.t. , that

is monotone increasing w.r.t. the norm of the Jacobian.

For example, in our experiments, we use the penalty term

, where is the th column of

. In fact, such an expression is an approximation

of .

E. A Comparison With Random Walks and

Recursive Neural Networks

GNNs turn out to be an extension of other models already pro-

posed in the literature. In particular, recursive neural networks

[17] are a special case of GNNs, where:

1) the input graph is a directed acyclic graph;

2) the inputs of are limited to and , where

is the set of children of 8;

3) there is a supersource node from which all the other

nodes can be reached. This node is typically used for output

(graph-focused tasks).

The neural architectures, which have been suggested for real-

izing and , include multilayered FNNs [17], [19], cascade

correlation [68], and self-organizing maps [20], [69]. Note that

the above constraints on the processed graphs and on the inputs

of exclude any sort of cyclic dependence of a state on itself.

Thus, in the recursive neural network model, the encoding net-

works are FNNs. This assumption simplifies the computation of

8A node � is child of � if there exists an arc from � to �. Obviously, ����� �
	
��� holds.
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TABLE II
TIME COMPLEXITY OF THE MOST EXPENSIVE INSTRUCTIONS OF THE LEARNING ALGORITHM. FOR EACH INSTRUCTION AND EACH GNN MODEL,

A BOUND ON THE ORDER OF FLOATING POINT OPERATIONS IS GIVEN. THE TABLE ALSO DISPLAYS

THE NUMBER OF TIMES PER EPOCH THAT EACH INSTRUCTION IS EXECUTED

the states. In fact, the states can be computed following a prede-

fined ordering that is induced by the partial ordering of the input

graph.

Interestingly, the GNN model captures also the random walks

on graphs when choosing as a linear function. Random walks

and, more generally, Markov chain models are useful in several

application areas and have been recently used to develop ranking

algorithms for internet search engines [18], [21]. In random

walks on graphs, the state associated with a node is a real

value and is described by

(15)

where is the set of parents of , and ,

holds for each . The are normalized so that

. In fact, (15) can represent a random walker

who is traveling on the graph. The value represents the

probability that the walker, when visiting node , decides to go

to node . The state stands for the probability that the walker

is on node in the steady state. When all are stacked into

a vector , (15) becomes where and

is defined as in (15) if and otherwise. It is

easily verified that . Markov chain theory suggests

that if there exists such that all the elements of the matrix

are nonnull, then (15) is a contraction map [70]. Thus, provided

that the above condition on holds, random walks on graphs

are an instance of GNNs, where is a constant stochastic

matrix instead of being generated by neural networks.

III. COMPUTATIONAL COMPLEXITY ISSUES

In this section, an accurate analysis of the computational cost

will be derived. The analysis will focus on three different GNN

models: positional GNNs, where the functions and of (1)

are implemented by FNNs; linear (nonpositional) GNNs; and

nonlinear (nonpositional) GNNs.

First, we will describe with more details the most complex

instructions involved in the learning procedure (see Table II).

Then, the complexity of the learning algorithm will be defined.

For the sake of simplicity, the cost is derived assuming that the

training set contains just one graph . Such an assumption does

not cause any loss of generality, since the graphs of the training

set can always be merged into a single graph. The complexity is

measured by the order of floating point operations.9

In Table II, the notation is used to denote the number of

hidden-layer neurons. For example, indicates the number of

hidden-layer neurons in the implementation of function .

In the following, , , and denote the number of epochs,

the mean number of forward iterations (of the repeat cycle in

function FORWARD), and the mean number of backward itera-

tions (of the repeat cycle in function BACKWARD), respectively.

Moreover, we will assume that there exist two procedures

and , which implement the forward phase and the backward

phase of the backpropagation procedure [71], respectively. For-

mally, given a function implemented by an

FNN, we have

Here, is the input vector and the row vector is a

signal that suggests how the network output must be adjusted to

improve the cost function. In most applications, the cost func-

tion is and ),

where and is the vector of the desired output cor-

responding to input . On the other hand, is the

gradient of w.r.t. the network input and is easily computed

9According to the common definition of time complexity, an algorithm re-
quires������� operations, if there exist� � �, �� � �, such that ���� � � ����
holds for each � � ��, where ���� is the maximal number of operations executed
by the algorithm when the length of input is �.
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as a side product of backpropagation.10 Finally, and de-

note the computational complexity required by the application

of and on , respectively. For example, if is imple-

mented by a multilayered FNN with inputs, hidden neurons,

and outputs, then holds.

A. Complexity of Instructions

1) Instructions , , and

: Since is a matrix having at most

nonnull elements, the multiplication of by , and as

a consequence, the instruction , costs

floating points operations. Moreover, the state

and the output vector are calculated by applying the local

transition function and the local output function to each node

. Thus, in positional GNNs and in nonlinear GNNs, where ,

, and are directly implemented by FNNs, and

are computed by running the forward phase of backpropagation

once for each node or edge (see Table II).

On the other hand, in linear GNNs, is calculated in

two steps: the matrices of (13) and the vectors (14) are

evaluated; then, is computed. The former phase, the cost

of which is , is executed once for each

epoch, whereas the latter phase, the cost of which is ,

is executed at every step of the cycle in the function FORWARD.

2) Instruction : This instruction re-

quires the computation of the Jacobian of . Note that

is a block matrix where the block measures the

effect of node on node , if there is an arc from to

, and is null otherwise. In the linear model, the matrices

correspond to those displayed in (13) and used to calculate

in the forward phase. Thus, such an instruction has no cost in

the backward phase in linear GNNs.

In nonlinear GNNs, ,

is computed by appropriately exploiting the backpropagation

procedure. More precisely, let be a vector where all

the components are zero except for the th one, which equals

one, i.e., , , and so on.

Note that , when it is applied to with , returns

, i.e., the th column of the Jacobian

. Thus, can be computed by applying on

all the , i.e.,

(16)

where indicates that we are considering only the first com-

ponent of the output of . A similar reasoning can also be used

with positional GNNs. The complexity of these procedures is

easily derived and is displayed in the fourth row of Table II.

3) Computation of and : In linear GNNs,

the cost function is , and, as a con-

sequence, , if is a node belonging

to the training set, and 0 otherwise. Thus, is easily cal-

culated by operations.

10Backpropagation computes for each neuron � the delta value
��� ��� ������ � ���� ��� ������, where � is the cost function and � the
activation level of neuron �. Thus, ���� ����������� is just a vector stacking all
the delta values of the input neurons.

In positional and nonlinear GNNs, a penalty term is added

to the cost function to force the transition function to be a con-

traction map. In this case, it is necessary to compute ,

because such a vector must be added to the gradient. Let

denote the element in position of the block . According

to the definition of , we have

where , if the sum is larger

than 0, and it is 0 otherwise. It follows:

where is the sign function. Moreover, let be a matrix

whose element in position is and let be

the operator that takes a matrix and produce a column vector by

stacking all its columns one on top of the other. Then

(17)

holds. The vector depends on selected imple-

mentation of or . For sake of simplicity, let us restrict our

attention to nonlinear GNNs and assume that the transition net-

work is a three-layered FNN. , , , and are the activa-

tion function11, the vector of the activation levels, the matrix of

the weights, and the thresholds of the th layer, respectively. The

following reasoning can also be extended to positional GNNs

and networks with a different number of layers. The function

is formally defined in terms of , , , and

By the chain differentiation rule, it follows:

where is the derivative of , is an operator that

transforms a vector into a diagonal matrix having such a vector

as diagonal, and is the submatrix of that contains only

the weights that connect the inputs corresponding to to

the hidden layer. The parameters affect four components of

11	 is a vectorial function that takes as input the vector of the activation
levels of neurons in a layer and returns the vector of the outputs of the neurons
of the same layer.
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, i.e., , , , and . By properties of derivatives

for matrix products and the chain rule

(18)

holds.

Thus, is the sum of four con-

tributions. In order to derive a method to compute those terms,

let denote the identity matrix. Let be the Kro-

necker product and suppose that is a matrix such

that for any vector . By the Kro-

necker product properties, holds

for matrices , , and having compatible dimensions [72].

Thus, we have

which implies

Similarly, using the properties

and , it follows:

where is the number of hidden neurons. Then, we have

(19)

(20)

(21)

(22)

where the mentioned Kronecker product properties have been

used.

It follows that can be written

as the sum of the four contributions represented by (19)–(22).

The second and the fourth term [(20) and (22)] can be computed

directly using the corresponding formulas. The first one can be

calculated by observing that looks like the function com-

puted by a three-layered FNN that is the same as except for

the activation function of the last layer. In fact, if we denote by

such a network, then

(23)

holds, where . A sim-

ilar reasoning can be applied also to the third contribution.

The above described method includes two tasks: the matrix

multiplications of (19)–(22) and the backpropagation as defined

by (23). The former task consists of several matrix multiplica-

tions. By inspection of (19)–(22), the number of floating point

operations is approximately estimated as

,12 where denotes the number of hidden-layer neu-

rons implementing the function . The second task has approx-

imately the same cost as a backpropagation phase through the

original function .

Thus, the complexity of computing is

. Note, however, that even if the sum in (17)

ranges over all the arcs of the graph, only those arcs such

that have to be considered. In practice,

is a rare event, since it happens only when the columns of the

Jacobian are larger than and a penalty function was used

to limit the occurrence of these cases. As a consequence, a

better estimate of the complexity of computing is

, where is the average number of

nodes such that holds for some .

4) Instructions and

: The terms and can be

calculated by the backpropagation of through the

network that implements . Since such an operation must

be repeated for each node, the time complexity of instruc-

tions and

is for all the GNN models.

12Such a value is obtained by considering the following observations: for an
� � � matrix ��� and � � � matrix ���, the multiplication ������ requires approxi-
mately ���� operations; more precisely,���multiplications and������� sums.
If��� is a diagonal �� � matrix, then������ requires ��� operations. Moreover, if
��� is an �� � matrix, ��� is a �� � matrix, and ��� is the � � � matrix defined
above and used in (19)–(22), then computing �������������� costs only ��� op-
erations provided that a sparse representation is used for � . Finally, ��� � ��� � ���

are already available, since they are computed during the forward phase of the
learning algorithm.
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5) Instruction : By definition of

, , and , we have

(24)

where and indicates that we are

considering only the first part of the output of . Similarly

(25)

where . Thus, (24) and (25) provide a

direct method to compute in positional and nonlinear GNNs,

respectively.

For linear GNNs, let denote the th output of and note

that

holds. Here, and are the element in position of ma-

trix and the corresponding output of the transition network

[see (13)], respectively, while is the th element of vector ,

is the corresponding output of the forcing network [see (14)],

and is the th element of . Then

where , , , and is

a vector that stores in the position corre-

sponding to , that is, . Thus,

in linear GNNs, is computed by calling the backpropagation

procedure on each arc and node.

B. Time Complexity of the GNN Model

According to our experiments, the application of a trained

GNN on a graph (test phase) is relatively fast even for large

graphs. Formally, the complexity is easily derived from

Table II and it is for positional

GNNs, for nonlinear GNNs, and

for linear GNNs.

In practice, the cost of the test phase is mainly due to the

repeated computation of the state . The cost of each it-

eration is linear both w.r.t. the dimension of the input graph

(the number of edges), the dimension of the employed FNNs

and the state, with the only exception of linear GNNs, whose

single iteration cost is quadratic w.r.t. to the state. The number

of iterations required for the convergence of the state depends

on the problem at hand, but Banach’s theorem ensures that the

convergence is exponentially fast and experiments have shown

that 5–15 iterations are generally sufficient to approximate the

fixed point.

In positional and nonlinear GNNs, the transition function

must be activated and times, respectively. Even

if such a difference may appear significant, in practice, the

complexity of the two models is similar, because the network

that implements the is larger than the one that implements

. In fact, has input neurons, where is

the maximum number of neighbors for a node, whereas

has only input neurons. An appreciable difference can

be noticed only for graphs where the number of neighbors

of nodes is highly variable, since the inputs of must be

sufficient to accommodate the maximal number of neighbors

and many inputs may remain unused when is applied. On

the other hand, it is observed that in the linear model the FNNs

are used only once for each iteration, so that the complexity

of each iteration is instead of . Note that

holds, when is

implemented by a three-layered FNN with hidden neurons.

In practical cases, where is often larger than , the linear

model is faster than the nonlinear model. As confirmed by the

experiments, such an advantage is mitigated by the smaller

accuracy that the model usually achieves.

In GNNs, the learning phase requires much more time than

the test phase, mainly due to the repetition of the forward and

backward phases for several epochs. The experiments have

shown that the time spent in the forward and backward phases

is not very different. Similarly to the forward phase, the cost

of function BACKWARD is mainly due to the repetition of the

instruction that computes . Theorem 2 ensures that

converges exponentially fast and the experiments confirmed

that is usually a small number.

Formally, the cost of each learning epoch is given by the sum

of all the instructions times the iterations in Table II. An inspec-

tion of Table II shows that the cost of all instructions involved in

the learning phase are linear both with respect to the dimension

of the input graph and of the FNNs. The only exceptions are due

to the computation of ,

and , which depend quadratically on .

The most expensive instruction is apparently the computa-

tion of in nonlinear GNNs, which costs

. On the other hand, the experiments have shown that

usually is a small number. In most epochs, is 0, since

the Jacobian does not violate the imposed constraint, and in

the other cases, is usually in the range 1–5. Thus, for a
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small state dimension , the computation of requires

few applications of backpropagation on and has a small im-

pact on the global complexity of the learning process. On the

other hand, in theory, if is very large, it might happen that

and at the same time

, causing the computation of the gradient to be very

slow. However, it is worth mentioning that this case was never

observed in our experiments.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results, obtained

on a set of simple problems carried out to study the properties

of the GNN model and to prove that the method can be ap-

plied to relevant applications in relational domains. The prob-

lems that we consider, viz., the subgraph matching, the mutage-

nesis, and the web page ranking, have been selected since they

are particularly suited to discover the properties of the model

and are correlated to important real-world applications. From

a practical point of view, we will see that the results obtained

on some parts of mutagenesis data sets are among the best that

are currently reported in the open literature (please see detailed

comparison in Section IV-B). Moreover, the subgraph matching

problem is relevant to several application domains. Even if the

performance of our method is not comparable in terms of best

accuracy on the same problem with the most efficient algorithms

in the literature, the proposed approach is a very general tech-

nique that can be applied on extension of the subgraph matching

problems [73]–[75]. Finally, the web page ranking is an inter-

esting problem, since it is important in information retrieval and

very few techniques have been proposed for its solution [76]. It

is worth mentioning that the GNN model has been already suc-

cessfully applied on larger applications, which include image

classification and object localization in images [77], [78], web

page ranking [79], relational learning [80], and XML classifica-

tion [81].

The following facts hold for each experiment, unless other-

wise specified. The experiments have been carried out with both

linear and nonlinear GNNs. According to existing results on re-

cursive neural networks, the nonpositional transition function

slightly outperforms the positional ones, hence, currently only

nonpositional GNNs have been implemented and tested. Both

the (nonpositional) linear and the nonlinear model were tested.

All the functions involved in the two models, i.e., , , and

for linear GNNs, and and for nonlinear GNNs were

implemented by three-layered FNNs with sigmoidal activation

functions. The presented results were averaged over five dif-

ferent runs. In each run, the data set was a collection of random

graphs constructed by the following procedure: each pair of

nodes was connected with a certain probability ; the resulting

graph was checked to verify whether it was connected and if

it was not, random edges were inserted until the condition was

satisfied.

The data set was split into a training set, a validation set, and

a test set and the validation set was used to avoid possible issues

with overfitting. For the problems where the original data is only

one single big graph , a training set, a validation set, and a test

Fig. 4. Two graphs��� and��� that contain a subgraph ���. The numbers inside
the nodes represent the labels. The function � to be learned is ����� �� � � �,
if � is a black node, and ����� �� � � ��, if � is a white node.

set include different supervised nodes of . Otherwise, when

several graphs were available, all the patterns of a graph were

assigned to only one set. In every trial, the training procedure

performed at most 5000 epochs and every 20 epochs the GNN

was evaluated on the validation set. The GNN that achieved the

lowest cost on the validation set was considered the best model

and was applied to the test set.

The performance of the model is measured by the accuracy

in classification problems (when can take only the values

or 1) and by the relative error in regression problems (when

may be any real number). More precisely, in a classifi-

cation problem, a pattern is considered correctly classified if

and or if and

. Thus, accuracy is defined as the percentage of

patterns correctly classified by the GNN on the test set. On

the other hand, in regression problems, the relative error on a

pattern is given by .

The algorithm was implemented in Matlab® 713 and the soft-

ware can be freely downloaded, together with the source and

some examples [82]. The experiments were carried out on a

Power Mac G5 with a 2-GHz PowerPC processor.

A. The Subgraph Matching Problem

The subgraph matching problem consists of finding the nodes

of a given subgraph in a larger graph . More precisely, the

function that has to be learned is such that

if belongs to a subgraph of , which is isomorphic to

, and , otherwise (see Fig. 4). Subgraph

matching has a number of practical applications, such as ob-

ject localization and detection of active parts in chemical com-

pounds [73]–[75]. This problem is a basic test to assess a method

for graph processing. The experiments will demonstrate that

the GNN model can cope with the given task. Of course, the

presented results cannot be compared with those achievable by

other specific methods for subgraph matching, which are faster

and more accurate. On the other hand, the GNN model is a gen-

eral approach and can be used without any modification to a

variety of extensions of the subgraph matching problem, where,

for example, several graphs must be detected at the same time,

the graphs are corrupted by noise on the structure and the labels,

13Copyright © 1994–2006 by The MathWorks, Inc., Natick, MA.
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TABLE III
ACCURACIES ACHIEVED BY NONLINEAR MODEL (NL), LINEAR MODEL

(L), AND A FEEDFORWARD NEURAL NETWORK

ON SUBGRAPH MATCHING PROBLEM

and the target to be detected is unknown and provided only by

examples.

In our experiments, the data set consisted of 600 connected

random graphs (constructed using ), equally divided into

a training set, a validation set, and a test set. A smaller subgraph

, which was randomly generated in each trial, was inserted into

every graph of the data set. Thus, each graph contained at

least a copy of , even if more copies might have been included

by the random construction procedure. All the nodes had integer

labels in the range and, in order to define the correct tar-

gets , a brute force algorithm located all the

copies of in . Finally, a small Gaussian noise, with zero

mean and a standard deviation of 0.25, was added to all the la-

bels. As a consequence, all the copies of in our data set were

different due to the introduced noise.

In all the experiments, the state dimension was and all

the neural networks involved in the GNNs had five hidden neu-

rons. More network architectures have been tested with similar

results.

In order to evaluate the relative importance of the labels and

the connectivity in the subgraph localization, also a feedforward

neural network was applied to this test. The FNN had one output,

20 hidden, and one input units. The FNN predicted using

only the label of node . Thus, the FNN did not use the

connectivity and exploited only the relative distribution of the

labels in w.r.t. the labels in graphs .

Table III presents the accuracies achieved by the nonlinear

GNN model (nonlinear), the linear GNN model (linear), and the

FNN with several dimensions for and . The results allow to

single out some of the factors that have influence on the com-

plexity of the problem and on the performance of the models.

Obviously, the proportion of positive and negative patterns af-

fects the performance of all the methods. The results improve

when is close to , whereas when is about a half of

, the performance is lower. In fact, in the latter case, the data

set is perfectly balanced and it is more difficult to guess the right

response. Moreover, the dimension , by itself, has influence

on the performance, because the labels can assume only 11 dif-

ferent values and when is small most of the nodes of the sub-

graph can be identified by their labels. In fact, the performances

are better for smaller , even if we restrict our attention to the

cases when holds.

The results show that GNNs always outperform the FNNs,

confirming that the GNNs can exploit label contents and graph

topology at the same time. Moreover, the nonlinear GNN model

achieved a slightly better performance than the linear one, prob-

ably because nonlinear GNNs implement a more general model

that can approximate a larger class of functions. Finally, it can

be observed that the total average error for FNNs is about 50%

larger than the GNN error (12.7 for nonlinear GNNs, 13.5 for

linear GNNs, and 22.8 for FNNs). Actually, the relative differ-

ence between the GNN and FNN errors, which measures the

advantage provided by the topology, tend to become smaller

for larger values of (see the last column of Table III). In

fact, GNNs use an information diffusion mechanism to decide

whether a node belongs to the subgraph. When is larger, more

information has to be diffused and, as a consequence, the func-

tion to be learned is more complex.

The subgraph matching problem was used also to evaluate the

performance of the GNN model and to experimentally verify the

findings about the computational cost of the model described

in Section III. For this purpose, some experiments have been

carried out varying the number of nodes, the number of edges

in the data set, the number of hidden units in the neural networks

implementing the GNN, and the dimensionality of the state. In

the base case, the training set contained ten random graphs, each

one made of 20 nodes and 40 edges, the networks implementing

the GNN had five hidden neurons, and the state dimension was

2. The GNN was trained for 1000 epochs and the results were

averaged over ten trials. As expected, the central processing unit

(CPU) time required by the gradient computation grows linearly

w.r.t. the number of nodes, edges and hidden units, whereas

the growth is quadratic w.r.t. the state dimension. For example,

Fig. 5 depicts the CPU time spent by the gradient computation

process when the nodes of each graph14 [Fig. 5(a)] and the states

of the GNN [Fig. 5(b)] are increased, respectively.

It is worth mentioning that, in nonlinear GNNs, the

quadratic growth w.r.t. the states, according to the discus-

sion of Section III, depends on the time spent to calculate the

Jacobian and its derivative . Fig. 5

shows how the total time spent by the gradient computation

process is composed in this case: line denotes the time

required by the computation of and ; line de-

notes that for the Jacobian ; line denotes

that for the derivative ; the dotted line and the dashed

line represent the rest of the time15 required by the FORWARD

and the BACKWARD procedure, respectively; the continuous

line stands for the rest of the time required by the gradient

computation process.

14More precisely, in this experiment, nodes and edges were increased keeping
constant to ��� their ratio.

15That is, the time required by those procedures except for that already con-
sidered in the previous points.
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Fig. 5. Some plots about the cost of the gradient computation on GNNs. (a) and (b) CPU times required for 1000 learning epochs by nonlinear GNNs (continuous
line) and linear GNN (dashed line), respectively, as a function of the number of nodes of the training set (a) and the dimension of the state (b). (c) Composition
of the learning time for nonlinear GNNs: the computation of � and �� ����� (���); the Jacobian ��� ����������� 			� (� � �); the derivative �
 ��� (���);
the rest of the FORWARD procedure (dotted line); the rest of the BACKWARD procedure (dashed line); the rest of the time learning procedure (continuous line).
(d) Histogram of the number of the forward iterations, the backward iterations, and the number of nodes � such that ��� �� � [see (17)] encountered in each
epoch of a learning session.

From Fig. 5(c), we can observe that the computation of
that, in theory, is quadratic w.r.t. the states may have a

small effect in practice. In fact, as already noticed in Section III,
the cost of such a computation depends on the number of
columns of whose norm is larger than the
prescribed threshold, i.e., the number of nodes and such
that [see (17)]. Such a number is usually small due to
the effect of the penalty term . Fig. 5(d) shows a histogram
of the number of nodes for which in each epoch
of a learning session: in practice, in this experiment, the non-
null are often zero and never exceed four in magnitude.
Another factor that affects the learning time is the number of
forward and backward iterations needed to compute the stable
state and the gradient, respectively.16 Fig. 5(d) shows also the

16The number of iterations depends also on the constant  and  of Table I,
which were both set to ���� in the experiments. However, due to the exponen-
tial convergence of the iterative methods, these constants have a linear effect.

histograms of the number of required iterations, suggesting that
also those numbers are often small.

B. The Mutagenesis Problem

The Mutagenesis data set [13] is a small data set, which is

available online and is often used as a benchmark in the re-

lational learning and inductive logic programming literature.

It contains the descriptions of 230 nitroaromatic compounds

that are common intermediate subproducts of many industrial

chemical reactions [83]. The goal of the benchmark consists of

learning to recognize the mutagenic compounds. The log mu-

tagenicity was thresholded at zero, so the prediction is a bi-

nary classification problem. We will demonstrate that GNNs

achieved the best result compared with those reported in the lit-

erature on some parts of the data set.
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Fig. 6. Atom-bond structure of a molecule represented by a graph with labeled
nodes. Nodes represent atoms and edges denote atom bonds. Only one node is
supervised.

In [83], it is shown that 188 molecules out of 230 are

amenable to a linear regression analysis. This subset was called

“regression friendly,” while the remaining 42 compounds were

termed “regression unfriendly.” Many different features have

been used in the prediction. Apart from the atom-bond (AB)

structure, each compound is provided with four global features

[83]. The first two features are chemical measurements (C):

the lowest unoccupied molecule orbital and the water/octanol

partition coefficient, while the remaining two are precoded

structural (PS) attributes. Finally, the AB description can be

used to define functional groups (FG), e.g., methyl groups and

many different rings that can be used as higher level features.

In our experiments, the best results were achieved using AB,

C, and PS, without the functional groups. Probably the reason

is that GNNs can recover the substructures that are relevant to

the classification, exploiting the graphical structure contained

in the AB description.

In our experiments, each molecule of the data set was trans-

formed into a graph where nodes represent atoms and edges

stand for ABs. The average number of nodes in a molecule is

around 26. Node labels contain atom type, its energy state, and

the global properties AB, C, and PS. In each graph, there is

only one supervised node, the first atom in the AB description

(Fig. 6). The desired output is 1, if the molecule is mutagenic,

and 1, otherwise.

In Tables IV–VI, the results obtained by nonlinear GNNs17

are compared with those achieved by other methods. The pre-

sented results were evaluated using a tenfold cross-validation

procedure, i.e., the data set was randomly split into ten parts and

the experiments were repeated ten times, each time using a dif-

ferent part as the test set and the remaining patterns as training

set. The results were averaged on five runs of the cross-valida-

tion procedure.

GNNs achieved the best accuracy on the regression-un-

friendly part (Table V) and on the whole data set (Table VI),

while the results are close to the state of the art techniques

on the regression-friendly part (Table IV). It is worth noticing

that, whereas most of the approaches showed a higher level of

accuracy when applied to the whole data set with respect to the

17Some results were already presented in [80].

TABLE IV
ACCURACIES ACHIEVED ON THE REGRESSION-FRIENDLY PART OF THE

MUTAGENESIS DATA SET. THE TABLE DISPLAYS THE METHOD, THE

FEATURES USED TO MAKE THE PREDICTION, AND A POSSIBLE

REFERENCE TO THE PAPER WHERE THE RESULT IS DESCRIBED

TABLE V
ACCURACIES ACHIEVED ON THE REGRESSION-UNFRIENDLY PART OF THE

MUTAGENESIS DATA SET. THE TABLE DISPLAYS THE METHOD, THE

FEATURES USED TO MAKE THE PREDICTION, AND A POSSIBLE

REFERENCE TO THE PAPER WHERE THE RESULT IS DESCRIBED

TABLE VI
ACCURACIES ACHIEVED ON THE WHOLE MUTAGENESIS DATA SET. THE TABLE

DISPLAYS THE METHOD, THE FEATURES USED TO MAKE THE PREDICTION, AND

A POSSIBLE REFERENCE TO THE PAPER WHERE THE RESULT IS DESCRIBED

unfriendly part, the converse holds for GNNs. This suggests that

GNNs can capture characteristics of the patterns that are useful

to solve the problem but are not homogeneously distributed in

the two parts.

C. Web Page Ranking

In this experiment, the goal is to learn the rank of a web

page, inspired by Google’s PageRank [18]. According to

PageRank, a page is considered authoritative if it is referred

by many other pages and if the referring pages are authori-

tative themselves. Formally, the PageRank of a page is

where is the outdegree

of , and is the damping factor [18]. In this experi-

ment, it is shown that a GNN can learn a modified version of

PageRank, which adapts the “authority” measure according

to the page content. For this purpose, a random web graph
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Fig. 7. Desired function � (the continuous lines) and the output of the GNN (the dotted lines) on the pages that belong to only one topic (a) and on the other pages
(b). Horizontal axis stands for pages and vertical axis stands for scores. Pages have been sorted according to the desired value ��������.

containing 5000 nodes was generated, with . Training,

validation, and test sets consisted of different nodes of this

graph. More precisely, only 50 nodes were supervised in the

training set, other 50 nodes belonged to the validation set, and

the remaining nodes were in the test set.

To each node , a bidimensional boolean label is at-

tached that represents whether the page belongs to two given

topics. If the page belongs to both topics, then

, while if it belongs to only one topic, then ,

or , and if it does not belong to either topics, then

. The GNN was trained in order to produce the

following output:

if

otherwise

where stands for the Google’s PageRank.

Web page ranking algorithms are used by search engines to

sort the URLs returned in response to user’s queries and more

generally to evaluate the data returned by information retrieval

systems. The design of ranking algorithms capable of mixing to-

gether the information provided by web connectivity and page

content has been a matter of recent research [93]–[96]. In gen-

eral, this is an interesting and hard problem due to the difficulty

in coping with structured information and large data sets. Here,

we present the results obtained by GNNs on a synthetic data set.

More results achieved on a snapshot of the web are available in

[79].

For this example, only the linear model has been used, be-

cause it is naturally suited to approximate the linear dynamics

of the PageRank. Moreover, the transition and forcing networks

(see Section I) were implemented by three-layered neural net-

works with five hidden neurons, and the dimension of the state

was . For the output function, is implemented as

where is the function realized

by a three-layered neural networks with five hidden neurons.

Fig. 7 shows the output of the GNN and the target function

on the test set. Fig. 7(a) displays the result for the pages that

belong to only one topic and Fig. 7(b) displays the result for

the other pages. Pages are displayed on horizontal axes and are

sorted according to the desired output . The plots denote

Fig. 8. Error function on the training set (continuous line) and on the validation
(dashed line) set during learning phase.

the value of function (continuous lines) and the value of the

function implemented by the GNN (the dotted lines). The figure

clearly suggests that GNN performs very well on this problem.

Finally, Fig. 8 displays the error function during the learning

process. The continuous line is the error on the training set,

whereas the dotted line is the error on the validation set. It

is worth noting that the two curves are always very close and

that the error on the validation set is still decreasing after 2400

epochs. This suggests that the GNN does not experiment over-

fitting problems, despite the fact that the learning set consists of

only 50 pages from a graph containing 5000 nodes.

V. CONCLUSION

In this paper, we introduced a novel neural network model

that can handle graph inputs: the graphs can be cyclic, directed,

undirected, or a mixture of these. The model is based on in-

formation diffusion and relaxation mechanisms. The approach

extends into a common framework, the previous connectionist

techniques for processing structured data, and the methods

based on random walk models. A learning algorithm to esti-

mate model parameters was provided and its computational

complexity was studied, demonstrating that the method is

suitable also for large data sets.
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Some promising experimental results were provided to assess

the model. In particular, the results achieved on the whole Mu-

tagenisis data set and on the unfriendly part of such a data set

are the best compared with those reported in the open literature.

Moreover, the experiments on the subgraph matching and on the

web page ranking show that the method can be applied to prob-

lems that are related to important practical applications.

The possibility of dealing with domains where the data con-

sists of patterns and relationships gives rise to several new topics

of research. For example, while in this paper it is assumed that

the domain is static, it may happen that the input graphs change

with time. In this case, at least two interesting issues can be

considered: first, GNNs must be extended to cope with a dy-

namic domain; and second, no method exists, to the best of our

knowledge, to model the evolution of the domain. The solution

of the latter problem, for instance, may allow to model the evolu-

tion of the web and, more generally, of social networks. Another

topic of future research is the study on how to deal with domains

where the relationships, which are not known in advance, must

be inferred. In this case, the input contains flat data and is auto-

matically transformed into a set of graphs in order to shed some

light on possible hidden relationships.
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