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Abstract. We study the graph of bistellar flips between triangulations of a vector config-
urationA with d + 4 elements in rankd + 1 (i.e. withcorank3), as a step in the Baues
problem. We prove that the graph is connected in general and 3-connected foracyclicvector
configurations, which include all point configurations of dimensiond with d+ 4 elements.
Hence, every pair of triangulations can be joined by a finite sequence of bistellar flips and,
in the acyclic case, every triangulation has at least three geometric bistellar neighbours. In
corank 4, connectivity is not known and having at least four flips is false. In corank 2, the
results are trivial since the graph is a cycle.

Our methods are based on a dualization of the concept of triangulation of a point or vector
configurationA to that of avirtual chamberof its Gale transformB, introduced by de Loera
et al. in 1996. As an additional result we prove atopological representation theoremfor
virtual chambers, stating that every virtual chamber of a rank 3 vector configurationB can
be realized as a cell in somepseudo-chamber complexof B in the same way that regular
triangulations appear as cells in the usual chamber complex.

All the results in this paper generalize to triangulations of corank 3 oriented matroids
and virtual chambers of rank 3 oriented matroids, realizable or not. The details for this
generalization are given in the Appendix.

Introduction

A point configurationA in Rd is a finite spanning set of points in the affine spaceRd. A
triangulationofA is a geometric simplicial complex which covers the convex hull ofA
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General de Investigaci´on Cient´ıfica y Técnica.
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and whose vertices are elements ofA. A bistellar flip (or flip, for short) is an elementary
local transformation in a triangulation ofA which gives rise to another triangulation of
A. Triangulations, flips and other necessary notions are defined in Section 1. Thegraph
G(A) of triangulationsof A is the graph whose vertices are all the triangulations ofA
and whose edges represent flips between them.

The notions of triangulation and flip can be naturally defined also for avector con-
figurationA, which is a finite spanning set of vectors in a real finite-dimensional vector
space (sayRd+1). A triangulation ofA is asimplicial fan(a polyhedral fan whose cones
are all spanned by independent sets of vectors) that covers the positive span ofA and
whose 1-cones are positively spanned by elements ofA. A point configurationA in Rd

can be regarded as a particular case of vector configuration inRd+1 by embeddingRd

in Rd+1 as an affine hyperplane not passing through the origin. A vector configuration
obtained this way is calledacyclicor pointed.

It has been an open question for about a decade whether the graph of triangulations of
every point or vector configuration is connected. Santos [17] has found a disconnected
example, with dimension 6 and corank 317. Other previous results include:

• For point configurations in the plane the graph is connected [11] and every triangu-
lation has at leastn− 3 flips [6]. The graph is not known to be(n− 3)-connected.
For point configurations in convex position in dimension 3 every triangulation has
at leastn− 4 flips, but the graph is not known to be connected [6].
• For point or vector configurations withn ≤ d+3 all the triangulations areregular

[12], [5] and, hence, the graph of triangulations is isomorphic to the 1-skeleton of
a polytope of dimensionn−d−1 [1], [8] (the so-calledsecondary polytopeofA).
• For any pair of parametersn andd with n− 5≥ d ≥ 3 there are triangulations of

point configurations withn elements in dimensiond which have less thann−d−1
flips. In particular, the graph is not(n − d − 1)-connected. The following is an
example of flip deficiency for the minimal case (withn = 8 andd = 3), based on
a construction from [6].

Example 1. Let p1 = (0,0,0), p2 = (1,1,0), p3 = (6,0,0), p4 = (4,1,0), p5 =
(0,6,0), p6 = (1,4,0), q = (2,2,4) andr = (2,2,6). Let

A = {p1, p2, p3, p4, p5, p6,q, r }
and letT be the triangulation

{{p1, p2, p3,q}, {p2, p3, p4,q}, {p3, p4, p5,q}, {p4, p5, p6,q}, {p5, p6, p1,q},
{p6, p1, p2,q}, {p2, p4, p6,q}, {p1, p3,q, r }, {p1, p5,q, r }, {p3, p5,q, r }}.

T has only three flips, supported on the three circuits({pi , pj+1}, {pj , pi+1}), for i, j ∈
{1,3,5}.

These results show that point configurations with four points more than their dimen-
sion are a border case between good and bad behaviour: with less points all triangulations
are regular and with more points there are triangulations with “flip-deficiency” (less than
n−d−1 flips). Our main result in this paper is that in this border case all triangulations
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have the expected number of flips and the graph has the expected connectivity number
(Corollary 3.10):

Theorem 2. For any vector configurationA with d+ 4 elements inRd+1 the graph
G(A) of triangulations ofA is connected. If A is acyclic(or if A is a point configuration
in Rd), then G(A) is 3-connected. In particular, every triangulation ofA has at least
three geometric bistellar neighbours.

Our techniques are based on the duality between a vector configuration and its Gale
transform, which we now explain briefly. Any vector configurationA with n elements
and rankr = d+1 has aGale transformB with n elements and rankn− r = n−d−1,
which is dual toA in the sense of oriented matroid theory (see [4] for details on oriented
matroids, or the beginning of Section 2 for some properties of them). In particular, there
is a canonical bijection between the bases ofA and the bases ofB. Since a triangulation
T ofA is just a collection of bases, it has associated a certain collectionC of bases ofB.
The collections of simplices ofB corresponding in this way to triangulations ofA were
calledvirtual chambersof B in [5].

If we want to study the graph of triangulations of a configurationA of corank 3, we
can do it more simply by studying the graph of virtual chambers of its dualB, which has
rank 3 and can be thought of as a point configuration in the 2-sphereS2. This is what we
do.

The namevirtual chambercomes from the following fact: thechamber complex
of B is the polyhedral decomposition of the positive span ofB which results as the
common refinement of all the triangulations ofB. Its cells of maximal dimension are
calledchambers. To each chamberC of B we associate the collection of bases whose
positive span containsC. The fundamental result in the theory of secondary polytopes
(see [1] and [8]) is that the collections of bases ofB which arise in this way are precisely
the duals to theregular triangulations ofA. (These are the triangulations which can be
obtained as the projection of the lower envelope of a(d + 1)-dimensional polytope.)
Adjacency between chambers corresponds in this picture to bistellar flips between regular
triangulations. A consequence of this duality between (geometric) chambers and regular
triangulations is that the subgraph of triangulations induced by regular triangulations of
a point configurationA with n points and dimensiond is the 1-skeleton of a polytope
of dimensionn− d− 1: thesecondary polytopeof A whose normal fan is the chamber
complex ofB.

In summary, virtual chambers are combinatorial objects which have similar properties
to chambers, except that they do not exist geometrically. To illustrate this, in Example 1.5
we show the classical non-regular triangulation of the vertices of two nested triangles in
the plane. In its Gale transform, the virtual chamber corresponding to this triangulation
collapses (see Fig. 1).

The structure of the paper is as follows: In Section 1 we introduce the necessary
definitions and notation as well as some background on Gale duality, virtual chambers
and other tools that we use. Most of this section applies to arbitrary rank or number of
points. The only new result here is a description of “flips between virtual chambers” of
a configuration, i.e. a dualization of the concept of flip between triangulations, both in
arbitrary rank (Theorem 1.8) and in rank 3 (Definition 1.10 and Corollary 1.11).
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Sections 2 and 3 are the central part of the paper, leading to the proof of Theorem 2.
Section 2 begins with an account of some basics of oriented matroid theory that we use
frequently and then shows some geometric properties of rank 3 vector configurations.
Section 3 contains the proof of Theorem 2 (Corollary 3.10). It is interesting to observe
that the hardest part of this proof is showing the existence of at least one flip (Theorem 3.3,
which is essential for Corollary 3.5).

A rank 3 vector configurationB can be regarded as a point configuration in the
sphereS2. Recall that the chamber complex ofB is the common refinement of all its
triangulations, i.e. the cell decomposition ofS2 obtained drawing all possible geodesic
segments between pairs of points ofB. In Section 4 we define pseudo-chamber complexes
of B by allowing non-geodesic arcs to serve as “pseudo-segments” but requiring them to
reproduce the combinatorial situation given with the geodesic ones (essentially, requiring
them to be consistent with the oriented matroid ofB). One easily proves that the full-
dimensional cells of a pseudo-chamber complex represent some virtual chambers ofB,
and cells of co-dimension 1 represent flips between them. Our task in Section 4 is to
prove that every virtual chamber ofB realizes as a pseudo-chamber of some pseudo-
chamber complex ofB. For instance, Fig. 3 shows the non-geometric virtual chamber
of Example 1.5 as a pseudo-chamber. The main result of this section is (Theorem 4.13):

Theorem 3. Any virtual chamberC of a rank3 vector configurationB realizes as a
pseudo-chamber of some pseudo-chamber complex ofB.

In the Appendix we show that all the results of this paper also hold for non-realizable
oriented matroids. This is motivated by the fact that the collection of triangulations of a
vector or point configuration depends only on the underlying oriented matroid (this is well
known and follows, for example, from the results in [5]). The concepts of triangulation
and flip have been generalized to non-realizable oriented matroids in Section 9.6 of
[4] and [16]. Since some of our proofs in Sections 2 and 3 are done in the language
of oriented matroid theory, they are valid without change for non-realizable oriented
matroids. In the rest of proofs our methods are mainly topological, so our starting point
for the generalization is to have a topological picture of a non-realizable oriented matroid
of rank 3. This is provided by the fact that every rank-3 oriented matroid has anadjoint
and, hence, can be pseudo-realized as apseudo-configuration of pointsin the sphereS2

(see Sections 5.3 and 6.3 of [4]). Summarizing, the results in the Appendix say that:

Theorem 4. LetM be a corank3 oriented matroid. LetM∗ be its dual oriented
matroid and letB be a pseudo-realization ofM∗. Then:

1. The graph of triangulations G(M) ofM is connected and, if M is acyclic, 3-
connected.

2. Every virtual chamber ofM∗ can be realized as a pseudo-chamber of some pseudo-
chamber complex ofB.

Our results are related to the so-calledBaues problemin the following way. The poset
of all polyhedral subdivisions of a point configurationA is usually called theBaues poset
ω(A) ofA. The Baues problem is to decide whether this poset is homotopy equivalent to
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a sphere whose dimension is the same as that of the boundary of the secondary polytope
(as usual, when referring to the topology of a poset we mean the topology of its order
complex, see [3]). No non-spherical example is known but sphericity (and connectivity)
has been proved only up to dimension or corank 2: In corank 2 the poset is the proper
part of the face lattice of the secondary polytope; for dimension 2 see [7]. Whenever
the graphG(A) is connected the posetω(A) is connected too (see [14] for a proof).
This, together with our results on pseudo-realizability of virtual chambers, leads to the
following:

Corollary 5. For any point or vector configurationA of corank3 the Baues complex
is connected. If A is acyclic, then for every subdivision S ofA there is a subcomplex of
ω(A) containing S and homeomorphic to a2-sphere.

It is natural to ask whether our results can hold in higher corank. An obstacle for
this are examples with flip-deficiency in corank 4 (see Example 1) which imply that the
graph of triangulations is not 4-connected and that a pseudo-realizability result of virtual
chambers such as our Theorem 3 is not possible. For non-realizable oriented matroids
things are even worse, since there exist oriented matroids of corank 4 whose Baues poset
and whose graph of triangulations contain isolated elements (i.e. there are triangulations
with no flips at all). See Section 4 of [16].

An optimistic possibility is that the graph of triangulations might be connected at least
for oriented matroids which have an adjoint (which include realizable ones) of corank
4 (or of arbitrary corank). This conjecture is based on the fact that having an adjoint
is crucial for our results in the Appendix and that the disconnected examples in corank
4 are obtained with non-Euclidean oriented matroids, which do not have adjoints. Our
methods indicate that a crucial step towards knowing whether this is true in corank 4 is
deciding whether every triangulation of a corank 4 vector configuration has at least one
flip.

1. Triangulations, Flips and Virtual Chambers

1.1. Triangulations

We call a finite spanning set of vectorsA in a finite-dimensional real vector space
V ∼= Rd+1 avector configuration of rank d+ 1. For any subsetσ ⊂ A thepositive span
of σ is the set conv(σ ) ⊂ V of all non-negative linear combinations ofσ and we call the
set relconv(σ ) of strictly positive combinations therelative interiorof σ (observe that,
formally speaking, we call the relative interior ofσ the relative interior of the convex
hull of σ ; hence the notation relconv).

We call the (signed) circuits and cocircuits of the oriented matroidM(A) realized by
A thecircuitsandcocircuitsofA. In other words, acircuit is a pair(C+,C−) of subsets
of A such thatC+ ∪ C− is a minimal dependent set andC+ andC− are the subsets of
elements with positive and negative coefficient respectively in a dependence relation in
C+ ∪C−. C+ ∪C− is called thesupportof the circuit (so that(C+,C−) and(C−,C+)
are the only circuits with support inC+ ∪C−). A cocircuit is a pair(C+,C−)whereC+
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andC− are the intersections withA of the two open half-spaces defined by a hyperplane
spanned by elements ofA. Again, the opposite of a cocircuit is a cocircuit.

We call the independent subsets ofA its simplices. A simplex ismaximalor full-
dimensionalif it has d + 1 elements. We denote by1(A) the collection of all the
full-dimensional simplices ofA (i.e. itsbases). A triangulationof A is any collection
T ⊂ 1(A) of full-dimensional simplices ofA which:

1. intersect properly, i.e. for every pair of simplicesσ, τ ∈ T one has conv(σ ∩ τ) =
conv(σ ) ∩ conv(τ );

2. coverA, meaning that
⋃
σ∈T conv(σ ) = conv(A).

For a generic vectorv ∈ conv(A) we will always have that ifv ∈ conv(σ ) for a
simplexσ ⊂ A, thenσ is full-dimensional. In these case we call the collection of bases
of A containingv in their positive span thechamberof v in A:

Cv,A := {σ ∈ 1(A): v ∈ conv(σ )}.

A collection of bases ofA is called achamber ofA if it is a chamber ofv for some
generic vectorv ∈ conv(A). Any triangulation and any chamber ofA have a unique
simplex in common.

1.2. Virtual Chambers

Every spanning subsetρ ofAwith d+2 vectors contains the support of a unique circuit
Z = (Z+, Z−) of A. If both Z+ andZ− are non-empty (we say thatZ is acyclic), then
ρ can be triangulated in exactly two ways:

T +(ρ) := {ρ\a: a ∈ Z+}, T −(ρ) := {ρ\a: a ∈ Z−}.

We say thatT +(ρ) andT −(ρ) are a pair of oppositetriangulated circuitsof A.

Definition 1.1 [5]. Let C ⊂ 1(A) be a collection of full-dimensional simplices ofA.
We say thatC is avirtual chamberof A if the following two conditions are satisfied:

1. C has exactly one element in common with any triangulation ofA.
2. For every pair of opposite triangulated circuitsT +(ρ) andT −(ρ) ofA, C∩T +(ρ)

is non-empty if and only ifC ∩ T −(ρ) is non-empty.

Remark 1.2. 1. Chambers ofA are virtual chambers as well, as can be easily checked.
2. Every triangulated circuit is contained in some triangulation ofA. Thus, part 1 of

the definition implies that in part 2, ifC ∩ T +(ρ) is non-empty, then it contains a unique
simplex (same forC ∩ T −(ρ)).

3. The results in [5] imply that:

(i) If A is in general position (i.e. if every subset ofA with no more thand + 1
elements is independent), then condition 1 in Definition 1.1 implies condition 2.
This is not the case in general.



The Graph of Triangulations of a Point Configuration withd + 4 Vertices 495

(ii) Provided that condition 2 holds, saying “for any triangulation” in condition 1 is
equivalent to saying “there is a triangulation”.

A Gale transformof a vector configurationA = {a1, . . . ,an} with n vectors in
V ∼= Rd+1 is a vector configurationB = {b1, . . . ,bn} in W ∼= Rn−d−1 such that the
kernels of the two natural linear mapsRn → V(ei 7→ ai ) andRn → W(ei 7→ bi ) are
orthogonal complements inRn.

The oriented matroids ofA andB are dual to each other; i.e. circuits ofA are
cocircuits ofB and vice versa. A subset{ai1, dots,ail } is spanning inA if and only if the
complement subsetB\{bi1, . . . ,bil } is independent inB. In particular,1(A) and1(B)
are canonically identified under complementation of indices. The theory of secondary
polyhedra [1], [2] implies that chambers ofB correspond to regular triangulations ofA.
The definition of virtual chambers given above extends this correspondence to all the
triangulations ofA:

Theorem 1.3[5]. LetA andB be vector configurations which are Gale transforms of
each other. Then, under the natural identification of1(A) and1(B), virtual chambers of
B correspond exactly to triangulations ofA and virtual chambers ofA to triangulations
ofB.

The following property of virtual chambers is not difficult but a little bit tedious to
prove without Theorem 1.3 (using induction on the cardinality ofσ\τ and condition 2
of Definition 1.1). The use of Theorem 1.3 makes the proof much shorter.

Lemma 1.4. Let C be a virtual chamber ofA. Then, for any pair of simplicesσ, τ in
C, the relative interiorsrelconv(σ ) andrelconv(τ ) intersect.

Proof. LetB be the Gale transform ofA. LetT be the triangulation ofB corresponding
to the virtual chamberC. In oriented matroid terms, the relative interiors ofσ andτ
intersect if and only if there is no cocircuitZ = (Z+, Z−)ofAwith τ∩Z+ = ∅ = σ∩Z−

(intuitively, if no hyperplane weakly separatesσ andτ ). Translated intoB, what we need
to prove is that for no pair of simplicesσ c, τ c ∈ T is there a circuitZ = (Z+, Z−) of
B with Z+ ⊂ τ c andZ− ⊂ σ c.

That this holds is a well-known property of triangulations, since a circuit withZ+ ⊂ τ c

and Z− ⊂ σ c would imply thatσ c andτ c do not intersect properly (see, for example,
Proposition 2.2 of [13]).

Example 1.5(A Non-Geometric Virtual Chamber). Letp1= (4,0,0), p2= (0,4,0),
p3 = (0,0,4), p4 = (2,1,1), p5 = (1,2,1) and p6 = (1,1,2). Let

A := {p1, p2, p3, p4, p5, p6}.

A can be regarded as a point configuration in the plane, depicted in Fig. 1(a), which
also shows a triangulationT ofA that is not regular. (This is the most classical example
of a non-regular triangulation. See, for instance, [19] for a proof of non-regularity.) The
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Fig. 1. A non-regular triangulation of the configurationA of Example 1.5 (a) and an affine Gale diagram
ofA (b).

maximal simplices (i.e. the triangles) ofT are{p4, p5, p6}, {p1, p2, p4}, {p2, p3, p5},
{p1, p3, p6}, {p2, p4, p5}, {p3, p5, p6} and{p1, p4, p6}.

One Gale transformB of A is defined by the vectors(2,1,1), (1,2,1), (1,1,2),
(−4,0,0), (0,−4,0) and(0,0,−4).

In Fig. 1(b) we show an affine Gale diagram ofA, that is, a central projection of its
Gale transformB to a generic affine hyperplane, in which a projected point is solid when
it is a positive multiple of the vector from which it comes, and open if it is a negative
multiple. By a generic hyperplane we mean one which is not parallel to any of the vectors
of B. We have taken the hyperplane defined by the equationx + y+ z= 4. Figure 1(b)
also shows the chamber complex ofB; lines joining open and solid points have arrows
since they must “pass through infinity” in this representation, and every line through an
open point has been broken. For more details on affine Gale diagrams, see [19]. Each
point has been labelled using the index of the corresponding element ofA. The affine
Gale diagram in Fig. 1(b) shows that the virtual chamberC of B which corresponds toT
is not a geometric chamber. The triangles ofC are{1,2,3}, {3,5,6}, {1,4,6}, {2,4,5},
{1,3,6}, {1,2,4} and{2,3,5}, whose relative interiors intersect in the empty set as can
be seen in the affine Gale diagram.

1.3. Flips

Flips are a notion of aminimalor elementarychange between triangulations (see Chap-
ter 7 of [8] or [6] and [18]). We intend to dualize the standard definition of flip and
give a definition offlip between virtual chambersof B. For this we recall the matroidal
operations of contraction and deletion and some other preliminaries.

LetA ⊂ V ∼= Rd+1 be a vector configuration and letτ ⊂ A. Given a linear injective
map i : W → V whose image contains and is spanned byA\τ , we call the vector
configurationi−1(A\τ) in the vector spaceW thedeletion ofτ inA. The deletion ofτ in
A is unique up to linear isomorphism, so we can assumeW to be the subspace spanned by
A\τ andi to be the inclusion map. For this reason the deletion ofτ inA is denoted byA\τ .
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Given a linear projection mapπ : V →W whose kernel contains and is spanned byτ ,
we call the vector configurationA/τ := π(A\τ) in the vector spaceW thecontraction
of τ in A. The contraction ofτ in A is unique modulo linear isomorphism, so the map
π can be assumed to be a projection ofV onto a linear subspaceW complementary to
the linear span ofτ .

Contraction and deletion are dual operations: ifA andB are Gale transforms of each
other andτ is a subset ofA, thenA/τ andB\τ are again Gale transforms of each other
(here and in what follows we identify the elements of the Gale transformB with the
elements ofA in the natural way, so thatτ is considered a subset ofB).

We denote byS∗ T := {σ ∪ τ : σ ∈ S, τ ∈ T} the join of two simplicial complexes
S andT [9]. If τ ⊂ A is contained in some simplex of a triangulationT of A, the link
of τ in T is defined to be the following collection of subsets ofA:

linkT (τ ) := {σ\τ : τ ⊂ σ ∈ T }.

It is clear that all the elements of linkT (τ ) are full-dimensional simplices inA/τ . Even
more, it can be easily proved that linkT (τ ) is a triangulation ofA/τ . Also, it is trivially
verified that linkT (τ ) ∗ {τ } ⊂ T .

Finally, recall that the supportZ = Z+ ∪ Z− of an acyclic circuitZ = (Z+, Z−) can
be triangulated in exactly two ways:

T +(Z) := {Z\{p} | p ∈ Z+}, T −(Z) := {Z\{p} | p ∈ Z−}.

Definition 1.6. LetT be a triangulation ofA and letZ = (Z+, Z−) ⊂ A be an acyclic
circuit ofA. Suppose that the following conditions are satisfied:

1. The triangulationT +(Z) is a subcomplex ofT .
2. All the simplicesZ\{p} ∈ T +(Z) (p ∈ Z+) have the same linkL in T . In

particularT +(Z) ∗ L ⊂ T .

In these conditions we can obtain a new triangulationT ′ of A by replacing the sub-
complexT +(Z) ∗ L of T with the complexT −(Z) ∗ L. This operation of changing
the triangulation is called ageometric bistellar flip(or aflip, for short) supported on the
circuit (Z+, Z−). We say thatT andT ′ aregeometric bistellar neighbours.

Proposition 1.7. Let T be a triangulation ofA and let Z= (Z+, Z−) be a circuit.
ThenT has a flip supported on Z if and only if there is a triangulation L of the contraction
A/Z such thatT +(Z) ∗ L ⊂ T .

Proof. The support of a circuitZ is minimal linearly dependent, so thatZ spans the
same subspace asZ\{p}, for everyp ∈ Z. In particular,A/Z = A/τ for every maximal
simplexτ = Z\{p} in T +(Z).

With this, the “only if” part is trivial, since the link inT of anyσ ∈ T +(Z) will be a
triangulation of the contractionA/Z. For the “if” part, letL be a triangulation ofA/Z
such thatT +(Z) ∗ L ⊂ T . ThenL ⊂ linkT (σ ) for everyσ ∈ T +(Z). Since bothL
and linkT (σ ) are triangulations ofA/Z and no triangulation is properly contained in
another one,L = linkT (σ ), ∀σ ∈ T +(Z).
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Theorem 1.8. Let C be a virtual chamber of a vector configurationB and let Z =
(Z+, Z−) be a cocircuit ofB. LetA be the Gale transform ofB and letT be the tri-
angulation ofA corresponding toC. Then T has a flip supported on the circuit
Z = (Z+, Z−) of A if and only if there is a virtual chamberCZ in the deletionB\Z
such thatτ ∪ {p} ∈ C for everyτ ∈ CZ and p ∈ Z+. Moreover, in these conditions
C\{τ ∪ {p}: τ ∈ CZ, p ∈ Z+} ∪ {τ ∪ {p}: τ ∈ CZ, p ∈ Z−} is the virtual chamber
of B corresponding to the triangulation obtained by the flip ofT supported on the
circuit Z.

Proof. The statement is just a dualization of Proposition 1.7 taking into account The-
orem 1.3. The idea is that triangulations ofA/Z and virtual chambers ofB\Z are in
bijection, sinceA/Z andB\Z are Gale transforms of each other. CallingZ0 = A\(Z)
we have that the complement of an elementσ ∪ (Z\{p}) of L ∗T +(Z) (wherep ∈ Z+)
equals(Z0\σ) ∪ {p} and vice versa.

1.4. Virtual Chambers and Flips in Rank3

The simplices of one, two, or three elements of a vector configurationB are called
vertices, edgesandtriangles, respectively. We say that a simplexτ is emptyif conv(τ )∩
B = τ .

There is a natural correspondence between cocircuitsZ = (Z+, Z−) of a vector
configurationB and open half-spacesH+ whose boundary hyperplaneH0 is spanned
by elements ofB. Indeed, given a cocircuitZ, the complement of its supportZ0 spans
a hyperplane which partitionsB\Z0 as Z+ ∪ Z−. Reciprocally, a half-spaceH+ with
these conditions provides a cocircuit(B∩ H+,B∩ H−). If B has rank 3, a cocircuit can
thus be specified by choosing one of the two sides of an edge{p,q} ⊂ B and calling it
“positive.” An edge ofB together with such a choice is called anoriented edge. Given
an oriented edgem and the corresponding cocircuitZ = (Z+, Z−) we denotemi := Zi

for i ∈ {+,−,0} for simplicity.
On the other hand, the deletion of the supportZ in a vector configurationB is the

subconfigurationZ0 = B\Z of B (considered as a vector configuration in the vector
subspace it spans). WhenB has rank 3,Z0 is a rank 2 vector configuration and its virtual
chambers are in bijection with its empty edges, as the following result from [5] shows.

In the following statement and in what follows, a vector configuration is calledsimple
if it has no zero vectors and no pair of vectors which are positive multiples of each
other. This is a slightly more general definition than the standard literature, wheresimple
oriented matroidsare not allowed to have negative multiples either (see [4]).

Lemma 1.9[5]. Let B be a simple rank2 vector configuration. Then every virtual
chamber has a unique empty edge and every empty edge{p,q} is in a unique virtual
chamber, which consists of those edges whose positive span contains p and q.

Proof. Every virtual chamber contains a unique empty edge by Theorem 1.3 since the
collection of empty edges is a triangulation ofB.



The Graph of Triangulations of a Point Configuration withd + 4 Vertices 499

Reciprocally, for any empty edge{p,q}, the collection of edges whose positive spans
contain conv(p,q) is a chamber and, in particular, a virtual chamber. It suffices to
show that all virtual chambers arise in this form. For a proof of this see Proposition 5.7
of [5].

The previous lemma suggests the following definition, with which Theorem 1.8 trans-
lates into Corollary 1.11 below.

Definition 1.10. Let C be a virtual chamber of a simple rank 3 vector configurationB
and letm= {p,q} be an empty edge ofB (which we consider oriented). We say thatm
supports a flip ofC if m+ 6= ∅ 6= m− and for everys ∈ m+ the triangle{p,q, s} is in C.

Corollary 1.11. LetB be a simple rank3 vector configuration and letC be a virtual
chamber ofB. LetT be the triangulation ofA corresponding toC and let Z= (Z+, Z−)
be a cocircuit ofB. ThenT has a flip supported on the circuit Z= (Z+, Z−) of A
if and only if there is an empty edge m⊂ Z0 of B such that m supports a flip of
C. Moreover, in such conditions(C\{{a,b, p}: p ∈ m+, conv(m) ⊂ conv(a,b)}) ∪
{{a,b, p}: p ∈ m−, conv(m) ⊂ conv(a,b)} is the virtual chamber ofB corresponding
to the triangulation ofA obtained by the flip ofT supported on the circuit Z.

We need the vector configurationB to be simple in the previous statements since,
for example, a vector configuration in which every vector has a positive multiple has no
empty edges at all. However, it implies no real loss of generality for our purposes since:

Lemma 1.12. Any vector configurationB has the same virtual chambers and flips as
the simple vector configurationB0 obtained by removing fromB the zero vector and all
but one of the vectors in any half-line.

Proof. The zero vector clearly does not affect the collection of triangulations or flips.
For the case of positive multiples, this follows easily from the fact that ifv,w ∈ B are
positive multiples of each other, then({v}, {w}) is a circuit. Hence, for every simplexσ
containingv, every virtual chamber ofB either contains bothσ andσ ∪{w}\{v} or none
of them. In other words, the simplices containingv and containingw are equivalent with
respect to virtual chambers (and flips).

The previous lemma appears in dual form (i.e. for triangulations of the Gale transforms
of B andB0) in [6] and generalized to oriented matroids in Section 4.4 of [16]. We return
to it in the Appendix, Lemma A.4.

1.5. Extensions

An extension of an oriented matroidM on a setE is any oriented matroidM′ on
a setE′ ⊃ E such that every circuit ofM is a circuit ofM′ as well (i.e. such that
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M′\(E\E′) = M). It is a one-elementextension ifE′\E has exactly one elementp
(see [4] or [16] for details). In this case we denote the extension asM ∪ {p}.

Following [16] we say that a single-element extensionM ∪ {p} is interior if there
is a circuit ({p}, A) for someA ⊂ B and that it is ingeneral positionif any circuit
containing p is spanning (equivalently, ifM/p is uniform). A key property for our
purposes is that ifM is the oriented matroid realized by a vector configurationB and
M ∪ {p} is an interior one-element extension in general position, then the collection
{A ⊂ B: ({p, }, A) is a circuit} is a virtual chamber ofB [16].

We are specially interested in some one-element extensions calledlexicographic
extensions, introduced by Las Vergnas [10]. The definition we use is less general than
the standard one and is adapted to rank 3.

Definition 1.13 [4], [10]. Let M be a rank 3 oriented matroid (or a rank 3 vector
configuration) and let{a1,a2,a3} be a triangle (i.e. a basis) ofM.

The lexicographic extension ofM at the (ordered) basis[a1,a2,a3] is the unique
one-element extensionM ∪ {p} ofM in which every cocircuitC ofM is extended to
the cocircuit (which we still denoteC) defined byC(p) = C(ai ) for the minimali with
C(ai ) 6= 0.

For the existence and uniqueness of the lexicographic extension in a basis see Sec-
tion 7.2 of [4]. IfM is an oriented matroid realized by a vector configurationB, then the
lexicographic extension at the basis [a1,a2,a3] can be realized by adding toB the vector
a1 + εa2 + ε2a3 for any sufficiently small positive scalarε. Hence, the lexicographic
extension has an associated chamber in the chamber complex ofB, which is incident to
a1 and to the edge [a1,a2] on the side on whicha3 is. We call that chamber aflagchamber.
The corresponding triangulation of the Gale transform is called apushingtriangulation
[12], [4] and it is regular.

2. Triangles and Edges

In the rest of the paper (except for the Appendix)B denotes a simple rank 3 vector
configuration. Recall that we call thesimplicesof B its independent subsets and we call
a simplex apoint, edgeor triangle if it has one, two or three elements, respectively. We
say that a simplexτ is emptyif conv(τ )∩B = τ .B being simple means that every point
is empty.

Without loss of generality, we suppose that every vector inB has unit length and we
think ofB as a point configuration in the sphere. In this setting conv(l ) and conv(τ ) for
an edgel and a triangleτ are a geodesic segment and a geodesic triangle, respectively.

Definition 2.1. Let τ be an empty triangle ofB. Let l , l1 andl2 be edges ofB. We say
that:

1. l1 andl2 cross each other(or l1 crosses l2) if relconv(l1) ∩ relconv(l2) is a single
point. Equivalently, if(l1, l2) is a circuit ofB.

2. l crossesτ (or l bisectsτ ) if l crosses some edge ofτ .
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The following proofs are all done using either topological arguments or the language
of oriented matroids, but avoiding geometric arguments. This allows us to show that all
the results of this paper translate to non-realizable oriented matroids, which is done in
the Appendix. Also, in some of the proofs the use of oriented matroids makes it evident
that the case study involved is complete, which might not be obvious in a more geometric
proof. Some basic concepts and facts of oriented matroid theory used are the following
(see [4] or Chapter 6 of [19]):

• The compositions of circuits are calledvectorsand the compositions of cocircuits
are calledcovectors, where the composition of(C+,C−) and (D+, D−) is by
definition(C+ ∪ (D+\C−),C− ∪ (D−\C+)).
• (C+,C−) is a vector if and only ifC+ andC− are disjoint and the relative interiors

relconv(C+) and relconv(C−) have a common point. Equivalently, ifC+ andC−

are the elements ofB with positive and negative coefficient respectively in some
linear dependence among the elements ofB. (∅,∅) is a vector by convention.
• (C+,C−) is a covector ifC+ andC− are the intersections withB of the open

half-spaces defined by some hyperplane.(∅,∅) is a covector by convention.
• Vectors and covectors are orthogonal to each other, where(C+,C−) and(D+, D−)

are called orthogonal if(C+ ∩ D+) ∪ (C− ∩ D−) and(C+ ∩ D−) ∪ (C− ∩ D+)
are either both empty or both non-empty.
• Even more, vectors are exactly the signed subsets(C+,C−) orthogonal to every

cocircuit, and covectors are those orthogonal to every circuit.
• Given two vectors(C+,C−) and(D+, D−) (resp. two covectors) and an element

a ∈ C+∩D− there is a vector (resp. a covector)(E+, E−)with C+∩D+ ⊂ E+ ⊂
C+ ∪ D+\{a} andC− ∩ D− ⊂ E− ⊂ C− ∪ D−\{a}. This is called theelimination
of a in (C+,C−) and(D+, D−).

Finally, we sometimes use the following notation for a vector, covector, circuit or
cocircuit(C+,C−) when we are interested in a particular subsetτ = {a1, . . . ,an} ⊂ B.
We write a string(ε1, . . . , εn)of signsεi ∈ {+,0,−}meaning thatC+∩τ = {ai : εi = +}
andC− ∩ τ = {ai : εi = −}.

Lemma 2.2. Letσ = {s, t,u} be a triangle ofB and let{p,q} be an edge ofB which
crosses the edges{s, t} and{t,u}. Suppose that p and u lie on opposite sides of{s, t}.
Then q and s lie on opposite sides of{t,u}.

Proof. In {p,q, s, t,u} we have the circuits

(+,+,−,−,0), (1)

(−,−,0,+,+) (2)

and the cocircuit

(−,+,0,0,+). (3)

Elimination of p between (1) and (2) gives the circuit(0, ∗,−, ∗,+). Orthogonality
with (3) implies that this circuit is(0,−,−, ∗,+), which imply thatq and s lie on
opposite sides of{t,u}.
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Proposition 2.3. Let τ = {p,q, r } be an empty triangle ofB and let l= {s, t} be an
empty edge ofB. The following conditions are equivalent:

1. l crossesτ .
2. relconv(τ ) ∩ relconv(l ) 6= ∅.

Moreover, if l crossesτ , then, for every two vertices a,b ∈ τ which lie on opposite sides
of l, l crosses{a,b}.

Proof. The equivalence 1⇔ 2 is an obvious topological fact: ifl1 is an edge ofτ which
crossesl , since relconv(l1) is in the closure of relconv(τ ) we have that relconv(τ ) ∩
relconv(l ) 6= ∅. Reciprocally, if relconv(l ) intersects the interior of the geodesic triangle
relconv(τ ) and sinceτ is empty, conv(l ) must intersect the boundary of the geodesic
triangle conv(τ ) in exactly two points and the two of them cannot be on the same
edge. In particular, one of them must be in relconv(l1) for some edgel1 of τ . This
intersection point cannot be an end-point ofl , since thenτ would not be empty. Thus,
relconv(l ) ∩ relconv(l1) 6= ∅.

Let us see the “moreover.” Without loss of generality we suppose thatl crosses{p,q}.
Suppose thata,b ∈ τ lie on opposite sides ofl . Without loss of generality, assumea = q
andb = r . Sincel crossesτ , it must be relconv(τ ) ∩ relconv(l ) 6= ∅, and sinces andt
do not lie in relconv(τ ), the boundary of conv(τ )must have another pointx in common
with conv(l ), apart from the one in relconv(l ) ∩ relconv({p,q}). Sincer is on one side
of l , we havex 6= r and thusx lies on the relative interior of either{p, r } or {q, r }.
Therefore,x ∈ relconv(l ) by emptiness ofτ . If x ∈ relconv({p, r }), thenl crosses{p, r }
and we have thatq andr are on the opposite side ofl to which p is. This implies that
a = q andb = r are on the same side ofl , which contradicts the hypotheses. Thus,
x ∈ relconv({q, r }) andl crosses{a,b}.

Proposition 2.4. Let τ = {p,q, r } be an empty triangle ofB and let l= {s, t} be any
empty bisector ofτ . Then either

(i) l ∩ τ = ∅ and l crosses exactly two edges ofτ , or
(ii) l ∩ τ 6= ∅ and l crosses exactly one edge ofτ .

Proof. By Definition 2.1 we know thatl crosses at least one edge ofτ . We first show
thatl cannot cross the three edges ofC (this is obvious geometrically, but we include an
oriented matroid proof for use in the Appendix). If it does, then the following are circuits
supported on{p,q, r, s, t}:

(+,+,0,−,−), (4)

(0,+,+,−,−), (5)

(+,0,+,−,−). (6)

Using (4) and (5) we eliminateq to obtain

(+,0,−, ∗, ∗). (7)
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Using (6) and (7) we eliminater to obtain(+,0,0, ∗, ∗) and conclude thatp, s andt
are collinear. In the same way we can conclude thatq, r ∈ span{s, t} which implies that
τ ⊂ span{s, t}. This is obviously impossible. We conclude thatl cannot cross the three
edges ofτ .

(ii) Suppose thatl ∩ τ 6= ∅, sayt = r . Thenl = {r, s} implies it cannot cross neither
{p, r } nor {q, r }, sol crosses{p,q} and only{p,q}.

(i) Supposel ∩ τ = ∅. Then the pointsp,q, r, s andt are distinct. We suppose thatl
crosses{p,q}and no other edge ofτ . The set{q, r, s, t} contains the support of a circuitZ
that satisfiesr ∈ supp(Z) (otherwisel would not cross{p,q} since({p,q}, {s, t})would
not be a circuit). Sayr ∈ Z+, then eitherq 6∈ Z+ or l crosses{q, r } (by Proposition 2.3)
and we are done, so we assumeq 6∈ Z+. If l does not cross{p, r } we can do the same
reasoning with{p, r, s, t} to get the following circuits (which we write as sign vectors
on {p,q, r, s, t}):

(+,+,0,−,−), (8)

(0,a,+, ∗, ∗), (9)

(b,0,+, ∗, ∗), (10)

wherea andb are either 0 or−. Eliminatingr with (9) and (10) we get(−b,a,0, ∗, ∗)
which together with (8) leads us to a contradiction, except for the case in whicha = b = 0
which we study separately.

If a = b = 0, thenZ is of the form(0,0,+, ∗, ∗). Using simplicity ofB and emptiness
of l the possibilities (up to exchange of the roles ofs andt) are

(0,0,+,+,0), (11)

(0,0,+,+,−), (12)

(0,0,+,+,+). (13)

By elimination of s between (11) (resp. (12)) and (8) we obtain(+,+,+,0,−),
which is impossible by emptiness ofτ . By elimination ofs between (13) and (8) we
obtain(+,+,+,0, ∗), where obviously∗ 6= 0. If ∗ = − we are in the previous case
and if∗ = + we eliminatet between(+,+,+,0,+) and (8) to obtain(+,+,+,−,0),
which again is not possible by emptiness ofτ .

Lemma 2.5. Let l = {p,q}, l1 = {p1,q1} and l2 = {p2,q2} be three empty edges ofB
such that l1 and l2 cross l but l1 and l2 do not cross each other. Suppose that p1 and p2

are on the same side of l. Then at least one of the edges{p1,q2} and{p2,q1} crosses l.

Proof. The casesp1 = p2 or q1 = q2 are trivial, so we suppose that the four points
p1, p2, q1 and q2 are distinct. We consider the six edges defined by the four points
{p1, p2,q1,q2}. We say that two edges overlap if their convex hulls intersect in more
than one point.

Suppose first that two of the six edges overlap. This implies that for three of the
points, sayp1, p2 andq1, one of the three is in the relative interior of the edge formed
by the other two. It is impossible thatq1 ∈ relconv(p1, p2), sincep1 and p2 lie on one
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side ofl andq1 on the other. Any of the other two possibilities,p1 ∈ relconv(q1, p2) or
p2 ∈ relconv(q1, p1) clearly implies that relconv(q1, p2) intersects relconv(l ).

If no pair of edges overlap, then the only edges which can cross each other are the
ones with disjoint end-points. However,l1 = {p1,q1} and l2 = {p2,q2} do not cross
each other by hypothesis and{p1, p2} and{q1,q2} do not cross each other because they
lie on opposite sides ofl . So, only{p1,q2} and{q1, p2} can cross each other. We consider
the two possibilities:

• If {p1,q2} and{q1, p2} cross each other, then we have the following three circuits
among the points{p,q, p1,q1, p2,q2}:

(0,0,+,−,−,+), (14)

(+,+,0,0,−,−), (15)

(+,+,−,−,0,0). (16)

Eliminatingq2 between (14) and (15) we get the vector(+,+,+,−,−,0). Elim-
inating p1 between this and (16) we get the vector(+,+,0,−,−,0). Since
{p,q,q1, p2} has rank 3, this vector is a circuit. Thus,{p,q} and{q1, p2} cross
each other.
• If {p1,q2} and{q1, p2} do not cross each other, then the six edges among the points
{p1,q1, p2,q2} form an embedded complete graphK4 in the sphere, andK4 has a
unique embedding modulo topological equivalence. It is topologically obvious that
since the geodesic segment conv(l ) crosses the edges conv(p1,q1)and conv(p2,q2)

it must cross at least one of the remaining four edges. By hypothesis it cannot cross
neither conv(p1, p2) nor conv(q1,q2) so we have finished.

Definition 2.6. Let l = {p,q} be an empty edge ofB. LetÄ(l ) = {r : r is an edge of
B which crossesl }. We define the following partial ordering inÄ(l ):

• For two edgesr = {s, t}, r ′ = {t,u} in Ä(l ) with a common vertext , we say that
r ′ is closer to p than rand writer <p r ′ if u and p are on the same side ofr .
Equivalently, if the intersection point relconv(r ′)∩ relconv(l ) is closer top (along
conv(l )) than the point relconv(r ) ∩ relconv(l ).
• For arbitrary edges inÄ(l ), we say thatr <p r ′ if there is a chainr = r1, r2, . . . ,

rm = r ′ of edges inÄ(l ) with r1 <p r2 <p · · · <p rm, whereri andri+1 share a
vertex for everyi ∈ {1, . . . ,m− 1}.

Recall that an oriented edgel+ of B denotes an edgel = {p,q} together with the
choice of one of the two half-spaces (or hemispheres) defined by it.

Corollary 2.7. Let τ = {p,q, r } be an empty triangle ofB and let m and n be two
bisectors ofτ crossing l= {p,q}.We give m and n an orientation such that p∈ m+∩n+.
Suppose that m<p n inÄ(l ) and that r 6∈ m+. Then r 6∈ n+.

Proof. We can assume thatm andn are empty, because otherwise their convex hulls
contain empty edges with the conditions required in the corollary. It is sufficient to prove
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the result in the case thatm andn have a common vertex and then the general case holds
recursively. Saym = {s, t}, n = {t,u}. Then p,u ∈ m+. Supposer was inn+. Since
n crosses{p,q} and p ∈ n+, we haveq ∈ n−. By Proposition 2.3,n crosses{q, r }.
Then:

• If r 6∈ m−, thenr 6∈ m+ and r 6∈ m−, so m crosses only the edgel of τ . By
Proposition 2.4,r ∈ m. It must ber = s, but thens ∈ n+ and we haven <p m<p n
which is impossible.
• If r ∈ m−, remember thatn = {t,u} crosses{p,q} and{q, r }. Hence we have the

(restricted) cocircuit(+,−,+, ∗,0,0) on {p,q, r, s, t,u}. On the other hand, in
this casem crosses{p, r }, so we have the circuit(+,0,+,−,−,0). The circuit
and the cocircuit must be orthogonal, so∗ = + and we have the cocircuit

(+,−,+,+,0,0).

This means thatr ands are on the same side ofn, that is,r, s ∈ n+. In particular,
s ∈ n+ implies thatn <p m<p n which is impossible.

3. Main Results

Throughout this sectionC is a virtual chamber of a simple rank 3 vector configurationB.

3.1. Every Triangulation has a Flip

Definition 3.1. Let l be an edge ofB and consider it oriented.

(i) We say thatl hasC on its positive side l+ (or thatC lies on l+) if there exists
τ ∈ C such thatτ ⊂ l+ ∪ l 0 (same forl−).

(ii) We say that the orientation ofl is C-coherentif C lies onl+.

By Lemma 1.4, an edge cannot haveC on both sides. However, not every edge ofB
hasC on one side. For example, letB = {p,q, r, s} with {p,q, r } being a triangle and
s ∈ relconv(p,q, r ). ThenC = {{p,q, r }, {p,q, s}} is a virtual chamber and{r, s} does
not haveC on any side.

Note that for any triangleτ = {p,q, r } of a virtual chamberC and for any edgel (say
l = {p,q}) of τ , l hasC on the side on whichr is. This implies that there exists theC-
coherent orientation forl and thatr ∈ l+ for this orientation. The following proposition
says that every edge which crosses an empty triangle ofC can also be given aC-coherent
orientation.

Proposition 3.2. Let C be a virtual chamber ofB, let τ = {p,q, r } ∈ C be an empty
triangle and let l= {s, t} be a bisector ofτ . Then l hasC on one of its sides.

Proof. Let{p,q} be an edge ofτ that is crossed byl (note thatτ∩l could be non-empty,
r ∈ {s, t} could occur). Thenp andq are on opposite sides ofl , so there is at least one
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vertex ofτ on each side ofl . Moreover, at least one side ofl contains exactly one vertex
(say p) of τ , becauseτ has only three vertices. We consider the triangleσ = {p, s, t}
of B. We can extendσ to a triangulationT0 of {p,q, r, s, t}. We claim that for every
triangle ofT0 there is one side ofl containing none of its vertices.

Observe that if a triangleρ of T0 does not verify this property, then it must contain
p and exactly one element of{q, r } (ρ cannot be{p,q, r } = τ becauseτ andσ do not
intersect properly, since an edgel of σ crosses an edge{p,q} of τ ). The condition “l
crosses{p,q}” implies thatp andq cannot both be inρ if we wantρ andσ to intersect
properly, so we can assume (without loss of generality)ρ = {p, r, s}. Now, {p, r, s, t}
contains the support of a unique circuitZ and, by hypothesis,p andr lie on opposite
sides ofl = {s, t}, so{p, r } ⊂ Z+ (up to sign reversal inZ). By Proposition 2.3 we have
thatl crosses{p, r }, and henceρ andσ do not intersect properly. This means that such
a triangleρ cannot exist.

Now we extendT0 to a triangulationT of B and use condition 1 of Definition 1.1 to
conclude that there exists exactly one triangleρ ∈ T ∩ C. By Lemma 1.4 and the fact
thatT0 covers conv(τ ), we haveρ ∈ T0.

The following result is crucial for what follows. In it,l is an edge of an empty triangleτ
of the virtual chamberC andÄC(l , p) is the subset ofÄ(l ) (see Definition 2.6) consisting
of the edges which crossl andhave p andC on the same side. Clearly,ÄC(l , p) inherits
the partial order<p fromÄ(l ). For the proof that every virtual chamber has an empty
triangle see Corollary 3.5.

Theorem 3.3. Letτ = {p,q, r } be an empty triangle of the virtual chamberC. Let l =
{p,q} and let{a,b} be a maximal element in the poset(ÄC(l , p),<p). If {p,a,b} ∈ C,
then{a,b} supports a flip ofC.

Proof. Let m = {a,b} and consider it orientedC-coherently by Proposition 3.2. We
have to prove that the two conditions onm of Definition 1.10 are satisfied for the edge
m. The first condition is obviously satisfied sincep ∈ m+ andq ∈ m−. In order to prove
the second condition lets ∈ m+. We need to prove that{a,b, s} ∈ C.

Without loss of generality we can assume that:

• {a,b, p,q, s} are five distinct points: The first four are distinct since{a,b} crosses
{p,q}. The points is trivially not equal toa nor b sinces ∈ m+ = {a,b}+. Also,
s 6= q sinces ∈ m+ andq ∈ m−. Finally, if s = p, then the claim{a,b, s} ∈ C is
the hypothesis{a,b, p} ∈ C.
• {a, s} and{b, s} are empty edges: if, for example,{a, s} is not empty, then lets′ ∈

relconv({a, s}) such that{a, s′} is empty. Clearly,s ∈ {a,b}+ impliess′ ∈ {a,b}+
and then if we prove{a,b, s′} ∈ C we will have{a,b, s} ∈ C by condition 2 of
Definition 1.1 applied to the circuit({s′}, {a, s}).

The sets{a,b, p} and{a,b, s} are independent and we havep, s ∈ m+. This implies
thatρ = {a,b, s, p} contains the support of a circuitZ in which p ands have opposite
and non-zero signs. We supposep ∈ Z+ ands ∈ Z−. The possibilities forZ (written
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on {a,b, s, p,q}) are the following, up to exchange of the roles ofa andb:

(0,−,−,+,0), (17)

(−,−,−,+,0), (18)

(0,+,−,+,0), (19)

(−,+,−,+,0), (20)

(+,+,−,+,0). (21)

Sinceσ := {p,a,b} is in T −(ρ) ∩ C, condition 2 of Definition 1.1 implies there is
a (unique) triangleσ ′ ∈ T +(ρ) ∩ C. We claim thatσ ′ = {a,b, s} and this finishes the
proof. We study cases (17)–(21) separately.

Cases (17) and (18) are trivial because the unique point with positive sign isp, so
T +(ρ) = {{a,b, s}}. For the remaining cases, remember thatm crossesl , so we have
the circuit

(−,−,0,+,+). (22)

In case (19) (resp. case (20)) we eliminateb between (19) and (22) (resp. between
(20) and (22)) and obtain the vector

(−,0,−,+,+). (23)

We use the following fact repeatedly: if a vector has support contained in four points,
three of which are independent, then it is a circuit. This is so because otherwise it is a
composition of at least two different circuits, and there is only one circuit with support
contained in a spanning set with four points. In particular, (23) is a circuit and{a, s}
crossesl = {p,q}. To prove thatσ ′ = {a,b, s}we have to show that the other triangle of
T +(ρ), {a, p, s}, is not inC. If it was, thenp ∈ {a, s}+. Since{a, s} crossesl we would
have that{a,b} <p {a, s}which contradicts the hypothesis of maximality ofm= {a,b}.
Thusσ ′ = {a,b, s}.

Only case (21) remains. We can eliminateb between (21) and (22) to get a circuit
(∗,0,−,+,+) where “∗” cannot be zero by emptiness ofτ = {p,q, r }. Without loss
of generality we can assume that “∗” is a minus sign, because if it is a plus sign we
eliminatea between(+,0,−,+,+) and (22) to get(0,−,−,+,+) and we repeat the
following argument exchanging the roles ofa andb. Then the circuit becomes

(−,0,−,+,+) (24)

and the same argument as in case (19) shows that{a, p, s} 6∈ C. The rest of the proof is
devoted to showing that{b, p, s} 6∈ C. For this, we suppose that{b, p, s} ∈ C and get a
contradiction.

We eliminatea between (21) and (24) and we get the circuit

(0,+,−,+,+), (25)

which implies thats andb are on the same side ofl . If s,b ∈ l− (where we considerl
orientedC-coherently, so thatr ∈ l+) we have{b, p, s} ∩ l+ = ∅, hence{b, p, s} 6∈ C.
So we suppose thats,b ∈ l+; thena ∈ l−, becausel crosses{a,b}.
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Without loss of generality we can assume thatr 6∈ {a,b, p,q, s}: the pointr cannot
be the same asa, p or q becausel = {p,q}, r ∈ l+ anda ∈ l−. Circuit (25) implies
r 6= b, or {p,q, r } would not be empty. The same circuit implies that ifs= r , then our
claim that{b, p, s} 6∈ C is obvious, since{p,q, s} = {p,q, r } is in C andb andq lie on
opposite sides of{p, s}.

So, in the following we write all the circuits on{a,b, s, p,q, r }. Circuits (21), (22),
(24) and (25) become respectively

(+,+,−,+,0,0), (26)

(−,−,0,+,+,0), (27)

(−,0,−,+,+,0), (28)

(0,+,−,+,+,0) (29)

when written on{a,b, s, p,q, r }. Recall also that we knowr,b, s ∈ {p,q}+ anda ∈
{p,q}−. In other words, we have a cocircuit which, restricted to{a,b, s, p,q, r }, is

(−,+,+,0,0,+). (30)

We now look at the cocircuit(∗,+,0,0, ∗, ∗) vanishing on{p, s} and oriented
C-coherently. Orthogonality with (26) and (28) implies it is(−,+,0,0,−, ∗), so it
only remains to know the sign ofr on that cocircuit. We know that relconv(b, p, s) ∩
relconv(p,q, r ) 6= ∅ by Lemma 1.4, since both simplices are in the virtual chamber
C. This implies (since(−,+,0,0,−, ∗) implies q ∈ {p, s}−) that r ∈ {p, s}+. The
cocircuit is then

(−,+,0,0,−,+). (31)

By (28), together with the assumption that{a, s} is empty,{a, s} is an empty edge
which crosses the triangle{p,q, r }. Proposition 2.4 implies{a, s} crosses either{p, r } or
{q, r }. Cocircuit (31) implies it does not cross{p, r }, hence it crosses{q, r } (in particular,
p andr are on the same side of{a, s}) and we have the circuit

(+,0,+,0,−,−), (32)

which together with (28) gives us a circuit(0,0, ∗,+, ∗,−). Orthogonality with (30)
and (31) implies that this circuit is

(0,0,+,+,−,−), (33)

which implies thats and p lie on opposite sides of{q, r }, and, since{p,q, r } = τ ∈ C,
we haves ∈ {q, r }−.

Now we observe thatp andr are on the same side of{a, s}, since both{p,q} and
{q, r } cross{a, s}. Eliminatingq and p respectively from (29) and (33) we derive the
circuit

(0,+, x,+,0,−) (34)

and another circuit(0,+,−,0,+,+). The last one implies thatb ands are on the same
side of{r,q}. We know thats ∈ {r,q}−, sob, s ∈ {r,q}−. Hence{b, s, r } 6∈ C.
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Since{b, p, s} is in the negative triangulation of (34) and we assume{b, p, s} to be
in C, there must be exactly one triangle of the positive triangulation of (34) inC. The
triangles in the positive triangulation of (34) are{b, s, r }, {p, s, r } and (only ifx = +)
{b, p, r }. We have already discarded{b, s, r } ∈ C. Let us see how to discard the other
two:

• {b, p, r } ∈ C andx = + is impossible because (34) withx = + implies thatb and
s are on opposite sides of{p, r }, {p,q, r } ∈ C and{b, p, r } ∈ C impliesb andq
are on the same side of{p, r }, while (33) implies thats andq are on the same side
of {p, r }.
• Suppose finally that{p, s, r } ∈ C. Sincep andr are on the same side of{a, s},
{a, s} hasC on one side, namely that in whichp andr are. However, this means
that{a, s} ∈ ÄC(l , p). This contradicts the maximality ofm = {a,b} in ÄC(l , p)
since m = {a,b} <p {a, s} (s and p are on the same side of{a,b}, by
circuit (26)).

Proposition 3.4. LetC be a virtual chamber ofB which is not a(geometric) chamber.
Let τ be an empty triangle ofC. Then there exist an edge l ofτ , a vertex p of l and a
maximal element m= {a,b} ofÄC(l , p) such that{a,b, p} ∈ C.

Proof. Sayτ = {p,q, r }. There must be another triangleσ = {s, t,u} ∈ C such that
τ is not contained in conv(σ ) because otherwiseC would be a chamber (just takev
generic in relconv(τ ) and considerCv,B), and we can assumeσ to be empty as well using
condition 2 of Definition 1.1 iteratively. Since relconv(τ ) ∩ relconv(σ ) 6= ∅ andτ and
σ are both empty, some edge ofτ (say{p,q}) crosses some edge ofσ (say{s, t}).

We now claim that there is an empty edge ofB that crossesτ , one of whose vertices
is in τ . Suppose{s, t} ∩ τ = ∅. Then{s, t} crosses another edge ofτ (say{p, r }) by
Proposition 2.4. We have the following circuits on{p,q, r, s, t}:

(+,+,0,−,−), (35)

(+,0,+,−,−). (36)

Since{s, t} crosses{p,q} we can assume without loss of generality thats ∈ {p,q}−, so
there is a circuit of the form

(∗, ∗,−,−,0). (37)

Eliminating t between (35) and (36) we get(∗,+,−, ∗,0), which combined with (37)
implies

(x,+,−,−,0). (38)

By Lemma 2.2t ∈ {p, r }−, so we can repeat this argument to obtain

(y,−,+,0,−). (39)

Now supposex 6= + 6= y. Then, eliminatingq between (38) and (39), we get(z,0, ∗,−,
−)with z 6= +. This contradicts (36), thus we can assumex = +, but then (38) becomes
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(+,+,−,−,0). This implies that{r, s} crosses{p,q} as we claimed. Hence, we can
assume thatt = r .

Now we take a maximal elementm = {a,b} of ÄC({p,q}, p) with {r, s} ≤p m.
Sincer 6∈ {r, s}+, by Corollary 2.7, we have thatr 6∈ m+. Sinceq ∈ m−, m cannot
cross{q, r }, so, by Proposition 2.4,m crosses{p, r } if and only if r 6∈ {a,b}. We
conclude thatm crosses{p, x} for every x ∈ τ\{a,b, p} ⊂ {q, r }. Now we extend
the triangle{a,b, p} to a triangulationT of conv(a,b, p,q, r ) andT to a triangulation
T ′ of B. By definition of a virtual chamber there is exactly one triangleσ ′ of T ′ in C,
but relconv(σ ′) ∩ relconv(τ ) must be non-empty by Lemma 1.4, soσ ′ ∈ T . On the
other hand,σ ′ must have a vertex inm+, so p ∈ σ ′. Let x be another vertex ofσ ′. If
x ∈ τ\{a,b, p}, then{p, x} crossesm, which is an edge of{a,b, p} ∈ T and henceσ ′

andτ do not intersect properly. We conclude thatx 6∈ τ\{a,b, p}, sox ∈ {a,b}. This
implies thatσ ′ = {a,b, p}.

Corollary 3.5. UnlessB has only three elements, for every virtual chamberC of B
there is an empty edge supporting a flip ofC.

Proof. If C is a chamber, the edges supporting its boundary support flips ofC, unless they
are in the boundary of conv(B). However, the only case of a chamber with all its edges
on the boundary of conv(B) is that of the unique chamber ofB if B has three elements.
For virtual chambers which are not chambers, the corollary follows immediately from
Theorem 3.3 and Proposition 3.4, taking into account that an empty triangleτ in C can
always be obtained as the unique triangle ofC in a triangulation ofB by empty triangles
(i.e. which uses all the elements ofB).

3.2. 3-Connectivity of the Graph of Virtual Chambers

Lemma 3.6. Let m = {p,q} be an empty edge ofB supporting a flip of a virtual
chamberC and letσ be a triangle ofC. Then either m⊂ conv(σ ) or some edge ofσ
crosses m.

Proof. Supposem crosses no edge ofσ . Consider an empty triangleτ ∈ C of the form
τ = {p,q, r } with r ∈ m+ (which always exists). Then relconv(τ )∩ relconv(σ ) 6= ∅ by
Lemma 1.4. Sinceτ is empty, this implies that eitherτ ⊂ conv(σ ) (and we are done) or
some edge ofσ crossesτ , so we suppose that, for instance,{s, t} crosses some edge of
τ (which must be different fromm). Say{s, t} crosses{p, r }. If {s, t} is not empty, then
conv({s, t}) contains an empty edge{s′, t ′} ofBwhich crosses{p, r }. By Proposition 2.4,
either{s′, t ′} crosses{q, r } or q ∈ {s′, t ′}. Anyway p andq lie on the same closed side
of {s′, t ′}, that is, on the same closed side of{s, t}.

We have the circuit(+,+,−,−) written on{p, r, s, t} and, on the other hand, the
cocircuit which vanishes on{p,q} is (0,+, ∗, ∗)when restricted to the same set. Orthog-
onality between both implies that one of the asterisks is a plus sign. Say this restricted
cocircuit is(0,+,+, ∗). Thens ∈ m+, thus{p,q, s} ∈ C. As a consequence,{p,q}
is not contained in the negative closed side of{s, t}, and hence it is contained in the
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positive one. Therefore, the spherical regionD = conv(τ ) ∩ {s, t}+ containsm and its
boundary is the union of the arcs conv(m), [ p, x] ⊂ conv({p, r }), [q, y] ⊂ conv({q, r })
and [x, y] ⊂ conv({s, t}), wherex andy are the points conv({p, r }) ∩ conv({s, t}) and
conv({q, r })∩conv({s, t}) respectively, and the bracket notation has the standard mean-
ing. Clearly, relconv(τ ) ∩ relconv(σ ) ⊂ D ⊂ conv(τ ), and henceD is homeomorphic
to a closed 2-ball.

Supposem 6⊂ conv(σ ). Then the convex hull of some other edge (say{t,u}) of σ
intersects the boundary ofD transversally. Moreover, the facts thatτ is empty,D ⊂
conv(τ ) and{t,u} does not crossm imply that {t,u} crosses the arcs [p, x] and [q, y]
and for some of them (say [p, x]) the intersection is none of its end-points (otherwise the
intersection points would bep andq necessarily and hencem ⊂ conv(σ )). Therefore,
{t,u} crosses{p, r }. With the same argument as above we can conclude thatp andq
are on the same closed side of{t,u} and one oft andu is in m+. Sayt ∈ m+. Then
{p,q, t} ∈ C.

Sincep ∈ {s, t}+ and{s, t} crosses{p, r } we haver ∈ {s, t}−. The facts that{s, t}
and{t,u} cross{p, r } andr ∈ {s, t}− imply p ∈ {t,u}− by Lemma 2.2. Therefore,p
andq are on the negative closed side of{t,u} and hence{p,q, t} ∩ {t,u}+ = ∅, which
is absurd.

Lemma 3.7. Let m = {a1,a2} be an empty edge ofB supporting a flip of a virtual
chamberC and suppose thatÄC(m,a2) = ∅. ThenC is a flag chamber(in particular a
chamber). More precisely, let a3 ∈ m+ (soτ = {a1,a2,a3} ∈ C) and let p be the new
vector in the lexicographic extension ofB at the basis[a1,a2,a3]. Then p∈ relconv(σ )
for everyσ ∈ C.

Proof. If σ = {s, t,u} ∈ C is not an empty triangle, there are a pointq ∈ B and a
circuit Z = (Z+, Z−) supported onρ = {s, t,u,q} such thatZ− = {q} andZ+ 6= ∅,
soT −(ρ) = {σ }. Then the unique triangle inT +(ρ) ∩ C is contained in conv(σ ). We
can repeat this process until we get an empty triangleσ ′ ∈ C with σ ′ ⊂ conv(σ ) which
implies relconv(σ ′) ⊂ relconv(σ ).

Thus, without loss of generality we assume thatσ is empty.
We have to show that, for any edge ofσ , p is on its positive side. We callC1, C2

andC3 the (C-coherently oriented) cocircuits which vanish in{s, t}, {t,u} and {s,u}
respectively and letjk = min{i : Ck(ai ) 6= 0} for k = 1,2,3. Then we have to show
that Ck(ajk) = + for k = 1,2,3. First assumem crosses some edge (say{s, t}) of
σ . SinceÄC(m,a2) = ∅, we havea1 ∈ {s, t}+. Thus, j1 = 1 andC1(a1) = +. No
other edge ofσ crossesm since clearly it would be inÄC(m,a2) (as a straightforward
consequence of Lemma 2.2), thusa1 = u by Proposition 2.4. The cocircuitC2 restricted
to {a1,a2, s, t, } is (0, ∗,+,0), which must be orthogonal to the circuit(+,+,−,−),
and henceC2 becomes(0,+,+,0). Thus, j2 = 2 andC2(a2) = +. The same argument
proves thatj3 = 2 andC3(a2) = +.

Now assumem crosses no edge ofσ . Let l be an edge ofσ and letC be the cocircuit
vanishing inl , which we assume orientedC-coherently. Letj = min{i : C(ai ) 6= 0}. By
Lemma 3.6,m⊂ conv(σ ), so, ifa1 6∈ l , then j = 1 andC(a1) = +. If a1 ∈ l buta2 6∈ l ,
the same argument works withj = 2. Finally, if m= l , the same argument is valid with
j = 3.
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Lemma 3.8. Let C be a virtual chamber ofB and let m= {a1,a2} be an empty edge
supporting a flip ofC. If bothÄC(m,a1) andÄC(m,a2) are nonempty, then there is a
virtual chamberC ′ ofB such that:

• m supports a flip ofC ′,
• ÄC′(m,a1) is strictly contained inÄC(m,a1),
• ÄC′(m,a2) strictly containsÄC(m,a2).

Proof. Let l = {p,q} be a maximal element ofÄC(m,a1). We claim that{p,q,a1} ∈
C. Without loss of generality assume thatp ∈ m+. Sincem supports a flip ofC, by
Definition 1.10 the triangle{a1,a2, p} is in C. The spanning setρ = {a1,a2, p,q} is
the support of the circuitZ = ({a1,a2}, {p,q}) sincel crossesm, and{a1,a2, p} ∈
C ∩ T −(ρ), so there is a triangle inC ∩ T +(ρ) by Definition 1.1. The triangle{p,q,a2}
is not inC sincea2 ∈ {p,q}−, so{p,q,a1} ∈ C. By Theorem 3.3,l supports a flip of
C, so letC ′ be the virtual chamber which is obtained by this flip. By Corollary 1.11, the
triangles ofC of the form{a1,a2, s} have not been removed when passing toC ′, so the
edgem still supports a flip ofC ′ by Definition 1.10. Sincel is the unique element of
ÄC(m,a1) whose orientation has been changed, we conclude thatÄC′(m,a1) is strictly
contained inÄC(m,a1) andÄC′(m,a2) strictly containsÄC(m,a2).

We recall thatG(A) denotes the graph of triangulations ofA. In the next theorem
we do not distinguish between triangulations ofA and virtual chambers of its Gale
transformB.

Theorem 3.9. Let C be a virtual chamber of a rank3 vector configurationB and let
A be the Gale transform ofB. If C is not a chamber, then there are three vertex-disjoint
paths in G(A) joining C to three distinct flag chambers.

Proof. SinceC is not a chamber, by Corollary 3.5 there is an empty edgem= {a1,a2}
supporting a flip ofC. If ÄC(m,a1) = ∅ orÄC(m,a2) = ∅, thenC would be a chamber
by Lemma 3.7, soÄC(m,a1) 6= ∅ 6= ÄC(m,a2).

Setm+ as the side ofm in whichC lies. We successively apply the previous lemma to
obtain a path fromC to a virtual chamberC1 (in which every virtual chamberC ′ involved
lies onm+ and hasÄC′(m,a1) strictly contained inÄC(m,a1)) with ÄC1(m,a1) = ∅
and such thatm supports a flip ofC1. By Lemma 3.7 (exchanging the roles ofa1 and
a2), C1 is a flag chamber ofB. Also we get a second path to a flag chamberC2 in which
every virtual chamberC ′ involved lies onm+ and hasÄC′(m,a1) strictly containing
ÄC(m,a1). Finally, performing the flip ofC supported onm we get a virtual chamber
which lies onm−. From it, the previous lemma produces a path to a flag chamberC3 of
B in which all intermediate virtual chambers lie onm−.

These three paths are obviously vertex-disjoint.

Corollary 3.10. For any vector configurationA with d+ 4 elements and rank d+ 1
the graph G(A) of triangulations ofA is connected. If, moreover,A is acyclic(or if A
is a spanning point configuration inRd), then G(A) is 3-connected. In particular, every
triangulation ofA has at least three geometric bistellar neighbours.
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Proof. LetB be the Gale transform ofA (which we regard as a point configuration in
S2). Since a common edge of the chamber complex between two chambers is a flip, the
subgraphGreg(A) of G(A) induced by chambers ofB is connected and, if conv(B) = S2

(which is equivalent toA being acyclic), 3-connected. Both results follow also from
the theory of secondary polyhedra: the subgraphGreg(A) is the 1-skeleton of a three-
dimensional convex polyhedron, and of a 3-polytope ifA is acyclic; see [1] and [2].

With this, Theorem 3.9 implies thatG(A) is connected and, using Lemma 3.11 below,
3-connected ifA is acyclic.

Lemma 3.11. Let H be a k-connected subgraph of a graph G such that every vertex
of G\H can be joined by k vertex-disjoint paths in G to k distinct vertices of H. Then
G is k-connected.

Proof. Suppose we removek − 1 vertices ofG and their incident edges. Thek-
connectivity of H implies thatH remains connected after the removal. On the other
hand, after the removal, for every vertexv in G\H that has not been removed there is at
least one path joining it to one of the remaining vertices ofH , since before the removal
there were at leastk vertex-disjoint paths joiningv to k distinct vertices ofH .

The following example exhibits the three different ways of going from a non-geometric
virtual chamber to three geometric chambers.

Example 3.12. LetA andB be as in Example 1.5. LetC be the virtual chamber ofB
shown in the same example. In Fig. 2(a) we show an affine Gale diagram ofA in which
the crucial edges ofB are oriented in theC-coherent way.

The empty triangle{1,2,3} belongs toC. Since the edge{1,4} is maximal inÄC
({2,3},2) and the triangle{1,2,4} is in C, {1,4} supports a flip ofC. The edge{3,6}
is maximal inÄC({1,4},1). We first flip on{3,6} which makes{2,3}maximal. Finally
we flip on{2,3} to get the geometric chamber (in fact a flag one)C1 which is represented
in Fig. 2(b) by the shaded region (which is connected in the 2-sphere). On the other
hand,{2,5} is maximal inÄC({1,4},4). By flipping on{2,5} we obtain the geometric
chamberC2 depicted in Fig. 2(c). Finally, if we first flip on{1,4} and then on{2,5}, we
obtain the geometric chamberC3 shown in Fig. 2(d).

4. Virtual Chambers and Pseudo-Chambers

4.1. Definition and Properties of Pseudo-Chamber Complexes

In this section we prove that every virtual chamber of a rank 3 vector configurationB,
which is a combinatorial object, can be realized in a certain sense as a geometric (or,
rather, topological) object: as a cell of a cell complex in the sphereS2 very similar to the
chamber complex ofB.

The cell complexes which appear are calledpseudo-chamber complexes ofB and
they have the same good properties as the chamber complex: their full-dimensional cells



514 M. Azaola and F. Santos

6

4

3
5

2

+

+

+

+

+

1

+

(a)

6

4

3
5

+

+

+

1

+
+

+ 2

(b)

6

4

3
5

2

+

+
+

+

1

+
+

(c)

6

4

3
5

2

+

+

+

1

+
+

+

(d)
Fig. 2. Illustration of Example 3.12. (a) TheC-coherent orientation in the Gale diagram ofA. (b)–(d) The
chambersC1, C2 andC3, respectively.

represent triangulations of the Gale transformA and adjacent full-dimensional cells
correspond to triangulations ofA which differ by a flip.

Definition 4.1. LetB be a rank 3 vector configuration, regarded as a point configuration
in S2. Schönflies theorem, see [15], implies that all the constructions below can be
considered PL-topological without loss of generality, although we drop the prefix PL.
For example, ifC ⊂ S2 is an embeddedS1 andC+ andC− are the two connected
components ofS2\C, thenC+ ∪ C (same forC−) is a topological disk with boundary
C and interiorC+.

• A pseudo-edge cof B is the image of a topological embeddingϕ: [0,1] → S2

such thatp = ϕ(0) andq = ϕ(1) are non-antipodal distinct elements ofB. We say
thatc joins pandq.
• Let {p,q, r } be a triangle ofB. Let c1, c2 andc3 be pseudo-edges joining respec-

tively {p,q}, {q, r } and{p, r } and such that they intersect only in their end-points.
Then their union is homeomorphic toS1 and dividesS2\(c1 ∪ c2 ∪ c3) into two
connected componentsD1 and D2. We say thatD1 is a pseudo-triangleof B if
D1 and conv(p,q, r ) define, together with the ordered triple(p,q, r ), the same
orientation forS2.
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Definition 4.2. LetB be a rank 3 vector configuration.

• A pseudo-chamber complex0 of B is the cellular decomposition of conv(B) in-
duced by a collection of pseudo-edges ofB (called the pseudo-edges of0) satis-
fying:

(i) For every edge{p,q} of B, there is exactly one pseudo-edge of0 joining p
andq.

(ii) For every two edges{p1,q1} and{p2,q2} of B and the corresponding pseudo-
edgesc1 andc2 of 0 one has:
– c1 ⊂ c2 if and only if conv(p1,q1) ⊂ conv(p2,q2).
– If c1 6⊂ c2, then c1 intersectsc2 if and only if conv(p1,q1) intersects

conv(p2,q2). In this case,c1 andc2 intersect in exactly one point.
(iii) Every pseudo-triangle ofB defined by pseudo-edges of0 contains exactly the

same points ofB as the convex hull of the corresponding triangle.
• We write conv0(p,q) = c for an edge{p,q} of B, wherec is the pseudo-

edge joiningp andq. Also, we callc\{p,q} the relative interior of c and write
relconv0(p,q).
• The pseudo-triangles ofB defined by pseudo-edges of0 are calledpseudo-triangles

of 0. As we did for pseudo-edges, for a triangle{p,q, r } of B we denote conv0
(p,q, r ) as the corresponding pseudo-triangle and define itsrelative interiorby

relconv
0

(p,q, r ) := conv0(p,q, r )\(conv0(p,q) ∪ conv0(p, r ) ∪ conv0(q, r )).

• A pseudo-edge or a pseudo-triangle is calledemptyif the only points ofB it contains
are its two or three vertices, respectively.
• We say that a pseudo-chamber complex isgeneric if there are no three empty

pseudo-edges whose relative interiors intersect.
• A pseudo-triangulationof 0 is a topological triangulation of conv(B) by pseudo-

triangles of0.
• The full-dimensional cells of0 are calledpseudo-chambersof 0.

Example 4.3. Figure 3 shows the virtual chamberC considered in Examples 1.5 and
3.12 realized as a pseudo-chamber. It is easy to check that the pseudo-triangles defined
by the triangles ofC (listed in Example 1.5) intersect in the shaded region.

Remark 4.4. The “sides” of a pseudo-edge ofB can be defined locally in a topological
sense, although they cannot have the global meaning that sides of an edge ofB have
since pseudo-edges do not define hemispheres ofS2. The following are some properties
of any pseudo-chamber complex0 which can be easily proved for this local definition
of sides.

1. For any two trianglesσ and τ of 0, the corresponding pseudo-triangles over-
lap (meaning that their relative interiors intersect) if and only if relconv(σ ) ∩
relconv(τ ) 6= ∅.

2. Two pseudo-triangles of0 are incident to opposite sides of a pseudo-edge if
and only if the corresponding triangles ofB are incident to opposite sides of the
corresponding edge.
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Fig. 3. A realization ofC as a pseudo-chamber (Example 4.3).

3. If two pseudo-edgesc andc′ intersect in a pointr of their relative interiors, then the
two components ofc\{r } (resp.c′\{r }) are incident to opposite sides ofc′ (resp.
c). In other words, the intersection ofc andc′ is topologically transversal.

4. In the conditions of the previous point, there exists a neighbourhoodD of r home-
omorphic to a closed disk whose boundary intersects alternatelyc andc′ (when
going along the boundary ofD in any direction) and exactly once per segment (of
those defined byr ).

Lemma 4.5. Any rank 3 vector configurationB has a generic pseudo-chamber
complex.

Proof. Start with an arbitrary pseudo-chamber complex00 of B (for example, the
chamber complex having as pseudo-edges the geodesic arcs) and then, whenever three
empty pseudo-edges intersect in a point, perturb one of them slightly but keep the property
that it intersects the others transversally and in a unique point. That this can be done is
obvious in the PL category.

Proposition 4.6. For any pseudo-chamber complex0 ofB, there is a natural bijection
between triangulations ofB and pseudo-triangulations of0.

Proof. The result follows straightforwardly from condition (ii) of Definition 4.2 and
the properties in Remark 4.4.

Proposition 4.7. Let0 be a pseudo-chamber complex ofB.

1. For every pseudo-chamberC of 0, the collection of pseudo-triangles of0 which
containC correspond to a virtual chamber ofB.

2. If two pseudo-chambersC1 andC2 of0 are adjacent, then the corresponding virtual
chambers ofB (which we also denote byC1 andC2) differ by a flip.

Proof. Part 1 is trivial taking into account Proposition 4.6.
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For part 2, letC1 andC2 be two adjacent pseudo-chambers of0. That is to say, the
closures ofC1 andC2 share a subsegment of a pseudo-edgec = conv0(p,q), which we
can assume to be empty. Then every pseudo-triangle which containsC1 either contains
C2 as well or is incident toc in the opposite side asC2, and vice versa.

In particular, the pseudo-triangles ofC1 incident toc must all be incident to the same
side ofc since they containC1 (which is incident toc), and the pseudo-triangles ofC2

incident toc must all be incident to the opposite side, sinceC1 andC2 are incident to the
opposite sides ofc.

We consider the edgel = {p,q} corresponding to the pseudo-edgec. For anyr
in B such that{p,q, r } is a triangle the pseudo-triangle conv0(p,q, r ) is incident to
c and, thus, contains eitherC1 or C2. Moreover, whether it containsC1 or C2 depends
only on whetherr ∈ l+ or r ∈ l− (for a suitable orientation ofl ), thanks to the role of
orientation in Definition 4.1. Thus,l is in the conditions of Definition 1.10 and, hence,
it supports a flip ofC1 andC2. That this flip exchanges betweenC1 andC2 follows from
Corollary 1.11.

4.2. Every Virtual Chamber Realizes as a Pseudo-Chamber

We have shown that pseudo-chamber complexes have the good properties we announced.
Now we want to prove that every virtual chamber ofB realizes as a pseudo-chamber of
some pseudo-chamber complex ofB.

First observe that for a virtual chamberC of B and for an empty edgel = {p,q}
supporting a flip ofC, if l ′ = {p′,q′} is an edge crossingl , then either{p′,q′, p} or
{p′,q′,q} is in C, since either{p,q, p′} or {p,q,q′} is in C (we are using condition 2 of
Definition 1.1 applied toρ = {p,q, p′,q′}which supports the circuit({p,q}, {p′,q′})).
Since the sides ofl ′ correspond to (local) sides of the pseudo-edge conv0(l ′), it makes
sense to say that conv0(l ′) hasC on a certain side.

Lemma 4.8. Let 0 be a generic pseudo-chamber complex ofB and let l = {p,q},
l1 = {r, s} and l2 = {r, t} be empty edges ofB such that l1 and l2 cross l. Then, when
going(alongconv(l )) from p to q, we crossconv(l1) andconv(l2) in the same order as
we crossconv0(l1) andconv0(l2) (when going from p to q alongconv0(l )).

Proof. Assume we cross conv(l1) first (along conv(l )). This implies conv(l2) ∩ conv
({p, r, s}) = {r }. If we cross conv0(l2) first (along conv0(l )), then either conv0(l2) ∩
conv0({p, r, s}) 6= {r } (which implies that conv0(l2) crosses conv0({p, s}), and this
violates condition (ii) of Definition 4.2) or the open interval of conv0(l ) betweenp and
conv0(l1) is, by condition (ii) of Definition 4.2, contained inS2\conv0({p, r, s}) (but
then point 3 of Remark 4.4 forcesq ∈ conv0({p, r, s}), which violates condition (iii) of
Definition 4.2).

Definition 4.9. Let C be a virtual chamber ofB and letl = {p,q} be an empty edge
supporting a flip ofC. Let 0 be a generic pseudo-chamber complex ofB and letc =
conv0(l ) be the pseudo-edge of0 which corresponds tol . Let c1 andc2 be two pseudo-
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edges of0 which intersect the relative interior ofc. We say that:

• c1 andc2 areC-incoherentalongc if, when we go alongc (in any direction), we
cross the first one from the side ofC and the second one from the side opposite to
C. In any other case we say thatc1 andc2 areC-coherentalongc.
• c1 andc2 arec-neighboursif there is no pseudo-edge of0 which intersectsc in the

open arc betweenc1 andc2.

Proposition 4.10. Let C be a virtual chamber ofB and let l = {p,q} be an empty
edge supporting a flip ofC. Let 0 be a generic pseudo-chamber complex ofB and let
c = conv0(l ). Let c1 and c2 be two pseudo-edges of0 which cross c. If c1 and c2 do not
cross each other, then they areC-coherent along c.

Proof. Clearly, if the statement is true whenc1 andc2 are empty pseudo-edges, then it
is true for non-empty ones as well. So, we assume thatc1 andc2 are empty.

Suppose first thatc1 andc2 share a vertex. Sayc1=conv0(r, p1) andc2=conv0(r, p2)

and the five points{p,q, p1, p2, r } ⊂ B are distinct.
Sincel supports a flip ofC, one of the triangles{p, r, p1} and{q, r, p1} and one of

the triangles{p, r, p2} and{q, r, p2} are inC. Sayτ = {p, r, p1} ∈ C. If {p, r, p2} ∈ C,
thenc1 andc2 areC-coherent. So, suppose thatσ = {q, r, p2} is in C. What we want to
prove is that when going alongc from p to q we crossc2 first andc1 afterwards (if this
happensc1 andc2 areC-coherent).

Setl1 = {p1, r } andl2 = {p2, r }. By Lemma 4.8 we have to show that when going
along conv(l ) from p to q we cross conv(l2) first and conv(l1) afterwards. However, if
this was not the case we would haveσ ∩ l+1 = ∅, which is a contradiction, so we are
done.

Now assume thatc1 and c2 do not share a vertex. Sayc1 = conv0(p1,q1) and
c2 = conv0(p2,q2). Without loss of generality assume thatp1 and p2 are on the same
side ofl . By Lemma 2.5, either{p1,q2} crossesl or {p2,q1} crossesl . Say that{p1,q2}
crossesl and letc3 = conv0(p1,q2). Then the fact thatc3 is C-coherent with bothc1

andc2 and that it intersectsc betweenc1 andc2 (which follows straightforward from
Lemma 4.8) implies thatc1 andc2 areC-coherent as well.

Lemma 4.11. Let 0 be a generic pseudo-chamber complex ofB and let c1, c2 and
c3 be three pseudo-edges of0 such that every two of them cross each other. Let γ be
the closed simple curve defined by the segments of the three pseudo-edges between the
intersection points. Then one of the two connected components of S2\γ contains all six
vertices of c1, c2 and c3.

Proof. For 1≤ i < j ≤ 3 let ri j be the intersection point betweenci andcj , and for
1≤ k ≤ 3 letc′k be the arc ofck between the intersection points. We consider an arbitrary
intersection point, for instance,r1,2. This pointr1,2 dividesc1 (resp.c2) into two arcs,
one of them containingc′1 (resp.c′2). Let the other bec′′1 (resp.c′′2). This latter arc has as
end-pointsr1,2 and a vertex ofc1 (resp.c2) and contains no other intersection point.

The arcsc′′1 andc′′2 cannot intersectγ by condition (ii) of Definition 4.2, so each one
of them is completely contained in one of the two regions defined byγ . By point 4 of
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Remark 4.4 there is a neighbourhoodD of r1,2 homeomorphic to a disk such thatc′1, c′2,
c′′1 andc′′2 intersect the boundary ofD once each and in this order for a certain choice of
orientation ofD.

Then the sector ofD between the arcsc′1 andc′2 is precisely the intersection betweenD
and one of the components ofS2\γ , so the other region contains the other three sectors.
This forcesc′′1 andc′′2 to be contained in the same component ofS2\γ . In particular, the
vertices ofc1 andc2 incident toc′′1 andc′′2 are in the same region. So we have proved that
vertices ofci andcj which are “adjacent” (in the obvious sense) to the same intersection
point ri j between pseudo-edges are in the same component ofS2\γ .

Now suppose that both components ofS2\γ contain some of the six vertices. Then
there are four vertices in one component and two vertices in the other one and there is at
least one pseudo-edge (sayc1) whose two vertices are in the same component.

We denote bypi andqi the vertices ofci for i = 1,2,3 and assume thatp2 is in the
opposite region to that containingp1 andq1. Since the edges{p1,q1} and{p2,q2} cross
each other, the pointsp1, q1 and p2 are independent, so they define a pseudo-triangle
conv0(τ ) of 0.

The pseudo-edge conv0(p2, p1) cannot intersectc′1 norc′2 by condition (ii) of Defini-
tion 4.2, but it must intersectγ , so it intersectsc′3. Similarly, conv0(p2,q1) intersectsc′3.
We conclude that the three pseudo-edges of conv0(p2, p1) crossc3, which is impossible
by condition (ii) of Definition 4.2 and Proposition 2.4.

Proposition 4.12. Let l = {p,q} be an empty edge ofB supporting a flip of a virtual
chamberC. Then there exists a generic pseudo-chamber complex0 such that every two
pseudo-edges of0which intersect the pseudo-edge c= conv0(l ) areC-coherent along c.

Proof. We proceed by induction on the number of pairs ofc-neighbours which are
C-incoherent alongc.

First take any generic pseudo-chamber complex01 (we can do so by Lemma 4.5).
If there is no pair of non-coherent pseudo-edges of01 we are done. If there are non-
coherent pairs, it is clear that we can find at least one pair of non-coherent pseudo-edges
c1 andc2 which arec-neighbours. Letc1 = conv0(p1,q1) andc2 = conv0(p2,q2).

By Proposition 4.10,c1 andc2 intersect in a pointr which is not inB. Without loss
of generality we can assume thatc1 andc2 are empty pseudo-edges, so thatc, c1 andc2

intersect pairwise in three points. Letc′, c′1 andc′2 denote the closed arcs ofc, c1 and
c2 between the intersection points and letγ = c′ ∪ c′1 ∪ c′2. By Lemma 4.11 one of the
connected components ofS2\γ contains the six points{p,q, p1,q1, p2,q2}. We call the
other oneD.

We claim that the closure ofD does not contain any point ofB: Sincec1, c2 and
c3 are empty pseudo-edges, it suffices to show thatD ∩ B = ∅. Suppose there exists
x ∈ D ∩ B. The pointx is antipodal to at most one of the pointsp1, q1, p2 andq2, so
we assume without loss of generality that it is not antipodal to neitherp1 nor q1. Then
we consider the pseudo-edgesc3 andc4 joining x to p1 andq1, which must intersect
γ . Neither c3 nor c4 can intersect the relative interior ofc′, sincec1 and c2 are c-
neighbours. If one of them (sayc3) intersectsc′1 ⊂ relconv0(p1,q1), then eitherc3 ⊂ c1

(impossible, sincex 6∈ c1) or c1 ⊂ c3 (impossible, since thenc1 should intersectγ \c1).
Thus, bothc3 and c4 intersectc2. Then the three pseudo-edgesc1 = conv0(p1,q1),
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c3 = conv0(p1, x) andc4 = conv0(q1, x) intersectc2. We have the following circuits
supported on{p2,q2, p1,q1, x}: (+,+,−,−,0), (+,+,−,0,−) and(+,+,0,−,−).
Elimination ofx in the last two gives(∗, ∗,−,+,0) which contradicts the fact that the
first one is a circuit.

Once we know that the closure ofD does not contain any points ofB we observe
the following fact: a pseudo-edgec′′ of 01 intersectsc′1 if and only if it intersects
c′2: Supposec′′ intersectsc′1. The intersection point is in the relative interior ofc′1 (since
01 is generic) andc′′ must intersectγ in a second point, since both its end-points are
outsideD. Since it cannot intersectc′ becausec1 and c2 are c-neighbours, it inter-
sectsc′2.

With all this information we are going to perturb the pseudo-edgec1 of 01 to obtain
a new pseudo-chamber complex02 in which c has lessC-incoherent pairs than in01:
we consider an open arcu1 of c1 containingc′1 and with no intersections with any
pseudo-edges of01 apart from those inc′1. We removeu1 from c1 and insert instead
an open arcv1 with the same extremal points asu1 but which intersectsc andc2 in the
opposite order asu1 does. We can do so by drawingv1 in two pieces, one “parallel”
to c′, very close to it and outsideD and the other “parallel” toc′2, very close to it and
outsideD.

The fact thatc′1 andc′2 intersect exactly the same pseudo-edges of01 implies that we
can do this in such a way thatu1 andv1 intersect exactly the same pseudo-edges of01.
Thus, conditions (i) and (ii) of Definition 4.2 are preserved. Using the fact thatD does
not contain points ofB it is not hard to see that condition (iii) is preserved as well. In
other words, we have constructed a new generic pseudo-chamber complex02 in which
the number ofc-incoherent pairs ofc-neighbours has been decreased by one with respect
to 01.

Theorem 4.13. Any virtual chamberC of a rank3 vector configurationB realizes as
a pseudo-chamber of some pseudo-chamber complex ofB.

Proof. We take an empty edgel of B which supports a flip ofC (we can do so by
Corollary 3.5). By Proposition 4.12, there exists a generic pseudo-chamber complex0

such that every two pseudo-edges of0 that intersect the pseudo-edgec = conv0(l ) are
C-coherent alongc.

We travel alongc from one vertex to the other. If there is a pseudo-edgec′ of 0 which
we cross from the side ofc′ in which C is, then the same must occur with any other
pseudo-edge we meet afterc′, by theC-coherence assumption. Similarly if we crossc′

from the side opposite toC, then the same has occurred for any pseudo-edge we crossed
beforec′.

In other words, the pseudo-edges we cross are divided in two subsetsE1 and E2

(perhaps empty) such that we cross first all the pseudo-edges ofE1 from the side opposite
to C and then all the pseudo-edges ofE2 from the side ofC. Between these two groups
there must be an open arcI of c which is on the same side asC (alongc) of every pseudo-
edge that intersectsc. Let C0 be the collection of trianglesτ of B such that relconv0(τ )
contains the pseudo-chamber incident toI on the side ofC. We claim thatC = C0, which
finishes the proof.
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Let τ ∈ C. We first see thatI ⊂ conv0(τ ).

• If l is not an edge ofτ , then eitherl ⊂ conv(τ ) (in which casec is contained in
conv0(τ ) by condition (iii) of Definition 4.2) or some edge (or edges) ofτ crosses
l . In the last case, the corresponding pseudo-edge (resp. pseudo-edges) of conv0(τ )

intersectc, so it (they) hasI in the same side asC. This again implies thatI is
contained in conv0(τ ).
• If l is an edge ofτ , then conv0(τ ) containsI trivially.

So I is contained in all the pseudo-triangles ofC. Moreover, sinceI is an open arc
of c which does not intersect any other pseudo-edge of0, for everyτ ∈ C either I
is fully contained in relconv0(τ ) or fully contained in a pseudo-edge of conv0(τ ). In
the last case, relconv0(τ ) is incident toc on the side of the virtual chamberC (this is
the definition of “C is in one side ofc”). Thus, the pseudo-chamber incident toI on
the side ofC intersects (and, hence, is fully contained in) the relative interior of every
pseudo-triangle ofC.

Hence,C ⊂ C0. By Proposition 4.7,C0 is a virtual chamber ofB and this implies
C = C0 since otherwise we would have two different triangulations of the Gale transform
A, one contained in the other, which is impossible.

Remark 4.14. Taking into account condition (ii) of Definition 4.2, each pseudo-
chamber of a pseudo-chamber complex ofB must be incident to at least three pseudo-
edges. On the other hand, all the flag chambers appear in any pseudo-chamber complex,
since they correspond to pseudo-chambers which are incident to both a pseudo-edge and
one of its vertices. With these observations it is easy to obtain Theorem 3.9 as a corollary
of Theorem 4.13.

Example 4.15. The following example shows that there exist virtual chambers of rank 3
configurations which are not geometric chambers in any realization of the oriented
matroid. This kind of virtual chambers was calledtruly virtual chambersin [5]. In
addition, we show a corank 3 point configurationA′ whose Gale transformB′ has no
virtual chambers but the oriented matroid ofB′ being a mere reorientation of that ofB.
This shows that having non-geometric virtual chambers or truly virtual chambers does
depend on such subtle things as reorientations of the oriented matroid.

Let A be the (corank 3) point configuration inR3 consisting of the pointsp1 =
(2,0,0), p2 = (0,2,0), p3 = (0,0,2), p4 = (1,0,0), p5 = (0,1,0), p6 = (0,0,1)
and p7 = (1,1,1). A is the set of vertices of a truncated tetrahedron together with
an extra point beyond the untouched facet (defined byp1, p2 and p3) of the tetrahe-
dron. We consider inA the triangulationT defined by the tetrahedra{p4, p5, p6, p7},
{p1, p2, p4, p7}, {p2, p3, p5, p7}, {p1, p3, p6, p7}, {p2, p4, p5, p7}, {p3, p5, p6, p7} and
{p1, p4, p6, p7}.

Figure 4(a) shows an affine Gale diagram ofA. Point 7 is contained in the linear
spans of the edges{1,4}, {2,5} and{3,6}, but in none of their positive spans. Hence,
in any realization of the oriented matroid ofB, the relative interiors of the edges{1,4},
{2,5} and{3,6}must intersect in a common point (since the three of them must contain
the opposite of 7 in their relative interiors), and thereforeC, the virtual chamber ofB
which corresponds toT , must remain unrealized as a geometric chamber. Equivalently,
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Fig. 4. Affine Gale diagram of the configurationA in Example 4.15 (a) and realization of the virtual chamber
C as a pseudo-chamber (b).

for any realization of the oriented matroid ofA, the triangulationT remains non-regular.
Note thatC is defined by the same triangles as in Example 1.5. This happens because
the triangulation of Example 1.5 is the link of the pointp7 in T .

Nevertheless, our virtual chamberC must be realizable as a pseudo-chamber of some
pseudo-chamber ofB (as shown in Fig. 4(b)), by Theorem 4.13.

Now letA′ be the point configuration inR3 consisting of the pointsp1 = (2,0,0),
p2 = (0,2,0), p3 = (0,0,2), p4 = (1,0,0), p5 = (0,1,0), p6 = (0,0,1) and
p7 = (−1,−1,−1).A′ is the set of vertices of the same truncated tetrahedron together
with an extra point beyond the apex (the point(0,0,0)). Figure 5 depicts an affine Gale
diagram ofA′, which coincides with that ofA except for a reorientation of point 7. It
is easy to see that no additional pseudo-chamber of the Gale transformB′ of A′ can be
created. Thus, by Theorem 4.13, every virtual chamber ofB defines a geometric chamber.
Equivalently, every triangulation ofA′ is regular. Observe thatA′ is just a reorientation
of A.
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Fig. 5. Affine Gale diagram of the configurationA′ in Example 4.15.
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Appendix. The Graph of Triangulations of Corank 3 Oriented Matroids

The results presented in this paper have been proved using the language of vector con-
figurations. Since the collection of triangulations and flips of a vector configuration
depends only on the oriented matroid defined by the dependences among its elements
(see, for example, [5]) what we have done so far is deal with the graph of triangulations
of realizable corank 3 oriented matroids (via the graph of virtual chambers of its rank 3
dual).

The purpose of this Appendix is to show that all the results of the previous sections
hold also for non-realizable oriented matroids of corank/rank 3. The starting point
is the definition of triangulations of an oriented matroid introduced in Section 9.6 of
[4] for acyclic oriented matroids and generalized in [16] for non-acyclic ones. This
definition agrees with the geometric definition if the oriented matroid is realizable [4,
Proposition 9.6.2] and has the property that triangulations of an oriented matroidM are
dual by complementarity of simplices to virtual chambers of the dual oriented matroid
M∗, where the virtual chambers ofM∗ are defined exactly using our Definition 1.1 (this
is proved in Theorem 3.8 of [16]).

Thus, we are led to study virtual chambers of rank 3 oriented matroids. The crucial
property of rank 3 oriented matroids is that they admit a “Type II” realization, i.e. a
topological representation as a pseudo-configuration of points in the sphereS2. First we
see what this means.

A.1. Pseudo-Configurations of Points

Definitions A.1 and A.2 below are taken from [4], except that we give them for the case
of rank 3.

Definition A.1 [4, Definitions 5.1.2 and 5.1.3]. LetS2 denote the standard sphere of
dimension 2.

• A pseudo-circle Sin S2 is a (topological) subspace ofS2 which is PL-homeomorphic
to S1. The two connected components ofS2\Sare calledsides of Sor open hemi-
spheresand are denoted byS+ andS−. Their closuresS∪S+ andS∪S− are called
closed sides of Sor closed hemispheresand are denotedS+ andS−.
• A pseudo-circle arrangement(or a pseudo-sphere arrangement in S2) is a finite

set3 of pseudo-circles such that:
1. The intersection of any subset of at least two spheres in3 is either empty or a

pair of points.
2. For anyS, S′ ∈ 3 with S 6= S′, S∩ S′ is a pair of points and the two connected

components ofS′\S coincide withS+ ∩ S′ andS− ∩ S′. If S′′ ∈ 3 is another
pseudo-sphere and does not contain the two pointsS∩S′, then one of the points
lies in S′′+ and the other inS′′−.

3. The intersection of an arbitrary collection of closed sides of pseudo-circles of
3 is either a (topological) sphere or a ball.
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Axiom 3 in the above definition of pseudo-circle arrangement is implied by 1 and
2, as shown by Edmonds and Mandel. Nevertheless, we keep axiom 3 in the definition
because it will be useful later. The intersection points of different pseudo-circles in a
pseudo-circle arrangement are calledverticesof the arrangement.

Definition A.2 [4, Definition 5.3.1]. A pseudo-configuration of points inS2 is a pair
(3,B) where3 is a pseudo-circle arrangement andB is a collection of vertices of3
such that:

1. Any pair of points inB are contained in some pseudo-circle in3.
2. For every pseudo-circleS ∈ 3 there is a subsetB′ ⊂ B which is contained inS

and in no other pseudo-circle of3.

Any configuration of pointsB in S2 defines a pseudo-configuration of points whose
pseudo-circles are the great circles passing through every pair of non-antipodal points
of B.

For simplicity, when referring to a pseudo-configuration of points(3,B) we denote
it just B and assume that the pseudo-circles passing through the points inB are given
implicitly. Any pseudo-configuration of pointsB has an associated oriented matroidMB
whose set of cocircuitsC∗ is as follows:

C∗ := {σ(S): S∈ 3} t {−σ(S): S∈ 3},

whereσ(S) is the functionB→ {+,0,−} (i.e. a signed subset ofB) defined as

σ(S)p :=
+ if p ∈ S+,
− if p ∈ S−,
0 if p ∈ S.

We say thatB is a pseudo-realizationor a type II realization ofMB. If 3 is an
essential arrangement (i.e. if the intersection of all the pseudo-circles is empty), then
MB has rank 3. We always assume this to be the case.

The cocircuits ofMB are defined exactly in the same way as cocircuits for a point
configurationB in the sphere, with3 being the collection of great circles passing through
every pair of points inB. So, every realization of a rank 3 oriented matroidM as a point
configuration in the sphere is, in particular, a pseudo-realization ofM.

We say that an oriented matroid issimple if it has no loops or positively parallel
elements, i.e. if every circuit has at least two elements and those with two elements are
of type ({p,q},∅) (we say in this case thatp andq areantiparallel or opposite). Our
definition is slightly more general than the standard one (see [4]) in which a simple
oriented matroid is not allowed to have antiparallel elements. The following pseudo-
realizability result for simple rank 3 oriented matroids is not true in higher rank, since
not every oriented matroid has anadjoint.

Theorem A.3. Every simple rank3 oriented matroid can be pseudo-realized as a
pseudo-configuration of points in S2.
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Proof. According to Proposition 6.3.6 (Goodman–Cordovil–Pollack) of [4], every rank
3 oriented matroid has an adjoint. A simple oriented matroid has an adjoint if and only
if it has a pseudo-realization [4, Theorem 5.3.6].

Let us recapitulate. We start with a corank 3 oriented matroidM∗ whose graph
of triangulations and flips we want to study. Theorem 3.8 in [16] tells us that this is
equivalent to studying the graph of virtual chambers and flips of the dual oriented matroid
M, which has rank 3. IfM is simple, we considerM pseudo-realized in the sphere
S2 by a pseudo-configuration of pointsB and we show that the results of the previous
sections hold forB. Before continuing let us see that the assumption ofM being simple
is not a loss of generality, because of the following fact which we already mentioned for
vector configurations in Section 1 (see Lemma 1.12).

Lemma A.4. LetM∗ be an oriented matroid and suppose thatM is not simple. Let
M0 denote the oriented matroid obtained by deleting fromM all the loops and all but
one copy of all parallel classes of elements. LetM∗0 be the dual ofM0. ThenM∗ and
M∗0 have the same graph of triangulations, andM andM0 the same graph of virtual
chambers.

Proof. Deleting loops fromM is the same as deleting coloops fromM∗, which does
not affect the collection of triangulations. On the other hand, ifM is obtained fromM0

by adding parallel elements, thenM∗ is obtained fromM∗0 by a reoriented Lawrence
constructionin the sense of Section 4.4 of [16]. Theorem 4.18 in that paper proves that
M∗ andM∗0 have the same collection of triangulations. The proof for flips follows the
same lines.

A property of pseudo-configurations of points that will be useful later is that any point
in S2\B induces an extension of the pseudo-configuration (perhaps not only one):

Proposition A.5. LetB be a pseudo-configuration of points in S2 and let p∈ S2\B.
Then there is a pseudo-configurationB′ = B ∪ {p} which extendsB in p. By this we
mean that for each q∈ B there exists a pseudo-circle Sq containing p and q such
that 3′ := 3 ∪ {Sq: q ∈ B} is an arrangement of pseudo-circles and(B′,3′) is
a pseudo-configuration of points(where3 is the collection of pseudo-circles of the
pseudo-configurationB).

Observe that in these conditions the oriented matroidMB′ is a single element exten-
sion of the oriented matroidMB.

Proof. This is a consequence of Levi’s Enlargement Lemma [4, Proposition 6.3.4].
This lemma asserts that for any arrangement of pseudo-circles3 in S2 and any pair of
pointsx, y ∈ S2 there exists a pseudo-circleS in S2 which containsx andy and extends
3 to an arrangement3 ∪ {S} (unlessx and y already lie in a pseudo-circle of3, in
which case we will not need to addS). Doing this iteratively withx = p and y ∈ B
gives the result.
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A.2. Basic Properties of Pseudo-Configurations

Definition A.6. LetB be a pseudo-configuration of points inS2.

• We say that two pointsp,q ∈ S2 (not necessarily inB) areantipodalif {p,q} is
the intersection of two pseudo-circles of the arrangement.
• For any two different pointsp,q ∈ B which are non-antipodal we say that{p,q}

is anedgeof B.
• For three pointsp,q, r ∈ B, we say that{p,q, r } is a triangle ofB if no pseudo-

circle contains the three of them.

Remark A.7. 1. Single points, edges and triangles ofB are the independent sets of
rank 1, 2 and 3 respectively of the oriented matroidMB pseudo-realized byB. We call
themsimplicesof B and call the rank of any subsetσ ⊂ B the rank of the maximal
simplices it contains. The rank of∅ is 0. The rank of any other set is 3, 2 or 1 according
to whether there is no pseudo-circle, exactly one pseudo-circle or more than one pseudo-
circle containing it.

2. If p andq are two antipodal points, then for every pseudo-circleSof the arrange-
ment either{p,q} ⊂ S or p andq lie in opposite sides ofS (this is a consequence of
axiom 2 of Definition A.1). In other words,p andq are opposite elements in the oriented
matroidMB.

3. If {p,q} ⊂ B is a pair of non-antipodal points, then there is a unique pseudo-circle
containing them (existence is axiom 1 of Definition A.2, uniqueness is the definition of
non-antipodal).

4. If {p,q, r } is a triangle no pair of them can be antipodal (a pseudo-circle containing
p andq will not containr , which proves thatr is not antipodal withp norq). Actually,
{p,q, r } is a triangle if and only if no pair of them is antipodal and the three pseudo-
circles passing through the edges{p,q}, {p, r } and{q, r } are distinct (equivalently, two
of them are distinct).

Definition A.8. Let B be a pseudo-configuration of points inS2 and let3 be the
corresponding pseudo-circle arrangement. For any subsetτ ⊂ B we define:

• Theconvex hullof τ (denoted conv(τ )) as the intersection of all the closed sides
of pseudo-circles of3 containingτ .
• The relative interior of τ (denoted relconv(τ )) as the intersection(

⋂
τ⊂S S) ∩

(
⋂
τ⊂S+,τ 6⊂S S+), whereS ranges over all the pseudo-circles in3.

From the definition it follows that relconv(τ ) is the topological interior of conv(τ )
in the intersection of all pseudo-circles containingτ and that conv(τ ) is the closure of
relconv(τ ) both in S2 and in that intersection of pseudo-circles. By axiom 3 of Defini-
tion A.1, conv(τ ) is either a sphere or a ball of some dimension≤ 2. In particular, it is a
topological manifold perhaps with boundary. Its interior, in the manifold sense, equals
relconv(τ ).

The following property of the convex hull is immediate from the definition: ifσ, τ ⊂ B
are such thatσ ⊂ conv(τ ), then conv(σ ) ⊂ conv(τ ).
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We are specially interested in conv(τ ) and relconv(τ ) whenτ is asimplexof B, i.e.
a point, segment or triangle. For a single point we trivially have{p} = relconv(p) =
conv(p).

Lemma A.9. The following properties hold for convex hulls and relative interiors in
a pseudo-configuration of pointsB:

1. Let {p,q} be an edge and let S∈ 3 be the unique pseudo-circle containing the
edge{p,q}. If S′ ∈ 3\{S} is such that p and q are on the same(closed) side of
S′, then exactly one of the two connected components of S\{p,q} is completely
contained in one side of S′.

2. This component is independent of the choice of S′ and, actually, it equalsrelconv
({p,q}). Also, conv({p,q}) = relconv({p,q}) ∪ {p,q}.

3. For a triangle{p,q, r } let Sr , Sq and Sp be the pseudo-circles containing{p,q},
{p, r } and {q, r }, respectively, and assume that r∈ S+r , q ∈ S+q p ∈ S+p . Then

relconv({p,q, r }) = S+e ∩ S+f ∩ S+g andconv(p,q, r ) = S+e ∩ S+f ∩ S+g (i.e. the
closure ofrelconv({p,q, r })). They are respectively an open and a closed2-ball.

Proof. 1. Assume without loss of generality thatp,q ∈ S′+. S∩S′ consists of two points
p′ andq′. By axiom 2 of Definition A.1 (withSandS′ exchanged) the two components of
S\{p′,q′} coincide withS′+∩SandS′−∩S. Lets+ = S′+∩S. Thens+∪{p′,q′} = S′+

and hencep,q ∈ s+ ∪ {p′,q′}. Thus, one of the connected components ofS\{p,q} is
contained ins+ ⊂ S′+. If the other one was contained inS′−, then we would have
{p,q} = {p′,q′} which cannot be the case sincep andq are not antipodal.

2. Suppose that for two different pseudo-circlesS′ andS′′ we had one component of
S\{p,q} contained in one side ofS′ and the other component in one side ofS′′. Then the
intersection ofSwith the corresponding closed sides is disconnected and, by axiom 3 of
Definition A.1, it equals the two pointsp,q. However, this impliesp andq are antipodal.

This implies that ifS′ is a pseudo-circle other thanSwith p andq on the same closed
side, the componentl of S\{p,q} contained in some closed side ofS′ is contained in
relconv({p,q}). For the converse, letS′ andS′′ be pseudo-circles containing respectively
p but notq andq but not p.

3. It is clear that conv(p,q, r ) ⊂ S+e ∩S+f ∩S+g . Also, since any arrangement of three
pseudo circles inS2 is homeomorphic to the arrangement of three great circles with no
common point,S+e ∩ S+f ∩ S+g is a 2-ball whose interior isS+e ∩ S+f ∩ S+g . It suffices

to show thatS+e ∩ S+f ∩ S+g ⊂ conv({p,q, r }). In other words, that ifS+ is a closed

hemisphere containing{p,q, r }, thenS+e ∩ S+f ∩ S+g ⊂ S+.
By part 1, the three closed arcs conv(p,q), conv(p, r ) and conv(q, r ) are contained

in S+. These three arcs are the boundary of the 2-ballS+e ∩S+f ∩S+g . SinceS+e ∩S+f ∩S+g
∩ S+ has to be a ball or a sphere and contains the boundary of the 2-ballS+e ∩ S+f ∩ S+g
either it equals the whole 2-ball (and we have finished) or it equals its boundary. However,
the latter is only possible ifScontainsp, q andr , which is not the case (the intersection
of two closed 2-balls inS2 is a circle only if this circle is the boundary of the two
2-balls).
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Remark A.10. Parts 1 and 2 of the previous lemma have the following easy conse-
quence: Given an edgel = {p,q} ⊂ S of B and two pseudo-circlesSp, Sq such that

p ∈ Sp∩S+q andq ∈ Sq∩S+p . Then relconv(l ) = S∩S+p ∩S+q and conv(l ) = S∩S+p ∩S+q .
Also, for any pseudo-circleS′ ∈ 3 other thanS, S′ ∩ conv({p,q}) has at most one

point. Indeed, ifp andq lie on the same closed side ofS′, then the previous lemma
implies thatS′ ∩ conv({p,q}) contains at mostp andq, and it cannot contain both since
p andq are not antipodal. Ifp andq lie in opposite open sides ofS′, then letx and
y be the two antipodal intersection points ofS and S′. Since p andq lie in different
components ofS\S′, x and y lie in different components ofS\{p,q} and hence only
one of them can be in conv({p,q}), again by the previous lemma.

The following statement is probably true for pseudo-configurations of points of arbi-
trary rank.

Lemma A.11. Letσ andτ be two disjoint simplices of a pseudo-configuration of points
B in S2. The following conditions are equivalent:

1. relconv(σ ) ∩ relconv(τ ) 6= ∅.
2. (σ, τ ) is a vector(in the oriented matroidMB ofB).

Proof. (1⇒ 2) First we supposeσ = {p} is a single point. Thenτ is an edge or a
triangle. Ifτ = {q, r } is an edge, then letS, Sq andSr be pseudo-circles with{q, r } ⊂ S,
q ∈ Sq\Sr andr ∈ Sr \Sq, so that relconv(τ ) = S∩ S+q ∩ S+r for the appropriate choice
of the sign for the sides ofSq andSr . Thenp ∈ relconv(τ ) ⊂ S. Hence{p,q, r } has rank
2 and contains the support of a circuit. The only way for this circuit to be orthogonal to
the cocircuits defined bySq andSr is ({p}, {q, r }). In the same way, ifτ is a triangle,
thenp∪ τ contains the support of a circuit and the only possibility for this circuit to be
orthogonal to the cocircuits defined by the three sides ofτ is ({p}, τ ).

Finally, for generalσ and τ we consider any extensionB′ of B by a point p ∈
relconv(τ ) ∩ relconv(σ ), as in Proposition A.5. Then(p, σ ) and(p, τ ) are vectors in
the extended oriented matroidMB′ and, hence,(σ, τ ) is a vector inMB′ and inMB.

(2⇒ 1) Since every vector is a composition of circuits, there is one circuit(C+,C−)
with C+ ⊂ σ andC− ⊂ τ . Sinceσ andτ are simplices,C+ 6= ∅ 6= C−. We consider
separately the following cases:

In caseσ (or τ ) is a vertex{p}, the orthogonality between the vector({p}, τ ) and the
cocircuits which define relconv(τ ) implies trivially that p ∈ relconv(τ ).

We assume now thatσ = {p,q} andτ = {r, s} are both edges. LetSσ andSτ be the
unique pseudo-circles containingσ andτ , respectively. IfSτ = Sσ , thenσ ∪ τ has rank
2 and every circuit with support contained inσ ∪ τ has at most three elements. Thus,
one ofC+ andC− has only one element (sayC+ = {p}) and the other has two (i.e.
C− = τ ). However, this implies thatp is in the open arc relconv(τ ) and, hence, the two
open arcs relconv(σ ) and relconv(τ ) in Sσ = Sτ intersect.

If Sτ 6= Sσ , then orthogonality between the vector(σ, τ ) and the cocircuits defined
by Sτ andSσ implies thatτ has exactly one point on each side ofSσ , σ one point on
each side ofτ and thusC+ = σ andC− = τ . In particular,Sσ ∩ relconv(τ ) 6= ∅ and
Sτ ∩ relconv(σ ) 6= ∅.
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Let x be the point (not necessarily inB) in Sτ ∩ relconv(σ ) ⊂ Sτ ∩ Sσ . We claim that
x ∈ relconv(τ ). Otherwise,y ∈ relconv(τ ) for the only pointy other thanx in Sτ ∩ Sσ .
However, in this case in the extension ofB by the pointsx andy we have the following
circuits supported on{p,q, r, s, x, y}:

(+,+,0,0,−,0),
(0,0,+,+,0,−),
(0,0,0,0,+,+).

By eliminatingx andy we get the vector(+,+,+,+,0,0). Thenσ ∪ τ is the support
of two different and not opposite vectors, and eliminating in them we would get a
circuit supported on three of the four points ofσ ∪ τ . This contradicts the fact that
(C+,C−) = (σ, τ ) is a circuit.

In the cases not considered yet,σ ∪τ has at least five elements. We have the following
possibilities:

• C+ is a pointpandC− is a triangle{q, r, s}. Then relconv(τ ) is an open subset ofS2.
By the first case studied,p ∈ relconv(τ ), which implies that conv(σ )∩relconv(τ ) 6=
∅and since conv(σ ) is the topological closure of relconv(σ ), relconv(σ )∩relconv(τ )
6= ∅.
• BothC+ andC− are edges. By the second case studied, relconv(C+)and relconv(C−)

are open edges which cross each other transversally. No matter whetherσ andτ
coincide withC+ andC− or have one more element, it is clear that relconv(σ ) ∩
relconv(τ ) 6= ∅.
• C+ = {p} is a point andC− = {q, r } is an edge. LetS{q,r } be the unique pseudo-

circle containingC−. Again, by the first case studied,p ∈ relconv({q, r }). First
supposeτ = {q, r }. The cases in whichσ is a point or an edge have already been
discussed, so assume it is a triangle. Orthogonality of(σ, τ )with the circuit defined
by S{q,r } implies thatσ has one point on each side ofS{q,r } which, together with
the fact thatp is in the open segment fromq to r , makes it clear that conv(τ ) ∩
relconv(σ ) 6= ∅. Since relconv(σ ) is open and conv(τ ) is the closure of relconv(τ ),
we have relconv(σ ) ∩ relconv(τ ) 6= ∅.

Finally supposeτ = {q, r, s} for somes. The argument is almost identical to
the previous one. In this case, orthogonality of(σ, τ ) with the cocircuit defined by
S{q,r } implies thatσ has some point in the open side ofS{q,r } containings. Sincep
is a point in the open segment fromq to r , it is clear then that conv(σ ) intersects
the open triangle relconv(τ ). Since relconv(τ ) is open and conv(σ ) is the closure
of relconv(σ ), relconv(σ ) ∩ relconv(τ ) 6= ∅.

A.3. How to Adapt Sections1–4 to Non-Realizable Oriented Matroids

In what follows we show that all the results in the previous sections hold for non-realizable
oriented matroids as well, with only some changes in the language to be used.

Section1

We start by giving the definition of triangulation of an oriented matroid.
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Definition A.12 [4, Definition 9.6.1]. LetM be an oriented matroid of rankk. Let T
be a collection of bases ofM. T is a triangulation ofM if the following properties are
satisfied:

1. Any pairσ, τ of elements ofT intersect properlymeaning by this that for any
single element extensionM ∪ p ofM, if there areσ0 ⊂ σ andτ0 ⊂ τ such that
({p}, σ0) and({p}, τ0) are circuits ofM ∪ p, then there is also aρ ⊂ σ ∩ τ such
that({p}, ρ) is a circuit as well.

2. For every independent subsetτ of sizek−1 such that there is aσ ∈ T with τ ⊂ σ ,
eitherτ is in a facet ofM (i.e. there is a nonnegative cocircuit vanishing onτ ) or
there are at least two bases inT containingτ .

In Theorem 2.4 of [16] it is proved that:

Lemma A.13. LetM be an oriented matroid of rank k. LetT be a collection of bases
ofM. ThenT is a triangulation ofM if and only if:

1. For every independent subsetτ of size k−1such that there is aσ ∈ T with τ ⊂ σ ,
either
• τ is contained in a facet ofM (i.e. there is a positive cocircuit vanishing onτ ),

or
• there is exactly anotherσ ′ ∈ T with τ ⊂ σ ′ andσ andσ ′ are in opposite sides

of τ (i.e. the unique cocircuit vanishing onτ has opposite sign at the elements
σ\τ andσ ′\τ ).

2. There is a single element extensionM∪ p ofM such that exactly one elementσ
of T has p∈ convM∪{p}(σ ) (meaning that({p}, σ ) is a circuit ofM ∪ p).

Moreover, any triangulationT ofM coversM meaning by this that ifM ∪ p is a
single element extension in which there is a circuit of the form({p}, τ ), then there exists
another circuit({p}, σ ) ofM ∪ p whereσ is a subset of an element ofT .

It would be interesting for us to find a characterization of triangulations for a rank 3
oriented matroid pseudo-realized as a pseudo-configuration of pointsB.

Lemma A.14. LetM be a simple rank3 oriented matroid and letB be a pseudo-
configuration of points in the sphere S2 which pseudo-realizesB. A collectionT of
triangles ofM (or ofB) is a triangulation ofM if and only if:

1. T realizes geometrically as a simplicial complex in the sphere, i.e. for any pair of
trianglesσ, τ ∈ T one has

conv(σ ) ∩ conv(τ ) = conv(σ ∩ τ).

2. T covers the “convex hull” of the pseudo-configurationB, i.e.⋃
σ∈T

conv(σ ) =
⋃

σ is a triangle ofB
conv(σ ).
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Proof. We first see that ifT is a triangulation ofM, then it satisfies 1 and 2. In
fact, 1 follows from axiom 1 in Definition A.12: if there is a pointp ∈ conv(σ ) ∩
conv(τ )\conv(σ ∩ τ), then this point provides an extension (via Proposition A.5) which
violates the axiom. In the same way, property 2 follows from the final part of Lemma A.13.

Conversely, letT be in the conditions of the statement and let us see thatT satisfies
1 and 2 of Lemma A.13. Statement 2 is easy: any pointp ∈ S2 in the relative interior of
a triangle ofT provides an extension of the oriented matroid in the required conditions.

To prove 1, letτ = {p,q} be an edge of a triangleσ = {p,q, r } ∈ T , and suppose
thatτ is not in a facet ofM. This means that there is a points ∈ B such thatr ands lie
in opposite sides of the pseudo-circle containingτ . Leta ∈ S2 be a point “very close” to
the relative interior ofτ and on the side on whichs is. This point is in relconv({p,q, s})
and, hence, by condition 2 in the statement, there is aσ ′ ∈ T such thata ∈ conv(σ ′).
The only way in whichσ andσ ′ can intersect properly in the sense of condition 1 in
the statement is thatτ ⊂ σ ′. Thus, there is aσ ′ ∈ T with τ ⊂ σ ′ and withσ andσ ′

in opposite sides ofτ . Finally, there cannot be any otherσ ′′ ∈ T with τ ⊂ σ ′′ because
then condition 1 would not be fulfilled either forσ andσ ′′ or for σ ′ andσ ′′.

Remark A.15. In fact
⋃
σ is a triangle ofB conv(σ ) = conv(B), but we do not make use

of this assertion.

It is still true that an acyclic circuit of an oriented matroid can be triangulated in
exactly two ways and thus we can define virtual chambers ofM using Definition 1.1
with the only substitution of “full-dimensional simplices ofA” by “bases ofM.” With
this, Theorem 1.3 is proved in Theorem 3.8 of [16] for non-realizable oriented matroids.

Lemma 1.4 says that the relative interiors of any two simplices of a virtual chamber
intersect. This statement makes sense for an oriented matroid if it is pseudo-realized as
a pseudo-configuration of pointsB and the relative interior of a simplex is defined as
in Definition A.8. However, the proof given in Section 1 is not valid for non-realizable
oriented matroids (this is related to Remark 2.5(v) of [16] where it is said not to be known
whether a circuit can have its positive and negative parts respectively contained in two
simplices of a triangulation). Thus, we provide a new proof for it:

Lemma A.16 (Lemma 1.4 for Oriented Matroids).LetM be a rank3 oriented ma-
troid pseudo-realized by a point configurationB in S2. LetC be a virtual chamber ofM.
Then, for any pair of simplicesσ, τ in C, the relative interiorsrelconv(σ ) andrelconv(τ )
intersect.

Proof. LetT be the triangulation which corresponds toC in the dual oriented matroid
M∗. The linkT ′ := linkT [B\(σ ∪τ)] of B\(σ ∪τ) in T is a triangulation of the contrac-
tionM∗/[B\(σ∪τ)] [16, Theorem 2.4(e)]. Thus, the setC ′ of triangles ofB complemen-
tary to simplices ofT ′ is a virtual chamber of the oriented matroidM restricted toσ ∪τ .
It is clear thatC ′ consists of those triangles ofC contained inσ ∪ τ . Since the restriction
ofM is a realizable oriented matroid (it has at most six elements), Lemma 1.4 holds for
some realization of it and in this realization relconv(σ )∩ relconv(τ ) 6= ∅ is equivalent to
(σ, τ ) being a vector in the oriented matroid. However, then(σ, τ ) is a vector in the orig-
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inal oriented matroidM too, and Lemma A.11 implies that relconv(σ )∩relconv(τ ) 6= ∅
in the pseudo-realizationB.

Again, we can use Definition 1.6 of flips in a triangulation as it is for oriented ma-
troids. This is equivalent to the definition given in Definition 3.11 of [16] as shown in
Definition 3.13 of [16]. Proposition 1.7 and Theorem 1.8 hold in this setting since their
proofs only use oriented matroid duality and the fact that any link in a triangulation is
a triangulation of the contraction, which we have already used and is proved in Theo-
rem 2.4(d) of [16]. Lemma 1.9 holds in the oriented matroid setting trivially, since every
rank 2 oriented matroid is realizable.

As in Section 1, a simplexσ in a pseudo-configuration of pointsB is said to be empty
if conv(σ ) ∩ B = σ . With this, Definition 1.10 of a flip of a rank 3 virtual chamber on
an empty edge, and Corollary 1.11 hold without change. Lemma 1.12 has already been
proved as Lemma A.4, and Definition 1.13 comes from general oriented matroid theory.

Summing up, we have defined virtual chambers of an oriented matroid so that they
are in (flip-preserving) bijection with triangulations of the dual oriented matroid. In
particular, for a corank 3 oriented matroidM, triangulations ofM are in one-to-one
(flip-preserving) correspondence with virtual chambers of the dual oriented matroidM∗,
which realizes as a pseudo-configuration of points inS2.

Section2

As in Section 2, given two edgesl1 andl2 of a pseudo-configuration of points and an
empty triangleτ , we say thatl1 andl2 cross each other if(l1, l2) is a circuit and thatl1
crossesτ if it crosses some edge ofτ .

Corollary A.17. LetB be a pseudo-configuration of points in S2. Let σ be a simplex
and let l1 and l2 be two edges. Then:

1. σ is empty if and only if there is no circuit Z such that Z+ ⊂ σ and Z− is a single
point.

2. (l1, l2) is a circuit (i.e. l1 and l2 cross each other) if and only if relconv(l1) and
relconv(l2) intersect in a single point.

3. If l 1 and l2 are empty edges andrelconv(l1) ∩ relconv(l2) 6= ∅, then(l1, l2) is a
circuit.

Proof. 1. If (Z+, {p}) is a circuit, thenp ∈ relconv(Z+) ⊂ conv(σ ). On the other
hand,p 6∈ σ sinceZ+ ∪ {p} ⊂ σ ∪ {p} contains the support of a circuit. Reciprocally,
if σ is not empty then letp 6∈ σ be in conv(σ ). From the geometric description of the
convex hull of a triangle and an edge given in Lemma A.9 it follows thatp ∈ relconv(τ )
for someτ ⊂ σ . Then, by Lemma A.11, we have that(τ, {p}) is a vector and, sinceτ is
independent, it is a circuit.

2. If (l1, l2) is a circuit, then it is a vector and the pseudo-circles containingl1 and
l2 are distinct. Then relconv(l1) ∩ relconv(l2) 6= ∅ by Lemma A.11 and it has only one
point by Remark A.10. Conversely, if relconv(l1) ∩ relconv(l2) 6= ∅, then(l1, l2) is a
vector by Lemma A.11. It is a circuit unlessl1∪ l2 has rank 2, in which casel1 andl2 are
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contained in a pseudo-circleS. If two arcs in a pseudo-circle intersect in their relative
interiors, then they intersect in more than one point.

3. As in part 2, relconv(l1)∩ relconv(l2) 6= ∅ implies that(l1, l2) is a circuit unlessl1
andl2 are contained in a pseudo-circleSand overlap in their relative interiors. However,
this implies that one of them is not empty.

In the statement of Lemma 2.2 (and in what follows) the sentence “two verticesp
andq lie on opposite sides of an edgel ” has to be understood as “the unique (up to sign
reversal) cocircuit vanishing onl has opposite signs atp andq” (which is what is shown
in the proof of Lemma 2.2) or equivalently as “p andq lie on opposite sides of the unique
pseudo-circle containing the edgel .” With this in mind, the proofs of Lemma 2.2 and
Propositions 2.3 and 2.4 are valid for pseudo-configurations without change since they
only use topological or matroidal tools.

For Lemma 2.5 it suffices to observe that it involves at most six points, so the restricted
oriented matroid can be realized. We just apply Lemma 2.5 to a realization and observe
that the resulting circuit must be a circuit of the whole pseudo-configuration too.

For Definition 2.6 to make sense we need to prove the following:

Lemma A.18. Let l = {p,q} be an empty edge of a pseudo-configuration of pointsB
in S2 and let s, t,u be three points such that the edges r= {s, t} and r′ = {t,u} cross l.
Then the following are equivalent:

1. u and p are on the same side of r.
2. The intersection pointrelconv(r ′) ∩ relconv(l ) is closer to p(along l) than the

point relconv(r ) ∩ relconv(l ).

Proof. Let p′ = relconv(r ′) ∩ relconv(l ) and consider an extension ofB by a point at
p′ as given by Proposition A.5.

By axiom 2 of Definition A.1,p′ is closer top (alongl ) than the point relconv(r ) ∩
relconv(l ) if and only if p′ andp are on the same side of the pseudo-sphere containingr ,
i.e. in the same side ofr . On the other hand,p′ andu are clearly on the same side ofr , so
that p′ andp are on the same side ofr if and only if u andp are on the same side ofr .

With this, the proof of Corollary 2.7 needs no changes.

Section3

Definition 3.1 adapts without problem to pseudo-configurations of points: a virtual cham-
berC is said to lie on a certain side of an edgel if there is a triangle inC contained in
one (closed) side of the pseudo-circle containingl .

The proof of Proposition 3.2 is based in the fact that ifB0 is a subconfiguration of a
configurationB and we have a triangulationT0 of B0, then there is a triangulationT of
B with T0 ⊂ T . This holds in the oriented matroid setting substitutingB0 andB by a
restrictionM0 of an oriented matroidM, as shown in Corollary 2.11 of [16].

The proof of Theorem 3.3 is completely based on dealing with circuits and cocircuits,
and thus it is valid for oriented matroids without change.



534 M. Azaola and F. Santos

For the last results of Section 3 we need to find an analogy in the oriented matroid
setting of a geometric chamber. The natural one is the following:

Definition A.19. Let B be a pseudo-configuration of points in the sphereS2. A point
p ∈ S2 is said to beinterior and genericif it lies in the convex hull of some triangle of
B but not in the convex hull of any edge ofB. ThechamberCp associated to an interior
generic pointp is the collection of triangles ofB which havep in their convex hull.

Geometrically, the chamberC corresponding to a pointp can be thought of as the
region of conv(B) obtained by the intersection of the convex hulls of all the triangles
of C. As in the realizable case, we can therefore define thechamber complexof B as
the coarsest common refinement of all the triangulations ofB or, equivalently, as the
decomposition of conv(B) defined by the chambers ofB. That this decomposition is
a cellular decomposition follows from the following properties of a chamberC of B
(considered as a closed region inS2):

• By definitionC is the intersection of certain closed hemispheres. By axiom 3 of
Definition A.1,C is either a sphere or a closed ball. Since there exists a generic
interior point p which is in the relative interior of every triangle ofC and since
there are finitely many triangles inC, we have thatC has a non-empty interior and
hence it has dimension 2.
• SinceC is contained in the convex hull of any of its triangles,C cannot contain a

pair of antipodal points and in particular cannot contain an entire pseudo-circle.
Thus,C is a 2-dimensional ball.
• Let S1, . . . , Sk be a family of pseudo-circles ofB oriented so that the chamber
C equals

⋂k
i=1 S+i in an irredundant way. Then the boundary of the chamberC

(which is homeomorphic toS1 by the previous point) is a union ofk closed arcs
each contained in one of theSi ’s.
• Let C andC ′ be two chambers. If their interiors have a common pointp, then this

point is clearly interior and generic and hence every triangle inC or in C ′ is also in
Cp. Since a chamber cannot properly contain another one, we conclude thatC = C ′.
• Let C andC ′ be two different chambers and suppose that their boundaries intersect

in a non-empty setI . I is an intersection of closed sides and, hence, it is a ball or a
sphere of dimension at most 1. If it has dimension 1, then letC be expressed as an
irredundant intersection of closed hemispheres, as above. One of the pseudo-circles
Si in this expression intersectsI in a one-dimensional arc, andC andC ′ have to
be contained respectively in the two opposite closed hemispheres defined bySi . In
particular,I ⊂ Si and I is a closed arc.

If the intersection has dimension 0, then we see that it has only one point. Let
x be one of the intersection points and letS+1 , . . . , S+k be the set of all the open

hemispheres such thatx ∈ Si and one of the chambersC1 or C2 is contained inS+i
for everyi = 1, . . . , k. Let I ′ = ⋂k

i=1 S+i . I ′ containsI , I ′ contains the antipodal
point y to x and is an intersection of closed hemispheres. SinceI ′ is a sphere or a
ball, eitherI ′ = {x, y}, in which caseI = {x} becauseI cannot contain antipodal
pairs, orI ′ contains an arc joiningx to y. However, in the second case, sinceI is the
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intersection ofI ′ with some closed pseudo-spheres all of which containx in their
interior, I contains a subarc of this arc and, in particular,I is not zero-dimensional.

For the same reasons as in the realizable case, every chamber is in particular a virtual
chamber and edges in the chamber complex correspond to flips (using the characterization
in Lemma A.14 for triangulations of a pseudo-configuration of pointsB). Moreover, flag
chambers of the oriented matroidM appear as chambers in any pseudo-realization of it.
With this, the proofs of Proposition 3.4, Corollary 3.5, Lemmas 3.6–3.8 and Theorem 3.9
are valid in the context of non-realizable oriented matroids.

For Corollary 3.10, we state and prove the new version of it as follows:

Corollary A.20. LetM∗ be a corank3 oriented matroid. Then:

1. The graph of triangulations ofM∗ is connected.
2. IfM∗ is acyclic, then the graph is3-connected.

Proof. By Lemma A.4, without loss of generality we can assume that the dual oriented
matroidM ofM∗ is simple. LetB be a pseudo-realization ofM∗ in S2. By Theorem
3.9, any virtual chamber ofB which is not a chamber can be joined through three vertex-
disjoint paths to three distinct chambers. On the other hand, any two chambers can be
connected by a sequence of flips since conv(B) is eitherS2 or homeomorphic to a disk
and since two chambers differ by a flip if and only if they are adjacent. Moreover, ifM∗
is acyclic, then conv(B) = S2 and we prove below that the subgraph ofG(A) induced by
triangulations which appear as chambers of the chamber complex is 3-connected (this
graph is the adjacency graph of the chamber complex). As in the realizable case, this
implies that the graphG(A) is 3-connected.

We now prove that the adjacency graph of the chamber complex is 3-connected, i.e.
that it has at least four vertices and and that it remains connected when we remove
any two chambers. SinceB is totally cyclic, any triangulationT of B has at least four
triangles and no two of them belong to the same chamber (by Definition 1.1). Thus, there
are at least four chambers. Since the intersection of any two closed chambers is empty, a
point or a 1-ball, removing them from the chamber complex leaves something connected
in the sphere, homeomorphic to an open 2-ball or an open annulus. In particular, the
adjacency graph of the chamber complex remains connected when removing two of its
vertices.

Section4

Our next (and final) goal is to show that, for a pseudo-configuration of pointsB in
S2, pseudo-chamber complexes can be defined and every virtual chamber realizes as
a pseudo-chamber of some pseudo-chamber complex ofB. Definitions 4.1 and 4.2
can be naturally translated into pseudo-configurations of points. Now we observe that
the collection of arcs{conv({p,q}) : {p,q} is an edge ofB} defines a pseudo-chamber
complex ofB. Thus, throughout Section 4 we can assume thatB is a pseudo-configu-
ration of points inS2 given with an initial pseudo-chamber complex and this ini-
tial pseudo-chamber complex will take the role of the chamber complex of a vector
configuration.
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Taking into account the properties of pseudo-configurations of points enumerated in
Lemma A.9, Lemma A.11 and Corollary A.17, all the notions and proofs provided in
Section 4 are valid for pseudo-configurations of points inS2. For example, in the proof
of Proposition 4.6 (triangulations of an oriented matroid are the same as triangulations of
any of its pseudo-chamber complexes) the result for the initial pseudo-chamber complex
follows from Lemma A.14.
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