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Abstract. We study the graph of bistellar flips between triangulations of a vector config-
uration. A with d 4+ 4 elements in rankl + 1 (i.e. withcorank3), as a step in the Baues
problem. We prove that the graph is connected in general and 3-connecegidbcvector
configurations, which include all point configurations of dimenslamith d 4+ 4 elements.
Hence, every pair of triangulations can be joined by a finite sequence of bistellar flips and,
in the acyclic case, every triangulation has at least three geometric bistellar neighbours. In
corank 4, connectivity is not known and having at least four flips is false. In corank 2, the
results are trivial since the graph is a cycle.

Our methods are based on a dualization of the concept of triangulation of a point or vector
configurationA to that of avirtual chamberof its Gale transforn8, introduced by de Loera
et al. in 1996. As an additional result we provéopological representation theorefar
virtual chambers, stating that every virtual chamber of a rank 3 vector configutaitian
be realized as a cell in sonpseudo-chamber complex B in the same way that regular
triangulations appear as cells in the usual chamber complex.

All the results in this paper generalize to triangulations of corank 3 oriented matroids
and virtual chambers of rank 3 oriented matroids, realizable or not. The details for this
generalization are given in the Appendix.

Introduction

A point configurationd in RY is a finite spanning set of points in the affine spRéeA
triangulationof .4 is a geometric simplicial complex which covers the convex hullof

* This research was partially funded by CajaCantabria and by Grant PB97-0358 of the Spanistoirecci”
General de Investigami’ Cientfica y Técnica.
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and whose vertices are elementsfA bistellar flip (or flip, for short) is an elementary
local transformation in a triangulation gf which gives rise to another triangulation of
A. Triangulations, flips and other necessary notions are defined in Section drafie
G(A) of triangulationsof A is the graph whose vertices are all the triangulationd of
and whose edges represent flips between them.

The notions of triangulation and flip can be naturally defined also f@¥ctor con-
figuration.4, which is a finite spanning set of vectors in a real finite-dimensional vector
space (safR%*1). A triangulation ofA is asimplicial fan(a polyhedral fan whose cones
are all spanned by independent sets of vectors) that covers the positive spaandf
whose 1-cones are positively spanned by elements @f point configurationA in R9
can be regarded as a particular case of vector configuratiBfifih by embeddingk?
in RA*1 as an affine hyperplane not passing through the origin. A vector configuration
obtained this way is calledcyclicor pointed

It has been an open question for about a decade whether the graph of triangulations of
every point or vector configuration is connected. Santos [17] has found a disconnected
example, with dimension 6 and corank 317. Other previous results include:

e For point configurations in the plane the graph is connected [11] and every triangu-
lation has at least — 3 flips [6]. The graph is not known to lfe — 3)-connected.
For point configurations in convex position in dimension 3 every triangulation has
at leasn — 4 flips, but the graph is not known to be connected [6].

e For point or vector configurations with < d + 3 all the triangulations anegular
[12], [5] and, hence, the graph of triangulations is isomorphic to the 1-skeleton of
a polytope of dimension — d — 1 [1], [8] (the so-calledecondary polytopef A).

e For any pair of parametersandd with n — 5 > d > 3 there are triangulations of
point configurations witim elements in dimensiothwhich have less tham—d — 1
flips. In particular, the graph is ngh — d — 1)-connected. The following is an
example of flip deficiency for the minimal case (with= 8 andd = 3), based on
a construction from [6].

Example 1. Let p; = (0,0,0), p = (1,1,0), p3 = (6,0,0), ps = (4,1,0), ps =
(0,6,0), ps =(1,4,0,9g=(2,2,4 andr = (2,2, 6). Let

A ={p1, P2, P3, Pa. Ps, Ps, 0. I'}

and let7 be the triangulation

{{P1, P2, P3, A}, {P2, P3, P4, Q}, {P3. P4, Ps, A}, { P4, Ps, P, A}, {Ps. Ps, P1, A},
{Ps, P1, P2, A}, {P2, Pa, Ps, A}, {P1, P3, 4,1}, {P1, P5, A, I}, {P3, Ps, 4, I}

T has only three flips, supported on the three circips, pj+1}, {pj, Pi+1}), fori, j €
{1,3,5}.

These results show that point configurations with four points more than their dimen-
sion are a border case between good and bad behaviour: with less points all triangulations
are regular and with more points there are triangulations with “flip-deficiency” (less than
n—d — 1 flips). Our main result in this paper is that in this border case all triangulations
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have the expected number of flips and the graph has the expected connectivity number
(Corollary 3.10):

Theorem 2. For any vector configuratiotd with d + 4 elements ifrR9*! the graph
G(A) of triangulations of4 is connectedf A is acyclic(or if A is a point configuration
in RY), then G(A) is 3-connectedin particular, every triangulation of4 has at least
three geometric bistellar neighbours

Our techniques are based on the duality between a vector configuration and its Gale
transform, which we now explain briefly. Any vector configuratidrwith n elements
and rank = d + 1 has &ale transformB with n elements and rank—r = n—d —1,
which is dual ta4 in the sense of oriented matroid theory (see [4] for details on oriented
matroids, or the beginning of Section 2 for some properties of them). In particular, there
is a canonical bijection between the basegl@ind the bases @&. Since a triangulation
T of Ais just a collection of bases, it has associated a certain colleCdbases ob.

The collections of simplices df corresponding in this way to triangulations.dfwere
calledvirtual chamberof B in [5].

If we want to study the graph of triangulations of a configuratibof corank 3, we
can do it more simply by studying the graph of virtual chambers of its Buahich has
rank 3 and can be thought of as a point configuration in the 2-s(@3eféis is what we
do.

The namevirtual chambercomes from the following fact: thehamber complex
of B is the polyhedral decomposition of the positive sparBofvhich results as the
common refinement of all the triangulations 8f Its cells of maximal dimension are
calledchambersTo each chambef of B we associate the collection of bases whose
positive span containg. The fundamental result in the theory of secondary polytopes
(see [1] and [8]) is that the collections of base®afhich arise in this way are precisely
the duals to theegular triangulations ofA. (These are the triangulations which can be
obtained as the projection of the lower envelope @fla- 1)-dimensional polytope.)
Adjacency between chambers corresponds in this picture to bistellar flips between regular
triangulations. A consequence of this duality between (geometric) chambers and regular
triangulations is that the subgraph of triangulations induced by regular triangulations of
a point configurationd with n points and dimensiod is the 1-skeleton of a polytope
of dimensiom — d — 1: thesecondary polytopef A whose normal fan is the chamber
complex ofBB.

In summary, virtual chambers are combinatorial objects which have similar properties
to chambers, except that they do not exist geometrically. To illustrate this, in Example 1.5
we show the classical non-regular triangulation of the vertices of two nested triangles in
the plane. In its Gale transform, the virtual chamber corresponding to this triangulation
collapses (see Fig. 1).

The structure of the paper is as follows: In Section 1 we introduce the necessary
definitions and notation as well as some background on Gale duality, virtual chambers
and other tools that we use. Most of this section applies to arbitrary rank or number of
points. The only new result here is a description of “flips between virtual chambers” of
a configuration, i.e. a dualization of the concept of flip between triangulations, both in
arbitrary rank (Theorem 1.8) and in rank 3 (Definition 1.10 and Corollary 1.11).
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Sections 2 and 3 are the central part of the paper, leading to the proof of Theorem 2.
Section 2 begins with an account of some basics of oriented matroid theory that we use
frequently and then shows some geometric properties of rank 3 vector configurations.
Section 3 contains the proof of Theorem 2 (Corollary 3.10). It is interesting to observe
thatthe hardest part of this proof is showing the existence of at least one flip (Theorem 3.3,
which is essential for Corollary 3.5).

A rank 3 vector configuratio8 can be regarded as a point configuration in the
sphereS’. Recall that the chamber complex Bfis the common refinement of all its
triangulations, i.e. the cell decomposition $f obtained drawing all possible geodesic
segments between pairs of pointdsofn Section 4 we define pseudo-chamber complexes
of B by allowing non-geodesic arcs to serve as “pseudo-segments” but requiring them to
reproduce the combinatorial situation given with the geodesic ones (essentially, requiring
them to be consistent with the oriented matroid3)f One easily proves that the full-
dimensional cells of a pseudo-chamber complex represent some virtual chamBers of
and cells of co-dimension 1 represent flips between them. Our task in Section 4 is to
prove that every virtual chamber &f realizes as a pseudo-chamber of some pseudo-
chamber complex oB. For instance, Fig. 3 shows the non-geometric virtual chamber
of Example 1.5 as a pseudo-chamber. The main result of this section is (Theorem 4.13):

Theorem 3. Any virtual chambel of a rank3 vector configuratior5 realizes as a
pseudo-chamber of some pseudo-chamber complgx of

In the Appendix we show that all the results of this paper also hold for non-realizable
oriented matroids. This is motivated by the fact that the collection of triangulations of a
vector or point configuration depends only on the underlying oriented matroid (this is well
known and follows, for example, from the results in [5]). The concepts of triangulation
and flip have been generalized to non-realizable oriented matroids in Section 9.6 of
[4] and [16]. Since some of our proofs in Sections 2 and 3 are done in the language
of oriented matroid theory, they are valid without change for non-realizable oriented
matroids. In the rest of proofs our methods are mainly topological, so our starting point
for the generalization is to have a topological picture of a non-realizable oriented matroid
of rank 3. This is provided by the fact that every rank-3 oriented matroid hadjamt
and, hence, can be pseudo-realized psaudo-configuration of poinis the spheres?

(see Sections 5.3 and 6.3 of [4]). Summarizing, the results in the Appendix say that:

Theorem 4. Let M be a corank3 oriented matroid Let M* be its dual oriented
matroid and let5 be a pseudo-realization ¢¥1*. Then

1. The graph of triangulations GM) of M is connected andf M is acyclic 3-
connected

2. Everyvirtual chamber of1* can be realized as a pseudo-chamber of some pseudo-
chamber complex ds.

Our results are related to the so-calkalies problenn the following way. The poset
of all polyhedral subdivisions of a point configuratidris usually called th8aues poset
o (A) of A. The Baues problem is to decide whether this poset is homotopy equivalent to
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a sphere whose dimension is the same as that of the boundary of the secondary polytope
(as usual, when referring to the topology of a poset we mean the topology of its order
complex, see [3]). No non-spherical example is known but sphericity (and connectivity)
has been proved only up to dimension or corank 2: In corank 2 the poset is the proper
part of the face lattice of the secondary polytope; for dimension 2 see [7]. Whenever
the graphG(A) is connected the poset(4) is connected too (see [14] for a proof).

This, together with our results on pseudo-realizability of virtual chambers, leads to the
following:

Corollary 5. For any point or vector configuratiopl of corank3 the Baues complex
is connectedif A is acyclic then for every subdivision S gf there is a subcomplex of
o (A) containing S and homeomorphic t@ssphere

It is natural to ask whether our results can hold in higher corank. An obstacle for
this are examples with flip-deficiency in corank 4 (see Example 1) which imply that the
graph of triangulations is not 4-connected and that a pseudo-realizability result of virtual
chambers such as our Theorem 3 is not possible. For non-realizable oriented matroids
things are even worse, since there exist oriented matroids of corank 4 whose Baues poset
and whose graph of triangulations contain isolated elements (i.e. there are triangulations
with no flips at all). See Section 4 of [16].

An optimistic possibility is that the graph of triangulations might be connected at least
for oriented matroids which have an adjoint (which include realizable ones) of corank
4 (or of arbitrary corank). This conjecture is based on the fact that having an adjoint
is crucial for our results in the Appendix and that the disconnected examples in corank
4 are obtained with non-Euclidean oriented matroids, which do not have adjoints. Our
methods indicate that a crucial step towards knowing whether this is true in corank 4 is
deciding whether every triangulation of a corank 4 vector configuration has at least one

flip.

1. Triangulations, Flips and Virtual Chambers
1.1. Triangulations

We call a finite spanning set of vectors in a finite-dimensional real vector space
V = RY*1 avector configuration of rank & 1. For any subset C A thepositive span
of o isthe set confs) C V of all non-negative linear combinations®fand we call the
set relconyo) of strictly positive combinations thelative interior of o (observe that,
formally speaking, we call the relative interior @fthe relative interior of the convex
hull of o; hence the notation relconv).

We call the (signed) circuits and cocircuits of the oriented matidi@A) realized by
A thecircuitsandcocircuitsof A. In other words, &ircuit is a pair(C*, C™) of subsets
of A such thatC™ U C~ is a minimal dependent set a@d andC~ are the subsets of
elements with positive and negative coefficient respectively in a dependence relation in
CtuC~.CtuUC~ is called thesupportof the circuit (so thatC*, C~) and(C~, C*)
are the only circuits with support i@ U C™). A cocircuitis a pair(C*, C~) whereC*
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andC~ are the intersections witd of the two open half-spaces defined by a hyperplane
spanned by elements gf. Again, the opposite of a cocircuit is a cocircuit.

We call the independent subsets.bfits simplices A simplex ismaximalor full-
dimensionalif it has d + 1 elements. We denote k& (A) the collection of all the
full-dimensional simplices ofd (i.e. itsbase$. A triangulation of A is any collection
T c A(A) of full-dimensional simplices ofd which:

1. intersect properlyi.e. for every pair of simplices, t € 7 one has conw Nt) =
conv(o) N conU(t);
2. coverA, meaning that J, ., conMo) = convA).

For a generic vector € conu.A) we will always have that it € convo) for a
simplexo C A, theno is full-dimensional. In these case we call the collection of bases
of A containingu in their positive span thehamberof v in A:

Cy.a:={o € A(A): v econvo)}.

A collection of bases ofd is called achamber ofA if it is a chamber ofv for some
generic vectow € conv(A). Any triangulation and any chamber gf have a unique
simplex in common.

1.2. Virtual Chambers

Every spanning subsgtof .4 with d 4 2 vectors contains the support of a unique circuit
Z=(Z*,Z)of A Ifboth Z* andZ~ are non-empty (we say thZtis acyclig, then
o can be triangulated in exactly two ways:

TH(p):={p\a: ae Z}, T (p) '={p\a:aeZ}.
We say thatl +(p) and7 ~(p) are a pair of oppositeiangulated circuitsof A.

Definition 1.1[5]. LetC c A(A) be a collection of full-dimensional simplices &
We say that is avirtual chamberof A if the following two conditions are satisfied:

1. C has exactly one element in common with any triangulatios of
2. For every pair of opposite triangulated circ@ts (o) and7 ~(p) of A,CNT +(p)
is non-empty if and only i€ N7~ (p) is non-empty.

Remark 1.2. 1. Chambers ofd are virtual chambers as well, as can be easily checked.
2. Every triangulated circuit is contained in some triangulatioiloT hus, part 1 of
the definition implies that in part 2, N7 *(p) is non-empty, then it contains a unique
simplex (same fo€ N7~ (p)).
3. The results in [5] imply that:

(i) If A is in general position (i.e. if every subset dfwith no more thard + 1
elements is independent), then condition 1 in Definition 1.1 implies condition 2.
This is not the case in general.
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(ii) Provided that condition 2 holds, saying “for any triangulation” in condition 1 is
equivalent to saying “there is a triangulation”.

A Gale transformof a vector configurationd = {as, ..., ay} with n vectors in
V = R%*! s a vector configuratiol8 = {by, ..., b,} in W = R"-9-1 such that the
kernels of the two natural linear ma@$ — V(g — a) andR" — W(g +— b;) are
orthogonal complements R".

The oriented matroids ofd and B are dual to each other; i.e. circuits &f are
cocircuits of3 and vice versa. A subsgd;,, dots g} is spanningind if and only if the
complement subsé\{bi,, ..., b} is independent itB. In particular,A(A) and A(5)
are canonically identified under complementation of indices. The theory of secondary
polyhedra [1], [2] implies that chambers Bfcorrespond to regular triangulations.4f
The definition of virtual chambers given above extends this correspondence to all the
triangulations ofA:

Theorem 1.3[5]. Let.4 andB be vector configurations which are Gale transforms of
each otherThen under the natural identification af (A) and A (B), virtual chambers of

B correspond exactly to triangulations gf and virtual chambers ofl to triangulations

of B.

The following property of virtual chambers is not difficult but a little bit tedious to
prove without Theorem 1.3 (using induction on the cardinality 9f and condition 2
of Definition 1.1). The use of Theorem 1.3 makes the proof much shorter.

Lemma 1.4. LetC be a virtual chamber ofd. Then for any pair of simplices, t in
C, the relative interiorgelconyo) andrelconut) intersect

Proof. LetB be the Gale transform of. Let7 be the triangulation o corresponding
to the virtual chambe€. In oriented matroid terms, the relative interiorscofand t
intersectifand onlyifthereisnococircdt= (Z*, Z7)of AwithtNZ* =@ = oNZ~
(intuitively, if no hyperplane weakly separatesandr). Translated intd, what we need
to prove is that for no pair of simplices®, z¢ € 7 is there a circuiZ = (Z*, Z™) of
Bwith Z+ c t°andZ~ c o¢.

That this holds is a well-known property of triangulations, since a circuit&ithc ¢
andZ~ c o° would imply thato® andz€ do not intersect properly (see, for example,
Proposition 2.2 of [13]). O

Example 1.5(A Non-Geometric Virtual Chamber). Let; = (4,0,0), p2=(0, 4, 0),
P3=1(0,0,4), p4a=(2,1,1), ps=(1,2,1) andps = (1, 1, 2). Let

A = {p1, P2, P3, Pa, Ps, Ps}-

A can be regarded as a point configuration in the plane, depicted in Fig. 1(a), which
also shows a triangulatioh of A that is not regular. (This is the most classical example
of a non-regular triangulation. See, for instance, [19] for a proof of non-regularity.) The
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(@ (b)

Fig. 1. A non-regular triangulation of the configuratioh of Example 1.5 (a) and an affine Gale diagram
of A (b).

maximal simplices (i.e. the triangles) @f are{p4, ps, Ps}, {P1, P2, P4}, {P2, P3, Ps},
{P1, P3, P}, {P2, P4, Ps}, {P3, Ps. Pe} and{ps, pa, Ps}-

One Gale transfornB of A is defined by the vector&, 1, 1), (1,2, 1), (1, 1, 2),
(—4,0,0), (0, —4,0) and(0, 0, —4).

In Fig. 1(b) we show an affine Gale diagram.4f that is, a central projection of its
Gale transfornB to a generic affine hyperplane, in which a projected pointis solid when
it is a positive multiple of the vector from which it comes, and open if it is a negative
multiple. By a generic hyperplane we mean one which is not parallel to any of the vectors
of B. We have taken the hyperplane defined by the equatiery + z = 4. Figure 1(b)
also shows the chamber complexigiflines joining open and solid points have arrows
since they must “pass through infinity” in this representation, and every line through an
open point has been broken. For more details on affine Gale diagrams, see [19]. Each
point has been labelled using the index of the corresponding elemehtTie affine
Gale diagram in Fig. 1(b) shows that the virtual chantbef B which corresponds t@
is not a geometric chamber. The triangle€afre{1, 2, 3}, {3, 5, 6}, {1, 4, 6}, {2, 4, 5},

{1, 3,6}, {1, 2, 4} and{2, 3, 5}, whose relative interiors intersect in the empty set as can
be seen in the affine Gale diagram.

1.3. Flips

Flips are a notion of aninimalor elementarychange between triangulations (see Chap-
ter 7 of [8] or [6] and [18]). We intend to dualize the standard definition of flip and
give a definition offlip between virtual chambeisf B. For this we recall the matroidal
operations of contraction and deletion and some other preliminaries.

Let A c V = RY*1 be a vector configuration and letc A. Given a linear injective
mapi: W — V whose image contains and is spanned.dyr, we call the vector
configuratiori ~1(A\ ) in the vector space#/ thedeletion ofz in A. The deletion ot in
Aisunique upto linearisomorphism, so we can asswhe be the subspace spanned by
A\t andi to be the inclusion map. Forthisreason the deletianiofd is denoted byl \ z.
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Given a linear projection map: V — W whose kernel contains and is spanned by
we call the vector configuratiod /7 := 7 (A\t) in the vector spac®/ thecontraction
of r in A. The contraction of in A is unique modulo linear isomorphism, so the map
7 can be assumed to be a projectiorMobnto a linear subspad¥' complementary to
the linear span of.

Contraction and deletion are dual operationsd iind 5 are Gale transforms of each
other andr is a subset of4, then.4/t and5\t are again Gale transforms of each other
(here and in what follows we identify the elements of the Gale transt®mwith the
elements of4 in the natural way, so thatis considered a subset Bj.

We denote bySx T :={c Ut: 0 € S, T € T} thejoin of two simplicial complexes
SandT [9]. If ¢ € A is contained in some simplex of a triangulatidrof A, thelink
of r in 7 is defined to be the following collection of subsets4f

linkr(t) ;={o\1: Tt Co €T}

Itis clear that all the elements of ligkt) are full-dimensional simplices id/z. Even
more, it can be easily proved that lipkr) is a triangulation ofd/t. Also, it is trivially
verified that link-(t) x {t} C 7.

Finally, recall that the suppoit = Z+ U Z~ of an acyclic circuitZ = (Z*, Z~) can
be triangulated in exactly two ways:

TH(Z):={Z\{p} | pe Z7}, T7(Z):={Z\{p} | pe Z7}.

Definition 1.6. Let7 be atriangulation ofti and letZz = (Z*, Z~) c Abe an acyclic
circuit of .A. Suppose that the following conditions are satisfied:

1. The triangulatiory *(2) is a subcomplex of .
2. All the simplicesZ\{p} € 7+(Z) (p € Z*) have the same link in 7. In
particular7 " (Z) x L c 7.

In these conditions we can obtain a new triangulatirof A by replacing the sub-
complex7 t(Z) = L of 7 with the complexZ —(Z) * L. This operation of changing
the triangulation is called geometric bistellar flior aflip, for short) supported on the
circuit (Z*, Z7). We say thaZ” and7” aregeometric bistellar neighbours

Proposition 1.7. Let7 be a triangulation of4 and let Z= (Z*, Z™) be a circuit
ThenZ has aflip supported on Z ifand only if there is a triangulation L of the contraction
A/Z suchthatf *(Z) x L C 7.

Proof. The support of a circuiZ is minimal linearly dependent, so thAtspans the
same subspace @3 { p}, for everyp e Z. In particular,4/Z = A/t for every maximal
simplext = Z\{p} in T7*(2).

With this, the “only if” part is trivial, since the link il of anyo € 7 (Z) will be a
triangulation of the contractiod/Z. For the “if” part, letL be a triangulation of4/Z
such thatZ7*(Z) « L ¢ 7. ThenL C linkr (o) for everyo € 71(Z). Since bothL
and links (o) are triangulations of4/Z and no triangulation is properly contained in
another onel. = link+ (o), Yo € T*(2). O
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Theorem 1.8. LetC be a virtual chamber of a vector configuratidhand let Z =
(Z*, Z7) be a cocircuit ofBB. Let A be the Gale transform a8 and let7 be the tri-
angulation of A corresponding toC. Then7 has a flip supported on the circuit
Z = (Z*,Z7) of Aif and only if there is a virtual chambef; in the deletion3\Z
such thatr U {p} € C for everyr € Cz and p € Z*. Moreover in these conditions
C\{rU({p}: T €Cz,pe ZTYU{tU{p} t € Cz, p € Z7}is the virtual chamber
of B corresponding to the triangulation obtained by the flipBfsupported on the
circuit Z.

Proof. The statement is just a dualization of Proposition 1.7 taking into account The-
orem 1.3. The idea is that triangulations.4f Z and virtual chambers d8\Z are in
bijection, sinced/Z andB\Z are Gale transforms of each other. Calliat)= A\ (2)
we have that the complement of an element (Z\{p}) of L « 7+ (Z) (wherep € Z*)
equals(Z®\o) U {p} and vice versa. O

1.4. Virtual Chambers and Flips in Rark

The simplices of one, two, or three elements of a vector configurdiiame called
vertices edgesandtriangles respectively. We say that a simplexs emptyif conv(z) N
B=r.

There is a natural correspondence between cocirdiits (Z*, Z~) of a vector
configuration3 and open half-spacedd ™ whose boundary hyperplart¢® is spanned
by elements of3. Indeed, given a cocircui, the complement of its suppoft® spans
a hyperplane which partition§\ Z° asZ+ U Z~. Reciprocally, a half-space * with
these conditions provides a cocircgitN H*, BN H™). If B has rank 3, a cocircuit can
thus be specified by choosing one of the two sides of an gagg} 5 and calling it
“positive.” An edge ofB3 together with such a choice is called arented edgeGiven
an oriented edgm and the corresponding cocircdit= (Z*, Z~) we denoten' := Z'
fori e {+, —, 0} for simplicity.

On the other hand, the deletion of the suppdiin a vector configuration is the
subconfiguratiorz® = B\Z of B (considered as a vector configuration in the vector
subspace it spans). Whgras rank 32° is a rank 2 vector configuration and its virtual
chambers are in bijection with its empty edges, as the following result from [5] shows.

In the following statement and in what follows, a vector configuration is cailegle
if it has no zero vectors and no pair of vectors which are positive multiples of each
other. This is a slightly more general definition than the standard literature, singoke
oriented matroidsre not allowed to have negative multiples either (see [4]).

Lemma 1.9[5]. LetB be a simple rank vector configurationThen every virtual
chamber has a unique empty edge and every empty {gr@gg is in a unique virtual
chamberwhich consists of those edges whose positive span contains p and g

Proof. Every virtual chamber contains a unique empty edge by Theorem 1.3 since the
collection of empty edges is a triangulation/®f
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Reciprocally, for any empty edd@, q}, the collection of edges whose positive spans
contain conyp, q) is a chamber and, in particular, a virtual chamber. It suffices to
show that all virtual chambers arise in this form. For a proof of this see Proposition 5.7
of [5]. O

The previous lemma suggests the following definition, with which Theorem 1.8 trans-
lates into Corollary 1.11 below.

Definition 1.10. LetC be a virtual chamber of a simple rank 3 vector configuration
and letm = {p, q} be an empty edge @& (which we consider oriented). We say tinat
supports a flip of if m* # ¢ £ m~ and for everys € m™ the triangle{p, g, s} is in C.

Corollary 1.11. Let B be a simple rankB vector configuration and lef be a virtual
chamber of3. Let7 be the triangulation of4 corresponding t€ and let Z= (Z*, Z7)
be a cocircuit ofB. ThenT has a flip supported on the circuit Z (Z+,Z~) of A

if and only if there is an empty edge m Z° of B such that m supports a flip of
C. Moreover in such conditiongC\{{a, b, p}: p € m*, conmm) C conua, b)}) U
{{a, b, p}: pe m~, conMm) C conva, b)} is the virtual chamber oB corresponding
to the triangulation of4 obtained by the flip of supported on the circuit Z

We need the vector configuratidhto be simple in the previous statements since,
for example, a vector configuration in which every vector has a positive multiple has no
empty edges at all. However, it implies no real loss of generality for our purposes since:

Lemma 1.12. Any vector configuratio8 has the same virtual chambers and flips as
the simple vector configuratidB, obtained by removing fror the zero vector and alll
but one of the vectors in any half-line

Proof. The zero vector clearly does not affect the collection of triangulations or flips.
For the case of positive multiples, this follows easily from the fact thajif € B are
positive multiples of each other, théfv}, {w}) is a circuit. Hence, for every simplex
containingu, every virtual chamber df either contains both ando U {w}\{v} or none

of them. In other words, the simplices containingnd containingv are equivalent with
respect to virtual chambers (and flips). O

The previous lemma appears in dual form (i.e. for triangulations of the Gale transforms
of BandBy) in [6] and generalized to oriented matroids in Section 4.4 of [16]. We return
to it in the Appendix, Lemma A.4.

1.5. Extensions

An extension of an oriented matroitM on a setE is any oriented matroidU’ on
a setE’ O E such that every circuit of is a circuit of M’ as well (i.e. such that
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M\(E\E") = M). Itis aone-elemenéxtension ifE’\E has exactly one elememt
(see [4] or [16] for details). In this case we denote the extensiontas{p}.

Following [16] we say that a single-element extensiohu {p} is interior if there
is a circuit ({p}, A) for someA C B and that it is ingeneral positionf any circuit
containing p is spanning (equivalently, iM/p is uniform). A key property for our
purposes is that i is the oriented matroid realized by a vector configuratfoand
M U {p} is an interior one-element extension in general position, then the collection
{Ac B: ({p,}, A is acircuit is a virtual chamber oB [16].

We are specially interested in some one-element extensions d¢aXiedgraphic
extensionsintroduced by Las Vergnas [10]. The definition we use is less general than
the standard one and is adapted to rank 3.

Definition 1.13[4], [10]. Let M be a rank 3 oriented matroid (or a rank 3 vector
configuration) and lefa;, ay, az} be a triangle (i.e. a basis) d#.

The lexicographic extension of1 at the (ordered basis[a;, ap, ag] is the unique
one-element extensiaM U {p} of M in which every cocircuiC of M is extended to
the cocircuit (which we still denot€) defined byC(p) = C(&) for the minimali with
C(a) #0.

For the existence and uniqueness of the lexicographic extension in a basis see Sec-
tion 7.2 of [4]. If M is an oriented matroid realized by a vector configuratipthen the
lexicographic extension at the basas,[a,, ag] can be realized by adding ®the vector
a1 + eap + £%ag for any sufficiently small positive scalar Hence, the lexicographic
extension has an associated chamber in the chamber com@exvbich is incident to
a; and to the edgedf, ay] on the side on whichg is. We call that chamberflagchamber.

The corresponding triangulation of the Gale transform is callpdshingtriangulation
[12], [4] and it is regular.

2. Triangles and Edges

In the rest of the paper (except for the AppendBdenotes a simple rank 3 vector
configuration. Recall that we call tlsgmplicesof B its independent subsets and we calll
a simplex gpoint, edgeor triangle if it has one, two or three elements, respectively. We
say that a simplex is emptyif conv(z) N 5 = t. B being simple means that every point
is empty.

Without loss of generality, we suppose that every vect@® hmas unit length and we
think of B as a point configuration in the sphere. In this setting dorand conyz) for
an edgd and a triangle are a geodesic segment and a geodesic triangle, respectively.

Definition 2.1. Lett be an empty triangle df. Letl, I; andl, be edges of8. We say
that:

1. Iy andl, cross each othefor |; crossesd) if relconv(l;) N relconul,) is a single
point. Equivalently, if(l1, I,) is a circuit of 5.
2. | crossesr (orl bisectsr) if | crosses some edge of
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The following proofs are all done using either topological arguments or the language
of oriented matroids, but avoiding geometric arguments. This allows us to show that all
the results of this paper translate to non-realizable oriented matroids, which is done in
the Appendix. Also, in some of the proofs the use of oriented matroids makes it evident
that the case study involved is complete, which might not be obvious in a more geometric
proof. Some basic concepts and facts of oriented matroid theory used are the following
(see [4] or Chapter 6 of [19]):

e The compositions of circuits are callgdctorsand the compaositions of cocircuits
are calledcovectors where the composition ofC*, C~) and (D', D7) is by
definition(C*t U (D*\C™),C~ U (D™\C™M)).

e (C*,C7)isavectorif and only iC* andC~ are disjoint and the relative interiors
relcon(C™*) and relcon¢C~) have a common point. Equivalently,@" andC~
are the elements d$ with positive and negative coefficient respectively in some
linear dependence among the element8.afs, ) is a vector by convention.

e (CT,C) is a covector ifCt andC~ are the intersections with of the open
half-spaces defined by some hyperplagie ) is a covector by convention.

o Vectors and covectors are orthogonal to each other, wiereC~) and(D*, D7)
are called orthogonal f{Ct N DY) U(C - ND)and(C*ND )U(C-ND™M)
are either both empty or both non-empty.

e Even more, vectors are exactly the signed sub&@ts C~) orthogonal to every
cocircuit, and covectors are those orthogonal to every circuit.

o Given two vectorgC*, C~) and(D™*, D7) (resp. two covectors) and an element
a e CtND~ thereis avector (resp. a covectoB", E-)withC*ND™ c E* C
CtuD*\{fa}andC-NnD~ c E~ ¢ C-UD™\{a}. Thisis called thelimination
ofain (C*,C™)and(D*, D).

Finally, we sometimes use the following notation for a vector, covector, circuit or
cocircuit(C*, C™) when we are interested in a particular suhset {ay, ..., a,} C B.
We write astringey, . .., ep) of signss; € {+, 0, —}meaningtha€*tNt = {g;: &; = +}
andC Nt ={a: ¢ = —}.

Lemma2.2. Leto = {s,t, u} be atriangle of3 and let{p, q} be an edge oB which
crosses the edgds, t} and {t, u}. Suppose that p and u lie on opposite sidegspf}.
Then g and s lie on opposite sideg/tfu}.

Proof. In{p,q,s,t, u} we have the circuits

(+a +1 T T 0)1 (1)
(= —,0,+,+) (2)
and the cocircuit
(_7 +7 01 07 +) (3)
Elimination of p between (1) and (2) gives the circglt, x, —, *, +). Orthogonality
with (3) implies that this circuit i90, —, —, %, +), which imply thatq ands lie on

opposite sides dfft, u}. |
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Proposition 2.3. Lett = {p, q,r} be an empty triangle df and let| = {s, t} be an
empty edge dB. The following conditions are equivalent

1. | crossest.
2. relconyt) Nrelconul) # @.

Moreoverif| crossesr, then for every two vertices,& € t which lie on opposite sides
of I, | crosseqa, b}.

Proof. The equivalence & 2 is an obvious topological fact:lif is an edge of which
crossed, since relcond,) is in the closure of relcor¢) we have that relcorfz) N
relconul) # @. Reciprocally, if relcond) intersects the interior of the geodesic triangle
relconVt) and sincer is empty, con¢l) must intersect the boundary of the geodesic
triangle conyr) in exactly two points and the two of them cannot be on the same
edge. In particular, one of them must be in relappvfor some edgé; of . This
intersection point cannot be an end-point o§ince therr would not be empty. Thus,
relconul) Nrelconuly) # @.

Let us see the “moreover.” Without loss of generality we suppos¢ thasses$p, q}.
Suppose tha, b € 7 lie on opposite sides of Without loss of generality, assurae= g
andb = r. Sincel crosseg, it must be relcongr) N relconyl) # @, and sinces andt
do not lie in relconyr), the boundary of corfz) must have another poirtin common
with conul), apart from the one in relcoiy N relconu{p, q}). Sincer is on one side
of |, we havex = r and thusx lies on the relative interior of eithdmp, r} or {q, r}.
Thereforex € relconul) by emptiness of. If x € relcon\{p, r}), thenl crossegp, r}
and we have thag andr are on the opposite side bto which p is. This implies that
a = q andb = r are on the same side bfwhich contradicts the hypotheses. Thus,
x € relcon{q, r}) andl crosseqga, b}. O

Proposition 2.4. Lett = {p, g, r} be an empty triangle df and let| = {s, t} be any
empty bisector of. Then either

(i) Nz =@ and| crosses exactly two edgesrobr
(i) 1 Nt # ¥ and| crosses exactly one edgerof

Proof. By Definition 2.1 we know thalt crosses at least one edgerofWe first show
thatl cannot cross the three edge<’qthis is obvious geometrically, but we include an
oriented matroid proof for use in the Appendix). If it does, then the following are circuits
supported orip, q, 1, S, t}:

(+,+,0,—, —), 4
©, +, +, —, —), )
(+,0,+, —, —). (6)

Using (4) and (5) we eliminatg to obtain

(+, 0, —, *, *). @)
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Using (6) and (7) we eliminate to obtain(+, 0, O, *, *) and conclude thap, s andt
are collinear. In the same way we can conclude dhate spars, t} which implies that
T C spans, t}. This is obviously impossible. We conclude thatannot cross the three
edges ofr.

(i) Suppose thatN t £ @, sayt =r. Thenl = {r, s} implies it cannot cross neither
{p,r} nor{q,r}, sol crossegp, g} and only{p, q}.

(i) Supposé Nt = @. Then the point, g, r, s andt are distinct. We suppose tHat
crossesp, q} and no other edge of The se{q, r, s, t} contains the support of a circudt
that satisfies € supZ) (otherwisd would not cros$p, q} since({p, g}, {s, t}) would
not be a circuit). Say € Z*, then eitheq ¢ Z* orl crossegq, r} (by Proposition 2.3)
and we are done, so we assume& Z*. If | does not crosép, r} we can do the same
reasoning with{ p, r, s, t} to get the following circuits (which we write as sign vectors
on{p,q,r,s,t}):

(+,4+,0, —, —), (8)
(0, a, +, *, %), (9)
(b, 0, +, *, %), (20)

wherea andb are either 0 or-. Eliminatingr with (9) and (10) we get—b, a, 0, %, *)
which together with (8) leads us to a contradiction, except for the case inwhich = 0
which we study separately.

If a = b = 0,thenZisofthe form(0, O, +, *, *). Using simplicity of8 and emptiness
of | the possibilities (up to exchange of the rolesaindt) are

0,0, +, +, 0, (11)
0,0, 4, +, ), (12)
0,0, +, +, +). (13)

By elimination ofs between (11) (resp. (12)) and (8) we obtdin, +, +, 0, —),
which is impossible by emptiness of By elimination ofs between (13) and (8) we

obtain (+, +, +, 0, ), where obviously # 0. If x = — we are in the previous case
and ifx = + we eliminatet between(+, +, +, 0, +) and (8) to obtair{+, +, +, —, 0),
which again is not possible by emptinessof |

Lemma2.5. Letl={p,q},l1 ={p1, i1} and b = {p2, gz} be three empty edges Bf
such that] and |, cross | but | and L, do not cross each otheBuppose that pand p
are on the same side afThen at least one of the edggs, 0.} and{p,, i1} crosses |

Proof. The caseg; = p2 or gy = g are trivial, so we suppose that the four points
p1, P2, 01 and g, are distinct. We consider the six edges defined by the four points
{p1, P2, 91, 02}. We say that two edges overlap if their convex hulls intersect in more
than one point.

Suppose first that two of the six edges overlap. This implies that for three of the
points, sayp:, p2 andqs, one of the three is in the relative interior of the edge formed
by the other two. It is impossible thgi € relconups, p2), sincep; and p; lie on one
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side ofl andg; on the other. Any of the other two possibilitigs, € relconuds, p2) or
p2 € relconVqz, p1) clearly implies that relconig,, p) intersects relcony).
If no pair of edges overlap, then the only edges which can cross each other are the
ones with disjoint end-points. Howevéyf, = {pz1, g1} andl, = {p,, g2} do not cross
each other by hypothesis afip;, p.} and{q:, g2} do not cross each other because they
lie on opposite sides of So, only{ p1, g2} and{q;, pz} can cross each other. We consider
the two possibilities:

o If {p1, 02} and{qs, p2} cross each other, then we have the following three circuits
among the point$p, d, p1, g1, P2, G2}

0,0, +, —, —, +), (14)
+,+,0,0, —, —), (15)
+,+,—,—,0,0). (16)
Eliminatingq, between (14) and (15) we get the vecter, +, +, —, —, 0). Elim-
inating p; between this and (16) we get the vecter, +, 0, —, —, 0). Since
{p, 9, a1, p2} has rank 3, this vector is a circuit. Thyg, q} and{q:, p.} cross

each other.

o If {p1, g2} and{q;, p2} do not cross each other, then the six edges among the points
{p1, A1, P2, g2} form an embedded complete grakh in the sphere, and 4 has a
unique embedding modulo topological equivalence. It is topologically obvious that
since the geodesic segment cdinerosses the edges cdipy, g;) and conyps, 02)
it must cross at least one of the remaining four edges. By hypothesis it cannot cross
neither conypz, p2) hor conv(qs, g2) so we have finished. O

Definition 2.6. Letl = {p, q} be an empty edge &. Let (1) = {r: r is an edge of
B which crosses}. We define the following partial ordering @(l):

e Fortwo edges = {s, t},r’ = {t, u} in Q(I) with a common vertex, we say that
r’ is closer to p than rand writer <, r’ if u and p are on the same side of
Equivalently, if the intersection point relco) N relconul) is closer top (along
conu)) than the point relcorw) N relconul).

e For arbitrary edges i®(l), we say that <, r’ if there is a chaim =ry,r5, ...,
rm = r’ of edges in2(l) withry <p r> <p --- <p rm, wherer; andr;;; share a
vertex for everyi € {1,..., m— 1}

Recall that an oriented edd¢ of B denotes an edde= {p, q} together with the
choice of one of the two half-spaces (or hemispheres) defined by it.

Corollary 2.7. Lett = {p,q,r} be an empty triangle oB and let m and n be two
bisectors ot crossing|= {p, q}. We give m and n an orientation such thaepntNn*.
Suppose that i, nin Q(l) and thatr¢ m*. Thenr¢ n*.

Proof. We can assume that andn are empty, because otherwise their convex hulls
contain empty edges with the conditions required in the corollary. Itis sufficient to prove
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the resultin the case thatandn have a common vertex and then the general case holds
recursively. Sayn = {s,t}, n = {t,u}. Thenp, u € m*. Suppose was inn*. Since

n crosseqp,q} andp € n*, we haveq € n~. By Proposition 2.3n crossedq, r}.
Then:

o If r ¢ m, thenr ¢ mt andr ¢ m~, som crosses only the eddeof . By
Proposition 2.4; € m.ltmustbe = s, butthers e n* andwe have <, m <, n
which is impossible.

e If r e m~, remember that = {t, u} crossegp, q} and{q, r}. Hence we have the
(restricted) cocircuit+, —, +, %, 0,0) on {p, g, 1, s, t, u}. On the other hand, in
this casem crosseqp, r}, so we have the circuit+, 0, +, —, —, 0). The circuit
and the cocircuit must be orthogonal,se= + and we have the cocircuit

(+a s +a +a 07 0)

This means that ands are on the same side of that is,r, s € n*. In particular,
s € n* implies thatn <, m <, n which is impossible. O

3. Main Results

Throughout this sectiofi is a virtual chamber of a simple rank 3 vector configuratfon

3.1. Every Triangulation has a Flip

Definition 3.1. Letl be an edge oB and consider it oriented.

(i) We say thal hasC on its positive side™ (or thatC lies on ") if there exists
T € C such thatr I+ U9 (same for 7).
(i) We say that the orientation dfis C-coherentif C lies onl+.

By Lemma 1.4, an edge cannot ha¥en both sides. However, not every edgdsof
hasC on one side. For example, I1Bt= {p, q, r, s} with {p, g, r} being a triangle and
s erelconMp,q,r). ThenC = {{p,q,r}, {p, q, s}} is a virtual chamber anft, s} does
not haveC on any side.

Note that for any triangle = {p, g, r } of a virtual chambe€ and for any edgk(say
I = {p, q}) of 7, | hasC on the side on which is. This implies that there exists tide
coherent orientation fdrand that < I for this orientation. The following proposition
says that every edge which crosses an empty trian@leah also be given@-coherent
orientation.

Proposition 3.2. LetC be a virtual chamber oB, lett = {p,q,r} € C be an empty
triangle and let I= {s, t} be a bisector ot. Then | hag<’ on one of its sides

Proof. Let{p, q} be an edge of thatis crossed bly(note that Nl could be non-empty,
r € {s, t} could occur). Therp andq are on opposite sides bfso there is at least one
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vertex oft on each side df. Moreover, at least one sidelofontains exactly one vertex
(say p) of t, because has only three vertices. We consider the triangle- {p, s, t}
of B. We can extend to a triangulatiorZy of {p, q,r, s, t}. We claim that for every
triangle of 7, there is one side dfcontaining none of its vertices.

Observe that if a trianglg of 7o does not verify this property, then it must contain
p and exactly one element ¢, r} (o cannot bep, q,r} = t because ando do not
intersect properly, since an edgef o crosses an edde, q} of t). The condition [
crossegp, q}” implies thatp andg cannot both be ip if we wantp ando to intersect
properly, so we can assume (without loss of generality {p,r, s}. Now, {p,r, s, t}
contains the support of a unique circditand, by hypothesisp andr lie on opposite
sidesof = {s, t},so{p,r} c Z* (up to sign reversal iZ). By Proposition 2.3 we have
thatl crossegp, r}, and hence ando do not intersect properly. This means that such
a trianglep cannot exist.

Now we extendly to a triangulatior? of B and use condition 1 of Definition 1.1 to
conclude that there exists exactly one triangle 7 N C. By Lemma 1.4 and the fact
that7p covers conyr), we haveo € 7p. O

The following resultis crucial for what follows. In itjs an edge of an empty triangte
of the virtual chambet andQ2¢ (I, p) is the subset a2 () (see Definition 2.6) consisting
of the edges which cro¢sandhave p and’ on the same sid€learly,Q¢ (1, p) inherits
the partial ordex from (I). For the proof that every virtual chamber has an empty
triangle see Corollary 3.5.

Theorem 3.3. Lett = {p, g, r} be an empty triangle of the virtual chamb&r_et | =
{p, g} and let{a, b} be a maximal element in the pog&ic (I, p), <p). If {p, a, b} € C,
then{a, b} supports a flip of’.

Proof. Letm = {a, b} and consider it oriente@-coherently by Proposition 3.2. We
have to prove that the two conditions omof Definition 1.10 are satisfied for the edge
m. The first condition is obviously satisfied sinpes m* andg € m~. In order to prove
the second condition lete m™. We need to prove thdg, b, s} € C.

Without loss of generality we can assume that:

e {a, b, p, q, s} are five distinct points: The first four are distinct sifaeb} crosses
{p, q}. The points is trivially not equal toa norb sinces € m* = {a, b}*. Also,
s # g sinces € m™ andg € m~. Finally, if s = p, then the clain{a, b, s} € Cis
the hypothesiga, b, p} € C.

¢ {a, s} and{b, s} are empty edges: if, for examplg, s} is not empty, then let’ €
relcony{a, s}) such that{a, s’} is empty. Clearlys € {a, b}* impliess’ € {a, b}*
and then if we provda, b, s'} € C we will have{a, b, s} € C by condition 2 of
Definition 1.1 applied to the circuifs’}, {a, s}).

The setqa, b, p} and{a, b, s} are independent and we hapes € m*. This implies
thatp = {a, b, s, p} contains the support of a circutt in which p ands have opposite
and non-zero signs. We suppases Z* ands € Z~. The possibilities foiZ (written
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on{a, b, s, p, q}) are the following, up to exchange of the rolesacdindb:

©, —, —,+,0), (17)
(-, — — +,0, (18)
0,4+, —,+.0), (19)
(—+.—.+.0), (20)
(+,+, —, +,0). (21)

Sinceo = {p,a, b} isin 7~ (p) N C, condition 2 of Definition 1.1 implies there is
a (unique) triangles” € 7+ (p) N C. We claim thato’ = {a, b, s} and this finishes the
proof. We study cases (17)—(21) separately.

Cases (17) and (18) are trivial because the unique point with positive signsis
T7(p) = {{a, b, s}}. For the remaining cases, remember timatrossed, so we have
the circuit

(— —,0,4+,4). (22

In case (19) (resp. case (20)) we eliminhatbetween (19) and (22) (resp. between
(20) and (22)) and obtain the vector

(=0, —, +,4+). (23

We use the following fact repeatedly: if a vector has support contained in four points,
three of which are independent, then it is a circuit. This is so because otherwise it is a
composition of at least two different circuits, and there is only one circuit with support
contained in a spanning set with four points. In particular, (23) is a circuit{ans}
crosse$ = {p, q}. To prove that’ = {a, b, s} we have to show that the other triangle of
T*(p), {a, p, s}, isnotinC. If it was, thenp € {a, s}*. Since{a, s} crosse$ we would
have thata, b} <, {a, s} which contradicts the hypothesis of maximalityot= {a, b}.
Thuso’ = {a, b, s}.

Only case (21) remains. We can eliminstdetween (21) and (22) to get a circuit
(%, 0, —, +, +) where *” cannot be zero by emptiness of= {p, q, r}. Without loss
of generality we can assume tha{’*is a minus sign, because if it is a plus sign we
eliminatea between(+, 0, —, +, +) and (22) to get0, —, —, +, +) and we repeat the
following argument exchanging the rolesa&ndb. Then the circuit becomes

(=0, —++) (29

and the same argument as in case (19) showdqahatt, s} & C. The rest of the proof is
devoted to showing thdb, p, s} ¢ C. For this, we suppose th#t, p, s} € C and get a
contradiction.

We eliminatea between (21) and (24) and we get the circuit

O, +, =+, +), (25

which implies thats andb are on the same side bflf s, b € |~ (where we considdr
orientedC-coherently, so that € 1) we have{b, p, s} N1 = @, hencelb, p, s} ¢ C.
So we suppose thatb € 1; thena € | -, becausé crosseqa, b}.
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Without loss of generality we can assume th& {a, b, p, q, s}: the pointr cannot
be the same a&, p or q becausé = {p,q},r € |* anda € |~. Circuit (25) implies
r # b, or{p, q,r} would not be empty. The same circuit implies that i r, then our
claim that{b, p, s} & C is obvious, sincégp, q,s} = {p, q,r} isinC andb andq lie on
opposite sides dfp, s}.

So, in the following we write all the circuits ofa, b, s, p, g, r}. Circuits (21), (22),
(24) and (25) become respectively

(+,+,—,+,0,0), (26)
(-, —,0,4+,+,0), 27)
(-0, —+,+,0), (28)
O, +,—.+,+,0) (29)

when written on{a, b, s, p, q, r}. Recall also that we know b, s € {p,gq}* anda €
{p, q}~. In other words, we have a cocircuit which, restrictedapb, s, p, q,r}, is

(—, +,+,0,0, 4). (30

We now look at the cocircuitx, +, 0, 0, *, x) vanishing on{p, s} and oriented
C-coherently. Orthogonality with (26) and (28) implies it(s, +, 0, 0, —, %), S0 it
only remains to know the sign ofon that cocircuit. We know that relcotly, p, s) N
relcon(p, q,r) # ¢ by Lemma 1.4, since both simplices are in the virtual chamber
C. This implies (sinceg—, +, 0, 0, —, ) impliesq € {p, s}”) thatr € {p,s}*. The
cocircuit is then

(- +,0,0,—, +). (3D

By (28), together with the assumption tHat s} is empty,{a, s} is an empty edge
which crosses the triangl@, g, r }. Proposition 2.4 implie&, s} crosses eithgm, r } or
{q, r}. Cocircuit (31) implies it does not cro$p, r }, hence it crosses, r } (in particular,
p andr are on the same side (d, s}) and we have the circuit

(+,0,+,0, —, -), (32

which together with (28) gives us a circyl, O, *, +, *, —). Orthogonality with (30)
and (31) implies that this circuit is

0,0, +,+,—, ), (33

which implies thas and p lie on opposite sides dfy, r }, and, sincgp,q,r} =t € C,
we haves € {q,r}".

Now we observe thap andr are on the same side ¢, s}, since both{p, q} and
{q,r} cross{a, s}. Eliminatingq and p respectively from (29) and (33) we derive the
circuit

(07 +7 Xa +7 Oa _) (34)

and another circuit0, 4+, —, 0, +, +). The last one implies th&tands are on the same
side of{r, q}. We know thats € {r, q}~, sob, s € {r,q}~. Hence{b, s,r} ¢ C.
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Since{b, p, s} is in the negative triangulation of (34) and we assytmep, s} to be
in C, there must be exactly one triangle of the positive triangulation of (34) ifhe
triangles in the positive triangulation of (34) &g s, r}, {p, s, r} and (only ifx = +)
{b, p, r}. We have already discard¢l, s,r} € C. Let us see how to discard the other
two:

e {b, p,r} € C andx = + is impossible because (34) with= + implies thath and
s are on opposite sides ¢p, r}, {p,q,r} € C and{b, p,r} € C impliesb andq
are on the same side P, r }, while (33) implies thas andq are on the same side
of {p,r}.

e Suppose finally thatp, s,r} € C. Sincep andr are on the same side ¢4, s},
{a, s} hasC on one side, namely that in whighandr are. However, this means
that{a, s} € Q¢(l, p). This contradicts the maximality oh = {a, b} in Qc(, p)
sincem = {a,b} <, {a,s} (s and p are on the same side dh&, b}, by
circuit (26)). O

Proposition 3.4. LetC be a virtual chamber oB which is not algeometri¢ chamber
Lett be an empty triangle af. Then there exist an edge | of a vertex p of | and a
maximal element &= {a, b} of Q¢ (I, p) such that{a, b, p} € C.

Proof. Sayt = {p, q,r}. There must be another triangte= {s, t, u} € C such that
7 is not contained in coni¢) because otherwisé would be a chamber (just take
generic in relcongr) and considef, ), and we can assunaeto be empty as well using
condition 2 of Definition 1.1 iteratively. Since relcany N relconWo) # @ andt and
o are both empty, some edgewofsay{p, q}) crosses some edge @f(say({s, t}).

We now claim that there is an empty edgethat crosses, one of whose vertices
is in t. Supposds,t} Nt = @. Then{s, t} crosses another edge of(say{p, r}) by
Proposition 2.4. We have the following circuits op, g, 1, S, t}:

(+,+,0,—, —), (35)
+,0,+, —, —). (36)

Since{s, t} crossegp, g} we can assume without loss of generality that {p, g}, so
there is a circuit of the form

(%, %, —, —, 0). (37

Eliminatingt between (35) and (36) we gét, +, —, x, 0), which combined with (37)
implies

(X7 +7_’_’O)' (38)
By Lemma 2.2 € {p,r}~, so we can repeat this argument to obtain
(y’ -+, 07 _) (39)

Now suppose& # + # Y. Then, eliminating) between (38) and (39), we g&t O, x, —,
—) with z # +. This contradicts (36), thus we can assume +, but then (38) becomes
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(+, +, —, —, 0). This implies thafr, s} crossegp, q} as we claimed. Hence, we can
assume that=r.

Now we take a maximal elemem = {a, b} of Q¢({p, q}, p) with {r,s} <, m.
Sincer ¢ {r,s}*, by Corollary 2.7, we have that ¢ m*. Sinceq € m~, m cannot
cross{q, r}, so, by Proposition 2.4m crosses{p, r} if and only if r ¢ {a, b}. We
conclude tham crosseq p, x} for everyx € t\{a,b, p} C {q,r}. Now we extend
the triangle{a, b, p} to a triangulatioriZ” of conua, b, p, g, r) and7 to a triangulation
7' of B. By definition of a virtual chamber there is exactly one triangle®f 7" in C,
but relconc’) N relconVr) must be non-empty by Lemma 1.4, 86 € 7. On the
other handg’ must have a vertex im*, sop € o’. Let x be another vertex of'. If
x € \{a, b, p}, then{p, x} crossesn, which is an edge ofa, b, p} € 7 and hence’
andt do not intersect properly. We conclude thxa# t\{a, b, p}, sox € {a, b}. This
implies thato” = {a, b, p}. O

Corollary 3.5. UnlessB has only three elementfor every virtual chambe€ of B
there is an empty edge supporting a flipCof

Proof. If Cisachamber, the edges supporting its boundary support fiipsiofess they

are in the boundary of co). However, the only case of a chamber with all its edges
on the boundary of cor) is that of the unique chamber 8fif B has three elements.
For virtual chambers which are not chambers, the corollary follows immediately from
Theorem 3.3 and Proposition 3.4, taking into account that an empty trianglé can
always be obtained as the unique triangl€ @fi a triangulation of5 by empty triangles

(i.e. which uses all the elements6§. O

3.2. 3Connectivity of the Graph of Virtual Chambers

Lemma 3.6. Let m = {p,q} be an empty edge @& supporting a flip of a virtual
chamberC and leto be a triangle ofC. Then either mc convo) or some edge of
crosses m

Proof. Supposen crosses no edge ef Consider an empty triangkee C of the form

T ={p, q,r}withr € mt (which always exists). Then relcofw) Nrelconuo) # @ by
Lemma 1.4. Since is empty, this implies that either c convo) (and we are done) or
some edge of crosseg, so we suppose that, for instan¢g,t} crosses some edge of
7 (which must be different frorm). Say({s, t} crossegp, r}. If {s, t} is not empty, then
conu{s, t}) contains an empty edd€, t'} of 5 which crosse¢p, r }. By Proposition 2.4,
either{s’, t'} crossedq,r} orq € {5, t'}. Anyway p andq lie on the same closed side
of {¢/, t'}, that is, on the same closed side{sft}.

We have the circuit+, +, —, —) written on{p, r, s, t} and, on the other hand, the
cocircuit which vanishes ofp, q} is (0, +, *, *) when restricted to the same set. Orthog-
onality between both implies that one of the asterisks is a plus sign. Say this restricted
cocircuit is (0, +, +, x). Thens € m™, thus{p, g, s} € C. As a consequencép, g}
is not contained in the negative closed sidg®ft}, and hence it is contained in the
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positive one. Therefore, the spherical regldn= convt) N {s, t}* containsm and its
boundary is the union of the arcs ca@ny, [p, X] C conu{p, r}), [q, y] C conv{q,r})

and [x, y] c conu{s, t}), wherex andy are the points coryp, r}) N con«{s, t}) and
conu{q, r}) Nconv{s, t}) respectively, and the bracket notation has the standard mean-
ing. Clearly, relcon¢r) Nrelcon o) ¢ D € convt), and henced is homeomorphic

to a closed 2-ball.

Supposen ¢ convo). Then the convex hull of some other edge ($gy}) of o
intersects the boundary @ transversally. Moreover, the facts thais empty,D C
conV(t) and{t, u} does not crosm imply that{t, u} crosses the arce[ x] and [q, y]
and for some of them (say|[ x]) the intersection is none of its end-points (otherwise the
intersection points would bp andq necessarily and henee C convo)). Therefore,

{t, u} crosseqp, r}. With the same argument as above we can concludepttzaid q
are on the same closed side{bfu} and one oft andu is in m™. Sayt € m*. Then
{p.q,t} C.

Sincep € {s,t}* and{s, t} crosseqp,r} we haver € {s,t}~. The facts thats, t}
and{t, u} cross{p, r} andr € {s,t}~ imply p € {t, u}~ by Lemma 2.2. Thereforeg
andg are on the negative closed side{tfu} and hencdp, g, t} N {t, u}™ = @, which
is absurd. |

Lemma 3.7. Let m = {a;, &y} be an empty edge & supporting a flip of a virtual
chamberC and suppose tha@.(m, a;) = @. ThenC is a flag chambe(in particular a
chambe}. More preciselylet a3 € m* (sot = {ay, ap, az} € C) and let p be the new
vector in the lexicographic extension®fat the basiga;, ap, ag]. Then pe relcono)
for everyo € C.

Proof. If o = {s,t,u} € C is not an empty triangle, there are a paine B and a
circuit Z = (Z*, Z7) supported op = {s,t,u, g} such thatZ~ = {q} andZ* # 4,
s07 (p) = {o}. Then the unique triangle il *(p) N C is contained in conyr). We
can repeat this process until we get an empty triapgle C with ¢’ C convo) which
implies relconyo’) C relcono).

Thus, without loss of generality we assume thas empty.

We have to show that, for any edge®f p is on its positive side. We call;, C,
and C3 the (C-coherently oriented) cocircuits which vanish{s t}, {t, u} and{s, u}
respectively and lefx = min{i: Cy(a) # 0} for k = 1, 2, 3. Then we have to show
that Cx(a;,) = + for k = 1, 2, 3. First assumen crosses some edge (s¢g t}) of
o. SinceQe(m, a) = @, we havea; € {s,t}*. Thus,j; = 1 andCy(a;) = +. No
other edge ob crossesn since clearly it would be if2¢(m, a,) (as a straightforward
consequence of Lemma 2.2), thays= u by Proposition 2.4. The cocircuit, restricted
to {a1, ap, S, t, } is (0, *, +, 0), which must be orthogonal to the circuit, +, —, —),
and henc&, becomeg0, +, +, 0). Thus, j, = 2 andCy(a2) = +. The same argument
proves thatjz = 2 andCz(ap) = +.

Now assumen crosses no edge of. Letl be an edge of and letC be the cocircuit
vanishing inl, which we assume orientédcoherently. Let = min{i: C(g) # 0}. By
Lemma 3.6m C conVo), so, ifa; € 1,thenj = 1andC(a;) = +.If a; € | buta, ¢,
the same argument works wifh= 2. Finally, if m = |, the same argument is valid with
j =3 O
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Lemma 3.8. LetC be a virtual chamber oB and let m= {a;, a,} be an empty edge
supporting a flip ofC. If both Q¢ (m, a;) and Q2¢(m, ap) are nonemptythen there is a
virtual chambelC’ of B such that

e m supports a flip of’,
e Qc/(m, &) is strictly contained in2¢ (m, a;),
e Qc/(m, ap) strictly containsQe(m, ap).

Proof. Letl = {p, g} be a maximal element &®-(m, a;). We claim thaf{p, g, a1} €
C. Without loss of generality assume thate m*. Sincem supports a flip o, by
Definition 1.10 the triangléa;, ay, p} is in C. The spanning set = {&;, a, p,q} is
the support of the circuiZz = ({a1, a2}, {p, q}) sincel crosseam, and{a;, a, p} €
CN7T(p),sothereis atriangle i@N 7" (p) by Definition 1.1. The trianglép, q, ay}

is not inC sincea; € {p,q}~, so{p,q, a1} € C. By Theorem 3.3| supports a flip of
C, so letC’ be the virtual chamber which is obtained by this flip. By Corollary 1.11, the
triangles ofC of the form{a;, a,, s} have not been removed when passing’taso the
edgem still supports a flip of” by Definition 1.10. Sincé is the unique element of
Qc(m, a1) whose orientation has been changed, we concludeha, a;) is strictly
contained in2¢(m, a1) andQ2¢ (M, ap) strictly contains2¢(m, ay). O

We recall thatG(A4) denotes the graph of triangulations.df In the next theorem
we do not distinguish between triangulations.4fand virtual chambers of its Gale
transforms.

Theorem 3.9. LetC be a virtual chamber of a ranR vector configuratior3 and let
A be the Gale transform d8. If C is not a chambethen there are three vertex-disjoint
paths in G.A) joining C to three distinct flag chambers

Proof. SinceC is not a chamber, by Corollary 3.5 there is an empty edge {a1, a,}
supporting a flip of’. If Q¢(m, a1) = @ or Q¢ (m, a) = ¥, thenC would be a chamber
by Lemma 3.7, s®@¢(m, &) # 0 # Qe (m, ap).

Setm™ as the side afnin which( lies. We successively apply the previous lemma to
obtain a path frond to a virtual chambet; (in which every virtual chambe? involved
lies onm™ and has2¢:(m, a;) strictly contained ir2¢(m, a;)) with Q¢,(m, a;) = @
and such thain supports a flip of;. By Lemma 3.7 (exchanging the rolesaf and
ay), C1 is a flag chamber aB. Also we get a second path to a flag chamfein which
every virtual chambe€’ involved lies onm™ and hasQ¢ (m, a;) strictly containing
Qc(m, a1). Finally, performing the flip o€ supported orm we get a virtual chamber
which lies onm~. From it, the previous lemma produces a path to a flag chaayoefr
B in which all intermediate virtual chambers lie o .

These three paths are obviously vertex-disjoint. O

Corollary 3.10. For any vector configuratiomd with d + 4 elements and rank & 1
the graph G.A) of triangulations ofA is connectedlf, moreoverA is acyclic(or if A
is a spanning point configuration iR%), then G(A) is 3-connectedin particular, every
triangulation of 4 has at least three geometric bistellar neighbours
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Proof. LetB be the Gale transform od (which we regard as a point configuration in
$?). Since a common edge of the chamber complex between two chambers is a flip, the
subgraplGeq(A) of G(A) induced by chambers & is connected and, if coii) = 57
(which is equivalent ta4d being acyclic), 3-connected. Both results follow also from
the theory of secondary polyhedra: the subgr@py(A) is the 1-skeleton of a three-
dimensional convex polyhedron, and of a 3-polytopd ik acyclic; see [1] and [2].

With this, Theorem 3.9 implies th&t(A4) is connected and, using Lemma 3.11 below,
3-connected if4 is acyclic. O

Lemma 3.11. Let H be a k-connected subgraph of a graph G such that every vertex
of G\H can be joined by k vertex-disjoint paths in G to k distinct vertices oT ken
G is k-connected

Proof. Suppose we removk — 1 vertices of G and their incident edges. THe
connectivity ofH implies thatH remains connected after the removal. On the other
hand, after the removal, for every vertein G\ H that has not been removed there is at
least one path joining it to one of the remaining verticesiokince before the removal
there were at leadt vertex-disjoint paths joining to k distinct vertices oH. O

The following example exhibits the three different ways of going from a non-geometric
virtual chamber to three geometric chambers.

Example 3.12. Let.4 andB5 be as in Example 1.5. Lét be the virtual chamber d§
shown in the same example. In Fig. 2(a) we show an affine Gale diagranmoivhich
the crucial edges df are oriented in thé-coherent way.

The empty trianglg1, 2, 3} belongs taC. Since the edg¢l, 4} is maximal inQ¢
({2, 3}, 2) and the triangld1, 2, 4} is in C, {1, 4} supports a flip of. The edg€g3, 6}
is maximal inQ¢ ({1, 4}, 1). We first flip on{3, 6} which makeq2, 3} maximal. Finally
we flip on{2, 3} to get the geometric chamber (in fact a flag afyelvhich is represented
in Fig. 2(b) by the shaded region (which is connected in the 2-sphere). On the other
hand,{2, 5} is maximal inQ¢ ({1, 4}, 4). By flipping on{2, 5} we obtain the geometric
chambelC, depicted in Fig. 2(c). Finally, if we first flip ofi, 4} and then or{2, 5}, we
obtain the geometric chambés shown in Fig. 2(d).

4. Virtual Chambers and Pseudo-Chambers
4.1. Definition and Properties of Pseudo-Chamber Complexes

In this section we prove that every virtual chamber of a rank 3 vector configuri&tion
which is a combinatorial object, can be realized in a certain sense as a geometric (or,
rather, topological) object: as a cell of a cell complex in the spBéxeery similar to the
chamber complex oF.

The cell complexes which appear are calfeeudo-chamber complexes®fand
they have the same good properties as the chamber complex: their full-dimensional cells
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(© (d)
Fig. 2. lllustration of Example 3.12. (a) Th&-coherent orientation in the Gale diagram4f (b)—(d) The
chamberg£’1, C; andCs, respectively.

represent triangulations of the Gale transfadtmand adjacent full-dimensional cells
correspond to triangulations of which differ by a flip.

Definition 4.1. LetBbe arank 3 vector configuration, regarded as a point configuration
in $%. Sclonflies theorem, see [15], implies that all the constructions below can be
considered PL-topological without loss of generality, although we drop the prefix PL.
For example, ifC ¢ S is an embedde&' andC* andC~ are the two connected
components 08?\C, thenC* U C (same forC™) is a topological disk with boundary

C and interiorC™*.

¢ A pseudo-edge of B is the image of a topological embedding [0, 1] — S
such thatp = ¢(0) andg = ¢(1) are non-antipodal distinct elements®fWe say
thatc joins pandq.

e Let{p, q,r} be atriangle of3. Let ¢y, ¢, andcs be pseudo-edges joining respec-
tively {p, q}, {q, r} and{p, r } and such that they intersect only in their end-points.
Then their union is homeomorphic ® and dividesS?\ (c; U ¢, U ¢3) into two
connected componenf3; and D,. We say thatD; is a pseudo-triangleof B if
D; and conv¥p, q, r) define, together with the ordered triple, g, r), the same
orientation fors?.
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Definition 4.2. Let B be a rank 3 vector configuration.

e A pseudo-chamber complé&xof B is the cellular decomposition of cof¥) in-
duced by a collection of pseudo-edgedfcalled the pseudo-edges Bf satis-
fying:

(i) For every edgdp, q} of B, there is exactly one pseudo-edgdjoining p

andg.

(i) Foreverytwo edge$p:, 01} and{pz, g} of B and the corresponding pseudo-
edgesc; andc; of I" one has:
— ¢ C ¢y ifand only if conM(py, Q1) C conv(pz, Q).
— If 1 ¢ ¢, thenc, intersectsc, if and only if conpy, qp) intersects

conu( pg, O2)- In this caseg; andc, intersect in exactly one point.

(iif) Every pseudo-triangle 0B defined by pseudo-edgeslotontains exactly the
same points of8 as the convex hull of the corresponding triangle.

o We write cony:(p,q) = c for an edge{p, q} of B, wherec is the pseudo-
edge joiningp andq. Also, we callc\{p, q} therelative interior of c and write
relconv-(p, Q).

e The pseudo-triangles #fdefined by pseudo-edgesiore callegpseudo-triangles
of I'. As we did for pseudo-edges, for a triangie g, r } of B we denote conv
(p, g, r) as the corresponding pseudo-triangle and defineligive interior by

relconv(p. g, 1) := com:(p. g, N\ (CON:(p, g) U conv:(p, T) U conv:(q. 1)).

e Apseudo-edge or a pseudo-triangle is cafiewbtyif the only points of3 it contains
are its two or three vertices, respectively.

e We say that a pseudo-chamber complexjémericif there are no three empty
pseudo-edges whose relative interiors intersect.

o A pseudo-triangulatiorf I" is a topological triangulation of co) by pseudo-
triangles ofT".

e The full-dimensional cells of are calledoseudo-chambeisf I.

Example 4.3. Figure 3 shows the virtual chamb@rconsidered in Examples 1.5 and
3.12 realized as a pseudo-chamber. It is easy to check that the pseudo-triangles defined
by the triangles of (listed in Example 1.5) intersect in the shaded region.

Remark 4.4. The “side$ of a pseudo-edge df can be defined locally in a topological
sense, although they cannot have the global meaning that sides of an efdeed
since pseudo-edges do not define hemispher&8.dthe following are some properties
of any pseudo-chamber complExwhich can be easily proved for this local definition
of sides.

1. For any two triangles andt of I', the corresponding pseudo-triangles over-
lap (meaning that their relative interiors intersect) if and only if relgenn
relcont) # @.

2. Two pseudo-triangles df are incident to opposite sides of a pseudo-edge if
and only if the corresponding triangles Bfare incident to opposite sides of the
corresponding edge.
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Fig. 3. Arealization ofC as a pseudo-chamber (Example 4.3).

3. Iftwo pseudo-edgesandc’ intersect in a point of their relative interiors, then the
two components of\{r} (resp.c’\{r}) are incident to opposite sides df(resp.
c). In other words, the intersection ofandc’ is topologically transversal.

4. Inthe conditions of the previous point, there exists a neighbourboaid home-
omorphic to a closed disk whose boundary intersects alternatatylc’ (when
going along the boundary @ in any direction) and exactly once per segment (of
those defined by).

Lemma4.5. Any rank 3 vector configuration’s has a generic pseudo-chamber
complex

Proof. Start with an arbitrary pseudo-chamber complgxof B (for example, the
chamber complex having as pseudo-edges the geodesic arcs) and then, whenever three
empty pseudo-edges intersectin a point, perturb one of them slightly but keep the property
that it intersects the others transversally and in a unique point. That this can be done is
obvious in the PL category. O

Proposition 4.6. For any pseudo-chamber complxf B, there is a natural bijection
between triangulations df and pseudo-triangulations @f.

Proof. The result follows straightforwardly from condition (ii) of Definition 4.2 and
the properties in Remark 4.4. O

Proposition 4.7. LetI" be a pseudo-chamber complextbf

1. For every pseudo-chambérof I', the collection of pseudo-triangles Bfwhich
containC correspond to a virtual chamber &.

2. Iftwo pseudo-chambefg andC, of I are adjacentthen the corresponding virtual
chambers o3 (which we also denote I and(,) differ by a flip

Proof. Part 1 is trivial taking into account Proposition 4.6.
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For part 2, letC; andC; be two adjacent pseudo-chamberd ofThat is to say, the
closures of’; andC; share a subsegment of a pseudo-edgeconv-(p, q), which we
can assume to be empty. Then every pseudo-triangle which cogtagiher contains
C, as well or is incident t@ in the opposite side &, and vice versa.

In particular, the pseudo-triangles®f incident toc must all be incident to the same
side ofc since they contaid; (which is incident toc), and the pseudo-triangles 64
incident toc must all be incident to the opposite side, sidgandC, are incident to the
opposite sides af.

We consider the edge = {p, q} corresponding to the pseudo-edgeFor anyr
in B such that{p, g,r} is a triangle the pseudo-triangle cetip, g, r) is incident to
¢ and, thus, contains eith€q or C,. Moreover, whether it containg; or C, depends
only on whether € It orr € |~ (for a suitable orientation df), thanks to the role of
orientation in Definition 4.1. Thus,is in the conditions of Definition 1.10 and, hence,
it supports a flip of; andC,. That this flip exchanges betweénand(, follows from
Corollary 1.11. O

4.2. Every Virtual Chamber Realizes as a Pseudo-Chamber

We have shown that pseudo-chamber complexes have the good properties we announced.
Now we want to prove that every virtual chamberdfealizes as a pseudo-chamber of
some pseudo-chamber complextbf

First observe that for a virtual chamb@rof B and for an empty edge= {p, q}
supporting a flip ofC, if I’ = {p’, q'} is an edge crossing then either{p’, ', p} or
{p’,q’.q}isinC, since eithefp, g, p’} or{p, g, q'} is in C (we are using condition 2 of
Definition 1.1 applied t® = {p, g, p’, q'} which supports the circuif{ p, q}, {p’, 9'})).
Since the sides df correspond to (local) sides of the pseudo-edge g6fy it makes
sense to say that copl’) hasC on a certain side.

Lemma 4.8. LetT be a generic pseudo-chamber complexBadnd let | = {p, q},
I, = {r,s} and b = {r, t} be empty edges @& such that{ and |, cross L Then when
going(alongconul)) from p to g we crossconul;) andconul,) in the same order as
we crosonv-(1;) andconv-(I2) (when going from p to g alongonv-(1)).

Proof. Assume we cross cotly) first (along conyl)). This implies cond,) N conv
({p,r,s}) = {r}. If we cross cony(l,) first (along cony(l)), then either conwv(l,) N
con-({p,r,s}) # {r} (which implies that cony(l,) crosses con({p, s}), and this
violates condition (ii) of Definition 4.2) or the open interval of cey betweenp and
conv-(I1) is, by condition (i) of Definition 4.2, contained i8*\conw-({p, r, s}) (but
then point 3 of Remark 4.4 forcese conw-({p, r, S}), which violates condition (iii) of
Definition 4.2). O

Definition 4.9. LetC be a virtual chamber of and letl = {p, q} be an empty edge
supporting a flip ofC. Let " be a generic pseudo-chamber complex3adind letc =
cony-(l) be the pseudo-edge Bfwhich corresponds th Let ¢; andc, be two pseudo-
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edges ofl” which intersect the relative interior of We say that:

e C; andc; areC-incoherentalongc if, when we go along (in any direction), we
cross the first one from the side @fand the second one from the side opposite to
C. In any other case we say thgtandc, areC-coherentalongc.

e ¢; andc, arec-neighboursf there is no pseudo-edge Bfwhich intersects in the
open arc betweegy andc,.

Proposition 4.10. LetC be a virtual chamber oB and let | = {p, q} be an empty
edge supporting a flip af. LetI" be a generic pseudo-chamber complex3aind let
¢ = conw(l). Let ¢ and ¢ be two pseudo-edges Bfwhich cross clf ¢c; and ¢ do not
cross each othethen they ar&€-coherent along ¢

Proof.  Clearly, if the statement is true whepandc, are empty pseudo-edges, then it
is true for non-empty ones as well. So, we assumedhahdc, are empty.

Suppose first that andc, share a vertex. Say =conv-(r, p;) andc, =conv-(r, p2)
and the five point$p, q, p1, P2, r} C B are distinct.

Sincel supports a flip of’, one of the triangle$p, r, p1} and{q, r, p:} and one of
the triangleq p, r, p2} and{q,r, po} are inC. Sayt = {p,r, p1} € C. If {p,r, p2} € C,
thenc; andc;, areC-coherent. So, suppose that= {q, r, p,} is in C. What we want to
prove is that when going alorgfrom p to g we cross; first andc; afterwards (if this
happeng; andc, areC-coherent).

Setl; = {ps,r} andl, = {py, r}. By Lemma 4.8 we have to show that when going
along convl) from p to g we cross congl,) first and conyl;) afterwards. However, if
this was not the case we would haven I = @, which is a contradiction, so we are
done.

Now assume that; andc, do not share a vertex. Say = conv-(p, g;) and
C, = conv( P2, O2). Without loss of generality assume thatand p, are on the same
side ofl. By Lemma 2.5, eithefps, go} crosses or {p;, 01} crosses. Say that p;, g}
crosses and letcs = conv-(py, 02). Then the fact that; is C-coherent with botre;
andc; and that it intersects betweenc; andc; (which follows straightforward from
Lemma 4.8) implies that; andc, areC-coherent as well. O

Lemma4.11. LetI be a generic pseudo-chamber complexsoénd let g, ¢, and

c3 be three pseudo-edges Bfsuch that every two of them cross each athet y be

the closed simple curve defined by the segments of the three pseudo-edges between the
intersection pointsThen one of the two connected componentsgf Sontains all six

vertices of ¢, ¢c; and G.

Proof. Forl<i < j < 3letr;; be the intersection point betweenandc;, and for
1 < k < 3letc, be the arc o€, between the intersection points. We consider an arbitrary
intersection point, for instance; ». This pointry , dividesc; (resp.cy) into two arcs,
one of them containing; (resp.c;). Let the other be (resp.cy). This latter arc has as
end-points; » and a vertex o€; (resp.c;) and contains no other intersection point.

The arcs] andc; cannot interseck by condition (i) of Definition 4.2, so each one
of them is completely contained in one of the two regions defined.ly point 4 of
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Remark 4.4 there is a neighbourhobf r; , homeomorphic to a disk such thgs c;,
c; andc; intersect the boundary d@ once each and in this order for a certain choice of
orientation ofD.

Then the sector dD between the arag andc; is precisely the intersection betwebn
and one of the components 8f\ y, so the other region contains the other three sectors.
This forcesc] andc; to be contained in the same componen&8fy . In particular, the
vertices ofc; andc; incident toc] andc; are in the same region. So we have proved that
vertices ofc; andc; which are “adjacent” (in the obvious sense) to the same intersection
pointri; between pseudo-edges are in the same compon&it pf

Now suppose that both components3f y contain some of the six vertices. Then
there are four vertices in one component and two vertices in the other one and there is at
least one pseudo-edge (@Y whose two vertices are in the same component.

We denote byp;, andq; the vertices of; fori = 1, 2, 3 and assume that is in the
opposite region to that containing andq;. Since the edgels, g:} and{p,, 0.} cross
each other, the pointp;, g; and p, are independent, so they define a pseudo-triangle
conw(t) of I'.

The pseudo-edge copyp,, p1) cannot interseat; norc, by condition (i) of Defini-
tion 4.2, but it must intersegt, so it intersects;. Similarly, cony(p, g1) intersectss;.

We conclude that the three pseudo-edges of €gmy p1) crosscs, which is impossible
by condition (ii) of Definition 4.2 and Proposition 2.4. O

Proposition 4.12. Let| = {p, q} be an empty edge & supporting a flip of a virtual
chamberC. Then there exists a generic pseudo-chamber conipkch that every two
pseudo-edges dfwhich intersect the pseudo-edge-cconv- (1) areC-coherent along ¢

Proof. We proceed by induction on the number of pairscafeighbours which are
C-incoherent along.

First take any generic pseudo-chamber complexwe can do so by Lemma 4.5).
If there is no pair of non-coherent pseudo-edge§ pfve are done. If there are non-
coherent pairs, itis clear that we can find at least one pair of non-coherent pseudo-edges
¢, andc, which arec-neighbours. Let; = conv-(ps, 1) andc, = convi-(p2, 02).

By Proposition 4.10¢; andc; intersect in a point which is not in5. Without loss
of generality we can assume thigtandc, are empty pseudo-edges, so that; andc,
intersect pairwise in three points. L&t c; andc, denote the closed arcs ofc; and
C, between the intersection points andjet ¢’ U c; U ¢,. By Lemma 4.11 one of the
connected components 8f\y contains the six pointsp, g, p1, a1, P2, d}. We call the
other oneD.

We claim that the closure dD does not contain any point &: Sincec,, ¢, and
c3 are empty pseudo-edges, it suffices to show that B = @. Suppose there exists
x € D N B. The pointx is antipodal to at most one of the points, g;, p2 andgy, SO
we assume without loss of generality that it is not antipodal to nepheror g;. Then
we consider the pseudo-edgesandc, joining x to p; andqg;, which must intersect
y. Neithercz nor ¢4 can intersect the relative interior af, sincec; andc, are c-
neighbours. If one of them (say) intersects] C relcony(p1, g1), then eithecs C ¢
(impossible, since ¢ c;) or ¢c; C ¢c3 (impossible, since theoy should intersecy \c;).
Thus, bothcs and ¢, intersectc,. Then the three pseudo-edggs= conv-(p1, 01),
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C3 = convi-(py, X) andc, = conv- (s, X) intersectc,. We have the following circuits
supported o po, 02, P1, A1, X}: (+, +, —, —, 0), (+, +, —, 0, —) and(+, +, 0, —, —).
Elimination ofx in the last two givegx, x, —, 4+, 0) which contradicts the fact that the
first one is a circuit.

Once we know that the closure &f does not contain any points &f we observe
the following fact: a pseudo-edge of I'y intersectsc; if and only if it intersects
c,: Suppose&” intersectsc;. The intersection point is in the relative interiorgf(since
I'1 is generic) and” must intersecy in a second point, since both its end-points are
outside D. Since it cannot intersea becausec; andc, are c-neighbours, it inter-
Sectsc,.

With all this information we are going to perturb the pseudo-edg# I'; to obtain
a new pseudo-chamber complBEx in which ¢ has les€-incoherent pairs than if;:
we consider an open ang of ¢; containingc; and with no intersections with any
pseudo-edges df; apart from those irr;. We removeu; from c¢; and insert instead
an open ar@; with the same extremal points ag but which intersects andc; in the
opposite order ag; does. We can do so by drawing in two pieces, one “parallel”
to ¢, very close to it and outsid® and the other “parallel” t@), very close to it and
outsideD.

The fact that; andc, intersect exactly the same pseudo-edgd,amplies that we
can do this in such a way that andv; intersect exactly the same pseudo-edges, of
Thus, conditions (i) and (ii) of Definition 4.2 are preserved. Using the factDhabes
not contain points of it is not hard to see that condition (iii) is preserved as well. In
other words, we have constructed a new generic pseudo-chamber cdrpbexhich
the number o€-incoherent pairs af-neighbours has been decreased by one with respect
tol';. O

Theorem 4.13. Any virtual chambeC of a rank3 vector configuratior3 realizes as
a pseudo-chamber of some pseudo-chamber complgx of

Proof. We take an empty eddeof B which supports a flip o€ (we can do so by
Corollary 3.5). By Proposition 4.12, there exists a generic pseudo-chamber camplex
such that every two pseudo-edged athat intersect the pseudo-edge- conv-(l) are
C-coherent along.

We travel along from one vertex to the other. If there is a pseudo-ed@éI" which
we cross from the side af in which C is, then the same must occur with any other
pseudo-edge we meet afr by theC-coherence assumption. Similarly if we crass
from the side opposite t6, then the same has occurred for any pseudo-edge we crossed
beforec'.

In other words, the pseudo-edges we cross are divided in two subsetsd E;
(perhaps empty) such that we cross first all the pseudo-ed@gadmim the side opposite
to C and then all the pseudo-edgesky from the side ofC. Between these two groups
there must be an open drof c which is on the same side &galongc) of every pseudo-
edge that intersects Let Cr be the collection of triangles of B such that relconv(t)
contains the pseudo-chamber incidenit tn the side of . We claim thatl = Cr, which
finishes the proof.
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Lett € C. We first see that C conw-(7).

e If | is not an edge of, then eithet c convut) (in which casec is contained in
cony(t) by condition (iii) of Definition 4.2) or some edge (or edges}afrosses
|. Inthe last case, the corresponding pseudo-edge (resp. pseudo-edges) @f)conv
intersectc, so it (they) had in the same side a3. This again implies that is
contained in cony(t).

o If | is an edge ot, then cony () containsl trivially.

So | is contained in all the pseudo-triangles(fMoreover, sincd is an open arc
of ¢ which does not intersect any other pseudo-edg€,dbr everyr € C either|
is fully contained in relcony(t) or fully contained in a pseudo-edge of cgiiv). In
the last case, relcopyr) is incident toc on the side of the virtual chambér(this is
the definition of C is in one side ott”). Thus, the pseudo-chamber incidentlte@n
the side ofC intersects (and, hence, is fully contained in) the relative interior of every
pseudo-triangle of .
Hence,C C Cr. By Proposition 4.7Cr is a virtual chamber oB and this implies
C = Cr since otherwise we would have two different triangulations of the Gale transform
A, one contained in the other, which is impossible. O

Remark 4.14. Taking into account condition (ii) of Definition 4.2, each pseudo-
chamber of a pseudo-chamber complexBahust be incident to at least three pseudo-
edges. On the other hand, all the flag chambers appear in any pseudo-chamber complex,
since they correspond to pseudo-chambers which are incident to both a pseudo-edge and
one of its vertices. With these observations it is easy to obtain Theorem 3.9 as a corollary
of Theorem 4.13.

Example 4.15. The following example shows that there existvirtual chambers of rank 3
configurations which are not geometric chambers in any realization of the oriented
matroid. This kind of virtual chambers was callgdly virtual chambersin [5]. In
addition, we show a corank 3 point configuratidh whose Gale transform3” has no
virtual chambers but the oriented matroid#fbeing a mere reorientation of that Bf

This shows that having non-geometric virtual chambers or truly virtual chambers does
depend on such subtle things as reorientations of the oriented matroid.

Let A be the (corank 3) point configuration I&® consisting of the pointp; =
(2.0,0), p2 = (0,2,0), ps = (0.0,2), ps = (1,0,0), ps = (0,1,0), ps = (0,0, 1)
andpy = (1,1, 1). A is the set of vertices of a truncated tetrahedron together with
an extra point beyond the untouched facet (defineghyp, and p3) of the tetrahe-
dron. We consider itd the triangulatioriZ” defined by the tetrahedia,, ps, ps, p7},

{P1, P2, P4, P7}, {P2, P3, Ps, P7}, {P1, P3, Ps, P7}, { P2, Pa, Ps, P}, {Ps, Ps, Ps, P7}and

{P1, Pa, Ps, P7}-
Figure 4(a) shows an affine Gale diagramAfPoint 7 is contained in the linear

spans of the edgd4, 4}, {2, 5} and {3, 6}, but in none of their positive spans. Hence,
in any realization of the oriented matroid Bf the relative interiors of the edgés, 4},

{2, 5} and{3, 6} must intersect in a common point (since the three of them must contain
the opposite of 7 in their relative interiors), and therefGrehe virtual chamber oB
which corresponds t@, must remain unrealized as a geometric chamber. Equivalently,
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@ (b)

Fig. 4. Affine Gale diagram of the configuratiofiin Example 4.15 (a) and realization of the virtual chamber
C as a pseudo-chamber (b).

for any realization of the oriented matroid.df the triangulatiory” remains non-regular.
Note thatC is defined by the same triangles as in Example 1.5. This happens because
the triangulation of Example 1.5 is the link of the pomtin 7.

Nevertheless, our virtual chamk@must be realizable as a pseudo-chamber of some
pseudo-chamber @& (as shown in Fig. 4(b)), by Theorem 4.13.

Now let A’ be the point configuration i® consisting of the pointg; = (2, 0, 0),
P = (0,2,0), ps = (0,0,2), ps = (1,0,0), ps = (0,1,0), ps = (0,0,1) and
pr = (-1, —1, —1). A’ is the set of vertices of the same truncated tetrahedron together
with an extra point beyond the apex (the paiaitO, 0)). Figure 5 depicts an affine Gale
diagram ofA’, which coincides with that ofd except for a reorientation of point 7. It
is easy to see that no additional pseudo-chamber of the Gale tran8fafod’ can be
created. Thus, by Theorem 4.13, every virtual chambBrdgfines a geometric chamber.
Equivalently, every triangulation od’ is regular. Observe that’ is just a reorientation
of A.

T A

A

i
vy
Ya

Fig. 5. Affine Gale diagram of the configuratiod’ in Example 4.15.
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Appendix. The Graph of Triangulations of Corank 3 Oriented Matroids

The results presented in this paper have been proved using the language of vector con-
figurations. Since the collection of triangulations and flips of a vector configuration
depends only on the oriented matroid defined by the dependences among its elements
(see, for example, [5]) what we have done so far is deal with the graph of triangulations
of realizable corank 3 oriented matroids (via the graph of virtual chambers of its rank 3
dual).

The purpose of this Appendix is to show that all the results of the previous sections
hold also for non-realizable oriented matroids of coraakk 3. The starting point
is the definition of triangulations of an oriented matroid introduced in Section 9.6 of
[4] for acyclic oriented matroids and generalized in [16] for non-acyclic ones. This
definition agrees with the geometric definition if the oriented matroid is realizable [4,
Proposition 9.6.2] and has the property that triangulations of an oriented mattaick
dual by complementarity of simplices to virtual chambers of the dual oriented matroid
M*, where the virtual chambers aft* are defined exactly using our Definition 1.1 (this
is proved in Theorem 3.8 of [16]).

Thus, we are led to study virtual chambers of rank 3 oriented matroids. The crucial
property of rank 3 oriented matroids is that they admit a “Type 1I” realization, i.e. a
topological representation as a pseudo-configuration of points in the sphéiiest we
see what this means.

A.1l. Pseudo-Configurations of Points

Definitions A.1 and A.2 below are taken from [4], except that we give them for the case
of rank 3.

Definition A.1 [4, Definitions 5.1.2 and 5.1.3]. Le$? denote the standard sphere of
dimension 2.

¢ Apseudo-circle $ S?is a (topological) subspace 8f whichis PL-homeomorphic
to S*. The two connected components$f, S are calledsides of Sr open hemi-
spheresnd are denoted b§" andS~. Their closuresSU St andSU S~ are called
closed sides of 8r closed hemispheremd are denote8* andS-.

¢ A pseudo-circle arrangemergor a pseudo-sphere arrangement i) $s a finite
setA of pseudo-circles such that:

1. The intersection of any subset of at least two spherésigeither empty or a
pair of points.

2. ForanyS, S € Awith S# S, SN S'is a pair of points and the two connected
components o5\ S coincide withSt N S andS™ N S. If S’ € A is another
pseudo-sphere and does not contain the two p&intS§/, then one of the points
lies in S"* and the other ir8'~.

3. The intersection of an arbitrary collection of closed sides of pseudo-circles of
A is either a (topological) sphere or a ball.
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Axiom 3 in the above definition of pseudo-circle arrangement is implied by 1 and
2, as shown by Edmonds and Mandel. Nevertheless, we keep axiom 3 in the definition
because it will be useful later. The intersection points of different pseudo-circles in a
pseudo-circle arrangement are cal@diticesof the arrangement.

Definition A.2 [4, Definition 5.3.1]. A pseudo-configuration of points 8 is a pair
(A, B) where A is a pseudo-circle arrangement aids a collection of vertices of\
such that:

1. Any pair of points in53 are contained in some pseudo-circleAn
2. For every pseudo-circlB € A there is a subsdt’ C B which is contained ir§
and in no other pseudo-circle of.

Any configuration of points3 in S? defines a pseudo-configuration of points whose
pseudo-circles are the great circles passing through every pair of non-antipodal points
of B.

For simplicity, when referring to a pseudo-configuration of poi#ts3) we denote
it just B and assume that the pseudo-circles passing through the poiitari& given
implicitly. Any pseudo-configuration of points has an associated oriented matrbits
whose set of cocircuit€* is as follows:

C*":={0(9: Se AJu{—0a(S): Se A},

whereo (S) is the function8 — {+, 0, —} (i.e. a signed subset &) defined as

+ if peSt,
o(Sp:=1— if peS,
0 if peS

We say thatBB is a pseudo-realizatioror atype Il realization of Mg. If A is an
essential arrangement (i.e. if the intersection of all the pseudo-circles is empty), then
M has rank 3. We always assume this to be the case.

The cocircuits ofMz are defined exactly in the same way as cocircuits for a point
configurations in the sphere, witlA being the collection of great circles passing through
every pair of points ir8. So, every realization of a rank 3 oriented matrgitias a point
configuration in the sphere is, in particular, a pseudo-realizatiovt of

We say that an oriented matroid sgmpleif it has no loops or positively parallel
elements, i.e. if every circuit has at least two elements and those with two elements are
of type ({p, g}, ¥) (we say in this case that andqg areantiparallel or oppositg. Our
definition is slightly more general than the standard one (see [4]) in which a simple
oriented matroid is not allowed to have antiparallel elements. The following pseudo-
realizability result for simple rank 3 oriented matroids is not true in higher rank, since
not every oriented matroid has adjoint

Theorem A.3. Every simple rank3 oriented matroid can be pseudo-realized as a
pseudo-configuration of points irf S
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Proof.  According to Proposition 6.3.6 (Goodman—Cordovil-Pollack) of [4], every rank
3 oriented matroid has an adjoint. A simple oriented matroid has an adjoint if and only
if it has a pseudo-realization [4, Theorem 5.3.6]. O

Let us recapitulate. We start with a corank 3 oriented matyoldd whose graph
of triangulations and flips we want to study. Theorem 3.8 in [16] tells us that this is
equivalentto studying the graph of virtual chambers and flips of the dual oriented matroid
M, which has rank 3. IfM is simple, we consideM pseudo-realized in the sphere
& by a pseudo-configuration of poingand we show that the results of the previous
sections hold fo5. Before continuing let us see that the assumptiatvbbeing simple
is not a loss of generality, because of the following fact which we already mentioned for
vector configurations in Section 1 (see Lemma 1.12).

Lemma A.4. Let M* be an oriented matroid and suppose thiet is not simpleLet
M denote the oriented matroid obtained by deleting fubmall the loops and all but
one copy of all parallel classes of elemeritst M{ be the dual ofM,. ThenM* and
MG have the same graph of triangulatigrasd M and Mg the same graph of virtual
chambers

Proof. Deleting loops fromM is the same as deleting coloops front*, which does

not affect the collection of triangulations. On the other hangd/fifs obtained fromM,

by adding parallel elements, theW* is obtained fromM;; by areoriented Lawrence
constructionin the sense of Section 4.4 of [16]. Theorem 4.18 in that paper proves that
M* and M have the same collection of triangulations. The proof for flips follows the
same lines. O

A property of pseudo-configurations of points that will be useful later is that any point
in $?\ B induces an extension of the pseudo-configuration (perhaps not only one):

Proposition A.5. LetB be a pseudo-configuration of points id &d let pe S?\B.
Then there is a pseudo-configuratih = B U {p} which extend$3 in p. By this we
mean that for each g B there exists a pseudo-circle; $ontaining p and g such
that A" := A U{S: q € B} is an arrangement of pseudo-circles ag’, A') is

a pseudo-configuration of poinfsvhere A is the collection of pseudo-circles of the
pseudo-configuratiof).

Observe that in these conditions the oriented mattdig is a single element exten-
sion of the oriented matroid1 .

Proof. This is a consequence of Levi's Enlargement Lemma [4, Proposition 6.3.4].
This lemma asserts that for any arrangement of pseudo-cifclasS? and any pair of
pointsx, y € S there exists a pseudo-circgin S* which containsc andy and extends

A to an arrangemenk U {S} (unlessx andy already lie in a pseudo-circle df, in
which case we will not need to adg). Doing this iteratively withx = p andy € B
gives the result. |
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A.2. Basic Properties of Pseudo-Configurations

Definition A.6. Let 3 be a pseudo-configuration of points$h.

e We say that two point, g € S? (not necessarily i) areantipodalif {p, q} is
the intersection of two pseudo-circles of the arrangement.

e For any two different pointp, g € 5B which are non-antipodal we say tHad, q}
is anedgeof B.

e For three point9, q,r € B, we say tha{p, g, r} is a triangle of53 if no pseudo-
circle contains the three of them.

Remark A.7. 1. Single points, edges and trianglesibare the independent sets of
rank 1, 2 and 3 respectively of the oriented mattoit; pseudo-realized bg. We call
themsimplicesof B and call the rank of any subset ¢ B the rank of the maximal
simplices it contains. The rank dfis 0. The rank of any other set is 3, 2 or 1 according
to whether there is no pseudo-circle, exactly one pseudo-circle or more than one pseudo-
circle containing it.

2. If pandq are two antipodal points, then for every pseudo-ciftd the arrange-
ment either{p, q} C Sor p andq lie in opposite sides o§ (this is a consequence of
axiom 2 of Definition A.1). In other word$) andq are opposite elements in the oriented
matroid M.

3. If{p, q} C Bisapairof non-antipodal points, then there is a unique pseudo-circle
containing them (existence is axiom 1 of Definition A.2, uniqueness is the definition of
non-antipodal).

4. If{p, q, r}isatriangle no pair of them can be antipodal (a pseudo-circle containing
p andq will not containr, which proves that is not antipodal withp norq). Actually,
{p,q,r} is a triangle if and only if no pair of them is antipodal and the three pseudo-
circles passing through the eddgs q}, {p, r } and{q, r } are distinct (equivalently, two
of them are distinct).

Definition A.8. Let B be a pseudo-configuration of points 8 and letA be the
corresponding pseudo-circle arrangement. For any sabseB we define:

e Theconvex hullof T (denoted congr)) as the intersection of all the closed sides
of pseudo-circles of\ containingr.

e The relative interior of r (denoted relconit)) as the intersection( ), s S) N
(ﬂrc§,f¢s S*™), whereSranges over all the pseudo-circles/n

From the definition it follows that relcorv) is the topological interior of corfe)
in the intersection of all pseudo-circles containingnd that congr) is the closure of
relcont) both in S? and in that intersection of pseudo-circles. By axiom 3 of Defini-
tion A.1, conVr) is either a sphere or a ball of some dimensiog. In particular, itis a
topological manifold perhaps with boundary. Its interior, in the manifold sense, equals
relconut).

The following property of the convex hullis immediate from the definition; if C 5
are such that c convt), then conyo) C conUt).
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We are specially interested in cany and relconyr) whent is asimplexof B, i.e.
a point, segment or triangle. For a single point we trivially hgpg = relcon p) =

conv(p).

Lemma A.9. The following properties hold for convex hulls and relative interiors in
a pseudo-configuration of points

1. Let{p, q} be an edge and let & A be the unique pseudo-circle containing the
edge{p, q}. If S € A\{S} is such that p and q are on the sarfedosed side of
S, then exactly one of the two connected components {6, §} is completely
contained in one side of S

2. This component is independent of the choice’ @i, actually, it equalsrelconv
({p, g} Alsg conu{p, q}) = relconu{p, q}) U {p, q}.

3. Foratriangle{p,q,r}let §, § and S be the pseudo-circles containiti, g},
{p.r} and{q, r}, respectivelyand assume that € §°,q € § p € Sj. Then

relconu{p,q,rhH =S NS N % andconv(p, q,r) = §ﬂ§ﬂ§ (i.e the
closure ofrelconu{p, g, r})). They are respectively an open and a clogeuhll.

Proof. 1.Assume withoutloss of generality thatq € S*. SN S consists of two points
p’ andq’. By axiom 2 of Definition A.1 (withSandS exchanged) the two components of
S\{p’. '} coincide withS*NSandS NS. Letst = STNS. Thenstu{p,q} = S+
and hencep, q € st U {p’, g'}. Thus, one of the connected componentS¢fp, q} is
contained inst ¢ S™*. If the other one was contained B~, then we would have
{p,q} = {p’, 9’} which cannot be the case sinpandq are not antipodal.

2. Suppose that for two different pseudo-circBsind S’ we had one component of
S\{p, g} contained in one side & and the other component in one side®f Then the
intersection ofSwith the corresponding closed sides is disconnected and, by axiom 3 of
Definition A.1, it equals the two points, g. However, this impliep andq are antipodal.

This implies that ifS is a pseudo-circle other th&with p andg on the same closed
side, the componentof S\{p, q} contained in some closed side $fis contained in
relcon\{p, gq}). For the converse, |& andS’ be pseudo-circles containing respectively
p but notg andq but notp.

3.lItisclearthat contp, g, r) € S NS NS . Also, since any arrangement of three
pseudo circles ir§? is homeomorphic to the arrangement of three great circles with no

common pointS N § N § is a 2-ball whose interior i§ N S N §. It suffices
to show that§ N § N § c conv{p, g, r}). In other words, that iS* is a closed
hemisphere containingp, g, r}, then§ N § N § c S*.
By part 1, the three closed arcs copvq), conu(p, r) and conyg, r) are contained
in St. These three arcs are the boundary of the 2&aih S" NS . SinceS NS NS
N St has to be a ball or a sphere and contains the boundary of the gbral§ N §
either it equals the whole 2-ball (and we have finished) or it equals its boundary. However,
the latter is only possible & containsp, g andr, which is not the case (the intersection

of two closed 2-balls inS? is a circle only if this circle is the boundary of the two
2-balls). O
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Remark A.10. Parts 1 and 2 of the previous lemma have the following easy conse-
guence: Given an edde= {p,q} C Sof B and two pseudo-circleS,, §; such that
pe SN andg € §NS/. Thenrelcond) = SN§ NS andcond) = SNSINS;.

Also, for any pseudo-circl& e A other thanS, S N conv{p, q}) has at most one
point. Indeed, ifp andq lie on the same closed side &f, then the previous lemma
implies thatS Nnconu{p, q}) contains at mosp andg, and it cannot contain both since
p andq are not antipodal. Ifp andq lie in opposite open sides &, then letx and
y be the two antipodal intersection points 8fand S. Sincep andq lie in different
components oB\S, x andy lie in different components o8\{p, g} and hence only
one of them can be in cotyp, q}), again by the previous lemma.

The following statement is probably true for pseudo-configurations of points of arbi-
trary rank.

Lemma A.11. Leto andr be two disjoint simplices of a pseudo-configuration of points
Bin . The following conditions are equivalent

1. relcono) Nrelconut) # @.
2. (o, 7) is a vector(in the oriented matroid\1 5 of B).

Proof. (1= 2) Firstwe suppose = {p} is a single point. Then is an edge or a
triangle. Ift = {q, r} is an edge, then I, §, andS be pseudo-circles witfg,r} C S,

q € §\S andr € §\§,, so that relconir) = SN § N § for the appropriate choice

of the sign for the sides &, andS . Thenp € relconVr) C S. Hence{p, g, r} has rank

2 and contains the support of a circuit. The only way for this circuit to be orthogonal to
the cocircuits defined b, and S is ({p}, {g,r}). In the same way, it is a triangle,
thenp U 7 contains the support of a circuit and the only possibility for this circuit to be
orthogonal to the cocircuits defined by the three sidesisf({ p}, 7).

Finally, for generalo and r we consider any extensioi’ of B by a pointp €
relconWt) N relcono), as in Proposition A.5. The@p, o) and(p, t) are vectors in
the extended oriented matraidiz and, hence(o, 1) is a vector inM gz and inMz.

(2= 1) Sinceeveryvectoris acomposition of circuits, there is one ci¢€dit C ™)
with CT C o andC~ C 1. Sinceo andt are simplicesC* #£ @ £ C~. We consider
separately the following cases:

In caser (or 1) is a vertexX p}, the orthogonality between the vect¢p}, ) and the
cocircuits which define relcoriv) implies trivially thatp € relconut).

We assume now that = {p, q} andt = {r, s} are both edges. L&, andS; be the
unique pseudo-circles containiagandz, respectively. IfS, = S, thenos U r has rank
2 and every circuit with support containeddnJ t has at most three elements. Thus,
one of C* andC~ has only one element (s&/" = {p}) and the other has two (i.e.
C~ = 7). However, this implies thap is in the open arc relcoriv) and, hence, the two
open arcs relcorig) and relconyr) in S, = S, intersect.

If S, # S, then orthogonality between the vecter, r) and the cocircuits defined
by S, and S, implies thatr has exactly one point on each sideSf o one point on
each side of and thusC*t = o andC~ = t. In particular,S, N relconyz) # @ and
S, Nrelcono) # @.
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Let x be the point (not necessarily #) in S, Nrelcon o) C S, N S,. We claim that
X € relcont). Otherwisey € relconyr) for the only pointy other tharx in S, N S;.
However, in this case in the extension®by the pointsx andy we have the following
circuits supported ofp, q,r, S, X, y}:

(+a +, 07 07 > 0)5
(07 O’ +5 +5 07 _)’
(0,0,0,0,+, +).

By eliminatingx andy we get the vecto(+, +, +, +, 0, 0). Theno U t is the support
of two different and not opposite vectors, and eliminating in them we would get a
circuit supported on three of the four points ®fU t. This contradicts the fact that
(C*t,C™) = (o, ) is acircuit.

Inthe cases not considered yet,) r has at least five elements. We have the following
possibilities:

e CtisapointpandC-isatrianglgq, r, s}. Thenrelconyr) is an open subset &.
By the first case studieg, € relconWt), whichimplies that congs)Nrelconut) #
#and since coni ) is the topological closure of relco@), relcon o )NrelconVt)

# 0.

e BothC* andC™ are edges. By the second case studied, rel&@hyand relconyC )
are open edges which cross each other transversally. No matter whedinelrr
coincide withC*™ andC~ or have one more element, it is clear that reladanwn
relconut) # @.

e C* ={p}isapointandC~ = {q,r} is an edge. Le§q , be the unique pseudo-
circle containingC~. Again, by the first case studieg, € relcon«{q, r}). First
suppose = {q, r}. The cases in which is a point or an edge have already been
discussed, so assume itis a triangle. Orthogonality of ) with the circuit defined
by Sq.ry implies thato has one point on each side 8§, which, together with
the fact thatp is in the open segment fromto r, makes it clear that cofiv) N
relconvo) # @. Since relconw ) is open and conie) is the closure of relcor(e),
we have relcong) Nrelcont) # @.

Finally suppose = {q,r, s} for somes. The argument is almost identical to
the previous one. In this case, orthogonality®ft) with the cocircuit defined by
Sq,ry implies thato has some point in the open side$§ (; containings. Sincep
is a point in the open segment fragrto r, it is clear then that core) intersects
the open triangle relcortv). Since relconyr) is open and con) is the closure
of relcono), relcon o) NrelconVt) # @. |

A.3. How to Adapt Sections4 to Non-Realizable Oriented Matroids

Inwhat follows we show that all the results in the previous sections hold for non-realizable
oriented matroids as well, with only some changes in the language to be used.

Sectionl

We start by giving the definition of triangulation of an oriented matroid.
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Definition A.12 [4, Definition 9.6.1]. LetM be an oriented matroid of rark Let 7
be a collection of bases @d¥1. 7 is a triangulation ofM if the following properties are

satisfied:
1. Any pairo, T of elements off intersect properlyneaning by this that for any
single element extensiaf U p of M, if there aresy C o andry C 7 such that
({p}, o0) and({ p}, 7o) are circuits ofM U p, then there is alsoa c o N7 such

that({ p}, p) is a circuit as well.
2. Forevery independent subsaif sizek — 1 such thatthere isa € 7 witht C o,
eithert is in a facet ofM (i.e. there is a nonnegative cocircuit vanishingrror

there are at least two basesZincontainingr.

In Theorem 2.4 of [16] it is proved that:

LemmaA.13. LetM be an oriented matroid of rank ket7 be a collection of bases
of M. Then7 is a triangulation ofM if and only if

1. For every independent subgetf size k- 1 such thatthereisa € 7 witht C o,

either
e T is contained in a facet oM (i.e. there is a positive cocircuit vanishing af),

or
o there is exactly another’ € 7 with t C ¢’ ando ando’ are in opposite sides

of t (i.e. the unique cocircuit vanishing onhas opposite sign at the elements

o\t ando’\1).
2. There is a single element extensighU p of M such that exactly one element
of 7 has pe convaupy (o) (Meaning tha({p}, o) is a circuit of M U p).

Moreover any triangulation7 of M coversM meaning by this that if\l U p is a
single element extension in which there is a circuit of the fanpy, t), then there exists
another circuit({p}, o) of M U p whereo is a subset of an element 6t

It would be interesting for us to find a characterization of triangulations for a rank 3
oriented matroid pseudo-realized as a pseudo-configuration of @ints

Lemma A.14. Let M be a simple rani3 oriented matroid and lef3 be a pseudo-
configuration of points in the sphere? S/hich pseudo-realize8. A collection7 of
triangles of M (or of B) is a triangulation ofM if and only if

1. 7 realizes geometrically as a simplicial complex in the sphieeefor any pair of
triangleso, t € 7 one has

convo) N conUt) = convo N T).
2. T covers the “convex hull” of the pseudo-configuratiBni.e.

U cono) = U conv(o).

oeT o is a triangle of B
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Proof. We first see that if/ is a triangulation ofM, then it satisfies 1 and 2. In

fact, 1 follows from axiom 1 in Definition A.12: if there is a poit € conVo) N

conu(t)\cono N t), then this point provides an extension (via Proposition A.5) which

violates the axiom. Inthe same way, property 2 follows from the final part of LemmaA.13.
Conversely, le” be in the conditions of the statement and let us seeftsstisfies

1 and 2 of Lemma A.13. Statement 2 is easy: any ppiatS? in the relative interior of

a triangle of7 provides an extension of the oriented matroid in the required conditions.
To prove 1, letr = {p, q} be an edge of a trianglke = {p, gq,r} € 7, and suppose

thatt is not in a facet ofM. This means that there is a pomt 5 such that ands lie

in opposite sides of the pseudo-circle containingeta € S? be a point “very close” to

the relative interior of and on the side on whichis. This point is in relcon¢{p, g, s})

and, hence, by condition 2 in the statement, thereds @ 7 such thata € convo”).

The only way in whicho ando’ can intersect properly in the sense of condition 1 in

the statement is that C o'. Thus, there is @’ € 7 with t C ¢’ and witho ando’

in opposite sides of. Finally, there cannot be any othef € 7 with t C o” because

then condition 1 would not be fulfilled either ferando” or for o’ ando”. O

Remark A.15. InfactlJ, is a triangle os CONM@) = conuB), but we do not make use
of this assertion.

It is still true that an acyclic circuit of an oriented matroid can be triangulated in
exactly two ways and thus we can define virtual chambersofising Definition 1.1
with the only substitution of “full-dimensional simplices @’ by “bases ofM.” With
this, Theorem 1.3 is proved in Theorem 3.8 of [16] for non-realizable oriented matroids.
Lemma 1.4 says that the relative interiors of any two simplices of a virtual chamber
intersect. This statement makes sense for an oriented matroid if it is pseudo-realized as
a pseudo-configuration of points and the relative interior of a simplex is defined as
in Definition A.8. However, the proof given in Section 1 is not valid for non-realizable
oriented matroids (this is related to Remark 2.5(v) of [16] where itis said not to be known
whether a circuit can have its positive and negative parts respectively contained in two
simplices of a triangulation). Thus, we provide a new proof for it:

Lemma A.16 (Lemma 1.4 for Oriented Matroids).Let M be a rank3 oriented ma-
troid pseudo-realized by a point configuratiBrin S*. LetC be a virtual chamber oM.
Then for any pair of simplices,  in C, the relative interiorgelcono’) andrelconVt)
intersect

Proof. Let7 be the triangulation which correspondstin the dual oriented matroid
M*. Thelink7” := linkr[B\ (o Ut)] of B\ (0 Ut) in 7 is atriangulation of the contrac-

tion M*/[B\(c Ut)][16, Theorem 2.4(e)]. Thus, the gBwf triangles of3 complemen-

tary to simplices o’ is a virtual chamber of the oriented matrgid restricted tar U t.

Itis clear that’’ consists of those triangles 6fcontained i U t. Since the restriction

of M is a realizable oriented matroid (it has at most six elements), Lemma 1.4 holds for
some realization of it and in this realization relcémynrelcont) # @ is equivalent to

(o, 7) being a vector in the oriented matroid. However, thenr) is a vector in the orig-
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inal oriented matroid\ too, and Lemma A.11 implies that relcaay Nrelcont) # ¢
in the pseudo-realizatioB. |

Again, we can use Definition 1.6 of flips in a triangulation as it is for oriented ma-
troids. This is equivalent to the definition given in Definition 3.11 of [16] as shown in
Definition 3.13 of [16]. Proposition 1.7 and Theorem 1.8 hold in this setting since their
proofs only use oriented matroid duality and the fact that any link in a triangulation is
a triangulation of the contraction, which we have already used and is proved in Theo-
rem 2.4(d) of [16]. Lemma 1.9 holds in the oriented matroid setting trivially, since every
rank 2 oriented matroid is realizable.

As in Section 1, a simplex in a pseudo-configuration of poinfsis said to be empty
if conv(o) N B = o. With this, Definition 1.10 of a flip of a rank 3 virtual chamber on
an empty edge, and Corollary 1.11 hold without change. Lemma 1.12 has already been
proved as Lemma A.4, and Definition 1.13 comes from general oriented matroid theory.

Summing up, we have defined virtual chambers of an oriented matroid so that they
are in (flip-preserving) bijection with triangulations of the dual oriented matroid. In
particular, for a corank 3 oriented matrald, triangulations ofM are in one-to-one
(flip-preserving) correspondence with virtual chambers of the dual oriented matrgid
which realizes as a pseudo-configuration of point§an

Section?2

As in Section 2, given two edgés andl, of a pseudo-configuration of points and an
empty triangler, we say that; andl, cross each other i1, |,) is a circuit and thalt;
crosseg if it crosses some edge of

Corollary A.17. Let B be a pseudo-configuration of points if. et o be a simplex
and let } and L, be two edgesThen

1. o is empty if and only if there is no circuit Z such that Z o and Z™ is a single
point

2. (I3, 1) is a circuit (i.e. I; and L, cross each othérif and only ifrelconul;) and
relconul,) intersect in a single point

3. If I and L, are empty edges amglconul;) N relconul,) # @, then(ly, ly) is a
circuit.

Proof. 1. If (Z*, {p}) is a circuit, thenp € relcon Z*) C convo). On the other
hand,p ¢ o sinceZ™ U {p} C o U {p} contains the support of a circuit. Reciprocally,
if o is not empty then lep &€ o be in cono). From the geometric description of the
convex hull of a triangle and an edge given in Lemma A.9 it follows thatrelconyr)
for somer C o. Then, by Lemma A.11, we have that {p}) is a vector and, sinceis
independent, it is a circuit.

2. If (I3, 1) is a circuit, then it is a vector and the pseudo-circles contaihiragnd
I, are distinct. Then relcorty) N relconul,) # @ by Lemma A.11 and it has only one
point by Remark A.10. Conversely, if relcogy) N relconuly) # @, then(ly, l,) is a
vector by Lemma A.11. Itis a circuit unleggJ 1, has rank 2, in which cageandl, are
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contained in a pseudo-circk If two arcs in a pseudo-circle intersect in their relative
interiors, then they intersect in more than one point.

3. Asinpart 2, relcond;) Nrelconul,) # @ implies that(l4, |,) is a circuit unles$;
andl, are contained in a pseudo-cir@and overlap in their relative interiors. However,
this implies that one of them is not empty. O

In the statement of Lemma 2.2 (and in what follows) the sentence “two venpices
andq lie on opposite sides of an edfehas to be understood as “the unique (up to sign
reversal) cocircuit vanishing drhas opposite signs gtandq” (which is what is shown
in the proof of Lemma 2.2) or equivalently ag &ndq lie on opposite sides of the unique
pseudo-circle containing the edb&With this in mind, the proofs of Lemma 2.2 and
Propositions 2.3 and 2.4 are valid for pseudo-configurations without change since they
only use topological or matroidal tools.

ForLemma 2.5 it suffices to observe that it involves at most six points, so the restricted
oriented matroid can be realized. We just apply Lemma 2.5 to a realization and observe
that the resulting circuit must be a circuit of the whole pseudo-configuration too.

For Definition 2.6 to make sense we need to prove the following:

Lemma A.18. Letl = {p, q} be an empty edge of a pseudo-configuration of pdits
in §? and let s t, u be three points such that the edges (s, t} and r' = {t, u} cross L
Then the following are equivalent

1. u and p are on the same side of r
2. The intersection pointelconur’) N relconul) is closer to p(along I) than the
pointrelconyr) N relconul).

Proof. Let p’ = relconr’) Nnrelcon«l) and consider an extension Bfby a point at
p’ as given by Proposition A.5.

By axiom 2 of Definition A.1,p’ is closer top (alongl) than the point relconv) N
relconyl) if and only if p’ andp are on the same side of the pseudo-sphere containing
i.e. in the same side of On the other handy’ andu are clearly on the same sidergfso
that p’ and p are on the same side pff and only if u and p are on the same side 0f(

With this, the proof of Corollary 2.7 needs no changes.

Section3

Definition 3.1 adapts without problem to pseudo-configurations of points: a virtual cham-
berC is said to lie on a certain side of an edgéthere is a triangle irC contained in
one (closed) side of the pseudo-circle contaiding

The proof of Proposition 3.2 is based in the fact thdijfis a subconfiguration of a
configuration3 and we have a triangulatidfy of By, then there is a triangulatioh of
B with 7o ¢ 7. This holds in the oriented matroid setting substitutfigand 5 by a
restriction M, of an oriented matroid, as shown in Corollary 2.11 of [16].

The proof of Theorem 3.3 is completely based on dealing with circuits and cocircuits,
and thus it is valid for oriented matroids without change.
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For the last results of Section 3 we need to find an analogy in the oriented matroid
setting of a geometric chamber. The natural one is the following:

Definition A.19. Let B be a pseudo-configuration of points in the sph&teA point

p € S is said to benterior and generidf it lies in the convex hull of some triangle of
B but not in the convex hull of any edge Bf ThechamberC, associated to an interior
generic pointp is the collection of triangles df which havep in their convex hull.

Geometrically, the chambér corresponding to a poinp can be thought of as the
region of cony3) obtained by the intersection of the convex hulls of all the triangles
of C. As in the realizable case, we can therefore definechi@nber complerf B as
the coarsest common refinement of all the triangulation8 of, equivalently, as the
decomposition of cor\B) defined by the chambers #f. That this decomposition is
a cellular decomposition follows from the following properties of a chantbef B
(considered as a closed regionSf):

e By definitionC is the intersection of certain closed hemispheres. By axiom 3 of
Definition A.1,C is either a sphere or a closed ball. Since there exists a generic
interior point p which is in the relative interior of every triangle 6fand since
there are finitely many triangles & we have thaf has a non-empty interior and
hence it has dimension 2.

e SinceC is contained in the convex hull of any of its triangl€scannot contain a
pair of antipodal points and in particular cannot contain an entire pseudo-circle.
Thus,C is a 2-dimensional ball.

e Let S, ..., & be a family of pseudo-circles df oriented so that the chamber
C equalsﬂ:‘:1 S" in an irredundant way. Then the boundary of the chantber
(which is homeomorphic t&' by the previous point) is a union &fclosed arcs
each contained in one of ti&’s.

e LetC andC’ be two chambers. If their interiors have a common pginthen this
point is clearly interior and generic and hence every triangleonin C’ is also in
Cp. Since a chamber cannot properly contain another one, we conclude-thét

e LetC andC’ be two different chambers and suppose that their boundaries intersect
in a non-empty sek. | is an intersection of closed sides and, hence, itis a ball or a
sphere of dimension at most 1. If it has dimension 1, the@ let expressed as an
irredundant intersection of closed hemispheres, as above. One of the pseudo-circles
S in this expression intersectsin a one-dimensional arc, attlandC’ have to
be contained respectively in the two opposite closed hemispheres defigedrby
particular,] ¢ § andl is a closed arc.

If the intersection has dimension 0, then we see that it has only one point. Let
x be one of the intersection points and &t, ..., S be the set of all the open

hemispheres such thate S and one of the chambefs or C is contained i§
foreveryi =1,...,k. Letl’ = ﬂik:l S'. 1’ containsl, 1’ contains the antipodal
pointy to x and is an intersection of closed hemispheres. Sihtea sphere or a
ball, eitherl” = {x, y}, in which casd = {x} becausé cannot contain antipodal
pairs, orl contains an arc joining to y. However, in the second case, sinde the
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intersection ofl’ with some closed pseudo-spheres all of which contdimtheir
interior, | contains a subarc of this arc and, in particulés not zero-dimensional.

For the same reasons as in the realizable case, every chamber is in particular a virtual
chamber and edgesinthe chamber complex correspondto flips (using the characterization
in Lemma A.14 for triangulations of a pseudo-configuration of paf)tdMoreover, flag
chambers of the oriented matrold appear as chambers in any pseudo-realization of it.
With this, the proofs of Proposition 3.4, Corollary 3.5, Lemmas 3.6—-3.8 and Theorem 3.9
are valid in the context of non-realizable oriented matroids.

For Corollary 3.10, we state and prove the new version of it as follows:

Corollary A.20. Let M* be a corank3 oriented matroid Then

1. The graph of triangulations af1* is connected
2. If M* is acyclic then the graph i8-connected

Proof. ByLemma A.4, without loss of generality we can assume that the dual oriented
matroid M of M* is simple. LetB be a pseudo-realization gf* in S?. By Theorem

3.9, any virtual chamber @& which is not a chamber can be joined through three vertex-
disjoint paths to three distinct chambers. On the other hand, any two chambers can be
connected by a sequence of flips since ¢#nis eitherS? or homeomorphic to a disk

and since two chambers differ by a flip if and only if they are adjacent. Moreovet; if

is acyclic, then coniB) = S? and we prove below that the subgrapl@af4) induced by
triangulations which appear as chambers of the chamber complex is 3-connected (this
graph is the adjacency graph of the chamber complex). As in the realizable case, this
implies that the grapks(.A) is 3-connected.

We now prove that the adjacency graph of the chamber complex is 3-connected, i.e.
that it has at least four vertices and and that it remains connected when we remove
any two chambers. Sindg is totally cyclic, any triangulatiory” of B has at least four
triangles and no two of them belong to the same chamber (by Definition 1.1). Thus, there
are at least four chambers. Since the intersection of any two closed chambers is empty, a
point or a 1-ball, removing them from the chamber complex leaves something connected
in the sphere, homeomorphic to an open 2-ball or an open annulus. In particular, the
adjacency graph of the chamber complex remains connected when removing two of its
vertices. O

Sectiord

Our next (and final) goal is to show that, for a pseudo-configuration of pdirits

S, pseudo-chamber complexes can be defined and every virtual chamber realizes as
a pseudo-chamber of some pseudo-chamber complgx @fefinitions 4.1 and 4.2

can be naturally translated into pseudo-configurations of points. Now we observe that
the collection of arcgconu{p, q}) : {p, q} is an edge of3} defines a pseudo-chamber
complex of B. Thus, throughout Section 4 we can assume kit a pseudo-configu-

ration of points inS? given with an initial pseudo-chamber complex and this ini-

tial pseudo-chamber complex will take the role of the chamber complex of a vector
configuration.
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Taking into account the properties of pseudo-configurations of points enumerated in
Lemma A.9, Lemma A.11 and Corollary A.17, all the notions and proofs provided in
Section 4 are valid for pseudo-configurations of point§inFor example, in the proof
of Proposition 4.6 (triangulations of an oriented matroid are the same as triangulations of
any of its pseudo-chamber complexes) the result for the initial pseudo-chamber complex
follows from Lemma A.14.
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