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Abstract: The graphical lasso [5] is an algorithm for learning the struc-
ture in an undirected Gaussian graphical model, using ¢; regularization to
control the number of zeros in the precision matrix ® = 71 [2, 11]. The
R package GLASSO [5] is popular, fast, and allows one to efficiently build a
path of models for different values of the tuning parameter. Convergence
of GLASSO can be tricky; the converged precision matrix might not be the
inverse of the estimated covariance, and occasionally it fails to converge
with warm starts. In this paper we explain this behavior, and propose new
algorithms that appear to outperform GLASSO.

By studying the “normal equations” we see that, GLASSO is solving the
dual of the graphical lasso penalized likelihood, by block coordinate ascent;
a result which can also be found in [2]. In this dual, the target of estimation
is X, the covariance matrix, rather than the precision matrix ®. We propose
similar primal algorithms P-GLASSO and DP-GLASSO, that also operate by
block-coordinate descent, where ® is the optimization target. We study all
of these algorithms, and in particular different approaches to solving their
coordinate sub-problems. We conclude that DP-GLASSO is superior from
several points of view.
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1. Introduction

Consider a data matrix X,,p, a sample of n realizations from a p-dimensional
Gaussian distribution with zero mean and positive definite covariance matrix 3.
The task is to estimate the unknown 3 based on the n samples — a challenging
problem especially when n < p, when the ordinary maximum likelihood esti-
mate does not exist. Even if it does exist (for p < n), the MLE is often poorly
behaved, and regularization is called for. The Graphical Lasso [5] is a regulariza-
tion framework for estimating the covariance matrix 3, under the assumption
that its inverse ® = X! is sparse [2, 11, 8]. © is called the precision matrix; if
an element 6;;, = 0, this implies that the corresponding variables X; and X}, are
conditionally independent, given the rest. Our algorithms focus either on the
restricted version of © or its inverse W = @', The graphical lasso problem
minimizes a ¢;-regularized negative log-likelihood:

migig_%ize f(®) := —logdet(®) + tr(SO) + \||O||;. (1.1)

Here S is the sample covariance matrix, ||®]|; denotes the sum of the absolute
values of ®, and A is a tuning parameter controlling the amount of ¢; shrinkage.
This is a semidefinite programming problem (SDP) in the variable © [4].

In this paper we revisit the GLASSO algorithm proposed by Friedman, Hastie
and Tibshirani [5] for solving (1.1); we analyze its properties, expose problems
and issues, and propose alternative algorithms more suitable for the task.

Some of the results and conclusions of this paper can be found in [2], both
explicitly and implicitly. We re-derive some of the results and derive new results,
insights and algorithms, using a unified and more elementary framework.
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Notation We denote the entries of a matrix A, x, by a;;. || A||1 denotes the
sum of its absolute values, ||A[ o the maximum absolute value of its entries,
||A||F is its Frobenius norm, and abs(A) is the matrix with elements |a;;|. For
a vector u € R, |lu||; denotes the 1 norm, and so on.

From now on, unless otherwise specified, we will assume that A > 0.

2. Review of the GLASSO algorithm

We use the frame-work of “normal equations” as in [6, 5]. Using sub-gradient
notation, we can write the optimality conditions (aka “normal equations”) for
a solution to (1.1) as

~@ ' +S+ AT =0, (2.1)

where I is a matrix of component-wise signs of ©:

ik = sign(f;r) if 65 #0 (2.2)
vik € [-1,1]if0;, =0 :

(we use the notation 7, € Sign(6,1)). Since the global stationary conditions of
(2.1) require 0;; to be positive, this implies that

where W = @~
GLASSO uses a block-coordinate method for solving (2.1). Consider a parti-
tioning of ® and I

©11 012 T v )
o= , T= 2.4
< 021 02 > ( Yo1 V22 (2:4)
where @11 is (p —1) x (p — 1), @12 is (p — 1) x 1 and Ha2 is scalar. W and S

are partitioned the same way. Using properties of inverses of block-partitioned
matrices, observe that W = ©~! can be written in two equivalent forms:

(@11 o 912921)71 _Wllh
Wi wia B 022 022 (2 5)
W21 W22 . 1 621W110,5
022 9%2
@—1 + @f11912921@f11 _ @f11912
o 11 (022—021©,,'612) 022—02107,' 012 (2 6)
) .

(022—021©7,'012)

GLASSO solves for a row/column of (2.1) at a time, holding the rest fixed. Con-
sidering the pth column of (2.1), we get

— Wiz +S12 + Ay =0. (2.7)



2128 R. Mazumder and T. Hastie

Reading off wyy from (2.5) we have

wiz = —Wi1012/02 (2.8)
and plugging into (2.7), we have:
(7]

Wlli + S12 + )\’712 =0. (29)

GLASSO operates on the above gradient equation, as described below.
As a variation consider reading off wis from (2.6):

01,61,
(622 — 02107,'612)

The above simplifies to

+ S12 + )\’712 =0. (210)

@1_1101211)22 + 812 + )\‘712 =0, (211)

where way = 1/(022 — 02161_11012) is fixed (by the global stationary conditions
(2.3)). We will see that these two apparently similar estimating equations (2.9)
and (2.11) lead to very different algorithms.

The GLASSO algorithm solves (2.9) for 3 = 012/652, that is

W11IB+512+/\"}’12 = 0, (212)

where v,5 € Sign(8), since a2 > 0. (2.12) is the stationarity equation for the
following ¢; regularized quadratic program:

Hgg%rz{lj%e {iBWuB+B's12+ A|B|1}, (2.13)
where W17 = 0 is assumed to be fixed. This is analogous to a lasso regression
problem of the last variable on the rest, except the cross-product matrix Sy is
replaced by its current estimate W ;. This problem itself can be solved efficiently
using elementwise coordinate descent, exploiting the sparsity in 8. From 3, it
is easy to obtain Wiz from (2.8). Using the lower-right element of (2.5), 025 is
obtained by

Al = W22 — ﬁ/VAVm. (214)
022

Finally, 912 can now be recovered from ﬁ and égg. Notice, however, that having
solved for B and updated w2, GLASSO can move onto the next block; disentan-
gling 015 and 622 can be done at the end, when the algorithm over all blocks
has converged. The GLASSO algorithm is outlined in Algorithm 1. We show in
Lemma 3 in Section 8 that the successive updates in GLASSO keep W positive
definite.

Figure 1 (left panel, black curve) plots the objective f (G)(k)) for the sequence
of solutions produced by GLASSO on an example. Surprisingly, the curve is not
monotone decreasing, as confirmed by the middle plot. If GLASSO were solving
(1.1) by block coordinate-descent, we would not anticipate this behavior.

A closer look at steps (2.8) and (2.9) of the GLASSO algorithm leads to the
following observations:



GLASSO: New insights 2129

Algorithm 1 GLASSO algorithm [5]
1. Initialize W =S + AL

2. Cycle around the columns repeatedly, performing the following steps till convergence:

(a) Rearrange the rows/columns so that the target column is last (implicitly).

(b) Solve the lasso problem (2.13), using as warm starts the solution from the previous
round for this column.

(¢) Update the row/column (off-diagonal) of the covariance using wi2 (2.8).

(d) Save @ for this column in the matrix B.

3. Finally, for every row/column, compute the diagonal entries éjj using (2.14), and con-
vert the B matrix to ©.

© o
o N
—— Primal Objective o g
o —— Dual Objective <
=
Q >
] S
0 o
8 8 g 3
c s ° g o
S v i} o
5 £ £
£ 0 a 5
[8) T o B 9
E o S 3
& 9 e 3
]
<
N i
o
: 2 |
T T T T T T T T T T T ? T T T T T
100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
Iteration Index Iteration Index Iteration Index

Fic 1. [Left panel] The objective values of the primal criterion (1.1) and the dual crite-
rion (4.1) corresponding to the covariance matric W produced by GLASSO algorithm as a
function of the iteration index (each column/row update). [Middle Panel] The successive dif-
ferences of the primal objective values — the zero crossings indicate non-monotonicity. [Right
Panel] The successive differences in the dual objective values — there are no zero crossings,
indicating that GLASSO produces a monotone sequence of dual objective values.

(a) We wish to solve (2.7) for 815. However 615 is entangled in W11, which is
(incorrectly) treated as a constant.

(b) After updating 612, we see from (2.6) that the entire (working) covariance
matrix W changes. GLASSO however updates only wi5 and wo;.

These two observations explain the non-monotone behavior of GLASSO in min-
imizing f(©). Section 3 shows a corrected block-coordinate descent algorithm
for ®, and Section 4 shows that the GLASSO algorithm is actually optimizing
the dual of problem (1.1), with the optimization variable being W.

3. A corrected GLASSO block coordinate-descent algorithm

Recall that (2.11) is a variant of (2.9), where the dependence of the covariance
sub-matrix Wy; on 612 is explicit. With e = @12was (with way > 0 fixed),
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Algorithm 2 P-GLASSO Algorithm
1. Initialize W = diag(S) + A\I, and @ = W1,

2. Cycle around the columns repeatedly, performing the following steps till convergence:
(a) Rearrange the rows/columns so that the target column is last (implicitly).
(b) Compute 9;11 using (3.3).

(c) Solve (3.1) for o, using as warm starts the solution from the previous round of
row/column updates. Update 812 = &/wa2, and O22 using (3.2).

(d) Update ® and W using (2.6), ensuring that OW = I,,.

3. Output the solution @ (precision) and its exact inverse W (covariance).

®;; > 0, (2.11) is equivalent to the stationary condition for

nﬁg&gﬁe{%a’@ﬁla—l—a’su + A1} (3.1)

If & is the minimizer of (3.1), then 012 = & /waa. To complete the optimization
for the entire row/column we need to update fa3. This follows simply from (2.6)

. 1 ) .
Ooo = — + 021@111012, (32)
W22
with Wao2 = So2 + A
To solve (3.1) we need @1 for each block update. We achieve this by main-
taining W = © ! as the iterations proceed. Then for each block

e we obtain @7 from
O = W11 — Wiawa /wa; (3.3)

e once 0, is updated, the entire working covariance matrix W is updated
(in particular the portions W1y and wys), via the identities in (2.6), using
the known ©7;".

Both these steps are simple rank-one updates with a total cost of O(p?) opera-
tions.

We refer to this as the primal graphical lasso or P-GLASSO, which we present
in Algorithm 2.

The P-GLASSO algorithm requires slightly more work than GLASSO, since an
additional O(p?) operations have to be performed before and after each block
update. In return we have that after every row/column update, @ and W are
positive definite (for A > 0) and OW =1,,.

4. What is GLASSO actually solving?

Building upon the framework developed in Section 2, we now proceed to estab-
lish that GLASSO solves the convex dual of problem (1.1), by block coordinate
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ascent. We reach this conclusion via elementary arguments, closely aligned with
the framework we develop in Section 2. The approach we present here is intended
for an audience without much of a familiarity with convex duality theory [4].

Figure 1 illustrates that GLASSO is an ascent algorithm on the dual of the
problem 1.1. The red curve in the left plot shows the dual objective rising mono-
tonely, and the rightmost plot shows that the increments are indeed positive.
There is an added twist though: in solving the block-coordinate update, GLASSO
solves instead the dual of that subproblem.

4.1. Dual of the £1 regularized log-likelihood

We present below the following lemma, the conclusion of which also appears in
[2], but we use the framework developed in Section 2.

Lemma 1. Consider the primal problem (1.1) and its stationarity conditions
(2.1). These are equivalent to the stationarity conditions for the boz-constrained

SDP ) )
maximize ¢(T') :=logdet(S+T)+p (4.1)
T: T flee <A

under the transformation S + r=oe .

Proof. The (sub)gradient conditions (2.1) can be rewritten as:
—(S+AaT)'+©e=0 (4.2)

where T' = sgn(®). We write T' = AT and observe that ||T'||, < A. Denote by
abs(®) the matrix with element-wise absolute values.
Hence if (©,T') satisfy (4.2), the substitutions

I'=AI'; P =abs(®) (4.3)

satisfy the following set of equations:

—(S+1I)! —l:P*sgn(f‘) =0
P (abs(I') = A1,1,) = 0 (4.4)
ITlee < A

In the above, P is a symmetric p X p matrix with non-negative entries, 1p1;
denotes a pxp matrix of ones, and the operator ‘*’ denotes element-wise product.
We observe that (4.4) are the KKT optimality conditions for the box-constrained
SDP (4.1). Similarly, the transformations ® = P % sgn(I') and T' = I'/\ show
that conditions (4.4) imply condition (4.2). Based on (4.2) the optimal solutions
of the two problems (1.1) and (4.1) are related by S+ T' = @1, O

Notice that for the dual, the optimization variable is T', with S+ T' = @1 =
W. In other words, the dual problem solves for W rather than @, a fact that
is suggested by the GLASSO algorithm.
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Remark 1. The equivalence of the solutions to problems (4.1) and (1.1) as de-
scribed above can also be derived via convex duality theory [4], which shows that
(4.1) is a dual function of the ¢; regularized negative log-likelihood (1.1). Strong
duality holds, hence the optimal solutions of the two problems coincide [2].

We now consider solving (4.4) for the last block 7, (excluding diagonal),
holding the rest of I" fixed. The corresponding equations are

—012 + P12 *sgn(y,) = 0
P12 * (abs(¥12) = Alp,-1) = 0 (4.5)
H’712||oo < A

The only non-trivial translation is the 815 in the first equation. We must express
this in terms of the optimization variable 7,,. Since s13 + 9,5 = W12, using the
identities in (2.5), we have Wl_l1 (812 + ¥12) = —012/022. Since O35 > 0, we can
redefine p1o = p12/6a22, to get

Wi (s12 +F12) + P12 #sgn(¥y) = 0
P12 * (abs(¥y) —AL,—1) = 0 (4.6)
[Yi2lloo < A

The following lemma shows that a block update of GLASSO solves (4.6) (and
hence (4.5)), a block of stationary conditions for the dual of the graphical lasso
problem. Curiously, GLASSO does this not directly, but by solving the dual of
the QP corresponding to this block of equations.

Lemma 2. Assume W11 = 0. The stationarity equations

Wllﬁ + S12 + )\’3’12 =0, (47)

where Y14 € Sign(3), correspond to the solution of the ¢1-regularized QP:

minimize $6'Wi18+ @'sta + N8 (48)

Solving (4.8) is equivalent to solving the following box-constrained QP:

miné}%mi%e 1(s12 +v) Wi (s12 +7) subject to ||v]s < A, (4.9)
yERP-

with stationarity conditions given by (4.6), where the B and Y12 are related by

B=-Wi(si2 +712)- (4.10)

Proof. (4.7) is the KKT optimality condition for the ¢; regularized QP (4.8).
We rewrite (4.7) as

B+ Wil(siz2 + My,) = 0. (4.11)

Observe that 3; = sgn(5;)|B:| Vi and |95 lsc < 1. Suppose B, 4, satisfy (4.11),
then the substitutions

H19 = M1, D12 = abs(B) (4.12)
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in (4.11) satisfy the stationarity conditions (4.6). It turns out that (4.6) is equiv-
alent to the KKT optimality conditions of the box-constrained QP (4.9). Simi-
larly, we note that if 4,5, P12 satisfy (4.6), then the substitution

Y12 = Y12/ A B =DPi2* sgn(¥12)
satisfies (4.11). Hence the 8 and 7,, are related by (4.10). O

Remark 2. The above result can also be derived via convex duality theory[4],
where (4.9) is actually the Lagrange dual of the ¢; regularized QP (4.8), with
(4.10) denoting the primal-dual relationship. [2, Section 3.3] interpret (4.9) as
an ¢; penalized regression problem (using convex duality theory) and explore
connections with the set up of [8].

Note that the QP (4.9) is a (partial) optimization over the variable wiso
only (since s1s is fixed); the sub-matrix W1; remains fixed in the QP. Exactly
one row/column of W changes when the block-coordinate algorithm of GLASSO
moves to a new row/column, unlike an explicit full matrix update in W17, which
is required if 815 is updated. This again emphasizes that GLASSO is operating on
the covariance matrix instead of ®. We thus arrive at the following conclusion:

Theorem 4.1. GLASSO performs block-coordinate ascent on the box-constrained
SDP (4.1), the Lagrange dual of the primal problem (1.1). Each of the block steps
are themselves box-constrained QPs, which GLASSO optimizes via their Lagrange
duals.

In our annotation perhaps GLASSO should be called DD-GLASSO, since it per-
forms dual block updates for the dual of the graphical lasso problem. Banerjee,
Ghaoui and d’Aspremont [2], the paper that inspired the original GLASSO arti-
cle [5], also operates on the dual. They however solve the block-updates directly
(which are box constrained QPs) using interior-point methods.

5. A new algorithm — DP-GLASSO

In Section 3, we described P-GLASSO, a primal coordinate-descent method. For
every row/column we need to solve a lasso problem (3.1), which operates on a
quadratic form corresponding to the square matrix @1_11. There are two problems
with this approach:

e the matrix 6)1_11 needs to be constructed at every row/column update with
complexity O(p?);
e O is dense.

We now show how a simple modification of the /;-regularized QP leads to a
box-constrained QP with attractive computational properties.
The KKT optimality conditions for (3.1), following (2.11), can be written as:

O a+ s+ Asgn(a) = 0. (5.1)
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Algorithm 3 DP-GLASSO algorithm
1. Initialize ® = diag(S + A\I)~!.

2. Cycle around the columns repeatedly, performing the following steps till convergence:

(a) Rearrange the rows/columns so that the target column is last (implicitly).

(b) Solve (5.3) for 4 and update
012 = —O11(s12 +7) /w22

(c) Solve for 022 using (5.5).

(d) Update the working covariance wiz = si2 + 7.

Along the same lines of the derivations used in Lemma 2, the condition above
is equivalent to

qi2 *sgn(y) + ©11(s12+%9) = 0
Qi2 * (abs(y) — A1) = 0 (5.2)
oo < A

for some vector (with non-negative entries) qi2. (5.2) are the KKT optimality
conditions for the following box-constrained QP:

ming?mi%e 2(s12+79)'O11(s12 +7); subject to [[y[o < A. (5.3)
yERPT

The optimal solutions of (5.3) and (5.1) are related by
a=—-011(s12+79), (5.4)

a consequence of (5.1), with & = 015 - Wy and wys = S35 + A. The diagonal 0oy
of the precision matrix is updated via (2.6):

b — 1— (s12+79) 012
22 =
Wa2

(5.5)

By strong duality, the box-constrained QP (5.3) with its optimality conditions
(5.2) is equivalent to the lasso problem (3.1). Now both the problems listed at
the beginning of the section are removed. The problem matrix ®;; is sparse,
and no O(p?) updating is required after each block.

The solutions returned at step 2(b) for 015 need not be exactly sparse, even
though it purports to produce the solution to the primal block problem (3.1),
which is sparse. One needs to use a tight convergence criterion when solving
(5.3). In addition, one can threshold those elements of 61, for which 7 is away
from the box boundary, since those values are known to be zero.

Note that DP-GLASSO does to the primal formulation (1.1) what GLASSO
does to the dual. DP-GLASSO operates on the precision matrix, whereas GLASSO
operates on the covariance matrix.
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6. Computational costs in solving the block QPs

The ¢; regularized QPs appearing in (2.13) and (3.1) are of the generic form

minimize fu’Au+ a’'u+ Aul|, (6.1)
ucha

for A > 0. In this paper, we choose to use cyclical coordinate descent for solv-
ing (6.1), as it is used in the GLASSO algorithm implementation of Friedman,
Hastie and Tibshirani [5]. Moreover, cyclical coordinate descent methods per-
form well with good warm-starts. These are available for both (2.13) and (3.1),
since they both maintain working copies of the precision matrix, updated after
every row/column update. There are other efficient ways for solving (6.1), ca-
pable of scaling to large problems — for example first-order proximal methods

[3, 9], but we do not pursue them in this paper.
The box-constrained QPs appearing in (4.9) and (5.3) are of the generic form:

minimize (v +b) A(v+b) subject to [|v]jcc < A (6.2)

veRe

for some A > 0. As in the case above, we will use cyclical coordinate-descent
for optimizing (6.2).

In general it is more efficient to solve (6.1) than (6.2) for larger values of
A. This is because a large value of A in (6.1) results in sparse solutions ; the
coordinate descent algorithm can easily detect when a zero stays zero, and no
further work gets done for that coordinate on that pass. If the solution to (6.1)
has k non-zeros, then on average x coordinates need to be updated. This leads
to a cost of O(gk), for one full sweep across all the ¢ coordinates.

On the other hand, a large A for (6.2) corresponds to a weakly-regularized
solution. Cyclical coordinate procedures for this task are not as effective. Every
coordinate update of v results in updating the gradient, which requires adding
a scalar multiple of a column of A. If A is dense, this leads to a cost of O(q),
and for one full cycle across all the coordinates this costs O(q?), rather than the
O(gqr) for (6.1).

However, our experimental results show that DP-GLASSO is more efficient
than GLASSO, so there are some other factors in play. When A s sparse, there
are computational savings. If A has kq non-zeros, the cost per column reduces
on average to O(kq) from O(g?). For the formulation (5.3) A is ©1;, which is
sparse for large A. Hence for large A, GLASSO and DP-GLASSO have similar costs.

For smaller values of A, the box-constrained QP (6.2) is particularly attrac-
tive. Most of the coordinates in the optimal solution v will pile up at the bound-
ary points {—\, A}, which means that the coordinates need not be updated
frequently. For problem (5.3) this number is also x, the number of non-zero
coefficients in the corresponding column of the precision matrix. If s of the co-
ordinates pile up at the boundary, then one full sweep of cyclical coordinate
descent across all the coordinates will require updating gradients corresponding
to the remaining g — k coordinates. Using similar calculations as before, this will
cost O(q(q — )) operations per full cycle (since for small A\, A will be dense).
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For the ¢; regularized problem (6.1), no such saving is achieved, and the cost is
O(q?) per cycle.

Note that to solve problem (1.1), we need to solve a QP of a particular
type (6.1) or (6.2) for a certain number of outer cycles (ie full sweeps across
rows/columns). For every row/column update, the associated QP requires vary-
ing number of iterations to converge. It is hard to characterize all these factors
and come up with precise estimates of convergence rates of the overall algorithm.
However, we have observed that with warm-starts, on a relatively dense grid of
As, the complexities given above are pretty much accurate for DP-GLASSO (with
warmstarts) specially when one is interested in solutions with small / moder-
ate accuracy. Our experimental results in Section 9.1 and Appendix Section B
support our observation.

We will now have a more critical look at the updates of the GLASSO algorithm
and study their properties.

7. GLASSO: Positive definiteness, sparsity and exact inversion

As noted earlier, GLASSO operates on W — it does not explicitly compute the
inverse W1, It does however keep track of the estimates for 8,5 after every
row/column update. The copy of © retained by GLASSO along the row/column
updates is not the exact inverse of the optimization variable W. Figure 2 illus-
trates this by plotting the squared-norm |[(® — W~1)||% as a function of the
iteration index. Only upon (asymptotic) convergence, will © be equal to W1,
This can have important consequences.

In many real-life problems one only needs an approximate solution to (1.1):

e for computational reasons it might be impractical to obtain a solution of
high accuracy;

e from a statistical viewpoint it might be sufficient to obtain an approximate
solution for ® that is both sparse and positive definite

It turns out that the GLASSO algorithm is not suited to this purpose.
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Fic 2. Figure illustrating some negative properties of GLASSO using a typical numerical exam-
ple. [Left Panel] The precision matriz produced after every row/column update need not be
the exact inverse of the working covariance matriz — the squared Frobenius norm of the error
is being plotted across iterations. [Right Panel] The estimated precision matriz ® produced
by GLASSO need not be positive definite along iterations; plot shows minimal eigen-value.
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Since the GLASSO is a block coordinate procedure on the covariance matrix,
it maintains a positive definite covariance matrix at every row/column update.
However, since the estimated precision matrix is not the exact inverse of W, it
need not be positive definite. Although it is relatively straightforward to main-
tain an exact inverse of W along the row/column updates (via simple rank-one
updates as before), this inverse W ! need not be sparse. Arbitrary thresholding
rules may be used to set some of the entries to zero, but that might destroy the
positive-definiteness of the matrix. Since a principal motivation of solving (1.1)
is to obtain a sparse precision matrix (which is also positive definite), returning
a dense W1 to (1.1) is not desirable.

Figures 2 illustrates the above observations on a typical example.

The DP-GLASSO algorithm operates on the primal (1.1). Instead of optimiz-
ing the ¢; regularized QP (3.1), which requires computing G)l_ll, DP-GLASSO
optimizes (5.3). After every row/column update the precision matrix © is pos-
itive definite. The working covariance matrix maintained by DP-GLASSO via
w12 = S12 + 7 need not be the exact inverse of ®. Exact covariance matrix
estimates, if required, can be obtained by tracking ©! via simple rank-one
updates, as described earlier.

Unlike GLASSO, DP-GLASSO (and P-GLASSO) return a sparse and positive
definite precision matrix even if the row/column iterations are terminated pre-
maturely.

8. Warm starts and path-seeking strategies

Since we seldom know in advance a good value of A\, we often compute a sequence
of solutions to (1.1) for a (typically) decreasing sequence of values Ay > Ao >

- > Ag. Warm-start or continuation methods use the solution at \; as an
initial guess for the solution at A;y1, and often yield great efficiency. It turns
out that for algorithms like GLASSO which operate on the dual problem, not all
warm-starts necessarily lead to a convergent algorithm. We address this aspect
in detail in this section.

The following lemma states the conditions under which the row/column up-
dates of the GLASSO algorithm will maintain positive definiteness of the covari-
ance matrix W.

Lemma 3. Suppose Z is used as a warm-start for the GLASSO algorithm. If
Z - 0 and ||Z — Sl||ec < A, then every row/column update of GLASSO maintains
positive definiteness of the working covariance matriz W .

Proof. Recall that the GLASSO solves the dual (4.1). Assume Z is partitioned as
in (2.4), and the pth row/column is being updated. Since Z > 0, we have both

Z11 = 0 and (222 — Zgl(zll)_1Z12) > 0. (81)

Since Z11 remains fixed, it suffices to show that after the row/column update, the
expression (ge — Wo1(Z11) !Wia) remains positive. Recall that, via standard
optimality conditions we have was = s22 + A, which makes a2 > 292 (since by
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assumption, |zeo — s22| < A and z99 > 0). Furthermore, wo; = s91 + 4, where
4 is the optimal solution to the corresponding box-QP (4.9). Since the starting
solution zo; satisfies the box-constraint (4.9) i.e. ||z21 — S21||cc < A, the optimal
solution of the QP (4.9) improves the objective:

Wa1(Z11) Wiz < 291(Z11) 'z12
Combining the above along with the fact that was > 292 we see
Uy — Wo1(Z11) "Wia > 0, (8.2)

which implies that the new covariance estimate W =~ 0. O

Remark 3. If the condition ||Z — S||oc < A appearing in Lemma 3 is violated,
then the row/column update of GLASSO need not maintain PD of the covariance
matrix W.

We have encountered many counter-examples that show this to be true, see
the discussion below.

The R package implementation of GLASSO allows the user to specify a warm-
start as a tuple (®g, Wy). This option is typically used in the construction of a
path algorithm.

If ((:),\,w,\) is provided as a warm-start for A’ < A, then the GLASSO algo-
rithm is not guaranteed to converge. It is easy to find numerical examples by
choosing the gap A — )\ to be large enough. Among the various examples we en-
countered, we briefly describe one here. Details of the experiment /data and other
examples can be found in the Appendix A.1. We generated a data-matrix X,,xp,
with n = 2, p = 5 with iid standard Gaussian entries. S is the sample covariance
matrix. We solved problem (1.1) using GLASSO for A = 0.9 x max;x; |s;;|. We
took the estimated covariance and precision matrices: ‘/7\\/} and © A as a warm-
start for the GLASSO algorithm with ' = XA x 0.01. The GLASSO algorithm failed
to converge with this warm-start. We note that ||\/7\\7>\ — Sl = 0.0402 £ X
(hence violating the sufficient condition in Lemma 4) and after updating the
first row/column via the GLASSO algorithm we observed that “covariance ma-
trix” W has negative eigen-values — leading to a non-convergent algorithm.
The above phenomenon is not surprising and easy to explain and generalize.
If the warm-start fails to satisfy ||\/7\\7>\ — S|/, then during the course of the
row/column updates the working covariance matrix may lose positive definite-
ness. In such a case, the block problems (QPs) may not correspond to valid
convex programs (due to the lack of the postive-definiteness of the quadratic
forms). This seems to be the fundamental reason behind the non-convergence
of the algorithm. Since W, solves the dual (4.1), it is necessarily of the form
W, = S+T, for ITlc < A. In the light of Lemma 3 and also Remark 3,
the warm-start needs to be dual-feasible in order to guarantee that the iterates
W remain PD and hence for the sub-problems to be well defined convex pro-
grams. Clearly W does not satisfy the box-constraint HV/\\7,\ — Sllee < X, for
N < X. However, in practice the GLASSO algorithm is usually seen to converge
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(numerically) when A is quite close to A. This is probably because the working
covariance matrix remains positive definite and the block QPs are valid convex
programs. If the difference between ) and X is large then the algorithm may
very likely get into trouble.

The following lemma establishes that any PD matrix can be taken as a warm-
start for P-GLASSO or DP-GLASSOto ensure a convergent algorithm.

Lemma 4. Suppose ® = 0 is a used as a warm-start for the P-GLASSO (or
DP-GLASSO) algorithm. Then every row/column update of P-GLASSO (or DP-
GLASSO) maintains positive definiteness of the working precision matriz ©.

Proof. Consider updating the pth row/column of the precision matrix. The con-
dition ® > 0 is equivalent to both

@11 - 0 and (¢o2 — 1’21(‘1’11)71‘1’12) > 0.

Note that the block @17 remains fixed; only the pth row/column of ® changes.
¢, gets updated to 621, as does O13. From (2.6) the updated diagonal entry
095 satisfies:

Bz — é21(‘1’11)71@12 = ——7F=>0.

Thus the updated matrix © remains PD. The result for the DP-GLASSO algo-
rithm follows, since both the versions P-GLASSO and DP-GLASSO solve the same
block coordinate problem. Il

Remark 4. A simple consequence of Lemmas 3 and 4 is that the QPs arising in
the process, namely the ¢; regularized QPs (2.13), (3.1) and the box-constrained
QPs (4.9) and (5.3) are all valid convex programs, since all the respective ma-
trices Wiy, ©7,' and W1}!, ©1; appearing in the quadratic forms are PD.

As exhibited in Lemma 4, both the algorithms DP-GLASSO and P-GLASSO are
guaranteed to converge from any positive-definite warm start. This is due to the
unconstrained formulation of the primal problem (1.1).

GLASSO really only requires an initialization for W, since it constructs ® on
the fly. Likewise DP-GLASSO only requires an initialization for ®@. Having the
other half of the tuple assists in the block-updating algorithms. For example,
GLASSO solves a series of lasso problems, where ® play the role as parameters. By
supplying ® along with W, the block-wise lasso problems can be given starting
values close to the solutions. The same applies to DP-GLASSO. In neither case
do the pairs have to be inverses of each other to serve this purpose.

If we wish to start with inverse pairs, and maintain such a relationship, we
have described earlier how O(p?) updates after each block optimization can
achieve this. One caveat for GLASSO is that starting with an inverse pair costs
O(p?®) operations, since we typically start with W = S + AI. For DP-GLASSO,
we typically start with a diagonal matrix, which is trivial to invert.



2140 R. Mazumder and T. Hastie

9. Experimental results & timing comparisons

We compared the performances of algorithms GLASSO and DP-GLASSO (both
with and without warm-starts) on different examples with varying (n, p) values.
While most of the results are presented in this section, some are relegated to
the Appendix B. Section 9.1 describes some synthetic examples and Section 9.2
presents comparisons on a real-life micro-array data-set.

9.1. Synthetic experiments

In this section we present examples generated from two different covariance mod-
els — as characterized by the covariance matrix ¥ or equivalently the precision
matrix ®. We create a data matrix X,,x, by drawing n independent samples
from a p dimensional normal distribution MVN(0, ). The sample covariance
matrix is taken as the input S to problem (1.1). The two covariance models are
described below:

Type-1 The population concentration matrix @ = 37! has uniform sparsity
with approximately 77 % of the entries zero.
We created the covariance matrix as follows. We generated a matrix B
with iid standard Gaussian entries, symmetrized it via (B + B’) and set
approximately 77% of the entries of this matrix to zero, to obtain B (say).
We added a scalar multiple of the p dimensional identity matrix to B to
get the precision matrix @ = B+ 1NLpxp, With 1 chosen such that the
minimum eigen value of ® is one.

Type-2 This example, taken from [11], is an auto-regressive process of order
two — the precision matrix being tri-diagonal:

0.5, if [j—il=1,i=2,...,(p—1);
g _ )025, if lj—il=2i=3,...,(p—2);
Y, if i=j, i=1,...,p;and
0 otherwise.

For each of the two set-ups Type-1 and Type-2 we consider twelve different
combinations of (n, p):

(a) p = 1000, n € {1500,1000,500}.
(b) p =800, n € {1000, 800, 500}.
(c) p =500, n € {800,500, 200}.
(d) p =200, n € {500,200, 50}.

For every (n,p) we solved (1.1) on a grid of twenty A values linearly spaced
in the log-scale, with \; = 0.8 x {0.9\nax}, @ = 1,...,20, where Apax =
max;+; | S|, is the off-diagonal entry of S with largest absolute value. Amax is
the smallest value of A for which the solution to (1.1) is a diagonal matrix.

Since this article focuses on the GLASSO algorithm, its properties and alterna-
tives that stem from the main idea of block-coordinate optimization, we present
here the performances of the following algorithms:
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Dual-Cold ¢LASSO with initialization W = S + ALy, as suggested in [5].

Dual-Warm The path-wise version of GLASSO with warm-starts, as suggested
in [5]. Although this path-wise version need not converge in general, this
was not a problem in our experiments, probably due to the fine-grid of A
values.

Primal-Cold DP-GLASSO with diagonal initialization © = (diag(S) + AI)~1.

Primal-Warm The path-wise version of DP-GLASSO with warm-starts.

We did not include P-GLASSO in the comparisons above since P-GLASSO requires
additional matrix rank-one updates after every row/column update, which makes
it more expensive. None of the above listed algorithms require matrix inversions
(via rank one updates). Furthermore, DP-GLASSO and P-GLASSO are quite sim-
ilar as both are doing a block coordinate optimization on the dual. Hence we
only included DP-GLASSO in our comparisons. We used our own implementation
of the GLASSO and DP-GLASSO algorithm in R. The entire program is written in
R, except the inner block-update solvers, which are the real work-horses:

e For GLASSO we used the lasso code crossProdLasso written in FORTRAN
by [5];
e For DP-GLASSO we wrote our own FORTRAN code to solve the box QP.

An R package dpglasso that implements DP-GLASSO is available on CRAN.

In the figure and tables that follow below, for every algorithm, at a fixed A we
report the total time taken by all the QPs — the ¢, regularized QP for GLASSO
and the box constrained QP for DP-GLASSO till convergence All computations
were done on a Linux machine with model specs: Intel(R) Xeon(R) CPU 5160
@ 3.00GHz.

Convergence Criterion Since DP-GLASSO operates on the the primal for-
mulation and GLASSO operates on the dual — to make the convergence criteria
comparable across examples we based it on the relative change in the primal
objective values i.e. f(®) (1.1) across two successive iterations:

f(Or) — f(O)-1)
[f(©r—1)]

where one iteration refers to a full sweep across p rows,/columns of the precision
matrix (for DP-GLASSO ) and covariance matrix (for GLASSO ); and TOL denotes
the tolerance level or level of accuracy of the solution. To compute the primal
objective value for the GLASSO algorithm, the precision matrix is computed
from W via direct inversion (the time taken for inversion and objective value
computation is not included in the timing comparisons).

Computing the objective function is quite expensive relative to the compu-
tational cost of the iterations. In our experience convergence criteria based on
a relative change in the precision matrix for DP-GLASSO and the covariance
matrix for GLASSO seemed to be a practical choice for the examples we con-
sidered. However, for reasons we described above, we used criterion 9.1 in the
experiments.

< TOL, (9.1)
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Observations Figure 3 presents the times taken by the algorithms to converge
to an accuracy of TOL = 10~* on a grid of X values.

The figure shows eight different scenarios with p > n, corresponding to the
two different covariance models Type-1 (left panel) and Type-2 (right panel). Tt
is quite evident that DP-GLASSO with warm-starts (Primal-Warm) outperforms
all the other algorithms across all the different examples. All the algorithms con-
verge quickly for large values of A (typically high sparsity) and become slower
with decreasing A. For large p and small A\, convergence is slow; however for
p > n, the non-sparse end of the regularization path is really not that in-
teresting from a statistical viewpoint. Warm-starts apparently do not always
help in speeding up the convergence of GLASSO ; for example see Figure 3 with
(n,p) = (500,1000) (Type 1) and (n,p) = (500,800) (Type 2). This proba-
bly further validates the fact that warm-starts in the case of GLASSO need to
be carefully designed, in order for them to speed-up convergence. Note however,
that GLASSO with the warm-starts prescribed is not even guaranteed to converge
— we however did not come across any such instance among the experiments
presented in this section.

Based on the suggestion of a referee we annotated the plots in Figure 3
with locations in the regularization path that are of interest. For each plot, two
vertical dotted lines are drawn which correspond to the As at which the distance
of the estimated precision matrix @, from the population precision matrix is
minimized wrt to the || - ||; norm (green) and || - || p norm (blue). The optimal A
corresponding to the || - |3 metric chooses sparser models than those chosen by
I | 7; the performance gains achieved by DP-GLASSO seem to be more prominent
for the latter .

Table 1 presents the timings for all the four algorithmic variants on the
twelve different (n,p) combinations listed above for Type 1. For every example,
we report the total time till convergence on a grid of twenty A values for two
different tolerance levels: TOL € {1074, 107°}. Note that the DP-GLASSO returns
positive definite and sparse precision matrices even if the algorithm is terminated
at a relatively small/moderate accuracy level — this is not the case in GLASSO.
The rightmost column presents the proportion of non-zeros averaged across the
entire path of solutions @y, where @) is obtained by solving (1.1) to a high
precision i.e. 107, by algorithms GLASSO and DP-GLASSO and averaging the
results.

Again we see that in all the examples DP-GLASSO with warm-starts is the clear
winner among its competitors. For a fixed p, the total time to trace out the path
generally decreases with increasing n. There is no clear winner between GLASSO
with warm-starts and GLASSO without warm-starts. It is often seen that DP-
GLASSO without warm-starts converges faster than both the variants of GLASSO
(with and without warm-starts).

Table 2 reports the timing comparisons for Type 2. Once again we see that
in all the examples Primal-Warm turns out to be the clear winner.

For n < p = 1000, we observe that Primal-Warm is generally faster for Type-
2 than Type-1. This however, is reversed for smaller values of p € {800,500}.
Primal-Cold is has a smaller overall computation time for Type-1 over Type-2.
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TABLE 1
Table showing the performances of the four algorithms GLASSO (Dual-Warm/Cold) and
DP-GLASSO (Primal-Warm/Cold) for the covariance model Type-1. We present the times (in
seconds) required to compute a path of solutions to (1.1) (on a grid of twenty X values) for
different (n,p) combinations and relative errors (as in (9.1)). The rightmost column gives
the averaged sparsity level across the grid of A values. DP-GLASSO with warm-starts is
consistently the winner across all the examples

relative Total time (secs) to compute a path of solutions Average %
p/n error (’I;OL) Dual-Cold Dual-Warm Primal-Cold Primal-Warm Zeros in path
W0/ | s e s morse  asaaas 7
= [ 5
O00/100] o g  amase st asassr %O
1000/1800| oo Sosiay  gaveds  oioess  isszes  S5°
=7
W0/ | v mem  owan  umeo  resss T
0/ | apv usise  gwran  oseno  aiass
800 / 1000 To-5 e reo Jepod 80.2
—Z I 5
w20 | VR RN Does seses ™9
w0 /500 |10 s5111  s1eo 3089 saer T2
=7
500 /500 |10 losr 40361 ros  ioras %09
2w0/50 | 0. S S soe1 O
=7
200 / 200 1872 22133 §§;§ ;;if i;:g 66.8
200 /300 | 10 SO O 1o1z 060

In some cases (for example n < p = 1000), we see that Primal-Warm in Type-2
converges much faster than its competitors on a relative scale than in Type-1 —
this difference is due to the variations in the structure of the covariance matrix.

9.2. Micro-array example

We consider the data-set introduced in [1] and further studied in [10, 7]. In this
experiment, tissue samples were analyzed using an Affymetrix Oligonucleotide
array. The data was processed, filtered and reduced to a subset of 2000 gene
expression values. The number of Colon Adenocarcinoma tissue samples is n =
62. For the purpose of the experiments presented in this section, we pre-screened
the genes to a size of p = 725. We obtained this subset of genes using the idea of
exact covariance thresholding introduced in our paper [7]. We thresholded the
sample correlation matrix obtained from the 62 x 2000 microarray data-matrix
into connected components with a threshold of 0.00364' — the genes belonging
to the largest connected component formed our pre-screened gene pool of size

Lthis is the largest value of the threshold for which the size of the largest connected com-
ponent is smaller than 800
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TABLE 2
Table showing comparative timings of the four algorithmic variants of GLASSO and
DP-GLASSO for the covariance model in Type-2. This table is similar to Table 1, displaying
results for Type-1. DP-GLASSO with warm-starts consistently outperforms all its competitors

relative Total time (secs) to compute a path of solutions Average %

p/n error ('I;OL) Dual-Cold Dual-Warm Primal-Cold Primal-Warm Zeros in path
= 5

W00/ | ot Gamas s sana  aasses T

000/ 1000 los Gnan  amaso i asessa T
= 5

1000/1500) o5 Gizor  coseas  samss  ieress 7O
—7

O/ | s ez aaor  oowao  ammas T

O/ | G0t oo omese  aibe  ssass T
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B0/1000 | o5 iiogss  smace  sse0se  1asagn 70
—7

0/ | v gie  amors  dews  osa T
= E7E |

00/50 | g P0s4  sanss  amer  ionos 22
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wo /0 | o so0s  som  arar 1amg 67

200 / 300 18,5 gg:gg gg:ég 3;:2‘11 12:;2 65.0

TABLE 3

Comparisons among algorithms for a microarray dataset with n = 62 and p = 725, for
different tolerance levels (TOL). We took a grid of fifteen X\ values, the average % of zeros
along the whole path is 90.8

relative Total time (secs) to compute a path of solutions

error (TOL) Dual-Cold Dual-Warm Primal-Cold Primal-Warm
10-3 515.15 406.57 462.58 334.56
104 976.16 677.76 709.83 521.44

p = T725. This (subset) data-matrix of size (n,p) = (62,725) is used for our
experiments.

The results presented below in Table 3 show timing comparisons of the four
different algorithms: Primal-Warm/Cold and Dual-Warm/Cold on a grid of fif-
teen A values in the log-scale. Once again we see that the Primal-Warm out-
performs the others in terms of speed and accuracy. Dual-Warm performs quite
well in this example.

10. Conclusions

This paper explores some of the apparent mysteries in the behavior of the
GLASSO algorithm introduced in [5]. These have been explained by leverag-
ing the fact that the GLASSO algorithm is solving the dual of the graphical lasso
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problem (1.1), by block coordinate ascent. Each block update, itself the solution
to a convex program, is solved via its own dual, which is equivalent to a lasso
problem. The optimization variable is W, the covariance matrix, rather than the
target precision matrix ®. During the course of the iterations, a working version
of ® is maintained, but it may not be positive definite, and its inverse is not
W. Tight convergence is therefore essential, for the solution © to be a proper
inverse covariance. There are issues using warm starts with GLASSO, when com-
puting a path of solutions. Unless the sequence of As are sufficiently close, since
the “warm start”s are not dual feasible, the algorithm can get into trouble.

We have also developed two primal algorithms P-GLASSO and DP-GLASSO.
The former is more expensive, since it maintains the relationship W = @~ at
every step, an O(p?) operation per sweep across all row/columns. DP-GLASSO is
similar in flavor to GLASSO except its optimization variable is . It also solves
the dual problem when computing its block update, in this case a box-QP. This
box-QP has attractive sparsity properties at both ends of the regularization
path, as evidenced in some of our experiments. It maintains a positive definite
® throughout its iterations, and can be started at any positive definite matrix.
Our experiments show in addition that DP-GLASSO is faster than GLASSO.

An R package dpglasso that implements DP-GLASSO is available on CRAN.
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Appendix A: Additional numerical illustrations and examples

This section complements the examples provided in the paper with further ex-
periments and illustrations.

A.1. Examples: Non-convergence of GLASSO with warm-starts

This section illustrates with examples that warm-starts for the GLASSO need not
converge. This is a continuation of examples presented in Section 8.

Example 1. We took (n,p) = (2,5) and setting the seed of the random number
generator in R as set.seed(2008) we generated a data-matrix X,,», with iid
standard Gaussian entries. The sample covariance matrix S is given below:

0.03597652  0.03792221  0.1058585  —0.08360659  0.1366725
0.03597652  0.03792221  0.1058585  —0.08360659  0.1366725
0.10585853  0.11158361  0.3114818  —0.24600689  0.4021497
—0.08360659 —0.08812823 —0.2460069 0.19429514 —0.3176160
0.13667246  0.14406402  0.4021497 —0.31761603  0.5192098
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With ¢ denoting the maximum off-diagonal entry of S (in absolute value),
we solved (1.1) using GLASSO at A = 0.9 X ¢g. The covariance matrix for this
A was taken as a warm-start for the GLASSO algorithm with A = X\ x 0.01.
The smallest eigen-value of the working covariance matrix W produced by the
GLASSO algorithm, upon updating the first row/column was: —0.002896128,
which is clearly undesirable for the convergence of the algorithm GLASSO. This
is why the algorithm GLASSO breaks down.

Example 2. The example is similar to above, with (n,p) = (10,50), the seed
of random number generator in R being set to set.seed(2008) and X, is the
data-matrix with iid Gaussian entries. If the covariance matrix ‘7\/': which solves
problem (1.1) with A = 0.9 xmax;«; |s;;| is taken as a warm-start to the GLASSO
algorithm with A = X x 0.1 — the algorithm fails to converge. Like the previous
example, after the first row/column update, the working covariance matrix has
negative eigen-values.

Appendix B: More examples and comparisons

This section is a continuation to Section 9, in that it provides further exam-
ples comparing the performance of algorithms GLASSO and DP-GLASSO. The
experimental data is generated as follows. For a fixed value of p, we generate
a matrix Ay, with random Gaussian entries. The matrix is symmetrized by
A + (A + A’)/2. Approximately half of the off-diagonal entries of the matrix
are set to zero, uniformly at random. All the eigen-values of the matrix A are
lifted so that the smallest eigen-value is zero. The noiseless version of the pre-
cision matrix is given by ® = A 4 7I,.,. We generated the sample covariance
matrix S by adding symmetric positive semi-definite random noise N to @'
ie. S =0 !+ N, where this noise is generated in the same manner as A. We
considered four different values of p € {300,500, 800,1000} and two different
values of 7 € {1,4}.

For every p, 7 combination we considered a path of twenty A values on the
geometric scale. For every such case four experiments were performed: Primal-
Cold, Primal-Warm, Dual-Cold and Dual-Warm (as described in Section 9).
Each combination was run 5 times, and the results averaged, to avoid depen-
dencies on machine loads. Figure 4 shows the results. Overall, DP-GLASSO with
warm starts performs the best, especially at the extremes of the path. We gave
some explanation for this in Section 6. For the largest problems (p = 1000) their
performances are comparable in the central part of the path (though DP-GLASSO
dominates), but at the extremes DP-GLASSO dominates by a large margin.
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FiGc 4. The timings in seconds for the four different algorithmic versions GLASSO (with and
without warm-starts) and DP-GLASSO (with and without warm-starts) for a grid of twenty
A wvalues on the log-scale. The horizontal axis is indexed by the proportion of zeros in the
solution.
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