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Soap bubbles and soap bubble foams

CC-BY photograph “cosmic soap bubbles (God
takes a bath)” by woodleywonderworks from
Flickr

Soap molecules form double layers
separating thin films of water from
pockets of air

A familiar physical system that
produces complicated arrangements of
curved surfaces, edges, and vertices

What can we say about the
mathematics of these structures?



Plateau’s laws

In every soap bubble cluster:

◮ Each surface has constant mean
curvature

◮ Triples of surfaces meet along
curves at 120◦ angles

◮ These curves meet in groups of
four at equal angles

Observed in 19th c. by Joseph Plateau

Proved by JeanTaylor in 1976 1843 Daguerrotype of Joseph Plateau



Young–Laplace equation

Thomas Young

For each surface in a soap
bubble cluster:

mean curvature
= 1/pressure difference

(with surface tension as
constant of proportionality)

Formulated in 19th c., by
Thomas Young and
Pierre-Simon Laplace

Pierre-Simon Laplace



Planar soap bubbles

PD image “2-dimensional foam (colors
inverted).jpg” by Klaus-Dieter Keller from
Wikimedia commons

3d is too complicated, let’s restrict to
two dimensions

Equivalently, form 3d bubbles between
parallel glass plates

Bubble surfaces are at right angles to
the plates, so all 2d cross sections look
the same as each other



Plateau and Young–Laplace for planar bubbles

In every planar soap bubble cluster:

◮ Each curve is an arc of a circle or
a line segment

◮ Each vertex is the endpoint of
three curves at 120◦ angles

◮ It is possible to assign pressures to
the bubbles so that curvature is
inversely proportional to pressure
difference



Geometric reformulation of the pressure condition

C1

C2
C3

For arcs meeting at 120◦

angles, the following three
conditions are equivalent:

◮ We can find pressures
matching all curvatures

◮ Triples of circles have
collinear centers

◮ Triples of circles form a
“double bubble” with two
triple crossing points



Möbius transformations

Fractional linear transformations

z 7→
az + b

cz + d

in the plane of complex numbers

Take circles to circles and do not
change angles between curves

Plateau’s laws and the double bubble
reformulation of Young–Laplace only
involve circles and angles

so the Möbius transform of a bubble
cluster is another valid bubble cluster

CC-BY-SA image “Conformal grid after Möbius
transformation.svg” by Lokal Profil and
AnonyScientist from Wikimedia commons



Theorem: Bubble clusters don’t have bridges

Collapse of the Tacoma Narrows Bridge, 1940

Main ideas of proof:

◮ A bridge that is not straight violates the pressure condition

◮ A straight bridge can be transformed to a curved one that
again violates the pressure condition



Theorem: Bridges are the only obstacle

For planar graphs with three edges per vertex and no bridges, we
can always find a valid bubble cluster realizing that graph

Main ideas of proof:

1. Partition into 3-connected components and handle each
component independently

2. Use Koebe–Andreev–Thurston circle packing to find a system
of circles whose tangencies represent the dual graph

3. Construct a novel type of Möbius-invariant power diagram of
these circles, defined using 3d hyperbolic geometry

4. Use symmetry and Möbius invariance to show that cell
boundaries are circular arcs satisfying the angle and pressure
conditions that define soap bubbles



Step 1: Partition into 3-connected components

For graphs that are not 3-regular or 3-connected, decompose into
smaller subgraphs, draw them separately, and glue them together

S

P

R

R

The decomposition uses SPQR trees, standard in graph drawing

Use Möbius transformations in the gluing step to change relative
sizes of arcs so that the subgraphs fit together without overlaps



Step 2: Circle packing

After the previous step we have
a 3-connected 3-regular graph

Koebe–Andreev–Thurston
circle packing theorem
guarantees the existence of a
circle for each face, so circles
of adjacent faces are tangent,
other circles are disjoint

Can be constructed by efficient
numerical algorithms



Step 3a: Hyperbolic Voronoi diagram

Embed the plane in 3d, with a hemisphere above each face circle

Use the space above the plane as a model of hyperbolic geometry,
and partition it into subsets nearer to one hemisphere than another



Step 3b: Möbius-invariant power diagram

Restrict the 3d Voronoi diagram to the plane containing the circles
(the plane at infinity of the hyperbolic space).

Symmetries of hyperbolic space restrict to Möbius transformations
of the plane ⇒ diagram is invariant under Möbius transformations



2d Euclidean description of same power diagram

To find distance from point q to circle O:

Draw equal circles tangent to each other at q, both tangent to O

Distance is their radius (if q outside O) or −radius (if inside)

Our diagram is the minimization diagram of this distance



Step 4: By symmetry, these are soap bubbles

Each three mutually tangent circles
can be transformed to have equal
radii, centered at the vertices of an
equilateral triangle.

By symmetry, the power diagram
boundaries are straight rays
(limiting case of circular arcs with
infinite radius), meeting at 120◦

angles (Plateau’s laws)

Setting all pressures equal fulfils
the Young–Laplace equation on
pressure and curvature



Conclusions and future work

Precise characterization of 2d
soap bubble clusters

Closely related to the author’s
earlier work on Lombardi

drawing of graphs

How stable are our clusters?
Only partial results so far

What about 3d?

Do there exist stable clusters
with surfaces that do not
separate two volumes?

CC-SA image “world of soap” by Martin Fisch on Flickr


