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X I. INTRODUCTION

Information about the gravitational fields of planetary.

bodies has been obtained either from the observed perturbations

of artificial satellites such as those around the moon (Kaula,

1969) , the earth (Gaposchkin and Lambeck, 1970) , or Mars

(Lorell, et al. , 1971) or by observations of natural satellites

(Brouwer and Clemence, 1961) . The latter, either because of

limited tracking accuracy or large distance from the planet,

have provided information only on the lowest order deviations

from spherical symmetry. The artificial satellites on the

other hand have defined the gravitational fields much more

precisely, primarily because it was possible to closely monitor

the perturbations of a wide variety of close orbits. This

experience must be extended to the major planets if we are to

obtain the details of their external fields. The perturbations

of accurately tracked spacecraft are almost the only means of

improving our knowledge of these gravitational fields.

The motivation for determining the gravitational fields

of the major planets rests in our desire to constrain theoretical

models of the interiors. The nature of these constraints and

their effect on models of the interior are discussed in Section

II after some definitions of terms are given. After establishing

the motivation for the study, we turn to the actual determination

of the harmonic coefficients. Flyby spacecraft are discussed in

Section III as a first sampling of the field using a least squares
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analysis of the trajectory. The problem of determining the even

order zonal harmonics by secular perturbations of orbital .

elements is defined in Section IV, and the magnitudes of the

perturbations of an early Jupiter orbiter are given and

compared.with tracking accuracies. The necessity for close

approaches to major natural satellites and for more than a

single orbiter are also shown in this section. The requirement

of accurate tracking of additional satellites for higher

harmonics leads into a discussion in Section V of possible

utilization of the Galilean satellites as probes of the gravity

field of Jupiter. This will involve radar tracking from the

earth. Section VI deals with the tesseral and odd order

zonal harmonics and includes reasons why there is likely to be

no attempt to measure these coefficients in the reasonably near

future. The possibility of a gravity anomaly associated with

Jupiter's red spot is discussed in Section VII, and a lower

bound on a detectable effective mass concentration is estimated.

Section VIII is a summary and general discussion which ends

with a brief paragraph on the alternate technique of a least

squares analysis of orbital data.
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II. THE GRAVITATIONAL FIELD AND MODELS

|

The external gravitational potential of a planetary

body is often written

'

a. a
Ll ?P^(C°S 6)C C°S

+ S£m sin m <{) , . (1)
; J

where G is the gravitational constant, M is the total mass, r

is the separation of the field point from the center of mass

of the body, a is the equatorial radius, 0 and <$> are colatitude
"

and longitude respectively, P., are the Legendre polynomials of

order £ and P^ are the associated Legendre functions. The

coefficients J,, and C . , S. are respectively the zonal and

tesseral harmonic coefficients, which are determined by

differences in moments of the mass distribution about the center

of mass. In general
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where the integration is over the entire volume of the planet.

For S. = 2

(3)

Vc* + s
2

22 "22 ,„, 2
4Mae

where A, B, C are the principal moments of inertia in the order

of increasing magnitude.

If the magnitudes of the harmonic coefficients are determined

from the perturbations of natural or artificial satellites of

the planet (e.g. Kaula, 1966), Eqs. (2) provide integral

constraints on the internal density distribution. For the

major planets, these constraints on the density distribution

lead to constraints on theoretical models of the interior

structure and thus provide the chief motivation for accurate

determination of the gravitational fields.

All current models of the interiors of the major planets

use the assumption of hydrostatic equilibrium where surfaces

of equal density are equipotential surfaces (DeMarcus, 1958;

Peebles, 1964; Hubbard, 1969). This is almost certainly a valid

assumption for the major planets since their supercritical fluid

outer layers can support no static shear stresses. The

assumption of hydrostatic equilibrium eliminates all tesseral

and odd order zonal harmonics from the expansion of the external

field and allows the expression of the even order zonal harmonic
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coefficients as density integrals involving a single parameter

or as expansions in the small parameters defining the outer

equipotential surface (Peebles, 1964). The harmonic

coefficients are uniquely determined by the density dis-

tribution which in turn follows from the assumed equation of

state, mixing ratio of hydrogen and helium and the temperature

distribution.

The procedure then is to calculate a density run for a

given set of assumptions, determine the corresponding harmonic

coefficients and compare these coefficients with those observed.

The agreement between observed and calculated coefficients is a

necessary but not a sufficient condition for the correctness

of the model. This follows from the fact that the density

distribution is not uniquely determined from a finite set of

gravity coefficients and drastically different models may

produce nearly the same density distribution. This is perhaps

best illustrated by the coexistence of the nearly completely

solid Jupiter model of DeMarcus (1958) and the completely fluid

and uniformly mixed models of Peebles (1964) and Hubbard (1969)

which all produce the observed gravitational moments within the

rather large errors of observation. At the same time a

convective model of Saturn is not consistent with the observed

moments,.although some of this disagreement may be due to an

unknown contribution to the measured coefficients by the rings

(Hubbard, 1969). As higher order coefficients depend on higher

moments of the mass distribution, the outer layers of the planet
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receive increasing weight in determining a coefficient as the order

increases. The sensitivity of the gravity coefficients to the
i

density in the outer layers will make their determination a

useful check of the equation of state in the region where it is

temperature sensitive and perhaps least understood.

Observations of the natural satellites have provided
t

estimates of J~ and J..for Jupiter and Saturn and J~ for

Neptune (Brouwer and Clemence, 1961). However, J. for Jupiter

is so poorly known that it does not provide a useful constraint

on the models (e.g. Peebles, 1964). The more accurate

determination of J~ and J. for the major planets would appear

to have first priority to better restrict existing hydrostatic

models. However, the high sensitivity of Jfi and higher

coefficients to changes in the density of the outer layers will

make their values extremely useful in defining the equation of

state in the nonmetallic regions of the interior.

Although the fluid outer layers of the major planets

imply hydrostatic equilibrium, possible deviations from this

equilibrium should not be ignored. The detection of nonzero

tesseral or odd order zonal harmonics might imply internal

convection with dynamic stresses supporting density inhomogeneities,

The possibility of a local gravity anomaly in the region of

Jupiter's red spot should also not be overlooked.

We shall consider briefly the determination of these

terms in the gravitational field expansion which are due to
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non-hydrostatic mass distributions, but the zonal harmonics of

even order perhaps deserve greater attention because of their

likely complete dominance in the field expansion and their

relative ease of unambiguous evaluation through secular

perturbations of satellite orbits.



III. FLYBY SPACECRAFT

The first probes of the gravitational fields of the major

planets other than the natural satellites will be flyby space-

craft. It is possible to use rectangular coordinates to

describe the motion of the spacecraft and to apply a least

squares analysis to the trajectory with J~/ J*r the masses and

positions of the natural satellites, etc., as unknowns. This

technique was applied to the Mariner V flyby of Venus and the

range and Doppler tracking to 15 m and 1 mm/sec respectively

(Anderson, et al. 1967) allowed the estimate J~ = -5 ± 10 x 10~

(Anderson and Efron, 1969). Null (1971) has applied a covariahce

analysis to the Pioneer 10 trajectory past Jupiter which yields

probable errors on the determination of J~ and J^ of about

± 6 x 10 and ± 10 respectively. Comparison with the current

uncertainties given in Section IV shows an improvement in the

determinations by considerably more than an order of magnitude.

The confidence which one can place in these probable

errors depends on a subjective evaluation of the completeness

of the model, the possible magnitude of neglected effects, the

assignment of weights to the observations and the a priori

accuracy initially assumed for the parameters. For example,

an unexpectedly large magnetic field interaction or odd order

zonal harmonic not included in the model may simulate the effects

of J, during the relatively short interval of close approach

to the planet. Still, the least squares analysis of both flyby
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and orbiter trajectories will provide the first improvements

in the estimates of the parameters, and confidence in the values
i

will certainly be sufficient to stimulate a flurry of interior

model improvements.

Allowing for the possibility of unanticipated phenomena

not included in least squares models, we shall adopt a more

conservative approach below which involves secular

perturbations of orbiting satellites. Although more involved

from a practical point of view/ measurements of such secular
i

perturbations will yield values of the even order zonal

harmonics which are perhaps less uncertain than those obtained

by any other means.
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IV. ARTIFICIAL SATELLITES

t

The first artificial satellites of the major planets will

likely have highly eccentric orbits with reasonably large semi-

major axes. This comes about from the necessity to minimize
I

the velocity change for orbit insertion and from the desire to

explore a reasonably large fraction of the near planet

environment. It is therefore appropriate that we discuss the

effectiveness of such an orbiter in determining the harmonic

coefficients of the gravitational field. The need for more

than a single satellite will be pointed out where additional

coefficients and greater accuracy is desired.

In addition to the magnitudes of the tesseral harmonics

of the major planets being small, the rapid rotation of the

planets means these terms will lead to high frequency

perturbations for the nonresonant, relatively distant satellites

considered here. Such perturbations will be negligibly small,

and we shall consider here only the even order zonal harmonics.

The J~ coefficients are typically determined from the

secular perturbations of longitude of the node fi and the

longitude of periapsis w.

2 4

= - n cos e 4

dt " ~a J-i"2^'J-' 2.. 2.2 ' "4̂ '"' 4 ,_ 2,4a (1-e ) a (1-e )

a J,

a(l-e)
(4)
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2 4
a J a

= n[B (e,i
a(l-e)

+ B,(e,i) -|- •% , + . . .] (5)
6 a6 (1-e2)6

w = w + n (6)

where n is the mean motion, a,e,i are the semi-major axis,

eccentricity and inclination of the orbit relative to the

equator plane and the coefficients A., B. are 0(1). The complete

literal forms of these coefficients are given by Mueller .

(1964). The above equations include only the linear perturbations.
2 2cj a

If J_ = 0( ) is considered a small quantity of first order,
2. (jJXl

2 3
J, = 0(J2)

 J6 = °^J2^ etc-' if tne planet is in hydrostatic

equilibrium. Nonlinear contributions to the secular

changes in fi and w must be included in any solution for the J .

However, the linear contribution of the J with the largest

index kept in the above expansions will determine the observational

accuracy required for the determination of that coefficient,

since the contribution of the nonlinear combinations of lower

J 's should be known with comparable error. For this reason

the nonlinear terms will be omitted from the discussion although

they must be included in any solution for the coefficients.

(See Kozai (1962) or Aksnes (1970) for a literal solution to

third order in J~-)
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Since the period of tracking the artificial satellite must

be relatively short, Eqs. (2) and (3) are not complete in

terras higher than first order in J~• The long period terms

with arguments involving to must also be included, as short

segments of the oscillations will appear as secular contributions,

This causes no difficulty, for such terms can be calculated

as well as the true secular terms and their effects included

in the coefficients of the J~ . Tracking through several

orbits is anticipated so the short period perturbations, whose

amplitudes are small in any case, will average to zero.

Whether the contribution of any harmonic to the secular

changes in w and J2 is significant or not for a particular

orbit depends on the observational errors in determining the

positions of the satellite relative to Jupiter, the time

spanned by the observations and the certainty with which other

perturbations, such as those due to natural satellites, can

be eliminated.

These restrictions have limited the present estimates of

harmonic coefficients from observations of the natural satellites

to ^2 and J^ for Jupiter and Saturn and the latter is only

known to within about a factor 2 for Jupiter. From the Galilean

satellites deSitter (1931) finds for Jupiter

J2 = 0.01471 ± .00015

from which Brouwer and Clemence (1961) derive

J4 = -0.00067 ± .00038
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from the observations of the node of JV. Since the inner

satellites of Saturn are much less massive than those of

Jupiter, their mutual perturbations are considerably diminished

and J2 and J, are determined with greater accuracy. Jeffreys

(1954) finds
i

J2 = .01667 ± .00002 J4 = .00103 ± .00008

The relatively small errors are qualified by an unknown contribution

from Saturn's rings. A recent revision in the radius of Neptune

(Freeman and Lynga, 1970) has reduced the value of J2 (Brouwer

and Clemence, 1961) to

J2 = .0041 ± .0004

for this planet, and not even J2 is known for Uranus. These

uncertainties in size and shape for Uranus and Neptune have

frustrated the construction of appropriate models (Newburn and

Gulkis, 1971).

If both ft and w are precisely determined for the

artificial satellite (with a sufficiently large orbit

eccentricity or inclination) and other perturbations can be .

removed, the secular equations can be solved for J2 and J.,

where Jg and subsequent coefficients are assumed zero. The

contributions from these neglected terms would be included

in the errors for J2 and J.. Knowledge of Jg or higher

harmonics necessarily requires perturbations of an independent

orbit.

The effects of the high harmonics drop off very rapidly
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as the orbit 'parameter p = a(l-e ) increases, such that the

orbits of the Galilean satellites are not very sensitive to

the harmonics beyond J,,. (On the other hand, if tracking

of a single satellite is sufficiently precise and other

perturbations are accurately known, the small contributions by

higher harmonics for a distant orbit can be used to advantage

for a more accurate determination of J2«)

We shall consider perturbations of satellites of Jupiter

as an example. The effects of the first three harmonics on

the motion of the nodes of the inner natural satellites and an

artificial satellite in a nominal quasi-equatorial orbit with

periapsis at l.la and a semi-major axis of 25a are given in thee

following table. The values for J2 and J. were those given

above and J,- was arbitrarily chosen an order of magnitude less

than J,.

Artificial
Satellite

JV

JI

JII

JIII

JlV

Magnitude of Secular

J2=l. 471x10

(node) -.116° /day

(periapsis) .116

-2.52

-1.30X10"1

-2.57xlO~2

-4.98xlO~3

-6.93xlO~4

Perturbations

~2 J4=-6.7xlO~
4

-7.13xlO~3°/
day

5,62xlO~3

-4.40xlO~2

-4.32xlO~4

-3.26xlO~5

-2.48xlO~6

-1.12xlO~7

J,=6xlO~5
D

-7.0xlO~4°/
day

3.7xlO~4

-l.lxlO"3

-1.97xlO~6

-5.91xlO~8

-

_

7- 15 r-



For the nearly circular orbits of the natural satellites, the

linear terras in d ui/dt are just the negatives of those for dfi/dt.

Mariner V was tracked to the remarkable precision of less

than 15 meters relative to the center of Venus by using both

range and range rate information. A Mariner class spacecraft,
t

which would presumably carry the necessary transponder, could

be tracked to the same precision in orbit about Jupiter. An

orbiting Pioneer without the ranging transponder could be located

to within 100m in the orbit plane and within perhaps 1 km in a

direction perpendicular to the orbit plane, using Doppler tracking

alone (J. D. Anderson, private communication, 1972). From the

table, we see that the contribution by Jg to the motion of the

node and periapsis of the artificial satellite after 100 days is
o

of the order of 0.01. This corresponds to a 15 km displacement of

the periapsis and a 750 km displacement of the-apoapsis with the

displacement of the orbit intersection with the equator plane

lying between these two extremes. Hence, the tracking seems

certainly adequate to detect perturbations by Jg and higher order

moments. A possible exception to this conclusion is the case

where the orbit is nearly equatorial at the same time the orbit

normal is nearly parallel to the plane of the sky. With this

exception kept in mind, one might include coefficients higher than

J. in the above equations for the variation in fi and oi. However,

problems which are independent of tracking must be resolved before

accurate values of the coefficients can be obtained.

Including the effects of Jfi in the secular perturbations of the

artificial satellite places a third unknown into the two equations.
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Use of one or more natural satellites (such as JV) to provide

additional equations is frustrated by our inability to track
1

these satellites to the same precision as the artificial

satellite. In addition, the perturbations due to at least

the Galilean satellites and the plasma drag must also be known

with errors less than the contribution of J, or less than that
D

of such higher order coefficients which may be desired. The

masses of the Galilean satellites are uncertain by as much as

10%, which is the cause of the relatively poor determinations of J~

and J, (Brouwer and Clemence, 1961). In fact, at least one close

approach of each of the Galilean satellites by the first Jupiter

orbiter should have the highest priority such that these masses

can be determined precisely. This alone would improve the

values of J~ and J, from a reanalysis of earth based .

observations, and precise masses of the Galilean satellites must

be obtained before the full usefulness of the accurate tracking

of the artificial satellite can be exploited. For example,

suppose the node motion of JV has been precisely determined

to provide a third equation for the determination of the

coefficients J?, J,, Jfi. JI (lo) contributes to the precession

of the node of JV by the amount

2_ n m _•>
fi = -f ~i w = " 1-6 x 10 0/day (7)

nv
But from -Eg. (7) and Table I the 10% uncertainty in the mass

of JI leads to a 15% uncertainty in the contribution of J,

(= 6 x 10 ) to the node motion of JV.
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The near equatorial orbit necessary for the close approaches

of the Galilean satellites makes the node motion of thei

artificial satellite more difficult to determine. Perhaps

the ideal situation would involve an initially equatorial orbit .

for satellite mass determinations with a subsequent plane change

for ease in following the node. The tracking data for

determination of the gravitational moments would be taken over

a long period without further encounters of the natural satellites.

This scheme would lead to greatly improved values of J~ and J.,

but Jg and higher order coefficients would have to wait for an

additional artificial satellite or accurate tracking of the natural

satellites to provide the additional equations with sufficient

precision for their evaluation.

The above analysis can be transferred to the remaining

major planets with some changes. For example, the inner

satellites of Saturn are less important because of their much

lower masses, whereas the rings pose a unique problem. So

little is known about Uranus and Neptune that any artificial

satellite would yield much useful information.
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V. NATURAL SATELLITES ,

The natural satellites are existing probes of the

gravitational field, and they could provide information on

the higher gravitational moments if their motions could be

followed closely enough. Television imaging from an artificial

satellite is capable of 6" of arc positional accuracy for a

natural satellite against a star background (T. Duxbury, private

communication, 1972), and provides one means of defining the

orbit perturbations. Whether the accuracy will be sufficiently

high depends on the relative positions of the artificial and

natural satellites and the number of positional images which

can be obtained. A lack of positional accuracy would have to

be compensated by a long period of observation, which may

exceed the limited spacecraft lifetime. Radio occultations

are too infrequent, and any form of bistatic or spacecraft

radar too complex for use in tracking the natural satellites

(G. L. Tyler, private communication, 1971). However, the Galilean

satellites should be within the range of the improved Aericebo

radar by 1976, and the necessary precision can be obtained from

earth based observations (R. M. Goldstein, private communication,

1971). This technique will.be especially effective in com-

bination with a Jupiter orbiter which can provide precise masses

independently and thus eliminate the mutual perturbations of

the satellites from the equations which determine the

gravitational moments. Even J, and Jg should be obtainable since
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the lack of sensitivity to these moments is compensated by the

precise tracking coupled with arbitrarily long periods of

observation.
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VI. DETECTION OF NON-HYDROSTATIC PROCESSES

The tesseral and odd order zonal harmonics of a planetary

gravitational field lead to periodic perturbations of an

orbiting satellite. If they exist at all for the major planets,

they are likely to be extremely small and will require that a

satellite remain close to the surface for the perturbations

to be detectable. In addition to the large velocity change

necessary to place a spacecraft in close orbit, the problem

is further complicated by the requirement of several such

spacecraft in distinct orbits to sort the coefficients. An

infinite series of coefficients which depend on the orbit

parameters comprise the amplitude of a given periodic perturbation

(e.g. Gaposhkin and Lambeck, 1970). The convergence of this

series is minimized as the semi-major axis of the satellite

orbit approaches the planetary radius. Thus the penalty of high

sensitivity to the higher order harmonics is the uncertainty

of the relative contributions of the harmonics to a given

amplitude. This uncertainty is resolved with perturbations of

several distinct orbits which have distinct series for the

amplitude of a given periodic perturbation. The solution of a

set of simultaneous algebraic equations then yields the

coefficients (Gaposhkin and Lambeck, 1970). The requirement

of many close orbiters for the determination of the tesseral

and odd zonal harmonics of the major planets reinforces our

natural tendency to assume them negligible.
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VII. GRAVITY ANOMALIES
i

One of the significant results of tracking the lunar

orbiters was the discovery of near surface gravity anomalies

(Muller!and Sjogren, 1968). Jupiter's red spot

may be a Taylor column (Hide, 1963, 1969) above a hydrogen

iceberg floating in a region of rapid density increase of a

hydrogen-helium fluid (Streett, 1969). A spacecraft flying

over such an iceberg would sense a positive gravity anomaly,

since the lower density solid hydrogen is closer to the

spacecraft than the displaced equal mass of fluid would be in

the absence of the iceberg. If a spacecraft were flying over

a gravity anomaly while it was on the limb of Jupiter as

viewed from the earth, the amplitude of the line of sight

velocity residual from a calculated orbit is given by

A / J4. i - GAM dr1Av = I a// dt = / —=- cos af fc ^4. f r= a// dt =
J o " J r .. r-mm .

where t = o is the time of closest approach a^ is the acceleration

parallel to the line of sight, AM is the effective mass causing

the gravity anomaly r is the separation between AM (here assumed

a point mass) and the spacecraft, a is the angle between the

direction to AM and the spacecraft velocity (here assumed

parallel to the line of sight), v is the relative velocity between

the spacecraft and the gravity anomaly. For the elliptic orbit

considered above r . ~ 0.1 a and v ~ 5 x 10 cm/sec . Withmm e
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the upper bound on the integration r = 0.2 a / we have

Av = 3.8 x 10~24 AM

\

If the minimum Av detectable is 1 mm/sec, the lower bound.

on the fractional mass detectable as a point mass concentration

near the surface is

.̂ - 10~8
M ~ 10

This limit assumes that the orbit would be precisely known in

the absence of the anomaly, so in actual practice the minimum

AM detectable will be considerably larger.
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VIII. DISCUSSION
I

The chief motivation for obtaining accurate values of the

even order zonal harmonic coefficients of the expanded

gravitational fields of the major planets is the constraint

these coefficients place on the internal mass distributions

and hence on theoretical models of the planetary interiors.

Although the values of a finite number of coefficients cannot

define a model or prove a given one correct, a model which does

not produce the values of these coefficients is known to be

incorrect. The composition and temperature distributions and

the equations of state may be better defined if certain com-

binations produce incorrect models. The higher order coefficients

are especially sensitive to changes in density in the outer

regions of the planets where the equation of state is

temperature sensitive and will therefore be useful in the dis-

cussion of models of the extended, supercritical atmospheres.

The values of J~ and J. and other data for Uranus and Neptune,

which are only obtainable with artificial satellite observations,

may allow meaningful model construction for these planets.

The secular perturbations of a single artificial satellite

in an eccentric orbit will yield values of J2 and J. with an

error determined by the contribution of the neglected Jg and

higher terms provided the secular perturbations from other

sources are known with similar precision. This is especially
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true of the Jupiter system where better masses of the Galilean

satellites must be determined by close approaches of the

artificial satellite before much improvement in J2 and J. can

be realized. The better masses of the Galilean satellites

alone wi-11 improve the values of J- and J, by reanalysis of

the old observations. The determination of J, and higher orderfa

coefficients must await the precise tracking of additional

satellites. In the case of Jupiter these satellites may be

the Galilean satellites tracked by earth-based radar.

Nonzero tesseral and odd order zonal harmonics would

indicate internal dynamics. However, attempts to determine

them would demand the high price of many close orbiters and

reasonable upper bounds on their values might be obtained only

in the distant future.

Near surface mass concentrations are unlikely in the fluid

outer layers of the major planets, but one may be associated

with the Jupiter's red spot. The estimated absolute lower

bound on the detectable effective mass of such an anomaly

yields AM/M = 10~8.

The rectangular coordinates rather than the orbital

elements can be used to describe the motion of the artificial

satellite and a least squares analysis applied with J~, J.,

the masses of the natural satellites, etc., as unknowns. The

small probable errors in the parameters, even for a flyby

spacecraft, indicate the power of this method with current

tracking accuracies. When applied to a single orbiter with high
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orbit eccentricity, the least squares analysis may yield probable

errors small enough to estimate Jfi, the probable errors in the

satellite masses also being reduced in the analysis (J. D.

Anderson, private communication, 1972). However, the success

of such an approach depends on the a priori accuracy assumed for

the various parameters at the beginning, the subjective assignment

of weights to the observations and the completeness of the model.

We justified above the neglect of the tesseral harmonics and

zonal harmonics of odd order, but we have been surprised

in the past by the fallacy of such reasonable arguments. Since

the secular changes in ft and to depend only on the zonal

harmonics of even order in the gravity field of Jupiter, the

determination of these motions over as long a time scale as

possible is perhaps less uncertain than the least squares

analysis. A combination of the two methods has worked to great

advantage in determining the harmonic coefficients of the earth's

field.
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