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We construct the graviton propagator on de Sitter background in exact de Donder
gauge. We prove that it must break de Sitter invariance, just like the propagator of
the massless, minimally coupled scalar. Our explicit solutions for its two scalar
structure functions preserve spatial homogeneity and isotropy so that the propagator
can be used within the larger context of inflationary cosmology; however, it is simple
to alter the residual symmetry. Because our gauge condition is de Sitter invariant
(although no solution for the propagator can be) renormalization should be simpler
using this propagator than one based on a noncovariant gauge. It remains to be
seen how other computational steps compare. C© 2011 American Institute of Physics.
[doi:10.1063/1.3664760]

I. INTRODUCTION

Mathematical physicists have long maintained that the graviton propagator is de Sitter invariant
because explicit, de Sitter invariant solutions to the propagator equation arise from adding covariant
gauge fixing terms to the action and analytically continuing from Euclidean de Sitter space.1 It has
recently been realized that this argument is wrong for three reasons:

• There is a topological obstacle to adding covariant gauge fixing terms on any manifold, and
for any gauge theory, which possesses a linearization instability;2

• analytic continuation incorrectly subtracts off any power law infrared divergences;3 and
• solutions exist to the propagator equation which do not correspond to propagators in the sense

of being the expectation value of the time-ordered product of two fields in the presence of some
state.4 (It has been conjectured that this shows up in mathematical physics as a violation of
reflection positivity5).

The first point occurs even for flat space electromagnetism on the manifold T3 × R: the invariant
equations’ linearization instability requires the total charge to vanish, whereas the Feynman gauge
equations can be solved for any charge. The second point is familiar to everyone who has encountered
the automatic subtraction of dimensional regularization. And a trivial example of the third point
comes from multiplying the entirely real, retarded propagator by a factor of i.

These insights resolve a number of puzzles in the literature. For example, employing the
Feynman gauge fixing term for scalar quantum electrodynamics on de Sitter6 produces a one
loop self-mass-squared which possesses on-shell singularities.7 These singularities seem to be the
quantum field theory representation of what one would expect classically from an A0J0 interaction
energy in view of the erroneous temporal growth of A0 in Feynman gauge. The simplest noncovariant
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gauge8 fails to show on-shell singularities.7 Nor is there any problem using the de Sitter invariant,
Lorentz gauge propagator.9, 10 The conclusion for de Sitter electromagnetism is, therefore, that one
must avoid adding covariant gauge fixing terms, but no physical breaking of de Sitter invariance
occurs.

The situation for gravitons is different owing to infrared divergences. It has long been noted that
certain discrete choices of the two covariant gauge fixing parameters result in infrared divergences,
if one insists on a de Sitter invariant solution.11, 12 These choices had been dismissed as unphysical,
“singular gauges” which must simply be avoided.13 However, we can now see that they are precisely
the cases for which the order of the omnipresent infrared divergence in the formal, de Sitter invariant
mode sum changes from power law to logarithmic.3 The power law infrared divergences of other
choices were automatically—but incorrectly—subtracted by analytic regularization techniques to
produce solutions of the propagator equations that are not true propagators. The correct procedure in
all cases is to allow free gravitons to resolve their infrared problem by breaking de Sitter invariance.

The purpose of this note is to construct the graviton propagator in an allowed covariant gauge,
without employing analytic continuation techniques to subtract off infrared divergences. Our proce-
dure is to express the propagator in terms of covariant projectors acting on scalar structure functions,
without making any assumption about the eventual de Sitter invariance of the result. These structure
functions obey completely de Sitter invariant equations, but they fail to possess de Sitter invariant
solutions on account of infrared divergences. The procedure is so general that we implement it as well
for a vector particle of general mass MV and check that it agrees with the known de Sitter invariant
solutions3 for M2

V > −2(D − 1)H 2 in the transverse sector and M2
V > 0 in the longitudinal sector.

When de Sitter breaking must occur we have chosen to give explicit solutions which preserve the
symmetries of homogeneity and isotropy that are relevant to cosmology. However, our equations
for the structure functions are invariant, so one can easily derive solutions which respect any of the
allowed subgroups.

Our notation is laid out in Sec. II. Section III presents a general treatment for minimally coupled
scalars of any mass MS. In Sec. IV, we solve for the propagator of a vector with general mass MV,
including longitudinal and transverse parts. Section V applies the same technique to solve for the
graviton propagator in de Donder gauge. Our results are summarized and discussed in Sec. VI.

Because this work represents a long and mostly technical exercise we have thought it right to
briefly discuss the physical motivation. The point is to facilitate the study of quantum effects from
the epoch of primordial inflation for which the de Sitter geometry provides an excellent paradigm.
Just how good can be quantified using the deceleration parameter q(t) = −aä/ȧ2, which measures
minus the fractional cosmic acceleration. Its value for de Sitter is q = − 1, and the threshold between
inflation and deceleration occurs at q = 0. If one assumes single scalar inflation, then the measured
result for the scalar amplitude (Ref. 14), and the bound on the tensor-to-scalar ratio (Ref. 14), imply
95% confidence that q(t) < − 0.986 when the largest observable perturbations experienced first
horizon crossing (Ref. 15). Because this would have been near the end of inflation, when q(t) was
growing, most of the inflationary epoch was likely even closer to de Sitter.

The effects we seek to study arise from particle production. The small amount of particle
production which has long been known to occur in an expanding universe16 becomes explosive during
inflation for any particle which is both massless and not conformally invariant on the classical level.17

This includes massless, minimally coupled scalars, and gravitons.18 Of course, this phenomenon is
the origin of the tensor19 and scalar20 perturbations which are such an exciting tree order prediction
of inflation. Our motivation is getting at the fascinating loop effects which should also be present.

There have been extensive studies of the quantum loop effects from inflation producing massless,
minimally coupled scalars. Complete, dimensionally regulated and fully renormalized results have
been derived at one and two loop orders for a real scalar with a quartic self-interaction,21 for a
massless fermion Yukawa-coupled to a real scalar,22 and for scalar quantum electrodynamics.7, 10, 23

These scalar effects are simpler than those from gravitons because there is no issue about general
coordinate invariance. They are also generally stronger because they can avoid derivative interactions.
However, scalar effects are less universal and less reliable because they depend upon the existence
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of light, minimally coupled scalars at inflationary scales. In four models with gravitons there are
complete, dimensionally regulated, and fully renormalized results:

• For pure quantum gravity the graviton 1-point function has been computed at one loop order.24

This result shows that the effect of inflationary gravitons at one loop order is a slight increase
in the cosmological constant.

• For quantum gravity plus a massless fermion, the fermion self-energy has been computed at
one loop order.25 This result shows that spin-spin interactions with inflationary gravitons drive
the fermion field strength up by an amount that increases without bound.26

• For quantum gravity plus a massless, minimally coupled scalar there are one loop computa-
tions of the scalar self-mass-squared27 and the graviton self-energy.28 The scalar effective field
equations reveal that the scalar kinetic energy redshifts too rapidly for there to be a signifi-
cant interaction with inflationary gravitons.27 The effects of inflationary scalars on dynamical
gravitons, and on the force of gravity, are still under study.28

• The nonlinear sigma model has been exploited to better understand the derivative interactions
of quantum gravity,29 and explicit two loop results have been obtained for the expectation value
of the stress tensor.30

There are also a variety of other, sometimes less complete results, including:

• The graviton 1-point31 and 2-point32 functions in pure quantum gravity;
• the unregulated graviton 2-point function from scalars;33

• in scalar-driven inflation the one loop back-reaction,34 loop corrections to the scalar power
spectrum,35 including corresponding work on how to correctly quantify effects,36 a power-
ful theorem by Weinberg which limits the maximum secular growth,37 and the problem of
untangling infrared effects from ultraviolet divergences;38 and

• in gravity plus generic matter much interest has been devoted to the recent proposal by
Polyakov and co-worker39 (following numerous antecedents11, 31, 32, 34, 40) that runaway particle
production may destabilize de Sitter space.41

II. NOTATION

In Secs. III–V we shall study the de Sitter background propagators of three kinds of fields:
minimally coupled scalars with arbitrary mass MS, vectors with arbitrary mass MV, and gravitons.
The respective Lagrangians are

LS = −1

2
∂μϕ∂νϕgμν

√−g − 1

2
M2

Sϕ
2√−g , (1)

LV = −1

2
∂μ Aρ∂ν Aσ gμνgρσ

√−g − 1

2

[
(D−1)H 2+M2

V

]
Aρ Aσ gρσ

√−g , (2)

LG = 1

16πG

[
R − (D−2)(D−1)H 2

]√−g . (3)

Here, D is the dimension of spacetime, H is the Hubble constant (which gives the cosmological
constant (D − 1)H2 = �) and G is Newton’s constant. We make no assumption that the vector is
transverse, although the form of its mass term in (2) obviously derives from partially integrating and
commuting covariant derivatives in the Maxwell Lagrangian, and then adding a spurious longitu-
dinal kinetic term. The propagator of such a field appears in projection operators, even though the
associated field cannot be dynamical.

We define the graviton field as the perturbation of the full metric gμν(x) about its background
value gμν ,

hμν(x) ≡ gμν(x) − gμν(x) . (4)
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Once this definition has been made, there is no more point to distinguishing the background from the
full metric, so we drop the overbar and refer to the de Sitter background as simply gμν(x). Graviton
indices are raised and lowered using this background field, for example, hμ

ν ≡ gμρhρν . Covariant
derivative operators Dμ and other geometrical quantities are similarly constructed with respect to
the background. Of special importance is the Lichnerowicz operator which, when simplified using
the de Sitter result for the curvature Rρσμν = H2(gμρgνσ − gμσ gνρ), takes the form,

Dμνρσ ≡ D(ρgσ )(μ Dν) − 1

2

[
gμν Dρ Dσ +gρσ Dμ Dν

]

+1

2

[
gμνgρσ −gμ(ρgσ )ν

]
+ (D−1)

[1

2
gμνgρσ −gμ(ρgσ )ν

]
H 2 . (5)

Parenthesized indices are symmetrized, and ≡ gμν Dμ Dν is the covariant d’Alembertian operator.
With the help of (5) we can express the free part of the gravitational Lagrangian (3) in a convenient
form,

LG = (D−1)H 2

8πG

√−g +
(

Surface Term
)

− 1

2
hμνDμνρσ hρσ

√−g + O(h3) . (6)

Much of our work will be valid in any coordinate realization of de Sitter space. However,
when breaking de Sitter is necessary we shall always do so on the D-dimensional open conformal
submanifold in which de Sitter can be imagined as a special case of the larger class of homogeneous,
isotropic and spatially flat geometries relevant to cosmology. A spacetime point xμ = (x0, xi) takes
values in the ranges,

−∞ < x0 < 0 and − ∞ < xi < +∞ for i = 1, . . . , (D−1) . (7)

In these coordinates the invariant element is

ds2 ≡ gμνdxμdxν = a2
x

[
−(dx0)2 + d �x ·d �x

]
= a2

xημνdxμdxν , (8)

where ημν is the Lorentz metric, and ax ≡ − 1/Hx0 is the scale factor.
Although important de Sitter breaking occurs, it turns out that the vast majority of our propagator

is de Sitter invariant. This suggests to express it in terms of the de Sitter invariant length function
y(x; z),

y(x ; z) ≡ ax az H 2

[∥∥∥�x−�z
∥∥∥2

−
(
|x0−z0|−iε

)2
]

. (9)

Except for the factor of iε (whose purpose is to enforce Feynman boundary conditions), the function
y(x; z) is closely related to the invariant length �(x; z) from xμ to zμ,

y(x ; z) = 4 sin2
(1

2
H�(x ; z)

)
. (10)

With this de Sitter invariant quantity y(x; z), we can form a convenient basis of de Sitter invariant
bi-tensors. Note that because y(x; z) is de Sitter invariant, so too are covariant derivatives of it. With
the metrics gμν(x) and gμν(z), the first three derivatives of y(x; z) furnish a convenient basis of de
Sitter invariant bi-tensors,7

∂y(x ; z)

∂xμ
= Hax

(
yδ0

μ+2az H
xμ

)
, (11)

∂y(x ; z)

∂zν
= Haz

(
yδ0

ν −2ax H
xν

)
, (12)

∂2 y(x ; z)

∂xμ∂zν
= H 2ax az

(
yδ0

μδ0
ν +2az H
xμδ0

ν −2axδ
0
μ H
xν −2ημν

)
. (13)
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Here and subsequently we define 
xμ ≡ ημν(x − z)ν . Acting covariant derivatives generates more
basis tensors, for example,7

D2 y(x ; z)

Dxμ Dxν
= H 2(2−y)gμν(x) , (14)

D2 y(x ; z)

Dzμ Dzν
= H 2(2−y)gμν(z) . (15)

The contraction of any pair of the basis tensors also produces more basis tensors,7

gμν(x)
∂y

∂xμ

∂y

∂xν
= H 2

(
4y − y2

)
= gμν(z)

∂y

∂zμ

∂y

∂zν
, (16)

gμν(x)
∂y

∂xν

∂2 y

∂xμ∂zσ
= H 2(2 − y)

∂y

∂zσ
, (17)

gρσ (z)
∂y

∂zσ

∂2 y

∂xμ∂zρ
= H 2(2 − y)

∂y

∂xμ
, (18)

gμν(x)
∂2 y

∂xμ∂zρ

∂2 y

∂xν∂zσ
= 4H 4gρσ (z) − H 2 ∂y

∂zρ

∂y

∂zσ
, (19)

gρσ (z)
∂2 y

∂xμ∂zρ

∂2 y

∂xν∂zσ
= 4H 4gμν(x) − H 2 ∂y

∂xμ

∂y

∂xν
. (20)

III. SCALAR PROPAGATORS

Scalar propagator equations play an important role in our analysis because our strategy is to
enforce the de Donder gauge condition, without making assumptions about de Sitter invariance,
using covariant derivative projectors acting on scalar structure functions. The graviton propagator
equation will then be used to infer invariant equations for these scalar structure functions. The point
of this section is to review and systematize previous work2, 3 about how to solve such equations.
We begin giving a general scalar propagator equation and explaining why infrared divergences for
M2

S ≤ 0 preclude a de Sitter invariant solution. We review the two fixes in the literature, and then give
a simple approximate implementation for our favorite one. The section closes with some powerful
results for integrating propagators.

One can see from (1) that the propagator of a minimally coupled scalar with mass MS obeys the
equation [

− M2
S

]
i
(x ; z) = iδD(x−z)√−g

. (21)

The plane wave mode function corresponding to Bunch-Davies vacuum is42

uν(x0, k) ≡
√

π

4H
a

− D−1
2

x H (1)
ν (−kx0), where ν =

√( D−1

2

)2
− M2

S

H 2
. (22)

The Fourier mode sum for the propagator on infinite space is

i
dS
ν (x ; z) =

∫
d D−1k

(2π )D−1
ei �k·(�x−�z)

{
θ (x0−z0)uν(x0, k)u∗

ν(z0, k)

+ θ (z0−x0)uν(x0, k)uν(z0, k)

}
. (23)
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The result is de Sitter invariant when the integral converges43, 44

i
dS
ν (x ; z)

= H D−2

(4π )
D
2

�( D−1
2 +ν)�( D−1

2 −ν)

�( D
2 )

2 F1

( D − 1

2
+ν,

D − 1

2
−ν;

D

2
; 1− y

4

)
, (24)

= H D−2�( D
2 −1)

(4π )
D
2

{( 4

y

) D
2 −1

2 F1

(1

2
+ν,

1

2
−ν; 2− D

2
;

y

4

)

+�( D−1
2 +ν)�( D−1

2 −ν)�(1− D
2 )

�( 1
2 +ν)�( 1

2 −ν)�( D
2 −1)

2 F1

( D − 1

2
+ν,

D − 1

2
−ν;

D

2
;

y

4

)}
, (25)

= H D−2

(4π )
D
2

{
�

( D

2
−1

)( 4

y

) D
2 −1

− �( D
2 )�(1− D

2 )

�( 1
2 +ν)�( 1

2 −ν)

∞∑
n=0

[
�( 3

2 +ν+n)�( 3
2 −ν+n)

�(3− D
2 +n) (n+1)!

( y

4

)n− D
2 +2

−�( D−1
2 +ν+n)�( D−1

2 −ν+n)

�( D
2 +n) n!

( y

4

)n
]}

. (26)

The gamma function �( D−1
2 − ν + n) on the final line of (26) diverges for

ν =
( D−1

2

)
+ N ⇐⇒ M2

S = −N (D−1+N )H 2 . (27)

Its origin can be understood by performing the angular integration in the naive mode sum (23) and
then changing to the dimensionless variable τ ≡ k/H

√
ax az ,

i
dS
ν (x ; z) = (ax az)−( D−1

2 )

2Dπ
D−3

2 H

∫ ∞

0
dk k D−2

(1

2
k
x

)−( D−3
2 )

J D−3
2

(k
x)

×
{
θ (x0−z0)H (1)

ν (−kx0)H (1)
ν (−kz0)∗ + θ (z0−x0)

(
conjugate

)}
, (28)

= H D−2

2Dπ
D−3

2

∫ ∞

0
dτ τ D−2

(1

2

√
ax az H
xτ

)−( D−3
2 )

J D−3
2

(√
ax az H
xτ

)

×
{
θ (x0−z0)H (1)

ν

(√
az

ax
τ
)

H (1)
ν

(√
ax

az
τ
)∗

+ θ (z0−x0)
(

conjugate
)}

. (29)

In these and subsequent expressions we define 
x ≡ ‖�x−�z‖. That the divergence at (27) is infrared
can be seen from the small argument expansion of the Bessel function and from its relation to the
Hankel function

Jν(x) =
∞∑

n=0

(−1)n( 1
2 x)ν+2n

n!�(ν+n+1)
, (30)

H (1)
ν (x) = i�(ν)�(1−ν)

π

{
e−iνπ Jν(x)− J−ν(x)

}
. (31)

The small τ behavior of the integrand (29) derives from three factors, the first being τD − 2. The
second factor takes the form(1

2

√
ax az H
xτ

)−( D−3
2 )

J D−3
2

(√
ax az H
xτ

)
= 1

�( D−1
2 )

∞∑
n=0

C1(n)τ 2n . (32)

Downloaded 13 Feb 2012 to 131.211.105.85. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



122301-7 Graviton propagator in de Donder gauge J. Math. Phys. 52, 122301 (2011)

And the final factor from the Hankel functions is

H (1)
ν

(√
az

ax
τ
)

H (1)
ν

(√
ax

az
τ
)∗

= 2�(ν)�(2ν)

π
3
2 �(ν+ 1

2 )τ 2ν

∞∑
n=0

C2(n)τ 2n . (33)

Hence, the small τ expansion of the integrand has the form

τ D−2 × 1

�( D−1
2 )

∞∑
k=0

C1(k)τ 2k × �2(ν)22ν

π2τ 2ν

∞∑
�=0

C2(�)τ 2�

= 2�(ν)�(2ν)

π
3
2 �( D−1

2 )�(ν+ 1
2 )

τ D−2−2ν

∞∑
n=0

C3(n)τ 2n . (34)

The naive mode sum (23) is infrared divergent for

D − 2 − 2ν ≤ −1 ⇐⇒ M2
S ≤ 0 . (35)

However, there will only be a logarithmic infrared divergence, either from the leading term in (34)
or from one of the series corrections at n = N, if one has

D − 2 − 2ν + 2N = −1 ⇐⇒ M2
S = −N (D−1+N )H 2 . (36)

This is precisely the condition (27) for the formal, de Sitter invariant mode sum (26) to diverge.
The infrared divergence we have just seen was first noted in 1977 for the special case of MS = 0

by Ford and Parker.45 The appearance of an infrared divergence signals that something is unphysical
about the quantity being computed. The correct response to an infrared divergence is not to subtract
it off, either explicitly or implicitly with the automatic subtraction of some analytic regularization
technique. One must instead understand the physical problem which caused the divergence and then
fix that problem. As we will see, the fix involves breaking de Sitter invariance, which was realized
in 1982 for the special case of MS = 0.46 Allen and Folacci later gave a rigorous proof that de Sitter
invariance must be broken.47

The divergence (35) occurs because of the way the Bunch-Davies mode functions (22) depend
upon k for small k. The unphysical thing about having Bunch-Davies vacuum for arbitrarily small k
is that no experimentalist can causally enforce it (or any other condition) for super-horizon modes.
This has led to two fixes:

1. One can continue to work on the spatial manifold RD − 1 but assume the initial state is released
with its super-horizon modes in some less singular condition48 or

2. One can work on the compact spatial manifold TD − 1 with its coordinate radius chosen so the
initial state has no super-horizon modes.49

We will adopt the latter fix. This makes the mode sum discrete, but the integral approximation should
be excellent, and gives a simple expression for the propagator which differs from (23) only by an
infrared cutoff at k = H.

From the preceding discussion, we see that the infrared corrected propagator i
(x; z) is just
(29) with the lower limit cutoff at τ = 1/

√
ax az ,

i
(x ; z) = H D−2

2Dπ
D−3

2

∫ ∞

1√
ax az

dτ τ D−2
J D−3

2
(
√

ax az H
xτ )

( 1
2

√
ax az H
xτ )

D−3
2

×
{
θ (x0−z0)H (1)

ν

(√
az

ax
τ
)

H (1)
ν

(√
ax

az
τ
)∗

+ θ (z0−x0)
(

conjugate
)}

. (37)

Of course, we can express the truncated integral as the full one minus an integral over just the
infrared ∫ ∞

1√
ax az

dτ =
∫ ∞

0
dτ −

∫ 1√
ax az

0
dτ ⇐⇒ i
(x ; z) ≡ i
dS

ν (x ; z) + 
IR
ν (x ; z) . (38)
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In this case, it does not matter if dimensional regularization is used to evaluate both i
dS
ν (x ; z) and


IR
ν (x ; z) because the errors we make at the lower limits will cancel.

A further simplification is that 
IR
ν (x ; z) only needs to include the infrared singular terms which

grow as axaz increases. These terms come entirely from the J− ν parts of the Hankel function and
they are entirely real


IR
ν (x ; z) = − H D−2

(4π )
D
2

2�(ν)�(2ν)

�(ν+ 1
2 )

∫ 1√
ax az

0
dτ τ D−2

J D−3
2

(
√

ax az H
xτ )

( 1
2

√
ax az H
xτ )

D−3
2

×�2(1−ν)

22ν
J−ν

(√
az

ax
τ
)

J−ν

(√
ax

az
τ
)

. (39)

The final result is3, 50


IR
ν (x ; z) = H D−2

(4π )
D
2

�(ν)�(2ν)

�( D−1
2 )�(ν+ 1

2 )

×
∞∑

N=0

(ax az)ν−( D−1
2 )−N

ν−( D−1
2 )−N

N∑
n=0

(ax

az
+ az

ax

)n
[ N−n

2 ]∑
m=0

CNnm(y−2)N−n−2m , (40)

where the coefficients CNnm are

CNnm = (− 1
4 )N

m!n!(N −n−2m)!
× �( D−1

2 +N +n−ν)

�( D−1
2 +N −ν)

× �( D−1
2 )

�( D−1
2 +N −2m)

× �(1−ν)

�(1−ν+n+2m)
× �(1−ν)

�(1−ν+m)
. (41)

Of course, there is no point in extending the sum over N to values N > ν − ( D−1
2 ) for which the

exponent of axaz becomes negative. Those terms rapidly approach zero, and they can be dropped
without affecting the propagator equation because they are separately annihilated by − M2

s .
It might be worried that the approximations made in deriving the infrared correction do violence

to delicate consistency relations in quantum field theory, but this is not the case. For the MS = 0 scalar
renormalization has been successfully implemented at one and two loop orders.7, 10, 21–23 Because
the physical graviton polarizations obey the same mode functions as massless, minimally coupled
scalars,18 one can also test the integral approximation with the graviton propagator. There is no
disruption of powerful consistency checks such as the Ward identity at tree order51 and one loop.32

Nor is there any problem with the allowed one loop counterterms.24, 25, 27, 28

It is worthwhile to summarize these results in the context of a consistent notation. Consider a
general scalar whose mass obeys M2

s /H 2 = ( D−1
2 )2 − b2. Its propagator i
b(x; z) obeys the equation

[
x + b2 H 2 −

( D−1

2

)2
H 2

]
i
b(x ; z) = iδD(x−z)√−g

. (42)

We define the final result for i
b(x; z) as the limit as ν approaches b of two functions which we
wish to consider for general index ν. The first term in the sum is i
dS

ν (x ; z) as defined by expression
(26). The second term is 
IR

ν (x ; z), as defined by expression (40), except that the sum over N is
cutoff at the largest non-negative integer for which N ≤ b − ( D−1

2 ), with 
IR
ν (x ; z) defined as zero

for b < ( D−1
2 ). Hence, our final result is

i
b(x ; z) = lim
ν→b

[
i
dS

ν (x ; z) + 
IR
ν (x ; z)

]
. (43)
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We shall make significant use of four special cases for which a separate notation has been
introduced

bB =
( D−3

2

)
⇐⇒ i
B(x ; z) = B(y) , (44)

bA =
( D−1

2

)
⇐⇒ i
A(x ; z) = A(y) + δA(ax , az, y) , (45)

bW =
( D+1

2

)
⇐⇒ i
W (x ; z) = W (y) + δW (ax , az, y) , (46)

bM = 1

2

√
(D−1)(D+7) ⇐⇒ i
M (x ; z) = M(y) + δM(ax , az, y) . (47)

Although the B-type propagator is de Sitter invariant, its A-type, W-type, and M-type cousins have
de Sitter breaking parts

δA = k ln(ax az) , (48)

δW = k

{
(D−1)2ax az −

( D−1

2

)
ln(ax az)(y−2) −

(ax

az
+ az

ax

)}
, (49)

δM = kM

{
(ax az)bM −bA

bM −bA
− (ax az)bM −bA−1

bM −bA−1
× (y−2)

4bA

− (ax az)bM −bA−1

4bA(bM −1)
×

(ax

az
+ az

ax

)}
. (50)

The constants k and kM are

k ≡ H D−2

(4π )
D
2

�(D−1)

�( D
2 )

, kM ≡ H D−2

(4π )
D
2

�(bM )�(2bM )

�(bA)�(bM + 1
2 )

. (51)

The main, de Sitter invariant parts of each propagator consist of a few, potentially ultraviolet divergent
terms (at y = 0), plus an infinite series. For the M-type propagator, there are no cancellations
with the de Sitter breaking terms: just replace ν everywhere by bM in expression (26) to find
M(y) = i
dS

bM
(x ; z). However, there are cancellations when this replacement is done for the A-type

and W propagators

B(y) = H D−2

(4π )
D
2

{
�

( D

2
−1

)( 4

y

) D
2 −1

+
∞∑

n=0

[
�(n+ D

2 )

(n+1)!

( y

4

)n− D
2 +2

− �(n+D−2)

�(n+ D
2 )

( y

4

)n
]}

, (52)

A(y) = H D−2

(4π )
D
2

{
�

( D

2
−1

)( 4

y

) D
2 −1

+ �( D
2 +1)

D
2 −2

( 4

y

) D
2 −2

+ A1

−
∞∑

n=1

[
�(n+ D

2 +1)

(n− D
2 +2)(n+1)!

( y

4

)n− D
2 +2

− �(n+D−1)

n�(n+ D
2 )

( y

4

)n
]}

, (53)
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W (y) = H D−2

(4π )
D
2

{
�

( D

2
−1

)( 4

y

) D
2 −1

+ �( D
2 +2)

( D
2 −2)( D

2 −1)

( 4

y

) D
2 −2

+ �( D
2 +3)

2( D
2 −3)( D

2 −2)

( 4

y

) D
2 −3

+W1+W2

( y−2

4

)

+
∞∑

n=2

[
�(n+ D

2 +2)( y
4 )n− D

2 +2

(n− D
2 +2)(n− D

2 +1)(n+1)!
− �(n+D)( y

4 )n

n(n−1)�(n+ D
2 )

]}
, (54)

and the D-depdendent constants A1, W1, and W2 are

A1 = �(D−1)

�( D
2 )

{
−ψ

(
1− D

2

)
+ ψ

( D−1

2

)
+ ψ(D−1) + ψ(1)

}
, (55)

W1 = �(D+1)

�( D
2 +1)

{
D+1

2D

}
, (56)

W2 = �(D+1)

�( D
2 +1)

{
ψ

(
− D

2

)
− ψ

( D+1

2

)
− ψ(D+1) − ψ(1)

}
. (57)

A problem we shall often encounter consists of integrating one propagator against another. The
result can be represented as the solution of a modified propagator equation[

+ b2 H 2 −
( D−1

2

)2
H 2

]
i
bc(x ; z) = i
c(x ; z) . (58)

The solution is easily seen to be2, 3

i
bc(x ; z) = 1

(b2−c2)H 2

[
i
c(x ; z)−i
b(x ; z)

]
= i
cb(x ; z) . (59)

For the special case that the indices b and c agree, one gets a derivative

i
bb(x ; z) = − 1

2bH 2

∂

∂b
i
b(x ; z) . (60)

We can obviously continue the process ad infinitum. For example, consider the case where the
source is not a propagator, but rather a singly integrated propagator[

+ b2 H 2 −
( D−1

2

)2
H 2

]
i
bcd (x ; z) = i
cd (x ; z) . (61)

The solution can be written in a form which is manifestly symmetric under any interchange of the
three indices a, b, and c,

i
bcd (x ; z) = i
bd (x ; z)−i
bc(x ; z)

(c2−d2)H 2
, (62)

= (d2−c2)i
b(x ; z)+(b2−d2)i
c(x ; z)+(c2−b2)i
d (x ; z)

(b2−c2)(c2−d2)(d2−b2)H 4
. (63)

The case in which two of the indices are the same gives

i
bcc(x ; z) = − 1

2cH 2

∂

∂c
i
bc(x ; z) = i
cc(x ; z)−i
bc(x ; z)

(b2−c2)H 2
. (64)
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And equating all three indices produces

i
bbb(x ; z) = − 1

2bH 2

∂

∂b
i
bc(x ; z)

∣∣∣
c=b

, (65)

= − 1

8b3 H 4

[
∂

∂b
i
b(x ; z)−b

( ∂

∂b

)2
i
b(x ; z)

]
. (66)

IV. VECTOR PROPAGATORS

One can see from (2) that the vector propagator obeys the equation

[
−(D−1)H 2−M2

V

]
i
[

μ
ρ

]
(x ; z) = igμρδ

D(x−z)√−g
. (67)

Note that we do not assume transversality; indeed, the full vector propagator cannot be transverse
because the right-hand side of Eq. (67) is not transverse. The first part of this section describes
how to decompose the full propagator into its transverse and longitudinal parts, without making any
assumptions about its eventual de Sitter invariance. Our technique is to express these parts using
projectors formed from covariant derivative operators, acting on scalar structure functions. In the
second part, we derive a scalar equation for the longitudinal structure function and solve it using the
techniques of Sec. III. In the final part, we carry out the same analysis for the transverse structure
function. The techniques employed here are a paradigm for the work of the subsequent section on
the graviton propagator.

A. Transverse and logitudinal parts

The full vector propagator can be written as the sum of a transverse part and a longitudinal part

i
[

μ
ρ

]
(x ; z) = i

[
μ
T

ρ

]
(x ; z) + i

[
μ
L

ρ

]
(x ; z) . (68)

In previous studies,6, 9 the vector propagator was expressed as a linear combination of de Sitter
invariant basis tensors like those introduced at the end of Sec. II. Then the coefficient functions
were chosen to enforce transversality (or longitudinality). This method is not open to us because
we cannot assume de Sitter invariance for general mass MV. What we require instead is a covariant
decomposition which entails no assumption about de Sitter invariance.

The longitudinal part is easy

i
[

μ
L
ρ

]
(x ; z) ≡ ∂

∂xμ

∂

∂zρ

[
SL (x ; z)

]
. (69)

This expression is longitudinal for any choice of the longitudinal structure function FL (x ; z). After
much consideration, we decided to express the transverse part as

i
[

μ
T
ρ

]
(x ; z) = Pαβ

μ (x) × Pκλ
ρ (z) × Qακ (x ; z) ×

[
Rβλ(x ; z) ST (x ; z)

]
. (70)

These symbols require explanation. The differential operator Pαβ
μ is defined by writing the Maxwell

field strength tensor as Fαβ = Pαβ
μ Aμ,

Pαβ
μ ≡ δβ

μ Dα−δα
μ Dβ . (71)

Note that acting Pαβ
μ (x) × Pκλ

ρ (z) on any 4-index, symmetric function of x and z produces something
with the right properties to be a transverse propagator. Of course, some choices for the 4-index
function give simpler final results than others! The best selection seems to be taking two of the four
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indices to be more covariant derivatives and the other two to belong to Sec. II basis tensor (13) which
gives a Lorentz metric in the flat space limit. This corresponds to form (70) with the definitions

Qακ (x ; z) ≡ − 1

2H 2

D

Dxα

D

Dzκ
, (72)

Rβλ(x ; z) ≡ − 1

2H 2

∂2 y(x ; z)

∂xβ∂zλ
. (73)

B. Solution for the longitudinal part

To derive an equation for the longitudinal structure function, we take the divergence of the full
propagator equation (67), substitute relations (68)–(70), and then commute the derivative to the left

Dρ
z

[
x −(D−1)H 2−M2

V

]
i
[

μ
ρ

]
(x ; z)

=
[

x −(D−1)H 2−M2
V

] ∂

∂xμ zSL (x ; z) , (74)

= Dx
μ

[
x −M2

V

]
zSL (x ; z) , (75)

= −Dx
μ

(
iδD(x−z)√−g

)
. (76)

Hence, we conclude [
x −M2

V

]
zSL (x ; z) = − iδD(x−z)√−g

. (77)

From relation (42) of Sec. III this implies

zSL (x ; z) = −i
b(x ; z) for b2 =
( D−1

2

)2
− M2

V

H 2
. (78)

The final solution for SL follows from relations (58) and (59):

SL (x ; z) = 1

M2
V

[
i
A(x ; z)−i
b(x ; z)

]
= −i
Ab(x ; z) . (79)

We remind the reader of special case A with index bA = ( D−1
2 ) and the explicit expansion for i
A(x;

z) given by expressions (45), (48), and (53).

C. Solution for the transverse part

Substituting our explicit solution (79) for the longitudinal structure function into the full prop-
agator equation (67) allows us to derive an equation for the transverse part that was previously
guessed9

[
−(D−1)H 2−M2

V

]
i
[

μ
T
ρ

]
(x ; z) = igμρδ

D(x−z)√−g
+ ∂

∂xμ

∂

∂zρ
i
A(x ; z) . (80)

The most effective technique for solving this equation is to reduce each side of the equation to the
standard transverse form (70). We then read off a scalar equation for the transverse structure function
ST (x ; z), which can be solved by the methods of Sec. III.

It is best to begin by establishing some important properties of the quadratic differential operator

Pβ
μ ≡ Pαβ

μ × Dα = δβ
μ − Dβ Dμ . (81)
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We shall always contract Pβ
μ into some vector Tβ , so it is possible to commute the final covariant

derivatives to reach the form

Pβ
μTβ =

(
δβ
μ

[
−(D−1)H 2

]
− Dμ Dβ

)
Tβ . (82)

It is tedious but straightforward to show that the covariant d’Alembertian commutes with Pβ
μ,

Pβ
μTβ = Pβ

μ Tβ . (83)

Note also that Pβ
μ is transverse on both left and right

DμPβ
μTβ = 0 = Pβ

μ Dβ T . (84)

Pβ
μ must therefore be proportional to transverse projection operator. The proportionality factor can

be found by squaring. Comparing relations (84) and (82) implies

Pα
μ × Pβ

αTβ =
[

−(D−1)H 2
]
Pβ

μTβ = Pβ
μ

[
−(D−1)H 2

]
Tβ . (85)

The relevance of Pβ
μ is that it gives the differential operators in front of the general transverse

form (70),

Pαβ
μ (x) × Pκλ

ρ (z) × Qακ (x ; z) = − 1

2H 2
Pβ

μ(x) × Pλ
ρ(z) . (86)

Substituting (70) into Eq. (80), and making use of relations (86) and (83), implies[
−(D−1)H 2−M2

V

]
i
[

μ
T
ρ

]
(x ; z)

= Pαβ
μ (x) × Pκλ

ρ (z) × Qακ (x ; z)
[

−(D−1)H 2−M2
V

][
RβλST

]
. (87)

We need next to consider what the d’Alembertian gives when acting on the factors to the far right

x

[
RβλST

]
=

[
xRβλ

]
ST + 2gαγ DRβλ

Dxα

∂ST

∂xγ
+ Rβλ xST . (88)

Recalling the definition (73) of Rβλ(x ; z), and making use of relation (14) from Sec. II, gives two
identities we shall use in this section and the next

D

Dxα
Rβλ(x ; z) = 1

2
gαβ(x)

∂y

∂zλ
, (89)

Rβλ(x ; z) = −H 2Rβλ(x ; z) . (90)

Substitute these in (88) and pass the single derivative back outside to obtain

x

[
RβλST

]
= ∂y

∂zλ

∂ST

∂xβ
+ Rβλ

[
x −H 2

]
ST , (91)

= ∂

∂xβ

[ ∂y

∂zλ
ST

]
− ∂2 y

∂xβ∂zλ
ST + Rβλ

[
x −H 2

]
ST , (92)

= ∂

∂xβ

[ ∂y

∂zλ
ST

]
+ Rβλ

[
x +H 2

]
ST . (93)

The first term on the right of Eq. (93) is longitudinal. In view of relation (84), we therefore conclude[
−(D−1)H 2−M2

V

]
i
[

μ
T
ρ

]
(x ; z)

= Pαβ
μ (x) × Pκλ

ρ (z) × Qακ (x ; z)

[
Rβλ

[
−(D−2)H 2−M2

V

]
ST

]
. (94)
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It remains to reduce the right-hand side of (80) to the standard form (70), we have adopted for
transverse bi-tensors,

i
[

μ Pρ

]
(x ; z) ≡ igμρδ

D(x−z)√−g
+ ∂

∂xμ

∂

∂zρ
i
A(x ; z) , (95)

= Pαβ
μ (x) × Pκλ

ρ (z) × Qακ (x ; z)
[
Rβλ(x ; z)P1(x ; z)

]
. (96)

This is easily accomplished by acting Pμ
ν (x) × Pρ

σ (z) on both forms. Acting this operator on (95)
and making use of relation (84) gives

Pμ
ν (x) × Pρ

σ (z) i
[

μ Pρ

]
(x ; z)

= −2H 2Pαβ
ν (x) × Pκλ

σ (z) × Qακ (x ; z)
[
gβλ

iδD(x−z)√−g

]
, (97)

= −2H 2Pαβ
ν (x) × Pκλ

σ (z) × Qακ (x ; z)
[
Rβλ(x ; z)

iδD(x−z)√−g

]
. (98)

Acting instead on (96) and making use of relations (85) and (93) gives

Pμ
ν (x) × Pρ

σ (z) i
[

μ Pρ

]
(x ; z)

= Pαβ
ν (x) × Pκλ

σ (z) × Qακ (x ; z)
[

−(D−1)H 2
]2[

RβλP1

]
, (99)

= Pαβ
ν (x) × Pκλ

σ (z) × Qακ (x ; z)

[
Rβλ

[
−(D−2)H 2

]2
P1

]
. (100)

Comparing expressions (98) and (100) implies[
−(D−2)H 2

]2
P1(x ; z) = −2H 2 iδD(x−z)√−g

. (101)

Relation (42) from Sec. III—with the special case of b = ( D−3
2 )—to infer[

−(D−2)H 2
]
P1(x ; z) = −2H 2i
B(x ; z) . (102)

Now apply relations (58)–(60) to finally obtain the structure function for the transverse projection
functional

P1(x ; z) = −2H 2i
B B(x ; z) . (103)

We have now reduced the transverse propagator equation to the form

Pαβ
μ (x) × Pκλ

ρ (z) × Qακ (x ; z)

[
Rβλ

[
−(D−2)H 2−M2

V

]
ST

]

= Pαβ
μ (x) × Pκλ

ρ (z) × Qακ (x ; z)

[
Rβλ

[
−2H 2i
B B

]]
. (104)

The transverse structure function therefore obeys[
−(D−2)H 2−M2

V

]
ST = −2H 2i
B B(x ; z) . (105)

Again making use of relations (58)–(60), our solution for it is

ST = +2H 2

M2
V

i
B B + 2H 2

M4
V

[
i
B − i
c

]
, where c =

√( D−3

2

)2
− M2

V

H 2
. (106)
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V. THE GRAVITON PROPAGATOR

Section IV provides a model for the analysis of this section, except that we immediately
specialize to gravitons which obey de Donder gauge

Dμhμν − 1

2
Dνhμ

μ = 0 . (107)

The first task is to express the propagator of such a graviton in terms of covariant projectors acting on
scalar structure functions. With just a small extension of our previous results, we can then commute
the differential operator to act directly on the structure functions. The final step is identifying the de
Donder gauge projection functionals.

A. Enforcing de Donder gauge

In de Donder gauge (107), the propagator must obey the gauge condition on either coordinate
and its associated index group[

δα
μ Dβ

x − 1

2
Dx

μgαβ(x)
]

× i
[

αβ
ρσ

]
(x ; z) = 0 , (108)

[
δα
ρ Dβ

z − 1

2
Dz

ρgαβ(z)
]

× i
[

μν
αβ

]
(x ; z) = 0 . (109)

Just as was the case for the vector propagator with the analogous conditions of transversality and
longitudinality, we seek here to enforce (108) and (109) by acting covariant projectors on scalar
structure functions. It turns out there are two ways to do it, corresponding to the spin zero and spin
two parts of the graviton propagator

i
[

αβ
ρσ

]
(x ; z) = i

[
αβ
0

ρσ

]
(x ; z) + i

[
αβ
2

ρσ

]
(x ; z) . (110)

The spin zero part of the graviton propagator is almost as simple as the longitudinal part of the
vector propagator. It is a linear combination of longitudinal and trace terms from each index group

i
[

μν

0
ρσ

]
(x ; z) = Pμν(x) × Pρσ (z)

[
S0(x ; z)

]
. (111)

The projector Pμν is

Pμν ≡ Dμ Dν + gμν

D−2

[
+2(D−1)H 2

]
. (112)

Unlike the spin zero part of the graviton propagator, the spin two part is both transverse and
also traceless within each index group. Recall that we obtained the key projector for the transverse
part of the photon propagator by writing the Maxwell field strength tensor as Fαβ = Pαβ

μ Aμ. We

similarly define the projector Pαβγ δ
μν by expanding the Weyl tensor in powers of the graviton field

Cαβγ δ = Pαβγ δ
μν hμν + O(h2). The final result takes the form28

Pαβγ δ
μν ≡ Dαβγ δ

μν + 1

D−2

[
gαδDβγ

μν −gβδDαγ
μν −gαγDβδ

μν +gβγDαδ
μν

]

+ 1

(D−1)(D−2)

[
gαγ gβδ−gαδgβγ

]
Dμν . (113)

The various pieces of this are

Dαβγ δ
μν ≡ 1

2

[
δα

(μδδ
ν) Dγ Dβ −δ

β

(μδδ
ν) Dγ Dα−δα

(μδ
γ

ν) Dδ Dβ +δ
β

(μδ
γ

ν) Dδ Dα
]

, (114)

Dβδ
μν ≡ gαγDαβγ δ

μν = 1

2

[
δδ

(μ Dν) Dβ −δ
β

(μδδ
ν) −gμν Dδ Dβ +δ

β

(μ Dδ Dν)

]
, (115)

Dμν ≡ gαγ gβδDαβγ δ
μν = D(μ Dν) − gμν . (116)
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Acting Pαβγ δ
μν (x) × Pκλθφ

ρσ (z) on any eight index, symmetric function of x and z would produce a
transverse and traceless tensor but, as with the vector, it pays to select a simple form. The best choice
seems to be taking half the indices in the form of more covariant derivative operators, and the other
half from two factors of the mixed second derivative (13) of the length function,

i
[

μν

2
ρσ

]
(x ; z) = Pαβγ δ

μν (x) × Pκλθφ
ρσ (z) × Qακ × Qγ θ

[
RβλRδφ S2(x ; z)

]
. (117)

We remind the reader of the definitions (72) and (73) of Qακ (x ; z) and Rβλ(x ; z).
We close this subsection by giving the propagator equation. Acting the Lichnerowicz operator

(5) on the graviton field and making use of the de Donder gauge condition (107) gives

−Dμνρσ hρσ = 1

2

[
−2H 2

]
hμν − 1

4
gμν

[
+2(D−3)H 2

]
hρ

ρ . (118)

This means the propagator obeys a relation of the form

1

2

[
x −2H 2

]
i
[

μν
ρσ

]
(x ; z) − 1

4
gμν(x)

[
x +2(D−3)H 2

]
i
[

α
α
ρσ

]
(x ; z)

=gμ(ρgσ )ν × iδD(x−z)√−g
+

(
Other Terms

)
, (119)

where the “Other Terms” make the right-hand side consistent with the gauge condition. However,
the right-hand side of (119) cannot be symmetric under the interchange of xμ and zμ (and their
associated indices) because the left-hand side of the equation obeys de Donder gauge on zμ but not
on xμ. It is better to subtract off a term proportional to the trace

1

2

[
x −2H 2

]
i
[

μν
ρσ

]
(x ; z) − 1

4
gμν(x)

[
x +2(D−3)H 2

]
i
[

α
α
ρσ

]
(x ; z)

− gμν

D−2
× −

( D−2

4

)[
+2(D−1)H 2

]
i
[

α
α
ρσ

]
(x ; z) , (120)

= 1

2

[
x −2H 2

]
i
[

μν
ρσ

]
(x ; z) + H 2gμν(x)i

[
α
α
ρσ

]
(x ; z) . (121)

It is easily checked that (121) obeys the de Donder gauge condition on both xμ and zμ. Hence,
the right-hand side of the equation is symmetric under interchange of xμ and zμ and can in fact be
guessed3

1

2

[
x −2H 2

]
i
[

μν
ρσ

]
(x ; z) + H 2gμν(x)i

[
α
α
ρσ

]
(x ; z)

=
[
gμ(ρgσ )ν − gμνgρσ

D−2

] iδD(x−z)√−g
+ 1

2

{
Dx

μ Dz
ρ i[ν
W

σ ] + Dx
μ Dz

σ i[ν
W
ρ ]

+Dx
ν Dz

ρ i[μ
W
σ ] + Dx

ν Dz
σ i[μ
W

ρ ]

}
. (122)

Here, i[μ
W
ρ ] is the full vector propagator for the tachyonic mass M2

V = −2(D − 1)H 2, which
obeys the equation

[
+(D−1)H 2

]
i
[

μ
W
ρ

]
(x ; z) = igμρδ

D(x−z)√−g
. (123)

Recall from Sec. IV that it has the form given by Eqs. (68)–(70). From Eqs. (79) and (106), we see
that the longitudinal and transverse structure functions are

SL (x ; z) = −i
AM (x ; z) , (124)

ST (x ; z) = 1

D−1

[
−i
B B(x ; z)+i
BW (x ; z)

]
. (125)
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B. The spin zero part

To derive an equation for the spin zero structure function, we simply take the trace of the
propagator equation (122). Tracing on the left-hand side and making use of relations (110)–(112)
gives

1

2

[
x +2(D−1)H 2

]
i
[

α
α
ρσ

]
(x ; z)

=
( D−1

D−2

)[
x +2(D−1)H 2

][
x +DH 2

]
Pρσ (z)

[
S0(x ; z)

]
. (126)

Tracing the right-hand side of (122) and making use of relations (124) and (58)–(60) implies

1

2

[
x +2(D−1)H 2

]
i
[

α
α
ρσ

]
(x ; z)

= − 2

D−2

gρσ iδD(x−z)√−g
− 2Dz

ρ Dz
σ i
M (x ; z) , (127)

= −2Pρσ (z)i
M (x ; z) . (128)

The equation for S0(x ; z) derives from comparing expressions (126) and (128),[
+2(D−1)H 2

][
+DH 2

]
S0(x ; z) = −2

( D−2

D−1

)
i
M (x ; z) . (129)

Its solution follows easily from relations (58)–(66),

S0(x ; z) = 2i
M M (x ; z)−2i
MW (x ; z)

(D−1)H 2
= −2

( D−2

D−1

)
i
W M M (x ; z) . (130)

C. The spin two part

This is the most complicated analysis we shall have to make and it is greatly facilitated by the
analogy with what was done for the transverse part of the vector propagator in Sec. IV C. Here, as
for that case, the first step is to derive an equation for the remaining (spin two) part of the propagator
by subtracting off the part we already have. We then establish some identities for a differential
projector which comprises the exterior operators of the spin two part (117) of the propagator. These
properties allow us to pass the d’Alembertian in the propagator equation through to act on the spin
two structure function S2(x ; z). Squaring this operator also allows us to express the right-hand side
of the propagator equation in the same form (117) with a known structure function. Comparing the
two sides of the equation leads to a scalar differential equation which can be solved by the techniques
of Sec. III.

We derive an equation for the pure spin two part of the propagator from the full Eq. (122)
by substituting the spin zero structure function (130), with definitions (111) and (112). Now move
everything known to right-hand side to reach the form

1

2

[
x −2H 2

]
i
[

μν

2
ρσ

]
(x ; z) ≡ i

[
μν P2

ρσ

]
(x ; z) , (131)

=
[
gμ(ρgσ )ν − gμνgρσ

D−2

] iδD(x−z)√−g
+

( D−2

D−1

)
Pμν(x) × Pρσ (z)i
W M (x ; z)

+1

2

((
Dx

μ Dz
ρ i[ν
W

σ ](x ; z) + Dx
μ Dz

σ i[ν
W
ρ ](x ; z)

+Dx
ν Dz

ρ i[μ
W
σ ](x ; z) + Dx

ν Dz
σ i[μ
W

ρ ](x ; z)

))
. (132)
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It can easily be checked that the right-hand side of (132) is transverse and traceless on each index
group. We will eventually reduce this transverse-traceless projector to standard form

i
[

μν P2
ρσ

]
(x ; z) = Pαβγ δ

μν (x) × Pκλθφ
ρσ (z) × Qακ × Qγ θ

[
RβλRδφP2

]
. (133)

However, it is best to first concentrate on the left-hand side of the propagator equation (132).
In analogy with the transverse projector Pβ

μ defined in Eq. (81), we define the transverse-traceless
projector

Pβδ
μν ≡ Pαβγ δ

μν × Dα Dγ . (134)

We shall always consider this acted on a second rank tensor Fβδ . From the expressions (113)–(116)
which define Pαβγ δ

μν it is straightforward but tedious to reach the form

Pβδ
μν × Fβδ = 1

2

( D−3

D−2

){
Dμ Dα Fαν + Dμ Dβ Fνβ − 2 Fμν

−Dμ Dν Dα Dβ Fαβ + 1

D−1

[
Dμ Dν −gμν

][
Dα Dβ Fαβ − Fα

α

]
+H 2

[
−2gμν Dα Dβ Fαβ − gμν Fα

α − 2Dμ Dν Fα
α + Dμ Dα Fαν

+Dμ Dβ Fνβ + (D+2) Fμν

]
+ H 4

[
2gμν Fα

α − 2DFμν

]}
. (135)

(Note the multiplicative factor of D − 3 which derives from the fact that the Weyl tensor vanishes
for D = 3.) It is easy to see from (135) that Pβδ

μν is traceless on both the left and the right

gμνPβδ
μν Fβδ = 0 = Pβδ

μν(gβδ F) . (136)

It is also transverse on any index, both on the left and the right

Dμ
(

Pβδ
μν Fβδ

)
= 0 = Dν

(
Pβδ

μν Fβδ

)
, (137)

Pβδ
μν(Dβ Fδ) = 0 = Pβδ

μν(Dδ Fβ) . (138)

These two properties are very important because the only terms in expression (135) which do not
involve either divergences or traces are

1

2

( D−3

D−2

){
− 2 Fμν + (D+2)H 2 Fμν − 2DH 4 Fμν

}

= −1

2

( D−3

D−2

)[
−2H 2

][
−DH 2

]
Fμν . (139)

Hence, squaring Pβδ
μν gives

Pαγ
μν × Pβδ

αγ Fβδ = −1

2

( D−3

D−2

)[
−2H 2

][
−DH 2

]
Pβδ

μν Fβδ , (140)

= −1

2

( D−3

D−2

)
Pβδ

μν

[
−2H 2

][
−DH 2

]
Fβδ . (141)

We note in passing that the covariant d‘Alembertian commutes with Pβδ
μν , just as it did for the

transverse projector Pβ
μ.

Of course, the relevance of the transverse-traceless projector Pβλ
μν is that two factors of it give

the exterior operators of the spin two part of the propagator

i
[

μν

2
ρσ

]
(x ; z) = 1

4H 4
Pβδ

μν(x) × Pλφ
ρσ (z)

[
Rβλ(x ; z)Rδφ(x ; z)S2(x ; z)

]
. (142)

Downloaded 13 Feb 2012 to 131.211.105.85. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



122301-19 Graviton propagator in de Donder gauge J. Math. Phys. 52, 122301 (2011)

From the fact that the d’Alembertian commutes with Pβδ
μν we see

1

2

[
−2H 2

]
i
[

μν

2
ρσ

]
(x ; z)

= 1

4H 4
Pβδ

μν(x) × Pλφ
ρσ (z) × 1

2

[
−2H 2

][
RβλRδφS2

]
. (143)

The next step is to pass the differential operator through to the structure function, making use of
identities (89) and (90) from Sec. IV,[

RβλRδφS2

]
= RβλRδφ S2 + 2gαγ (x)

[ DRβλ

Dxα
Rδφ + Rβλ

DRδφ

Dxα

] ∂S2

∂xγ

+2gαγ (x)
DRβλ

Dxα

DRδφ

Dxγ
S2 +

[
( Rβλ)Rδφ + Rβλ( Rδφ)

]
S2 , (144)

= RβλRδφ

[
+2H 2

]
S2

+ D

Dxβ

[ ∂y

∂zλ
RδφS2

]
+ D

Dxδ

[
Rβλ

∂y

∂zφ
S2

]
− 1

2
gβδ(x)

∂y

∂zλ

∂y

∂zφ
S2 . (145)

When the external operators are contracted into this, the terms on the final line of (145) all drop by
virtue of either transversality or tracelessness. Hence, we have

1

2

[
−2H 2

]
i
[

μν

2
ρσ

]
(x ; z) = 1

4H 4
Pβδ

μν(x) × Pλφ
ρσ (z)

[
RβλRδφ ×

2
S2

]
. (146)

It is now time to reduce transverse-traceless projection functional (132) to standard form (133).
Just as we did with the transverse projection functional of Sec. IV, this is accomplished by acting
Pμν

αγ (x) × Pρσ
κθ (z) on both forms. When acting on expression (132), tracelessness or transversality

make all but the first term drop out

Pμν
αγ (x) × Pρσ

κθ (z) i
[

μν P2
ρσ

]
(x ; z)

= Pμν
αγ (x) × Pρσ

κθ (z)

[
gμρgνσ

iδD(x−z)√−g

]
, (147)

= Pμν
αγ (x) × Pρσ

κθ (z)

[
RμρRνσ

iδD(x−z)√−g

]
. (148)

On the other hand, acting the same operator on (133), and making use of relations (141) and (146),
tells us

Pμν
αγ (x) × Pρσ

κθ (z) i
[

μν P2
ρσ

]
(x ; z) = 1

4H 4
Pμν

αγ (x) × Pρσ
κθ (z)

×
[
RμρRνσ

1

4

( D−3

D−2

)2
2
[

−(D−2)H 2
]2
P2

]
. (149)

Comparing (148) with (149), we infer an equation for the structure function of the transverse-traceless
projection functional

2
[

−(D−2)H 2
]2
P2(x ; z) = 16H 4

( D−2

D−3

)2
× iδD(x−z)√−g

. (150)

The solution is easily constructed using relation (42) and successive applications of (58)–(60),

P2(x ; z) =
( 4

D−3

)2
[

i
AA(x ; z) − 2i
AB(x ; z) + i
B B(x ; z)

]
. (151)
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The long-sought equation for the spin two structure function derives from the substitution in
Eq. (131) of relations (146) and (151),

1

2
S2(x ; z) =

( 4

D−3

)2
[

i
AA(x ; z) − 2i
AB(x ; z) + i
B B(x ; z)

]
. (152)

The solution can be found using relations (61)–(66) from the end of Sec. III,

S2(x ; z) = 32

(D−3)2

[
i
AAA(x ; z)−2i
AAB + i
AB B(x ; z)

]
. (153)

VI. DISCUSSION

We have constructed the graviton propagator on de Sitter background in exact de Donder gauge
(107). Our result takes the form (110) of a spin zero part and a spin two part. Both parts are represented
in terms of covariant differential projectors which automatically enforce the gauge condition, acting
on scalar structure functions. Our form for the spin zero part is given by relations (111) and (112).
The spin two part (117) has a complicated definition involving relations (113)–(116) and (72) and
(73). By taking appropriate traces and commuting differential operators, we eventually derive scalar
equations (129) and (152) for the structure functions of the respective parts. These equations are
then solved using the general scalar techniques explained and summarized in Sec. III.

We emphasize that our forms for the spin zero and spin two parts of the propagator involve no
assumption about de Sitter invariance, nor specialization to any particular portion of the de Sitter
manifold. Equations (129) and (152), we derive for the two structure functions are scalar equations,
valid in any coordinate system and with no inherent assumption about de Sitter invariance. To
emphasize this, we act extra derivatives so as to make the source on the right-hand side proportional
to a delta function in each case[

+DH 2
][

+2(D−1)H 2
]2
S0(x ; z) = −2

( D−2

D−1

) iδD(x−z)√−g
, (154)

3
[

−(D−2)H 2
]2
S2(x ; z) = 32

( D−2

D−3

)2
H 4 iδD(x−z)√−g

. (155)

It happens that neither the spin zero structure function (130) nor its spin two counterpart (153) is de
Sitter invariant. For the spin zero case, this is obvious from the presence of tachyonic mass terms in
both of the differential operators on the left-hand side of Eq. (154). The mass M2

S = −DH 2 includes
a logarithmic singularity which shows up even in analytic regularization techniques. For the spin-two
equation (155), the squared operator has positive mass-squared M2

S = (D − 2)H 2 and would not
lead to breaking of de Sitter invariance were it alone. However, the cubed operator is the same as
that for a massless, minimally coupled scalar—as might have been expected from Grishchuk’s old
result.18 Allen and Folacci long ago proved that this has no de Sitter invariant solution.47

Exact de Donder gauge is interesting because de Sitter invariant constructions based on analytic
continuation methods had previously dismissed it as an infrared divergent special case.13 In fact, all
valid gauges show infrared divergences. The special thing about de Donder gauge is that some of its
infrared divergences are logarithmic so that they are not automatically (and incorrectly) subtracted
by analytic continuation. In all the cases, the right way to resolve the infrared divergence is by
breaking de Sitter invariance.

We have gone to considerable lengths—in previous work2, 3 and again in Sec. III— to elucidate
precisely what goes wrong with previous constructions1 which seemed to produce de Sitter invariant
results. However, it worth pointing out that the fact of de Sitter breaking was already obvious to
cosmologists from the scale invariance of the tensor power spectrum, which becomes exact in the de
Sitter limit.8 It was also obvious from the explicit form of a propagator constructed by mode sums on
the open submanifold (for which there is no linearization instability).8, 52 On the open submanifold
the 1

2 D(D + 1) elements of the de Sitter group break down into four parts:
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1. (D − 1) spatial translations;
2. 1

2 (D − 2)(D − 1) spatial rotations;
3. A single dilatation; and
4. (D − 1) spatial special conformal transformations.

The gauge condition only breaks the last of these, but the solution for the propagator additionally
breaks dilatation invariance.8, 52 The physical de Sitter breaking of this propagator was demonstrated
by Kleppe, who augmented a naive de Sitter transformation by the compensating gauge transfor-
mation needed to restore the gauge condition.53 Had the propagator been physically invariant this
technique would have revealed it.

We should also comment on the apparent conflict of our result with the pro-invariance argument
given by Marolf and Morrison,54 based on work by Higuchi.55 They dealt with free dynamical
gravitons in a noncovariant gauge on the full de Sitter manifold and they were able to construct
the complete panoply of mode solutions and inner products. This should imply a vacuum which
is physically de Sitter invariant—that is, invariant once the compensating gauge transformation is
included. We know of no problem with this work but it should be noted that the propagator one
gets using only dynamical gravitons (that is, the spatial, transverse-traceless polarizations) is not
complete. It is like the purely spatial and transverse photon propagator of flat space electrodynamics
in Coulomb gauge. To fully describe electromagnetic interactions also requires the instantaneous
Coulomb interaction. Both of these are part of the same propagator in a covariant gauge such as the
one we employ here.

The constrained, spin zero part of our propagator—which is missing from the transverse-
traceless part—provides the largest source of the de Sitter breaking we found. It is relatively simple
to show that the de Sitter breaking terms in S0(x ; z) do not drop out when acted upon by the spin zero
projector Pμν(x) × Pρσ (z). The spin two structure function contains less severe de Sitter breaking
terms of the form [

S2(x ; z)
]

de Sitter
breaking

=
3∑

k=1

sk

[
ln(ax az)

]k
. (156)

It is possible that these drop out from the spin two part of the propagator (117) after all eight of the
derivatives have been taken. In that case our work would be fully consistent with that of Marolf and
Morrison. However, what we expect is that one of the infrared logarithms survives, which seems to
be indicated by the scale invariance of the tensor power spectrum.

The fact of de Sitter breaking in this system cannot be disputed, but there is wide freedom as
to how one chooses to manifest that breaking. This freedom amounts to picking the initial state. We
have chosen the explicit solutions of Sec. III so as to preserve the symmetries of homogeneity and
isotropy, which allow one to view de Sitter as a special case of a spatially flat, Friedman-Robertson-
Walker geometry. This choice is known in the literature as the “E(3) vacuum.” Readers who prefer
to preserve another subgroup can do so by starting from our scalar equations (154) and (155).

We wrote this paper to help resolve the long-standing controversy about de Sitter breaking for
free gravitons; however, it has other applications. One of these is to test for gauge dependence in
quantum gravitational loop corrections from primordial inflation. Of course gauge-fixed Green’s
functions will show such dependence, mingled with valid physical information. In flat space, we
would sift out the gauge dependence by forming the S-matrix. That observable is not available in
cosmology,56 and there is not yet any consensus for what replaces it. One technique is simply to carry
out computations in different gauges. It may be that the leading infrared logarithm contributions (e.g.,
the one loop contribution to the fermion field strength from inflationary gravitons25) are independent
of the choice of gauge. Now we can test this conjecture using a completely different gauge from the
one8, 52 employed in all previous computations.

Our propagator should also make renormalization simpler because it precludes the appearance
of noninvariant counterterms. These complicated the analysis for previous computations.25, 27 It may
also be that the gauge condition (107) and the special properties of the differential projectors in
our propagator make actual computations simpler. That turned out to be the case with the vector
propagator in Lorentz gauge9 for a variety of one and two loop computations.10, 23
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