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The gravity wave momentum flux in hydrostatic flow

with directional shear over elliptical mountains

Miguel A. C. Teixeira∗, Chau Lam Yu

Department of Meteorology, University of Reading,

Earley Gate, PO Box 243, Reading RG6 6BB, UK

Abstract

Semi-analytical expressions for the momentum flux associated with orographic

internal gravity waves, and closed analytical expressions for its divergence,

are derived for inviscid, stationary, hydrostatic, directionally-sheared flow

over mountains with an elliptical horizontal cross-section. These calcula-

tions, obtained using linear theory conjugated with a third-order WKB ap-

proximation, are valid for relatively slowly-varying, but otherwise generic

wind profiles, and given in a form that is straightforward to implement in

drag parametrization schemes. When normalized by the surface drag in the

absence of shear, a quantity that is calculated routinely in existing drag

parametrizations, the momentum flux becomes independent of the detailed

shape of the orography. Unlike linear theory in the Ri → ∞ limit, the present

calculations account for shear-induced amplification or reduction of the sur-

face drag, and partial absorption of the wave momentum flux at critical levels.

Profiles of the normalized momentum fluxes obtained using this model and a

linear numerical model without the WKB approximation are evaluated and
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compared for two idealized wind profiles with directional shear, for differ-

ent Richardson numbers (Ri). Agreement is found to be excellent for the

first wind profile (where one of the wind components varies linearly) down

to Ri = 0.5, while not so satisfactory, but still showing a large improvement

relative to the Ri → ∞ limit, for the second wind profile (where the wind

turns with height at a constant rate keeping a constant magnitude). These

results are complementary, in the Ri ' O(1) parameter range, to Broad’s

generalization of the Eliassen-Palm theorem to 3D flow. They should con-

tribute to improve drag parametrizations used in global weather and climate

prediction models.

Keywords: Flow over orography, Gravity wave drag, Wave momentum

flux, Directional wind shear, Linear theory, WKB approximation

1. Introduction

One of the many physical processes that are currently still unresolved in

large-scale weather and climate prediction models is the effect of atmospheric

gravity waves. These waves propagate in stratified fluids (such as the atmo-

sphere typically is) [1], and are predominantly forced by flow over orography

or convection occurring at horizontal scales (1km – 10 km) smaller than the

grid spacings used operationally.

Waves generated by flow over mountains, which constitute a sizable frac-

tion of the total gravity waves, are known as mountain waves. These waves

produce a surface drag on orography [2], whose reaction force decelerates the

airflow, and must be parametrized to avoid substantial biases in the sim-

ulated global atmospheric circulation [3]. However, most well-known drag

2



parametrizations are now outdated, having been developed in the 1990s [4, 5].

The part of these parametrizations that accounts for the impact of wave

propagation on the surface drag is based on linear wave theory, neglecting

a number of important physical processes, such as non-hydrostatic effects,

variations of the wind and static stability with height, and obviously wave

nonlinearity, to mention just a few.

Linear theory is useful for developing drag parametrizations because it

allows the drag to be expressed as a function of key orographic and incoming

flow parameters. While a treatment of nonlinearity is, by definition, beyond

its capabilities, wind profile effects can, in principle, be incorporated, al-

though for generic wind profiles no analytical solutions exist, which precludes

the derivation of simple drag expressions. Nevertheless, vertical wind shear

has decisive implications for drag parametrization, since it may cause diver-

gence of the wave momentum flux, which corresponds to a non-zero value of

the reaction force exerted by the orography on the atmosphere [6, 7].

Eliassen and Palm [8] demonstrated that the wave momentum flux in 2D

flows is constant with height, even when the wind and static stability vary,

except at levels where the wind vanishes (critical levels). This means that

all the drag is exerted on the atmosphere at those particular discrete levels.

More recently, however, Broad [9] showed that, in flows with directional shear

over 3D mountains, critical levels (where the wind velocity is perpendicular

to the horizontal wavenumber vector of a given spectral component of the

waves) have a continuous distribution with height, and the variation of the

wave momentum flux is coupled with the turning of the wind with height.

Specifically, at a given level, the vertical derivative of the wave momentum
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flux vector (the momentum flux divergence) must be perpendicular to the

wind velocity. This law, which is a generalization of the Eliassen-Palm theo-

rem to 3D, places a strong constraint on the force exerted by mountains on

the atmosphere.

However, the exact dependence of the drag on key flow parameters can

only be determined by solving the corresponding mountain wave problem.

Since this is not feasible analytically in the case of generic wind and static

stability profiles, numerical or approximate methods must be employed. In

the second category, one possibility is to split the atmosphere into a number

of layers within which the wind velocity and static stability have a simple

form (e.g., [10, 11, 12, 13]), and then obtain the complete wave solutions

and the corresponding drag. However, this approach lacks generality, and

its results are often too cumbersome to implement in parametrizations. An

alternative approach is to assume that the wind profile varies relatively slowly

with height, and adopt a WKB approximation to obtain the wave solutions.

Despite its limitations, this approach is considerably more general, being

valid for generic (albeit slowly varying) wind profiles, and therefore providing

a leading-order correction to the drag due to variation of the wind with

height.

Teixeira et al. [14] calculated the surface drag using linear theory with a

second-order WKB approximation for sheared, stationary, hydrostatic flow

over an axisymmetric mountain and Teixeira and Miranda [15] did the same

for 2D mountains. This model was extended to mountains with an ellip-

tical horizontal cross-section by Teixeira and Miranda [16]. Subsequently,

the wave momentum flux was calculated, using the same kind of approach,
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for flows with directional shear over an axisymmetric mountain [17]. This

elucidated the filtering effect of critical levels with a continuous distribu-

tion with height in such flows, where the wave momentum flux may not be

totally absorbed at relatively low Richardson numbers (Ri), but rather fil-

tered. Teixeira and Miranda [17] did not calculate the wave momentum flux

for flows with unidirectional shear or over 2D mountains, where critical levels

occur at discrete heights (as mentioned above). These very particular cases

had been addressed previously for simple wind profiles (without invoking

the WKB approximation) by Booker and Bretherton [18] and Grubĭsić and

Smolarkiewicz [19].

In the most important weather prediction and climate models, such as

that running at the European Centre for Medium-Range Weather Forecasts

(ECMWF), the Earth’s orography is approximated in each model grid box

as a mountain with an elliptical horizontal cross-section, with height, width

and orientation calculated statistically from the real orography [20, 4]. This

approach appeals to a superposition principle (whereby the waves in each grid

box do not interact with those in adjacent ones) whose strict validity is not

straightforward, even for linearized flow. However, the fact that the width of

these elliptical mountains is likely to be substantially smaller than the grid

box (because they represent unresolved orography), and the assumption that

the flow is hydrostatic (thus having very limited lateral wave propagation,

especially at the surface), are consistent with the adopted, single-column

approach.

In the present study we will develop and test the theory for calculating

wave momentum fluxes in linearized, hydrostatic, non-rotating flow with di-
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rectional shear over elliptical mountains. This theory provides nearly ready-

to-use momentum flux and momentum flux divergence expressions, which

may easily be incorporated into drag parametrizations. The results will be

compared to those produced by a linear numerical model that does not as-

sume the WKB approximation. Nonlinear effects were addressed previously

in some detail for an axisymmetric mountain via comparisons with numerical

simulations [17], and should not differ too much qualitatively for an ellipti-

cal geometry. Since it seems hopeless at present to formulate a physically

self-consistent nonlinear mountain wave theory that is simple enough to im-

plement in drag parametrizations, we necglect nonlinear effects altogether

and focus here instead on evaluating the accuracy of the WKB approxima-

tion.

The remainder of this paper is organized as follows. Section 2 presents

the linear mountain wave theory using the WKB approximation on which

the subsequent momentum flux calculations are based. In section 3, a linear

numerical model that allows the treatment of arbitrary wind profiles (i.e. not

assuming the WKB approximation) is briefly described. Section 4 explores

the behaviour of the wave momentum flux with height for two representative

idealized wind profiles. Finally, section 5 summarizes the main conclusions

of this study.

2. Linear WKB theory

The vertical flux of horizontal momentum associated with mountain waves

forced by an arbitrarily-shaped isolated obstacle is defined here as

(Mx,My) = −ρ

∫ +∞

−∞

∫ +∞

−∞

(u, v)w dxdy, (1)
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where ρ is the density, (u, v, w) is the velocity perturbation created by the

waves, and x and y are the horizontal spatial coordinates. As in Teixeira and

Miranda [17], this definition includes the minus sign, because the momentum

flux is generally downward, and that convention makes it positive for a mean

flow that is positive in the x and/or y direction.

Departing from linear theory with the Boussinesq approximation, assum-

ing inviscid, non-rotating, stationary, hydrostatic flow and using additionally

a WKB approximation to solve the Taylor-Goldstein equation (where the

vertical wavenumber of the waves is expanded in a power series of a small

parameter ε proportional to Ri−1/2 [14] up to third order), it can be shown

that the momentum flux, correct up to second-order in ε, is given by

(Mx,My)(z) = 4π2ρ0N

∫ +∞

−∞

∫ +∞

−∞

(k, l)|ĥ|2
(k2 + l2)1/2

|U0k + V0l|sgn(Uk + V l)

× [1 − S(k, l, z)] e[S(k,l,z)−S(k,l,z=0)]e−2πH(z−zc)C(k,l)dkdl (2)

(see Equations (27)-(29) of [17]), where

S(k, l, z) =
1

8

(U ′k + V ′l)2

N2(k2 + l2)
+

1

4

(Uk + V l)(U ′′k + V ′′l)

N2(k2 + l2)
, (3)

C(k, l) =
N(k2 + l2)1/2

|U ′

ck + V ′

c l|

[

1 − 1

8

(U ′

ck + V ′

c l)
2

N2(k2 + l2)

]

. (4)

In the above equations ρ0 is a reference density (assumed to be constant), z

is height, N and (U, V ) are the Brunt-Väisälä frequency and velocity of the

mean incoming flow, (k, l) is the horizontal wavenumber vector of the waves,

and ĥ(k, l) is the Fourier transform of the terrain elevation h(x, y). zc is the

height of the critical level, the subscript 0 denotes values taken at the surface

z = 0 and the subscript c denotes values taken at the critical level, H is the
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Heaviside step function and the primes denote differentiation with respect to

z.

N is taken here as constant, for simplicity, but that assumption may

be relaxed. Is is reasonable to assume stationary flow, since the time scale

for the onset of steady mountain waves is typically shorter than that over

which the mean incoming flow evolves. The assumption of non-rotating flow

is valid for the wave perturbations as long as fa/U ¿ 1, where f is the

Coriolis parameter and a is a measure of mountain width. Additionally, the

hydrostatic assumption requires Na/U À 1. For the typical values in the

atmosphere N ≈ 10−2 s−1, U ≈ 10 ms−1 and f ≈ 10−4 s−1, these two as-

sumptions are simultaneously valid for a ≈ 10 km. This is highly relevant

for parametrization purposes, because it is known that the maximum con-

tribution to mountain wave drag occurs under hydrostatic and non-rotating

conditions [21]. Linearization, which is perhaps the most unrealistic, but

crucial, assumption, is formally valid for Nh0/U ¿ 1, where h0 is a measure

of mountain height. Using the same values of N and U as previously, this

would imply h0 ¿ 1 km. Errors produced by these approximations due to

flow unsteadiness, non-hydrostatic effects or nonlinearity can be estimated

using numerical simulations [17], but such simulations have proved unable to

provide a tractable, self-consistent framework for parametrization.

Equation (2) satisfies up to third-order in the small perturbation param-

eter ε the extension to 3D of Eliassen-Palm’s theorem formulated by Broad

[9],

U(z)
dMx

dz
+ V (z)

dMy

dz
= 0, (5)

because any wavenumber that contributes to d(Mx,My)/dz 6= 0 at or below
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that order must satisfy Uk + V l = 0 (the critical level condition). As noted

by Teixeira and Miranda [17], S(k, l, z) encapsulates corrections to the mo-

mentum flux due to wind profile shear and curvature, while C(k, l) contains

the effects of critical levels, which may either totally absorb or simply filter

the momentum flux, depending on the shear intensity.

2.1. Elliptical geometry

We intend to address flow over mountains with an elliptical horizon-

tal cross-section. Without loss of generality, the coordinate system will be

aligned with the major and minor axes of the ellipse, so that a is the half-

width of the mountain along x and b is the half-width along y. As in [16], it

then becomes convenient to introduce a polar elliptical coordinate system in

the wavenumber domain, in terms of which

k =
κ

a
cos θ, l =

κ

b
sin θ, (6)

where κ is the radial coordinate and θ the azimuthal angle. Note that, unlike

what is usual in polar coordinates κ is dimensionless and does not express

the magnitude of the horizontal wavenumber vector. Similarly, θ is not the

angle this vector makes with the x axis, although it can be related to it.

Using these coordinates, (2) can be rewritten as

(Mx,My) = 4π2ρ0Nbh2
0

∫ +∞

0

κ2|ĥ′(κ)|2dκ

∫ 2π

0

(cosθ, γ sin θ)

(cos2 θ + γ2 sin2 θ)1/2

×|U0 cos θ + γV0 sin θ|sgn(U cos θ + γV sin θ) [1 − S(θ, z)]

×e[S(θ,z)−S(θ,z=0)]e−2πH(z−zc)C(θ)dθ, (7)

where

S(θ, z) =
1

8

(U ′ cos θ + γV ′ sin θ)2

N2(cos2 θ + γ2 sin2 θ)
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+
1

4

(U cos θ + γV sin θ)(U ′′ cos θ + γV ′′ sin θ)

N2(cos2 θ + γ sin2 θ)
, (8)

C(θ) =
N(cos2 θ + γ2 sin2 θ)1/2

|U ′

c cos θ + γV ′

c sin θ|

[

1 − 1

8

(U ′

c cos θ + γV ′

c sin θ)2

N2(cos2 θ + γ2 sin2 θ)

]

. (9)

In these equations, h0 is the height of the mountain, γ = a/b is its horizon-

tal aspect ratio, and ĥ′ = ĥ/(h0ab) is the dimensionless Fourier transform

of the terrain elevation. The fact that the surface elevation has an ellip-

tical horizontal cross-section has been used to simplify (7), as this means

that h(x, y) = h[(x/a)2 + (y/b)2], and then (6) and the definition of Fourier

transform imply that ĥ(k, l) = ĥ(κ), as assumed in (7) (cf. [16]).

Equation (7) already shows that, as in the case of an axisymmetric moun-

tain (cf. [17]) the momentum flux integral can be expressed as the product of

an integral along the radial direction κ and an integral along the azimuthal

angle θ. This turns out to be the key aspect that renders corrections to

the momentum flux due to shear independent of the detailed shape of the

orography, since when the momentum flux is normalized, for example, by the

surface drag, the integral in the radial direction (which contains information

about the shape of the orography along this direction), cancels out, and only

the integral in θ remains. This simplification is only possible because of the

hydrostatic assumption (see original discussion in [14]). It should also be

noted that the functions S(θ, z) and C(θ) are also independent of κ (and

hence have been isolated in the integral over θ).

2.2. Momentum flux normalization

The studies of Teixeira et al. [14] and Teixeira and Miranda [16, 17]

highlighted difficulties in conveniently normalizing both components of the

drag or of the momentum flux so that they take a value of 1 for high Ri.
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One option when the drag was oblique to the axes of the adopted coordinate

system was to normalize each drag component including the effect of shear

by the corresponding component in the absence of shear. However, this

strategy fails if one of the drag components in the absence of shear is zero.

A better choice, which arises naturally from the calculations, is to express

the momentum flux as a function of the two drag components without shear,

since this corresponds to vector a transformation which may include rotation.

This choice was adopted by Miranda et al. [22] for the surface drag for

practical reasons, and the same will be done here next for the momentum

flux. A different choice may, of course, be adopted strictly for the purpose

of graphically representing these quantities.

The mean incoming flow velocity is expressed in elliptical polar coordi-

nates as

U = aµ cos ψ, V = bµ sin ψ, (10)

where µ is a radial measure of the wind intensity, but is not directly pro-

portional to the wind speed, nor has dimensions of velocity, while ψ is an

azimuthal angle, which, however, does not coincide with the angle made by

the wind with the x axis. The advantage of this transformation is that, when

(6) is also employed,

Uk + V l = µκ(cosθ cos ψ + sin θ sin ψ) = µκ cos(θ − ψ), (11)

and so critical levels, where Uk + V l = 0, can simply be expressed as levels

where θ = ψ ± π/2 (as in [17]). It should be stressed again, however, that

neither ψ nor θ have the simple interpretation that the equivalent quanti-

ties have for an axisymmetric mountain (where γ = 1) when usual polar

coordinates are used.
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If (10) is used in (7), the latter equation can be rewritten

(Mx,My) = 4π2ρ0Nabµ0h
2
0

∫ +∞

0

κ2|ĥ′(κ)|2dκ

∫ 2π

0

(cosθ, γ sin θ)

(cos2 θ + γ2 sin2 θ)1/2

×| cos(θ − ψ0)|sgn[cos(θ − ψ)] [1 − S(θ, z)] e[S(θ,z)−S(θ,z=0)]

×e−2πH(z−zc)C(θ)dθ, (12)

where ψ0 = ψ(z = 0) and µ0 = µ(z = 0), and it becomes especially simple

to express the integrals over the azimuthal angle θ as a sum of contributions

from angles (or wavenumbers) that do not and that do have a critical level,

respectively. Assuming that the variation ψ with height is monotonic and

that the wind does not turn by more than π from the surface up to the level

under consideration (so that there is not more than one critical level per

wavenumber), (12) becomes

Mx = 8π2ρ0Nabµ0h
2
0

∫ +∞

0

κ2|ĥ′|2dκ {cos ψ0 [I1(z) − I2(z)]

+ sin ψ0 [I3(z) − I4(z)]} , (13)

My = 8π2ρ0Nabµ0h
2
0γ

∫ +∞

0

κ2|ĥ′|2dκ {cos ψ0 [I3(z) − I4(z)]

+ sin ψ0 [I5(z) − I6(z)]} , (14)

where the integrals I1−I6 are defined in Appendix A (the procedure to relax

the limitations mentioned above will be described in section 2.3). These

integrals must, in general, be calculated numerically, but at z = 0, where ψ =

ψ0 and the momentum flux (Mx,My) is equal to the surface drag (Dx, Dy),

I2, I4 and I6 vanish, the exponential in I1, I3 and I5 equals 1, and the limits of

integration of these latter integrals may, without loss of generality, be taken

to be 0 and π. If one further assumes that the mean vertical wind shear is
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zero, then S(θ, z) = 0, so the surface drag becomes

D0x = 16π2ρ0Nabµ0h
2
0 cos ψ0

∫ +∞

0

κ2|ĥ′|2dκ

∫ π/2

0

cos2 θ

(cos2 θ + γ2 sin2 θ)1/2
dθ,

(15)

D0y = 16π2ρ0Nabµ0h
2
0γ sin ψ0

∫ +∞

0

κ2|ĥ′|2dκ

∫ π/2

0

sin2 θ

(cos2 θ + γ2 sin2 θ)1/2
dθ,

(16)

where the integrals over θ in (15) and (16) result only from I1 and I5, because

I3 vanishes by symmetry when S(θ, z) = 0. These equations can be expressed

in terms of the functions G, B(γ) and C(γ), defined by Phillips [23], as

D0x = ρ0NU0bh
2
0GB(γ), D0y = ρ0NV0bh

2
0GC(γ), (17)

where

G = 16π2

∫ +∞

0

κ2|ĥ′(κ)|2dκ, (18)

B(γ) =

∫ π/2

0

cos2 θ

(cos2 θ + γ2 sin2 θ)1/2
dθ, (19)

C(γ) = γ2

∫ π/2

0

sin2 θ

(cos2 θ + γ2 sin2 θ)1/2
dθ (20)

(cf. [16]).

Taking into account (15)-(17), it may be shown that in (13)-(14) (Mx, My)

may be expressed in terms of (D0x, D0y) in the following way:

Mx =
D0x

2B(γ)
[I1(z) − I2(z)] +

γD0y

2C(γ)
[I3(z) − I4(z)] , (21)

My =
γD0x

2B(γ)
[I3(z) − I4(z)] +

γ2D0y

2C(γ)
[I5(z) − I6(z)] , (22)

which reveal that the coefficients multiplying D0x and D0y do not depend on

the detailed shape of the orography (as long as this has an elliptical horizontal
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cross-section) apart from its aspect ratio γ. This extends a similar result of

Teixeira and Miranda [16] for the surface drag to the momentum flux. When

z = 0, (21)-(22) reduce to

Mx(z = 0) = Dx =
D0x

2B(γ)
I1(z = 0) +

γD0y

2C(γ)
I3(z = 0), (23)

My(z = 0) = Dy =
γD0x

2B(γ)
I3(z = 0) +

γ2D0y

2C(γ)
I5(z = 0). (24)

This is equivalent to Equation (1) of Miranda et al. [22] if the integrals

I1(z = 0), I3(z = 0) and I5(z = 0) are expressed in terms of the functions

α(γ) and β(γ) defined by Teixeira and Miranda [16] (which in turn can be

expressed in terms of B(γ) and C(γ) and γ explicitly), and the effect of

the terms involving the vertical derivatives of (U, V ) is put in evidence (see

details in [16]).

2.3. Non-monotonic turning wind angles and turning by more than π

The expressions for the momentum flux derived above assume that the

wind turning angle ψ varies monotonically and that its total variation never

exceeds π. In the real atmosphere, these conditions may not be met, so a

strategy to deal with this limitation is outlined next.

The linear relation between both (Mx,My) and (D0x, D0y), and (Dx, Dy)

and (D0x, D0y), expressed by (21)-(24), enables one to alternatively express

the momentum flux in the following form

Mx = C1Mx(z = 0) + C2My(z = 0), (25)

My = C3Mx(z = 0) + C4My(z = 0), (26)

where

C1 =
I3(z = 0) [I3(z) − I4(z)] − I5(z = 0) [I1(z) − I2(z)]

I2
3 (z = 0) − I1(z = 0)I5(z = 0)

, (27)
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C2 =
1

γ

I3(z = 0) [I1(z) − I2(z)] − I1(z = 0) [I3(z) − I4(z)]

I2
3 (z = 0) − I1(z = 0)I5(z = 0)

, (28)

C3 = γ
I3(z = 0) [I5(z) − I6(z)] − I5(z = 0) [I3(z) − I4(z)]

I2
3 (z = 0) − I1(z = 0)I5(z = 0)

, (29)

C4 =
I3(z = 0) [I3(z) − I4(z)] − I1(z = 0) [I5(z) − I6(z)]

I2
3 (z = 0) − I1(z = 0)I5(z = 0)

. (30)

Although (25)-(26) describe the momentum flux at a generic level z as a

function of its value at the surface z = 0, nothing prevents us from extending

this relation to multiple layers, with different bottom heights.

Hence to deal with the effects of either a non-monotonic wind profile or a

wind turning angle exceeding π, one must split the atmosphere into various

layers where the wind is monotonic and does not turn by more than π. At the

level where dψ/dz changes sign, or the difference |ψ−ψ0| exceeds π (whichever

happens first), a new layer must begin where (25)-(26) is applied, replacing

(z = 0) by the height of the bottom of the new layer. This procedure, which

may be carried out for as many layers as necessary, allows us to express the

momentum flux within each layer as a function of the momentum flux as its

bottom, which is equal to the momentum flux at the top of the layer below,

calculated previously. This is especially relevant at low Richardson numbers,

such as envisaged here, because the momentum flux is then only partially

absorbed at critical levels, and what happens above them (i.e. whatever

additional variation of (Mx,My) takes place) matters. This is not a concern

at high Ri, since the momentum flux is in that case totally absorbed at the

first critical level encountered by a given wavenumber, hence the momentum

flux simply vanishes at that wavenumber above that height.
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2.4. The momentum flux divergence

The quantity that is most relevant to drag parametrization, since it cor-

responds to the acceleration directly imparted to the mean flow, is the wave

momentum flux divergence, i.e. the vertical derivative of (21)-(22). When

these equations are differentiated, since they depend on the single integrals

over θ expressed by I1 − I6, they take a closed analytical form. It turns out

that, depending on whether dψ/dz is positive or negative, this momentum

flux divergence takes a different sign. The final expressions, valid for an ar-

bitrary sign of dψ/dz, and accurate to third-order in the small parameter ε

used in the WKB approximation, are

dMx

dz
(z) =

1

2

∣

∣

∣

∣

dψ

dz

∣

∣

∣

∣

sin ψ

(sin2 ψ + γ2 cos2 ψ)1/2
[1 − Sψ(z)] eSψ(z)−Sψ(z=0)

×
[

1 + e−2πCψ(z)
]

[

γD0y

C(γ)
cos ψ − D0x

B(γ)
sin ψ

]

, (31)

dMy

dz
(z) =

1

2

∣

∣

∣

∣

dψ

dz

∣

∣

∣

∣

cos ψ

(sin2 ψ + γ2 cos2 ψ)1/2
[1 − Sψ(z)] eSψ(z)−Sψ(z=0)

×
[

1 + e−2πCψ(z)
]

[

γD0x

B(γ)
sin ψ − γ2D0y

C(γ)
cos ψ

]

, (32)

where

Sψ(z) =
1

8

(U ′ sin ψ − γV ′ cos ψ)2

N2(sin2 ψ + γ2 cos2 ψ)

+
1

4

(U sin ψ − γV cos ψ)(U ′′ sin ψ − γV ′′ cos ψ)

N2(sin2 ψ + γ2 cos2 ψ)
, (33)

Cψ(z) =
N(sin2 ψ + γ2 cos2 ψ)1/2

|U ′ sin ψ − γV ′ cos ψ|

[

1 − 1

8

(U ′ sin ψ − γV ′ cos ψ)2

N2(sin2 ψ + γ2 cos2 ψ)

]

.(34)

Note that Sψ = S(θ = ψ ± π/2, z) and Cψ = C(θ = ψ + π/2), which means

that, although C(θ) was not a function of z, Cψ becomes one, by being

evaluated at a θ that depends on z (through ψ). On the other hand, in Cψ,
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(U ′

c, V
′

c ) has been replaced by (U ′, V ′) because the transformation between

C(θ) and Cψ(z) already takes into account the fact that (U ′, V ′) is taken at

the critical level. It may easily be confirmed that (31)-(32) satisfy (5), as

required.

Equations (31)-(32) express d(Mx,My)/dz as a function of the surface

drag in the absence of shear (D0x, D0y). Again, when multiple critical levels

exist (i.e., the wind has turned by an angle larger than π), these equations

cannot be applied directly above the level where that occurs. Then, a pro-

cedure similar to the one outlined for the momentum flux must be followed.

First of all, using (23)-(24), dMx/dz and dMy/dz must be expressed as func-

tions of Mx(z = 0) and My(z = 0), namely

dMx

dz
(z) =

1

2

∣

∣

∣

∣

dψ

dz

∣

∣

∣

∣

sin ψ

(sin2 ψ + γ2 cos2 ψ)1/2
[1 − Sψ(z)] eSψ(z)−Sψ(z=0)

×
[

1 + e−2πCψ(z)
]

(C5Mx(z = 0) + C6My(z = 0)) , (35)

dMy

dz
(z) = −1

2
γ

∣

∣

∣

∣

dψ

dz

∣

∣

∣

∣

cos ψ

(sin2 ψ + γ2 cos2 ψ)1/2
[1 − Sψ(z)] eSψ(z)−Sψ(z=0)

×
[

1 + e−2πCψ(z)
]

(C5Mx(z = 0) + C6My(z = 0)) , (36)

where

C5 = 2
I3(z = 0) cos ψ + I5(z = 0) sin ψ

I2
3 (z = 0) − I1(z = 0)I5(z = 0)

, (37)

C6 = −2

γ

I1(z = 0) cos ψ + I3(z = 0) sin ψ

I2
3 (z = 0) − I1(z = 0)I5(z = 0)

. (38)

Secondly, this approach must be applied to successive layers, taking [Mx(z =

0),My(z = 0)] to correspond to the bottom of each layer. This implies that,

when more than one layer exists, calculating the momentum flux divergence

requires also calculating the momentum flux, but fortunately it is only nec-

essary to do this at the discrete levels delimiting the various layers.
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3. Linear numerical model

The linear numerical model that will be used to assess the limitations

of the WKB approximation follows a similar approach to that presented in

appendix A of Teixeira and Miranda [16], which was adapted from a model

originally developed by Sivertsen [24]. The basic idea will be sketched next,

but the reader is referred to [16] for more details.

Without loss of generality, the solution to the hydrostatic Taylor-Goldstein

equation,

ŵ′′ +

[

N2(k2 + l2)

(Uk + V l)2
− U ′′k + V ′′l

Uk + V l

]

ŵ = 0 (39)

(where ŵ is the Fourier transform of the vertical velocity perturbation), may

be expressed as the product of an amplitude and a complex exponential

involving the phase,

ŵ = ŵ(z = 0) exp

[

i

∫ z

0

m(ξ)dξ

]

. (40)

In this expression, which does not assume the WKB approximation, m is the

vertical wavenumber of the mountain waves and the amplitude ŵ(z = 0) is

determined by the lower boundary condition,

ŵ(z = 0) = i(U0k + V0l)ĥ, (41)

which expresses the fact that the flow is tangential to the orography at the

surface. When (40) is introduced into (39), an equation for m results:

im′ − m2 +
N2(k2 + l2)

(Uk + V l)2
− U ′′k + V ′′l

Uk + V l
= 0. (42)

Despite being nonlinear, compared with the linear Taylor-Goldstein equation,

(42) has the advantage of being a first-order differential equation, requiring

18



the specification of only one boundary condition. This equation is solved here

in Fourier space for a large set of horizontal wavenumber vectors k = (k, l).

For k with its critical level zc lying inside the computational domain, i.e.

for 0 < zc < H, where H is the top of computational domain, the calculation

starts from the vicinity of the critical level towards either the top or the

bottom of the domain. However, since the vertical wave number m diverges

to infinity near a critical level, a more convenient approach is solving for the

inverse of m, L = 1/m (cf. [16]). It can be shown from (42) that the equation

satisfied by L is

L′ = i

{

1 −
[

N2(k2 + l2)

(Uk + V l)2
− U ′′k + V ′′l

Uk + V l

]

L2

}

. (43)

The behaviour of L in the vicinity of critical levels is determined using the

Frobenius solution (see Grubǐsić amd Smolarkiewicz [19]), which is expressed

by equation (A.5) in appendix A of [16]:

L =
z − zc

− i
2
±

[

N2(k2+l2)
(U ′

ck+V ′

c l)2
− 1

4

]1/2
, (44)

where the sign in the denominator is determined by the condition that the

wave energy propagates upward. This solution provides the boundary con-

dition (initial value) for (43), so that the numerical method can be imple-

mented.

For one of the idealized wind profiles to be considered (wind that turns

with height (48)), if the computational domain is defined such that the wind

spans an angle of π from its bottom to its top, any wavenumber k has ex-

actly one critical level within the domain, so the above approach can be

used to determine all the required solutions. However, for the other wind
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profile to be considered (linear wind profile (47)), as the shear is constant,

some horizontal wavenumbers k = (k, l) have their critical levels zc lying

outside the computational domain. For such wavenumbers, two strategies

are employed. If the critical level occurs relatively near to the domain, i.e.

D = min(|zc − H|, |zc − 0|) ≤ R where R is some positive threshold value,

then the solution process still starts from the critical level, but only values

of m (or L) within the domain are recorded. If the critical level is located

far away from the computational domain, i.e. D > R, then the boundary

condition applied at the top of the domain assumes that the vertical wave

number m reached a constant value, i.e. m′ = 0. Since, for a linear wind

profile, (U ′′, V ′′) = 0, (42) then implies that the boundary condition at the

top of the domain is

m(z = H) =
N(k2 + l2)1/2

U(z = H)k + V (z = H)l
, (45)

where (45) corresponds to upward wave energy propagation.

The numerical scheme employed to solve (43) is a fourth-order Runge-

Kutta method with sufficiently fine spacing between grid-points throughout

the domain (20000 grid points), and the threshold value R is set to be 3H.

With the vertical wave number m obtained numerically, the Fourier trans-

form of the vertical velocity perturbation ŵ can be numerically integrated

using (40). Furthermore, from equations (14)-(16) of Teixeira and Miranda

[17], the momentum flux can be rewritten as

(Mx,My) = 4π2ρ0

∫ +∞

−∞

∫ +∞

−∞

(k, l)

k2 + l2
Re(m)|ŵ|2dkdl. (46)

The above integral is transformed using the polar elliptical coordinate sys-

tem introduced before (6). The integration (over z for ŵ and over θ for
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(Mx,My)) is performed numerically using finite summation with sufficiently

small (uniform) intervals ∆z and ∆θ (∆z = H/20000 and ∆θ = 2π/1007).

The numerical results obtained through this method will be compared next

with those calculated using the WKB approximation.

4. Results

Following Teixeira and Miranda [17], the theoretical model described in

section 2 will be assessed for idealized wind profiles where the Richardson

number is constant. This reduces the number of parameters on which the

results depend to a minimum, and serves the purpose of testing the accu-

racy of the WKB approximation at relatively low Ri. These profiles do not

require the calculation of the momentum flux in various layers, as they are

monotonic, and we are concerned only with the region where they turn by

angles lower than π. These results will be compared with those produced by

the linear numerical model described in the previous section, and contrasted

with equivalent results for flow over an axisymmetric mountain [17].

4.1. Linear wind profile

The first wind profile to be considered is one of the simplest wind profiles

with constant Ri and directional shear:

U = U0 cos δ − αz sin
(

δ +
π

4

)

, V = U0 sin δ + αz cos
(

δ +
π

4

)

, (47)

where U0 is the wind speed at the surface, α is the magnitude of the shear

rate (assumed to be constant) and δ is the angle between the surface wind

velocity and the x direction (and therefore also with the main axes of the

orography - see Fig. 1). Note that, from (47), Ri = N2/α2. For δ = π/4 (47)
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y

x

δ=0

δ=π/2δ=π/4

δ=−π/4

Figure 1: Schematic diagram of the 4 situations to be considered in Figs. 3 and 8, 4 and

9, 5 and 10, and 6 and 11, corresponding to a surface wind (block arrows) that makes an

angle of δ = 0, δ = π/2, δ = π/4 and δ = −π/4 with the x direction, respectively. The

ellipse denotes a contour of surface elevation associated with the mountain.

reduces to Eq. (49) of [17], with the difference that U0 is rescaled by a factor

of
√

2. While describing a shear misaligned with the surface wind by an angle

of π/4, as Eq. (49) of [17], (47) additionally allows this wind profile to be

rotated by any desired angle δ, which is important for attaining maximum

generality in flow over anisotropic orography. As pointed out by Teixeira and

Miranda [17], this wind profile (illustrated in Fig. 2 for δ = π/4) has the

advantage over other linearly varying wind profiles that the angle spanned

by the wind velocity over the whole atmosphere (i.e. 0 < z < +∞) is 3π/4,

which is relatively close to π, hence a large fraction of all wavenumbers have a

critical level. As shown by Teixeira et al. [11], when this happens the impact

of the wind profile above the critical levels is minimized, even for relatively

low Ri, making this an ideal test case. The forms taken by S(θ, z), C(θ),

Sψ(z) and Cψ(z) for this case are listed in Appendix B.

As in [23] and [16], flow over orography with γ = 0.5 is considered. This
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corresponds to a substantially anisotropic mountain, which nevertheless does

not approach a 2D geometry. Four values of δ are considered (see Fig. 1):

δ = 0, corresponding to a surface wind perpendicular to the major axis of the

mountain (Fig. 3), δ = π/2, corresponding to a surface wind parallel to the

major axis of the mountain (Fig. 4), and δ = ±π/4, corresponding to oblique

surface winds (Figs. 5 and 6). These values of δ were chosen because the

behaviour of the momentum flux depends on the angles between the major

axis of the mountain and both the wind velocity and the shear rate. The

four selected values of δ span all possible distinct combinations for which δ

is a multiple of π/4.

In Figs. 3-6, the thick red lines and symbols correspond to γ = 0.5,

whereas the thin blue lines and symbols correspond to γ = 1 (the situation

considered in [17]) for comparison. The solid lines denote results from WKB

theory, the circles denote results from the linear numerical model (which

does not assume the WKB approximation) and the dotted lines correspond

to the limit Ri → ∞. In each of these figures, panels (a), (c) and (e) show

the x component of the momentum flux, while panels (b), (d) and (f) show

the y component. In panels (a) and (b), Ri = 5, in panels (c) and (d),

Ri = 1, and in panels (e) and (f), Ri = 0.5. In Figs. 3-6 the momentum flux

has been normalized so as to take a value of 1 at the surface for Ri → ∞
whenever possible, and zero otherwise. This means that both Mx and My are

normalized by D0x when δ = 0 (because D0y = 0), and both Mx and My are

normalized by D0y when δ = π/2 (because D0x = 0), but Mx is normalized

by D0x and My by D0y when δ = ±π/4. This choice, which follows [14],

[16] and [17], allows us to focus solely on wind shear and mountain geometry
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z increases
z=0

y
δ=π/4

x

Figure 2: Schematic diagram of the linear wind profile (47) for δ = π/4. Arrows denote

the wind velocity at different heights. Note that, in accordance with (47), the vertical

shear is at an angle of π/4 to the surface wind.

effects when analyzing the behaviour of the momentum flux.

In Fig. 3 it can be seen that, when δ = 0, Mx decreases faster with

height and My takes lower values for γ = 0.5 than for γ = 1. Fig. 4 shows

that when δ = π/2, while My is enhanced (in absolute value) for γ = 0.5

relative to γ = 1, My decreases more slowly with height. In Fig. 5, on the

other hand, it can be seen that when δ = π/4, both Mx and My vary faster

with height when γ = 0.5 than when γ = 1, and the maximum attained

by My is enhanced. Finally, Fig. 6 shows that when δ = −π/4 both Mx

and My vary with height more slowly when γ = 0.5 than when γ = 1. The

vertical dotted lines in Figs. 3 and 5, which denote the heights where U = 0,

and the vertical dashed lines in Figs. 4 and 6, which denote the heights

where V = 0, help us to interpret this behaviour. Since the variation of

the momentum flux with height is due to critical levels, Mx should suffer

a major depletion at the heights where U = 0 and My similarly at the

heights where V = 0 (which indeed happens). The reason why this variation

is faster in the first than in the second case can be explained by the fact

that, for γ = 0.5, proportionally more wave energy exists at wavenumbers
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Figure 3: Normalized momentum flux as a function of normalized height for the wind

profile (47) with δ = 0. Thick red lines and symbols: γ = 0.5, thin blue lines and symbols:

γ = 1. Solid lines: WKB approximation, dotted lines: Ri → ∞ limit, circles: linear

numerical model. The vertical dotted line denotes the height where U = 0 (αz/U0 =
√

2).

(a) Mx/D0x for Ri = 5, (b) My/D0x for Ri = 5, (c) Mx/D0x for Ri = 1, (d) My/D0x for

Ri = 1, (e) Mx/D0x for Ri = 0.5, (f) My/D0x for Ri = 0.5.
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Figure 4: Similar to Fig. 3, but for δ = π/2. The vertical dashed line denotes the height

where V = 0 (αz/U0 =
√

2). (a) Mx/D0y for Ri = 5, (b) My/D0y for Ri = 5, (c) Mx/D0y

for Ri = 1, (d) My/D0y for Ri = 1, (e) Mx/D0y for Ri = 0.5, (f) My/D0y for Ri = 0.5.
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Figure 5: Similar to Fig. 3, but for δ = π/4. The vertical dotted line denotes the height

where U = 0 (αz/U0 =
√

2/2). (a) Mx/D0x for Ri = 5, (b) My/D0y for Ri = 5, (c)

Mx/D0x for Ri = 1, (d) My/D0y for Ri = 1, (e) Mx/D0x for Ri = 0.5, (f) My/D0y for

Ri = 0.5.
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Figure 6: Similar to Fig. 3, but for δ = −π/4. The vertical dashed line denotes the height

where V = 0 (αz/U0 =
√

2/2). (a) Mx/D0x for Ri = 5, (b) My/D0y for Ri = 5, (c)

Mx/D0x for Ri = 1, (d) My/D0y for Ri = 1, (e) Mx/D0x for Ri = 0.5, (f) My/D0y for

Ri = 0.5. Note that in this case D0y < 0.
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perpendicular to the mountain (along x) than at wavenumbers parallel to

the mountain (along y), in comparison to a situation where the mountain

is axisymmetric (γ = 1). In the 2D orography limit (γ = 0), the variation

of Mx with height in Fig. 3, for example, would resemble a step function,

as is well known to occur from Booker and Bretherton’s pioneering study

[18]. Note also how, in Figs. 3-6, the component of the momentum flux

perpendicular to the wind component that vanishes at the signalled heights

attains a maximum or minimum there. This follows from (5), since that

equation can only be satisfied when one of the mean wind components is

zero if the vertical derivative of the other component of the momentum flux is

zero. However, (5) by itself does not impose any constraint on the component

of the momentum flux in the direction of the wind component that vanishes.

That aspect is determined by the dynamics of the mountain waves.

When Ri = 5, it can be seen in Figs. 3-6(a,b) that, both for Mx and

My, there is excellent agreement between WKB theory (solid lines) and the

linear numerical model (circles). In turn, the corresponding lines and sym-

bols differ very little from the dotted lines that denote the limit Ri → ∞.

When Ri = 1 (Figs. 3-6(c,d)), both Mx and My decrease over the whole

range of displayed heights, but especially near the surface, except in the case

of Fig. 3(d), where My actually increases near the surface. In all cases, this

corresponds to weaker vertical gradients of Mx and My, i.e. a lower momen-

tum flux divergence. This is consistent with the behaviour of the drag at the

surface, which is known to decrease as Ri decreases for linear wind profiles

[14, 15, 16]. Agreement between WKB theory and the linear numerical model

remains virtually perfect, suggesting that the WKB approximation is accu-
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rate. When Ri = 0.5 (Figs. 3-6(e,f)), Mx and My decrease further (except

in Fig. 3(f)), departing more from the reference values of 1 or 0 taken at the

surface for Ri → ∞. This corresponds to smaller gradients of Mx and My,

consistent with a lower surface drag. Agreement between WKB theory and

the linear numerical model remains very good, but some slight departures

start to emerge: for example, in Fig. 3(f) My is slightly underestimated by

WKB theory, and in Figs. 4(e) and 5(e) WKB theory instead slightly over-

estimates Mx. This latter result is consistent with the well-known fact that

the surface drag is overestimated by WKB theory for linear wind profiles

at low Ri [14, 16]. The fact that in Fig. 3(d,f) My(z = 0) 6= 0, in 4(c,e)

Mx(z = 0) 6= 0, and in Figs. 5(c-f) or 6(c-f) Mx(z = 0) and My(z = 0) do

not decrease with Ri in the same proportion, means that the surface drag

becomes misaligned with the surface wind. This aspect is well captured by

WKB theory.

4.2. Wind that turns with height

The other wind profile to be considered describes a wind that turns with

height at a constant rate keeping its magnitude constant [14, 16, 17],

U = U0 cos(βz + δ), V = U0 sin(βz + δ), (48)

where β is a constant and δ has the same meaning as before. This wind profile

is depicted in Fig. 7 for δ = π/4. Note that, from (48), Ri = N2/(U0β)2.

Although for this wind profile ψ monotonically increases with height (as

for the previous one), multiple critical levels exist for βz/π > 1. However,

following [17], attention will be focused here only on the region of the flow

near the surface where βz/π ≤ 1. Since all higher derivatives of (48) with
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respect to z are non-zero, this wind profile provides a more stringent test on

the WKB approximation than (47). The forms taken by S(θ, z), C(θ), Sψ(z)

and Cψ in the present case are shown in Appendix B.

Figs. 8, 9, 10 and 11 present the two components of the momentum

flux, normalized in the same way as in the previous section, as a function

of normalized height, for δ = 0, δ = π/2, δ = π/4 and δ = −π/4, respec-

tively. The definition of quantities presented in each panel and the meaning

of lines and symbols are entirely analogous to those introduced in the pre-

vious section for Figs. 3-6. In Fig. 8(a,b) it can be seen that when δ = 0,

Mx, although more constant at the bottom and top of the plotted domain,

decreases faster at mid-levels for γ = 0.5 than for γ = 1. My, on the other

hand, is considerably lower in the first case than in the second. For δ = π/2

(Fig. 9(a,b)), Mx is lower (larger in absolute value) for γ = 0.5 than for

γ = 1, and My has a slower decrease with height. When δ = π/4 (Fig.

10(a,b)), Mx decreases faster near the height where U = 0, but My, besides

having a more pronounced maximum, decreases more slowly near the height

where V = 0. Finally, when δ = −π/4 (Fig. 11(a,b)), Mx again decreases

faster at the height where U = 0 for γ = 0.5 than for γ = 1, and My de-

creases more slowly at the height where V = 0 (but these two heights are

exchanged relative to Fig. 10). This behaviour of the momentum flux re-

sembles, to a certain extent (especially in Figs. 8 and 9), that described in

the previous section, which is perhaps not surprising given that the wind

profiles have some similarities (the surface wind makes the same angles with

the orography, and the velocity turns counter-clockwise as height increases

in both wind profiles). Differences from γ = 1 are, again, justified by the
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z=0
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Figure 7: Schematic diagram of the wind that turns with height (48) for δ = π/4. Arrows

denote the wind velocity at different heights.

fact that the orography launches a wave spectrum that has more energy at

wavenumbers along x than at wavenumbers along y. Hence, also here, at

heights where U = 0, Mx varies faster when γ = 0.5 than when γ = 1 and

My attains extrema there, while at heights where V = 0, My varies slower

when γ = 0.5 than when γ = 1 and Mx attains extrema there. A noteworthy

difference with respect to Figs. 5-6 is that in Figs. 10-11 both U = 0 and

V = 0 are satisfied at two different heights within the displayed domain.

When Ri = 5 (Figs. 8-11(a,b)), there is very good agreement between

WKB theory (solid lines) and the linear numerical model (circles), and both

results differ little from those valid in the Ri → ∞ limit (dotted lines)

(though slightly more than for the linear wind profile). When Ri = 1, how-

ever, Figs. 8-11(c,d) show that both components of the momentum flux

increase at all levels, but especially near the surface, except for Mx in Fig.

9(c), which instead decreases slightly (but increases in absolute value). The

gradient of the momentum flux divergence therefore tends to increase glob-

ally. This is consistent with the behaviour of the surface drag, which is
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Figure 8: Similar to Fig. 3, but for the wind profile (48). The vertical dotted line denotes

the height where U = 0 (βz/π = 1/2).
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Figure 9: Similar to Fig. 4, but for the wind profile (48). The vertical dashed line denotes

the height where V = 0 (βz/π = 1/2).
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Figure 10: Similar to Fig. 5, but for the wind profile (48). The vertical dotted line denotes

the height where U = 0 (βz/π = 1/4) and the vertical dashed line denotes the height where

V = 0 (βz/π = 3/4).
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Figure 11: Similar to Fig. 6, but for the wind profile (48). The vertical dashed line

denotes the height where V = 0 (βz/π = 1/4) and the vertical dotted line denotes the

height where U = 0 (βz/π = 3/4).
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known to generally increase for this kind of wind profile [14, 16]. The agree-

ment between the WKB results and those from the linear numerical model

is not as good as in Figs. 3-6. Generally, WKB theory underestimates the

absolute value of the momentum flux compared with the linear numerical

model, a notable exception being Fig. 10(c). Also worthy of note is the

fact that WKB theory is unable to predict the non-zero value taken by the

momentum flux at the surface (and near it) in the direction perpendicular to

the flow at the surface. This is particularly striking in Figs. 8(d) and 9(c).

Presumably, this limitation could only be overcome by extending the WKB

approximation up to higher order. When Ri = 0.5 (Figs. 8-11(e,f)), the

momentum flux is even more enhanced, with surface values in the direction

of the incoming flow attaining normalized values of 1.6 or 1.8 (as given by the

linear numerical model). For this value of Ri, the agreement between these

exact results and the approximate WKB results becomes less satisfactory,

with a sizable underestimation of the absolute value of the momentum flux

by WKB theory (except in Fig. 10(e) and for the thin blue line in Fig. 11(f),

where there is overestimation instead). This underestimation is particularly

severe for Mx in Fig. 11(e). These discrepancies are related to both the

tendency of the WKB approximation to underestimate the surface drag, and

its inability to capture its rotation relative to the surface wind when Ri is

relatively low, for this particular wind profile. Figs. 8(f) and 9(e) suggest

that adding a function with a linear trend that fits the momentum flux at

z = 0 and βz/π = 1 to My and Mx, respectively, would greatly improve

agreement between WKB theory and the linear numerical model, but this ad

hoc procedure seems hardly justifiable. On the other hand, Figs. 8(e) and
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9(f) reveal that the underestimation, respectively, of Mx and My in those

figures is not wholly due to nonlinear effects (as might be suggested by the

numerical simulations of [17]), but is intrinsical to the WKB approximation.

Despite its imperfections, which undoubtedly are related with the pres-

ence of higher derivatives in this wind profile, and the truncation of the

WKB approximation at third order, it is clear that WKB theory makes a

much better job of predicting results from the linear numerical model than

linear theory in the limit Ri → ∞. The gradients of Mx in Fig. 8(e), of My

in Fig. 9(f), and of both Mx and My in Figs. 10(e,f) and 11(f) at mid-levels

are predicted rather accurately by WKB theory, whereas linear theory with

Ri → ∞ severely underestimates them. But agreement is not so satisfactory

for My in Fig. 8(f), Mx in Fig. 9(e), or Mx in Fig. 11(e).

5. Concluding remarks

Using a third-order WKB solution to the Taylor-Goldstein equation, lin-

ear theory has been employed to calculate the momentum flux associated

with internal gravity waves in the atmosphere generated by steady, hydro-

static flow over mountains with an elliptical horizontal cross-section, for

slowly-varying but otherwise generic wind profiles. This momentum flux

decisively affects the intensity of westerly winds in mid-latitudes, modifying

wave propagation in the atmosphere, and consequently also surface weather

patterns. Via thermal-wind balance, upper-air temperatures in high lati-

tudes [3], which control the formation of polar stratospheric clouds, are also

affected, with implications for ozone depletion [25]. For all these reasons, this

subgrid-scale physical process must be parametrized in large-scale weather
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and climate prediction models [26]. The present calculations aim to improve

those parametrizations by incorporating a self-consistent treatment of verti-

cal wind shear effects on the momentum flux.

The orographic drag parametrization currently included in the ECMWF

weather prediction system [4] uses the concept of wave saturation associated

with breaking of high-amplitude waves to determine the location and mag-

nitude of the momentum deposition that corresponds to the reaction force

exerted by mountains on the atmosphere, following an approach based on

Lindzen [27]. This process depends on the vertical structure of the wind

and static stability, but that is the only wind profile effect that enters into

the parametrization. A description of how directional wind shear affects the

surface drag [23], or the detailed momentum flux absorption process, is cur-

rently missing. However, even low-amplitude mountain waves are affected by

directional wind shear, and their associated momentum flux varies in accor-

dance with the extension to 3D of Eliassen-Palm’s theorem [9]. At relatively

low Richardson numbers, momentum deposition at critical levels may not be

total, as assumed in the saturation hypothesis, or in the linear analyses of

Shutts [6] and Shutts and Gadian [7], but rather partial, affecting the mean

flow in distinct ways. Additionally, vertical wind shear also affects the sur-

face drag, making it increase for certain types of wind profile and decrease

for others [14, 16]. The incorporation of these missing effects has long been

overdue in drag parametrizations (which have become severely outdated),

and they might help to alleviate known biases and imbalances in the global

angular momentum budget [28].

The present study provides the necessary theory, in an essentially ready-
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to-use form, for implementing these changes. The momentum flux is cal-

culated for mountains with an elliptical horizontal cross-section, which is

the approximation used to represent the Earth’s mountain ranges in each

grid box in the ECMWF drag parametrization. The hydrostatic assumption

(which is also used in the present calculations) then allows corrections to the

momentum flux, or its divergence, to be cast in a form that is independent

of the detailed shape of the orography, which makes the results much more

general. The corrections to the momentum flux must be evaluated in a coor-

dinate system aligned with the main axes of the mountain, which should be

straightforward to do by applying the required coordinate transformation.

The results presented here show that the WKB approximation is accurate

for calculating the momentum flux down to Richardson numbers as low as

0.5, leading to a substantial improvement relative to the infinite-Ri limit.

Since the atmosphere becomes dynamically unstable at Ri = 0.25, this en-

compasses most of the relevant range of Ri likely to be realized in the atmo-

sphere. While the linear assumption, used in all calculations, is restrictive, it

seems to be unavoidable in the derivation of any physically consistent momen-

tum flux expressions amenable to be implemented in drag parametrizations.

Nonlinear effects, which have been studied extensively using 3D numerical

simulations [29, 30], display a rich behaviour whose complexity is difficult to

fully take into account. This explains perhaps, for example, the withdrawal

of empirical nonlinear corrections initially included in the UK Meteorological

Office’s drag parametrization [31]. Clearly, a better understanding of these

effects continues to be necessary.

A practical aspect that was addressed in the present paper was how to
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deal with the occurrence of non-monotonic wind profiles, or profiles where the

wind turns by an angle larger than π, when each wavenumber present in the

wave spectrum has more than one critical level. In both cases, the solution

is to split the atmosphere in as many layers as necessary, so that within each

layer each wavenumber has a single critical level. The momentum flux, or

its divergence, is then expressed as a function of the momentum flux at the

bottom of each layer, which is the same as the momentum flux at the top of

the layer immediately below, calculated previously.

The present results extend the calculations of Shutts and Gadian [7] to

lower Ri (as had been done by Teixeira and Miranda [17] for axisymmetric

mountains), and extend the work of both of these authors to flow over el-

liptical mountains (as had been done for the surface drag by Teixeira and

Miranda [16]). Therefore, these results, along with those of [17], comple-

ment the general constraint on the momentum flux derived by Broad [9] in

a similar way as the studies of Booker and Bretherton [18] and Grubĭsić

and Smolarkiewicz [19] (for much less general unidirectional wind profiles)

complemented the Eliassen-Palm theorem [8].

Appendix A. Definitions of I1 − I6

For a wind that turns monotonically anti-clockwise with height by an

angle no larger than π, the integrals introduced in (13)-(14) are defined as

follows:

I1 =

∫ ψ0+π/2

ψ−π/2

cos2 θ

(cos2 θ + γ2 sin2 θ)1/2
[1 − S(θ, z)]eS(θ,z)−S(θ,z=0)dθ, (A.1)

I2 =

∫ ψ+π/2

ψ0+π/2

cos2 θ

(cos2 θ + γ2 sin2 θ)1/2
[1 − S(θ, z)]eS(θ,z)−S(θ,z=0)e−2πC(θ)dθ,
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(A.2)

I3 =

∫ ψ0+π/2

ψ−π/2

cos θ sin θ

(cos2 θ + γ2 sin2 θ)1/2
[1 − S(θ, z)]eS(θ,z)−S(θ,z=0)dθ, (A.3)

I4 =

∫ ψ+π/2

ψ0+π/2

cos θ sin θ

(cos2 θ + γ2 sin2 θ)1/2
[1 − S(θ, z)]eS(θ,z)−S(θ,z=0)e−2πC(θ)dθ,

(A.4)

I5 =

∫ ψ0+π/2

ψ−π/2

sin2 θ

(cos2 θ + γ2 sin2 θ)1/2
[1 − S(θ, z)]eS(θ,z)−S(θ,z=0)dθ, (A.5)

I6 =

∫ ψ+π/2

ψ0+π/2

sin2 θ

(cos2 θ + γ2 sin2 θ)1/2
[1 − S(θ, z)]eS(θ,z)−S(θ,z=0)e−2πC(θ)dθ.

(A.6)

If the wind turns clockwise instead, with the other assumptions remaining

the same, ψ and ψ0 should be exchanged in the above equations.

Appendix B. Forms taken by S(θ, z), C(θ), Sψ(z) and Cψ(z)

For the two idealized wind profiles adopted in the present study, S(θ, z),

C(θ), Sψ(z) and Cψ(z), given in general by (8)-(9) and (33)-(34) simplify

considerably.

Linear wind profile

For the linear wind profile (47), (8)-(9) reduce to

S(θ, z) =
1

8Ri

[

cos θ sin
(

δ + π
4

)

− γ sin θ cos
(

δ + π
4

)]2

cos2 θ + γ2 sin2 θ
, (B.1)

C(θ) =
Ri1/2(cos2 θ + γ2 sin2 θ)1/2

∣

∣cos θ sin
(

δ + π
4

)

− γ sin θ cos
(

δ + π
4

)∣

∣

×
{

1 − 1

8Ri

[

cos θ sin
(

δ + π
4

)

− γ sin θ cos
(

δ + π
4

)]2

cos2 θ + γ2 sin2 θ

}

.(B.2)
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On the other hand, (33)-(34) reduce to

Sψ(z) =
1

8Ri

[

sin ψ sin
(

δ + π
4

)

+ γ cos ψ cos
(

δ + π
4

)]2

sin2 ψ + γ2 cos2 ψ
, (B.3)

Cψ(z) =
Ri1/2(sin2 ψ + γ2 cos2 ψ)1/2

∣

∣sin ψ sin
(

δ + π
4

)

+ γ cos ψ cos
(

δ + π
4

)
∣

∣

×
{

1 − 1

8Ri

[

sin ψ sin
(

δ + π
4

)

+ γ cos ψ cos
(

δ + π
4

)]2

sin2 ψ + γ2 cos2 ψ

}

,(B.4)

where, from (10) and (47),

tan ψ = γ
U0 sin δ + αz cos

(

δ + π
4

)

U0 cos δ − αz sin
(

δ + π
4

) . (B.5)

Using this equation, (B.3)-(B.4) may be further simplified as

Sψ(z) =
1

16Ri

[

1 +
(

αz
U0

)2

−
√

2
(

αz
U0

)

] , (B.6)

Cψ(z) =
√

2Ri1/2

[

1 +

(

αz

U0

)2

−
√

2

(

αz

U0

)

]1/2

×















1 − 1

16Ri

[

1 +
(

αz
U0

)2

−
√

2
(

αz
U0

)

]















. (B.7)

Note that Sψ and Cψ do not depend on the aspect ratio of the mountain γ.

Wind that turns with height

For the wind that turns with height (48), (8)-(9) reduce to

S(θ, z) =
1

8Ri(cos2 θ + γ2 sin2 θ)

{

[cos θ sin(βz + δ) − γ sin θ cos(βz + δ)]2

−2 [cos θ cos(βz + δ) + γ sin θ sin(βz + δ)]2
}

(B.8)

C(θ) = Ri1/2

(

1 − 1

8Ri

)

. (B.9)
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Note the very simple definition of C(θ), which in fact does not depend on θ

and coincides with the one valid for an axisymmetric mountain in [17]. On

the other hand, (33)-(34) reduce to

Sψ(z) =
1

8Ri(sin2 ψ + γ2 cos2 ψ)

{

[sin ψ sin(βz + δ) + γ cos ψ cos(βz + δ)]2

−2 [sin ψ cos(βz + δ) − γ cos ψ sin(βz + δ)]2
}

, (B.10)

Cψ(z) = Ri1/2

(

1 − 1

8Ri

)

, (B.11)

where

tan ψ = γ tan(βz + δ) (B.12)

If this equation is used, it can be shown that (B.10) simplifies further to

Sψ(z) =
1

8Ri
. (B.13)

For this wind profile, Sψ and Cψ are also independent of γ, and in fact inde-

pendent of height, being equal to those valid for an axisymmetric mountain

in [17].
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[30] H. Ólafsson, P. Bougeault, Nonlinear flow past an elliptic mountain

ridge, J. Atmos. Sci. 53 (1996) 2465–2489.

[31] S. Webster, A. R. Brown, D. R. Cameron, C. P. Jones, Improvements to

the representation of orography in the met office unified model, Quart.

J. Roy. Meteor. Soc. 129 (2003) 1989–2010.

48


