Vol. 138 in the laboratory and have calculated theoretically the results of imaginary experiments conducted on it.
By such discussions we gain some insight into such problems as the final fate of stellar systems and the creation of their nuclei. In view of this intended applica-

 of Ebert (11), (12) amplified by Bonner (13) and McCrea (14) in which gas spheres are under a given surface pressure and in thermal equilibrium with an external heat bath.
2. An experiment (Antonov's problem). A large number N of mass points (stars) of mass m were released under their mutual gravity inside a perfectly reflecting sphere off which they bounced with impunity. Their total energy was $E(<0)$, their total mass $N m=M$ and the radius of the sphere was r_{e}. Except for certain special initial conditions explained below we found that down to an equilibrium when r_{e} was less than the critical radius
setted $r_{c}=0.335 G M^{2} /(-E)$.
When r_{e} was larger than this the centre seemed to condense out and evolved towards very high temperatures and densities; no equilibrium state was attained.

 чء̊! sпошлоиә ұsu!̣̆e spremul Кем . и! рәрәәээns әм иәчм К Кй

 above.

[^0]497 therefore in the kinetic energy per particle or temperature. Such systems have negative specific heats. It will not surprise the reader to learn that small modifications of the strict conditions of the Virial theorem do not modify this result and isothermal spheres within boxes also display negative specific heats provided the system is sufficiently centrally condensed; that is provided it can be regarded as mainly held in by its own gravity rather than by the pressure of the walls of the box. This condition is satisfied by isothermal spheres at radii considerably smaller than r_{c} (see Section 5).
Consider then the conditions of our exciting experiment. We start with our sphere in equilibrium in a box with $r_{e}<r_{c}$, we surround it with a box of radius greater than r_{c} and suddenly remove the inner box. (The system still has the same mass and energy so r_{c} remains unchanged.) The first readjustment made by the body to this sudden change is an expansion which causes some adiabatic cooling. All parts of the body expand because some pressure has been taken off the outside. However, the central parts which were always mainly held together

 cool less than the outer parts so a temperature gradient is set up. With the gross
conditions of hydrostatic support satisfied our attention turns to the slower thermal

Detailed explanation of the rest of the experiment is best made with the help

 minimum entropy for given E, r_{e} (indicating unstable equilibrium)
In our experiment so far we have traversed the equilibrium series at constant

bigher entropy but, unlike previous occasions, this time there is no local entropy maximum to which it can go and we have the runaway described above, with the entropy continuously increasing.
The compression of the box to below the critical radius involves both changes in E and r_{e} as well as in $\left|v_{1}\right|$. We, therefore, add a third dimension, $\log r_{e}$, to our diagram and plot a surface on which equilibria are possible. We show a portion of the surface in Fig. 3. Since it would be confusing to draw in the entropy surfaces in the diagram we only plot the intersection of such surfaces with the equilibrium surface. The regions of high and low entropy on this surface are indicated. The first part of the experiment, increasing r_{e} at fixed E and M is now represented by

 $\boldsymbol{\varepsilon}$ әлеч мои ә M әoryuns unuqu!! situation identical to that at point B in Fig. 2 and a runaway ensues. All changes of configuration that do not take place on the equilibrium surface are indicated by solid lines.
It is now apparent that the system is going to higher and higher $\left|v_{1}\right|$ along a line that crosses surfaces of higher and higher entropy. These entropy surfaces only intersect the equilibrium surface at much lower values of r_{e} than the system has at present. To restore equilibrium, therefore, we must compress the box enough for an equilibrium state to be consistent with the present entropy. We

 equilibrium; the entropy was too high for the states so attained.
In our final drastic compression all three parameters plotted in Fig. 3 are decreased; (i) r_{e} is decreased; (ii) $-E r_{e} / G M^{2}$ is decreased both because of (i) and

 r_{e} would look like Fig. 1 and the system would be at a point such as C. This is

 continues spontaneously until entropy is maximized on the stable branch of the equilibrium surface.
2.2 Other experiments. In the experiment described above we investigated the stability of a self-gravitating system of fixed mass M, thermally isolated from its surroundings, and having the energy, E, and volume V, specified. At equilibria the entropy, S, is a maximum for given E and V. When discussing the stability of such systems for different external conditions it is natural to think in terms of

 surrounded by a perfectly conducting wall and in thermal equilibrium with its

[^1]|

 $66 t$
 896I't•oN | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| | |
| | |

3. The mathematical problem. Equilibrium states in the presence of encounters
are states of stationary entropy at given energy and volume. Here we study the problem of finding these. Taking Boltzmann's view of entropy we put

$$
(\mathrm{I})
$$

 velocities and over all positions within the confining sphere of radius r_{e}.
(iv) We have not assumed that all stars are of the same mass but have divided them into groups according to mass. f^{i} is the number density in phase space of stars of the i th group. f^{i} is a function of position
in phase space. m^{i} is the average mass of a star in the i th group.
 and velocity vectors $\mathbf{c}=(u, v, w)$. We denote phase space integrations by the symbol

$$
d^{6} \tau=d^{3} r d^{3} c=d x d y d z d u d v d w
$$

әЧLL 'ейq!!

 gives the same result as ignoring the angular momentum altogether in the statistical calculations.
We define the total phase space density at \mathbf{r}, \mathbf{c} to be $f(\mathbf{r}, \mathbf{c}) \equiv \sum_{i} m^{i f}{ }^{i}(\mathbf{r}, \mathbf{c})$. The spatial density $\rho(\mathbf{r})$ is then

$$
\rho(\mathbf{r})=\int f(\mathbf{r}, \mathbf{c}) d^{3} c
$$

with the integration over all velocities.

$$
\mathscr{T}=\sum_{i} \int \frac{1}{2} m^{i} c^{2} f(\mathbf{r}, \mathbf{c}) d^{6} \tau=\int \frac{1}{2} c^{2} f d^{6} \tau .
$$

$$
V=-\frac{G}{2} \iint \frac{\rho(\mathbf{r}) \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r d^{3} r^{\prime}
$$

| No. $4,{ }_{1} 1968$ | The gravo-thermal catastrophe |
| :--- | :--- | :--- |
| where | $\epsilon^{i}=m^{i}\left(\frac{c^{2}}{2}-\psi\right), \quad \epsilon=\frac{c^{2}}{2}-\psi$ |
| and | $A^{i}=\exp \left[-\left(\alpha^{i}+1\right)\right]$. |

502 D. Lynden-Bell and Roger Wood Vol. 138
In Appendix II we repeat Antonov's proof that only spherically symmerica
In Appendix II we repeat Antonov's proof that only spherically symmetrical
states can correspond to local entropy maxima. Thus only spherically symmetrical

 in greater detail. We specialize in stars of one mass only and drop the suffix i. Equation (II) then reduces to the well known equation for the isothermal gas sphere.
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)=-4 \pi G B \exp (\beta \psi), \quad r<r_{e} \quad$ (12)
where $\beta=m \beta^{\prime}$.
It is well known that there are three classes of solutions to this equation: (I) the singular solution

$\psi=\frac{1}{\beta} \log \left[r^{-2}(2 \pi G \beta B)^{-1}\right]$,

(2) the isothermal gas sphere solutions with finite density at $r=0$,

 fact the limiting case of the finite density solutions. These therefore become our main concern. We have not, as has been customary, rejected infinite density solutions but we have shown that the only one that can exist is the singular solution I.
The transformation

$v_{1}=\beta(\psi-\psi(0))$

 $\begin{aligned} \gamma_{1} & =(4 \pi G \beta B \exp \\ & =\left(4 \pi G \rho_{0} \beta\right)^{1 / 2} r\end{aligned}$is applicable to solutions of class 2 provided $\psi(0)$ is finite. Note that we may then
(14)

> Equation (12) reduces to the standard Emden form (I5)
$\frac{d^{2} v_{1}}{d r_{1}{ }^{2}}+\frac{2}{r_{1}} \frac{d v_{1}}{d r_{1}}+e^{v_{1}}=0 \quad$ (15)
 class 2 when transformed all become the standard solution of equation (15) for which

$v_{1}=\frac{d v_{1}}{d r_{1}}=0$

when $r_{1}=0$. However these solutions are terminated by the box at different
radii given by $r_{1}=\left\{4 \pi G \rho_{0} \beta\right\}^{1 / 2} r_{e}$. The solution is readily computed numerically

Vol. 138

which vanishes for a perfect gas in the absence of gravitation as it should. The surface pressure may be related to the edge density by use of the equipartition $p=\int_{\mathrm{at} \boldsymbol{r}_{\mathrm{e}}} f^{1} \frac{1}{3} m c^{2} d^{3} c=\frac{2}{3} \frac{3}{2 \beta^{\prime}} \int_{\mathrm{at} r_{e}} f^{1} d^{3} c=\frac{\rho_{e}}{m \beta^{\prime}}=\frac{\rho_{e}}{\beta}$.
©
저
 Relationships (16)-(24), enable us to simplify our expression for the entropy into the form given by equation (25) as follows:

$$
\frac{m S}{k}=-M \log \left(p \beta^{5 / 2}\right)+\beta\left(\frac{G M^{2}}{r_{e}}+2 E\right)-\frac{3}{2} M\left(\mathrm{I}-\frac{2}{3} \log m\right)
$$

Further relationships require use of the solution to the isothermal equation (15). Emden gives the functions $v_{1}\left(r_{1}\right)$ etc. in his tables so we express our thermo-

 oscillating as they do so.
Radius. By definition equation (13):

[^2]The gravo-thermal catastrophe 505
It is a non-linear monotonic function of the density contrast between centre and
$\underline{\rho}$

Energy. Returning to equation (20) for the energy and eliminating β by means
of equation (29)
$$
E=\frac{G M^{2}}{r_{e}}\left[\frac{z^{2} e^{v_{1}}}{\left(-z v_{1}\right)^{2}}-\frac{3}{2} \frac{\mathrm{I}}{\left(-z v_{1}^{\prime}\right)}\right] .
$$
Entropy. Formulae (29)-(31) enable us to calculate the entropy in the form
 $-v_{1}+\frac{2 E r_{e}}{G M^{2}}\left(-z v_{1}{ }^{\prime}\right)+$ const. (32)

 However for large values of r_{1} an analytic asymptotic form may be deduced as follows. Transform variables to
$$
\theta=\log r_{1}, \quad u=v_{1}+2 \theta
$$
506
Equation (I5) then becomes
$$
\frac{d^{2} u}{d \theta^{2}}+\frac{d u}{d \theta}+e^{u}-2=0 .
$$
This is the equation of a damped and Roger Wood oscillator in the potential well $e^{u}-2 u$. This
\square

These expressions give the limiting behaviour of the thermodynamic variables
as $\theta \rightarrow \infty$. We compare them with the results derived in the next section for the singular solution I.
3.3 The singular infinite density solution. In the singular case the solution of equation (I_{5}) is
But we know
so that
giving

$M(r)=\int_{0}^{r} 4 \pi r^{2} \rho d r=\frac{2 r}{G \beta}$

We see at once that these last two results are identical to the corresponding limits of the last section. In fact it is found that the other thermodynamic variables, as given in equations (18)-(22) and (27) also give the limiting values found above. Thus the singular infinite density model is the limit of the family of finite density models as they become more centrally condensed.

[^3]$$
\text { function of } z . \text { See Table and Ref. (} \mathbf{(5)} \text {. }
$$
Vol. I 3^{8}
4. I Specific heat. By definition the specinc heat at constant volume is
$$
C_{V}=\left(\frac{d E}{d T}\right)_{r_{e}}=k\left(\frac{d E}{d\left(\frac{1}{\beta}\right)}\right)_{r_{e}}=-k \beta^{2}\left(\frac{d E}{d \beta}\right)_{r_{e}}=-k \beta^{2} \frac{\left(\frac{d E}{d v_{1}}\right)_{r_{e}}}{\left(\frac{d \beta}{d v_{1}}\right)_{r_{e}}}
$$
If we consider a system of constant mass inside a fixed box then the variation of
the inverse temperature β and the energy E with v_{1} may be plotted using equations
(29) and (31) and are shown as Figs 1 and 2 respectively. The sign of the specific

heat for a particular configuration depends on the gradients of these two curves at the value of v_{1} which specifies that configuration. It is seen that for small v_{1} the

 isothermal sphere of radius r_{e} and mass M is

$T_{\min }=\frac{G m M}{2 \cdot 52 k r_{e}}$

and is achieved at $v_{1}=3.5$ (or a density contrast, ρ_{0} / ρ, of $32 \cdot 2$). This is just the point at which C_{V} became negative and it is easy to see in physical terms why no equilibrium is possible for a system of negative specific heat in contact with

 all spherical equilibria in the diagram. Other spherical displacements, corresponding to other generalized coordinates q_{i}, will therefore remain stable displacements along the sequence. The configurations with densities

$$
= \begin{cases}\rho_{0} \exp v_{1}\left(r_{1}\right) & v_{1}\left(r_{1}\right)<v_{1} \\ 0 & r>r_{e}\end{cases}
$$

$$
\frac{3}{2} \frac{k M}{m} \log \left(\frac{E_{0}}{E}\right)
$$

Here E_{0} is the equilibrium's energy.
4.2 Linear series of equilibria. In statics the condition for a stable equilibrium is that the potential energy is a minimum. In many static problems the description * In the thermodynamics of homogeneous equilibria negative specific heats always give rise to thermal instabilities between different parts of the system. This is not so here,
where we have a grossly inhomogeneous equilibrium coupled together by the long range gravity field.
$8^{\mathcal{E} I}{ }^{1}{ }^{\circ} \Lambda$

510

səŋ巴и!рдооэ рәz! q_{i} in terms of which we describe the configuration of the system. An example

 the prescribed value.

Let us call the value of q_{i} attained at such a local minimum $q_{i}{ }^{0}$. These $q_{i}{ }^{0}$ will depend on the specification of the problem so in particular if μ is changed to some different value the $q_{i}{ }^{0}$ will be different in general. Thus we write

$$
q_{i}^{0}=q_{i}^{0}(\mu)
$$

Furthermore the minimum value of 0 attained at any definite value of μ may be written

Now let us plot the surfaces

in the multidimensional $\left(\mu, q_{i} . ..\right)$ space.

 so no two of the surfaces can intersect. Wherever one of these surfaces just touches one of the planes $\mu=$ const the configuration corresponding to the point of contact is an equilibrium since for fixed $\mu, V\left(\mu ; q_{i}, \ldots\right)$ is stationary there. Let us suppose that for some value $\mu=\mu_{0}$ we know that the system has a stable equilibrium. Then the point $q_{i}{ }^{0}\left(\mu_{0}\right)$ is the tangent point of the surface $V=V_{0}$ and the plane $\mu=\mu_{0}$ and V_{0} is the minimum value that \mathcal{U} attains in that neighbour-

 we set μ above some critical value there is no equilibrium.
 applicable throughout thermodynamics and dynamics. In dynamics gyroscopic terms appear which considerably complicate application of the method unless friction is also present but in thermodynamics the whole theory may be cast in similar form.

[^4]No. 4,1968
5II
The gravo-thermal catastrophe

 configurations are Maxwellian and are included in Fig. 2.

 values of E. At the top we reach the maximum entropy attainable at equilibrium with box radius r_{e}. The entropy surfaces have an inflection here and, at this value of E, higher values of the entropy can be attained by moving off the equilibrium sequence to the right in Fig. 2. The sequence thus loses stability here. We remark again that the stable series is not only the series of states of maximum entropy for fixed energy but also the sequence of minimum energy for fixed entropy as may be seen from Fig. 2. We use this in Appendix II.

 negative. However starting from any one of these stable configurations we could unụq!!! sequence is precisely Fig. 2 but the positions of the constant entropy line are slightly altered because S depends on the volume of the box as well as on the density contrast. However even these constant entropy lines are qualitatively similar. To explain the situation more fully we have drawn the three dimensional diagram which plots the lines of constant entropy on the equilibrium surface in $\left(-E r_{e} / G M^{2}, v_{1}, \log r_{e}\right)$ space, Fig. 3. Since $-E r_{e} / G M^{2}$ is a function of v_{1} alone
 the surfaces of constant S are not cylindrical and intersect the equilibrium surface in the lines shown.
We have shown in detail how to determine the stable series of equilibria when
our system is in a rigid box and exchanges no heat with the outside world. Basically
We have shown in detail how to determine the stable series of equilibria when
our system is in a rigid box and exchanges no heat with the outside world. Basically

512
we used the fact that there was a functional $(-S)$ of the distribution function we used the fact that there was a functional $(-S)$ of the distribution function
describing the system which was a minimum for certain fixed conditions. However starting from the law of entropy
one can readily prove not only (i) below but also (ii), (iii) and (iv) below. As an example we prove (ii). For spontaneous change entropy increases so the inequality holds. We have
For spontaneous changes at fixed V and $T, d \mathscr{F}$ must be negative. Now consider a point at which \mathscr{F} is a minimum for given V and T. Then no change exists for which $d \mathscr{F}$ is negative so spontaneous changes can not occur. The system is therefore in stable equilibrium.
Similarly:
(i) for a system in stable equilibrium with fixed E and V the entropy S is a
 energy $\mathscr{F}=E-T S$ is a minimum;
 enthalpy $\mathscr{H}=E+p V$ is a minimum. We shall use this in the variant form that S is a maximum at constant \mathscr{H} and p;
(iv) for a system in stable equilibrium with fixed T and p the Gibbs free energy $\mathscr{G}=E-T S+p V$ is a minimum.
The graph of $G M \beta / r_{e}$ as a function of v_{1} is shown in Fig. I. Since β is a function of T and v_{1} is a measure of r_{e} this is the sequence of equilibria envisaged in (ii) рие $6=z \mathfrak{~}$ дәло suın sə!

 look alike and it is too time consuming to draw all of them. We deduce that stability
In Figs 4 and 5 we plot $\mathscr{H} \mid\left(p G^{3} M^{6}\right)^{1 / 4}$ against $\left|v_{1}\right|$ and $G^{3} M^{2} \beta^{4} p$ against $\left|v_{1}\right|$. These are combinations of the independent variables of (iii) and (iv) which are functions of v_{1} alone. Namely

$$
\mathscr{H} /\left(p G^{3} M^{6}\right)^{1 / 4}=\left[\frac{4}{3} z^{2} e^{v_{1}}\left(-z v_{1}^{\prime}\right)^{-2}-\frac{3}{2}\left(-z v_{1}^{\prime}\right)^{-1}\right]\left[\frac{\left(-z v_{1}^{\prime}\right)^{2}}{4 \pi z^{2} e^{v_{1}}}\right]^{1 / 4}
$$

$$
G^{3} M^{2} \beta^{4} p=\frac{\mathbf{I}}{4 \pi}\left(z^{2} v_{1}\right)^{2} z^{2} e^{v_{1}} .
$$

 attainable on such sequences of equilibria. Stability ceases at such points which are tabulated in Section 5.
4.4 Adiabats and isotherms. Although free energies are the most complete and

[^5]

∞ $\stackrel{\circ}{\circ}$ $\dot{\circ}$ $\dot{+}$ \dot{Z} \dot{Z}

Fig. 5. Pressure-temperature-density contrast.

The isotherms are readily calculated since equations (29) and (30) may be rewritten
in the forms

$$
\begin{aligned} & r_{e}=G M \beta\left(-z v_{1}{ }^{\prime}\right)^{-1}, \\ & p=\left(4 \pi G^{3} M^{2} \beta^{4}\right)^{-1}\left(-z v_{1}{ }^{\prime}\right)^{2} z^{2} e^{v_{1}}, \\ & \text { while }\end{aligned} \quad \begin{aligned} V & =\frac{4}{3} \pi r_{e}{ }^{3} .\end{aligned}
$$

$V=\frac{4}{3} \pi r e^{3}$

 tions. The detailed form of the isotherms has already been calculated from such formulae by Bonner, one is plotted here as Fig. 7. All others are scalings of the same curve.
To calculate the adiabats we take equation (27) eliminate β using equation (29), E using (31) and p using (30). We thus obtain

$\frac{m S}{k M}=-\log \left\{\frac{z^{2} e^{v_{1}}\left(-z v_{1}{ }^{\prime}\right)^{1 / 2}}{r_{e}^{3 / 2}}\right\}+\left(-z v_{1}{ }^{\prime}\right)+\frac{2 z^{2} e^{v_{1}}}{\left(-z v_{1}{ }^{\prime}\right)}+\log \left(4 \pi G^{3 / 2} M^{1 / 2} m\right)-\frac{9}{2}$.

For any given S this is a relationship between r_{e} and z; a further relationship for $p\left(r_{e}, z\right)$ is provided by equation (30) with $V=\frac{4}{3} \pi r^{3}$. Together these provide parametric equations for the adiabats which we may now determine using Emden's tables or their equivalent.

An adiabat is plotted as Fig. 6. Other adiabats may be obtained by scalings. The reader should note that the breakdown of the adiabat occurs not at small
volumes but at large ones. The bounding sphere can be too big for there to be
 Section 3 .
4.5 Criticism of the statistical calculation.-By taking Boltzmann's view of
 the state considered and have treated the particles as independent so that the two particle distribution functions $f(\mathbf{1}, \mathbf{2}) \equiv f\left(\mathbf{r}_{1}, \mathbf{c}_{1} ; \mathbf{r}_{2}, \mathbf{c}_{2}\right)$ factored into $f(\mathbf{1}, \mathbf{2})=f(\mathrm{I}) . f(\mathbf{2})$. Here $f(\mathrm{x}) \equiv f\left(\mathbf{r}_{1}, \mathbf{c}_{1}\right)$ etc. We have thus ignored pairwise

 dynamic equilibrium was possible at all. Gibbs's canonical approach is to consider every possible state of the whole system giving equal weight to equal volumes
in

 the remainder banging about with the high energy released has a large phase space volume associated with it. So also does the system in which a pair or many pairs of particles are very close together. To obtain any sense from statistical

 is then allowable provided many particle correlations are not pronounced. In a

 turn-over and therefore that they are stable up to that turnover. We wish here

 formations. We believe that this point can only be fully cleared up by a stability
analysis (2I) in the neighbourhood of zero frequency oscillations. Should such a

$$
\text { Table I } \quad \text { Remarks }
$$

Turning point of $d M(z) / d z$ (the incremental increase of mass
with radius)
 the configuration in which the gravitational binding energy
just balances the thermal energy).
 contact with a heat bath at constant temperature.
Onset of thermal instability at constant pressure (Ebert).
Onset of negative ${ }^{\star}$ specific heat at constant pressure, C_{p}. Maximum of isotherm.

Least total energy (greatest binding energy) for an equilibrium
state at given volume.
 systems.
Vertical tangent to adiabat.

* It should be noted that (as described in Section 4.1) the specific heat goes to negative values through infinity at these points.

5. Interesting and critical points. In Table I we give all the special points increasing density contrast. For the readers convenience we repeat some definitions here.

$$
\begin{aligned}
& \text { The radius of the bounding spherical box is } r_{e} \\
& \frac{3}{2 \beta} \text { is the kinetic energy per unit mass } \frac{1}{2} \overline{c^{2}}
\end{aligned}
$$

ρ_{0} is the density at the centre
ρ_{e} is the density at the bounda
$v_{1}=\log \left(\rho_{e} / \rho_{0}\right)$ (This is also p

[^6]
 for heat flow is shorter than or of the order of the age of the system. If only
 is on the contrary much too long, except possibly in the most compact galactic
 Lynden-Bell (22) recently considered the statistical mechanics of the violent
 sisted through the galaxies' birth stages. Furthermore this form of relaxation

 if so what would they do about it?'
Since galaxies are not contained in hard boxes it is evident that conditions must have been ripe for this event. However, the violent relaxation may not have persisted for long enough for relaxed conditions to be set up throughout a region with a density contrast of 709 to 1 . At present this must remain a matter for debate.
 the gravothermal catastrophe. The centres will then begin to separate into a

 tions depending on the degeneracy parameter.
 sense of the variety of different galactic nuclei. The first problem to be tackled 7soufe s! s! complete. The second is the incorporation of rotation into the study of the gravo-
thermal catastrophe.
Two remarks should be added. (i) If in galactic nuclei the star-star relaxation

 large proportion of their gas to lead to a dynamic currant bun model. The currants
 Кโәл!̣еן discussed in the literature in connection with Seyfert nuclei (23), (24) and quasars

Vol. I 3^{8} D. Lynden-Bell and Roger Wood
(24). (ii) It is not clear that violent relaxation is confined to the birth stages of galaxies. Jeans's instabilities might occur persistently in stellar systems and lead to a continuing violent relaxation.
6.2 Relevance to the evolution of star clusters by encounters. Discussions of the evolution of stellar systems due to stellar encounters have emphasized the importance of the escape of stars as the primary cause of continued evolution. Antonov's discussion has shown this to be false. Even if the system is surrounded

 әч7 ио рәseq sโәроли ио!
 will therefore breakdown whenever the central concentration becomes large. To demonstrate this still more clearly in models which do not require confining boxes we have calculated the entropies of a sequence of Woolley's models with isothermal obtained by truncating the distribution function above a certain energy so that
 models reach an edge at a finite radius. The larger the value of k the larger is

 critical one.
 the isothermal spheres truncated in radius which we have been considering in detail. The maximum of S as a function of k found for Woolley's models cor-

in
No. 4, 1968

$$
\begin{aligned}
& \text { will increase. Further evolution will probably form a core and an envelope similar } \\
& \text { to that discussed in the stellar evolution of the red giants. } \\
& \text { We emphasize that this is not a peculiar property of Woolley's models by } \\
& \text { considering the special cases of Michie's models which have been more fully worked } \\
& \text { out by King (} \mathbf{I O} \text {). These again show the phenomenon of a maximum in the binding } \\
& \text { energy at fixed outer radius; see Fig. 8. The complication of the formula for the }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text {-thermal catastrophe } \\
\text { Table II }
\end{array}
\end{aligned}
$$

[^7]similarly is as follows. The temperature contrast in a star leads to greater pressure

 sә! \ddagger 上,

 the change in molecular weight also occurs.)
Star clusters evolve unimpeded by nuclear hold-ups, thus gravitational con-

There are correct analogies between isothermal spheres and stellar evolution.
The Schönberg-Chandrasekhar limit (25) is caused by the isothermal core of a star exceeding $z=9$, which is approximately one of the critical points of Table I.
 ing discussion of Antonov's result which led to the physical explanation of Section 3, W. B. Wilson for helpful advice on numerical methods, and R. D. Cannon for suptions throughout were performed on the computer of H.M. Nautical Almanac Office.

Royal Greenwich Observatory,
 Hailsham, Sussex.
 7sning L961

References

Aarseth, S. J., 1963. Mon. Not. R. astr. So
Ebert, R., 1955. Z. Astrophys., 37, 216.
Ebert, R., 1957. Z. Astrophys., 42, 263.
Bonnor, W. B., 1956. Mon. Not. R. astr. Soc., 116, 351. McCrea, W. H., 1957. Mon. Not. R. astr. Soc., II7, 562.
Emden, R., 1907. Gaskugeln, Leipzig.
Emden, R., 1907. Gaskugeln, Leipzig.
Chandrasekhar, S., 1939. Stellar Stru
(15) Chandrasekhar, S., 1939. Stellar Structure, p. 155, Chicago University Press.
(17) Poincaré, H., 1885. Acta. Math., 7, 259 .
(18) Jeans, J. H., 1919. Problems in Cosmogony and Stellar Dynamics, pp. 17-23, Cambridge
(19) Jeans, J. H., 1928. Astronomy and Cosmogony, Chap. 7, Cambridge University Press.
(20) Lyttleton, R. A., 1953. Stability of Rotating Liquid Masses, pp. 6-15, Cambridge University Press.

D22 \quad D. Lynden-Bell and Roger Wood Vol. I 3^{8}
without them affecting one another so neither energy nor our entropy S is a
simple extensive parameter in the normal thermodynamic sense (i.e. at constant
β^{\prime} and M / V they are not proportional to M).
APPENDIX II

Antonov's proof of spherical symmetry

 the first of these to discuss equilibria it is convenient here to use the second.

 becomes spherically symmetrical with density monotonically decreasing outwards.
 kinetic energy remain unchanged. However the potential energy of the whole system has been decreased (since heavy liquid sinks spontaneously). Thus the of locally maximal entropy for given energy are the same, so they are likewise spherical.

APPENDIX III

Consider the following non-equilibrium distribution. Let mass αM be uniformly distributed inside a sphere of radius r_{1}. Let the velocities have an upper

 r_{2} with an analogous distribution with speed limit c_{2}. Let the distance between
The distributions functions are

$$
\begin{aligned}
& f_{1}=\frac{\alpha M}{m \frac{4}{3} \pi r_{1}{ }^{3} \frac{4}{3} \pi c_{1}{ }^{3}}=\frac{\alpha M}{m \frac{18}{9} \pi^{2} r_{1}{ }^{3} c_{1}^{3}}, \\
& f_{2}=\frac{(\mathrm{I}-\alpha) M}{m \frac{16}{9} \pi^{2} r_{2}{ }^{3} c_{2}{ }^{3}} .
\end{aligned}
$$

The entropy is

 in this proof is unnecessary since a similar proof holds if the first system lies between spheres concentric with the second system.

Gravitating hard spheres and the non-relativistically degenerate problem

It is perhaps of interest to note that gravitating hard spheres always have a true maximum entropy equilibrium state. When the system approaches the gravothermal catastrophe the system undergoes a phase transition in which a core of hard spheres in contact with one another is formed; outside this core the
 of type (iii). The central support provided by the close packed hard spheres takes the place of the support provided by the unphysical repulsive mass at the origin.
Very similar circumstances prevail with the non-relativistically degenerate
spheres. In this case the central part instead of going rock hard becomes degenerate
 this degenerate core the system lies on the 'other' solutions of the isothermal sphere.
It seems that in both these systems a phase transition is occurring which
replaces the catastrophe of the classical point-particle model.

APPENDIX V

Calculation of the energy and entropy of Woolley's truncated isothermal spheres
The distribution function for these models is
$\beta\left(\epsilon+\psi_{0}\right)<k$,
$\beta\left(\epsilon+\psi_{0}\right)>k$.
$A \exp (-\beta \epsilon)$
$\xrightarrow{0}$

CTg

[^0]: 2.1 Physical explanation. For an isolated system at equilibrium in the absence of a wall the Virial theorem reads

[^1]:

[^2]:

[^3]: self-

 on the specific heat of these objects, since the sign of the specific heat is intimately connected with stability.

[^4]: 4.3 Applications of linear series of equilibria in thermodynamics. Consider our

[^5]:

[^6]: z is the dion
 $v_{1}(z)$ is the function found by integrating the isothermal equation.

[^7]:

