628

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

The GRD Chip: Genetic Reconfiguration of
DSPs for Neural Network Processing

Masahiro Murakawa, Shuji Yoshizawa, Member, IEEE, Isamu Kajitani,
Xin Yao, Senior Member, IEEE, Nobuki Kajihara, Masaya Iwata, and Tetsuya Higuchi

Abstract—This paper describes the GRD (Genetic Reconfiguration of DSPs) chip, which is evolvable hardware designed for neural
network applications. The GRD chip is a building block for the configuration of a scalable neural network hardware system. Both the
topology and the hidden layer node functions of a neural network mapped on the GRD chips are dynamically reconfigured using a
genetic algorithm (GA). Thus, the most desirable network topology and choice of node functions (e.g., Gaussian or sigmoid function)
for a given application can be determined adaptively. This approach is particularly suited to applications requiring the ability to cope
with time-varying problems and real-time constraints. The GRD chip consists of a 100Mhz 32-bit RISC processor and 15 33Mhz 16-bit
DSPs connected in a binary-tree network. The RISC processor is the NEC V830 which executes mainly the GA. According to
chromosomes obtained by the GA, DSP functions and the interconnection among them are dynamically reconfigured. The GRD chip
does not need a host machine for this reconfiguration. This is desirable for embedded systems in practical industrial applications.
Simulation results on chaotic time series prediction are two orders of magnitude faster than on a Sun Ultra 2.

Index Terms—Evolvable hardware, digital signal processor, genetic algorithm, neural network, RBF network, time series prediction,

nonlinear adaptive equalization

1 INTRODUCTION

CONFIGURABLE hardware is an approach for realizing
optimal performance by tailoring its architecture to the
characteristics of a given problem. When the characteristics
of a problem are known in advance and they never change
in time, it is relatively easy to build configurable hardware
using programmable devices like FPGAs (Field Program-
mable Gate Arrays) because the designer knows how the
hardware should be configured.

However, for problems where designers cannot know in
advance how to configure the hardware, it is required for
configurable hardware to have a capability of autonomous
and on-line adaptation to a given problem.

Evolvable Hardware (EHW) is a promising approach
toward autonomous and on-line reconfigurable machines
[1]. The basic idea of EHW is to use genetic algorithms
(GAs) to find the best hardware configuration autonomously
(i.e., without human intervention). Genetic algorithms are

o M. Murakawa, M. Iwata, T. Higuchi are with the Computer Science
Division, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba, Ibaraki,
305-8568 Japan. E-mail: {murakawa, miwata, higuchi}@etl.go.jp.

e S. Yoshizawa is with the Yoshizawa Laboratory, Department of Mechano-
Informatics, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo, 113-8656 Japan.

E-mail: {murakawa, yoshi}@bios.t.u-tokyo.ac.jp.

e [Kajitani is with the Hoshino Laboratory, Institute of Engineering
Mechanics, University of Tsukuba, 1-1-1 Tennou-dai, Tsukuba, Ibaraki,
Japan. E-mail: i_kajita@etl.go.jp.

o X. Yao is with the School of Computer Science, University College,
University of New South Wales, Australian Defence Force Academy,
Canberra, ACT, Australia 2600. E-mail: xin@cs.adfa.edu.au.

o N. Kajihara is with the High Performance Computing Technology Group,
C&C Media Research Laboratories, NEC Corporation, 1-1, Miyazaki 4-
Chome, Miyamae-ku, Kawasaki, Kanagawa 216-8555, Japan.

E-mail: kajihara@ccm.cl.nec.co.jp.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 109709.

robust search framework where a candidate of a solution is
represented as a binary bit string called a chromosome. In
EHW, it is the hardware configuration bits that are regarded
as chromosomes. Once a good chromosome is found, the
EHW is reconfigured immediately according to the
chromosome. When the current hardware structure of the
EHW comes to be incapable of satisfying the performance
goal (defined in terms of the GA’s objective function), the
GA is invoked to find out another hardware structure.
Thus, EHW continues to configure itself autonomously in
on-line fashion.

This paper describes an EHW-based chip, called a GRD
(Genetic Reconfiguration of DSPs) chip. The GRD chip is
designed mainly for neural network applications. It
includes a 100Mhz 32-bit RISC processor and a binary-tree
network of 15 DSPs. GRD chip is a building block to
configure a scalable parallel processor.

In neural network applications, optimal performance for
a given problem is obtained by a neural network with the
most suitable topology and the most appropriate node
functions. Further, to meet the time constraint imposed by
real-time applications, neural network hardware systems
need to be “tailored” to the size of the ideal network for the
problem. In general, it is very difficult to design an optimal
neural network and process it with scalable parallel
hardware.

In the GRD chip, however, the GA program on the RISC
processor continues to reconfigure the DSP network
topology and node functions in order to adapt dynamically
to the change in the characteristics of a given problem.

In addition, the GRD chip does not need the host
machine control for these tasks. This is desirable for
embedded systems in practical industrial applications.

0018-9340/99/$10.00 © 1999 IEEE

MURAKAWA ET AL.: THE GRD CHIP: GENETIC RECONFIGURATION OF DSPS FOR NEURAL NETWORK PROCESSING 629

fitness

/% f/q\!
fitness /’ W \ (©

Fig. 1. Genetic algorithm. (a) Initial population. (b) Crossover. (c)
Population after several generations.

In Sections 2 and 3, the idea of EHW and requirements to
the adaptive neural network processing are discussed,
respectively. Section 4 gives an overview how GRD chips
are utilized in neural applications. Section 5 describes the
GRD architecture. In Sections 6 and 7, as examples of GRD
applications, chaotic time series prediction and adaptive
equalization in digital mobile communications are
described, respectively. Section 8 concludes this paper.

2 EvoLvABLE HARDWARE

EHW is based on a genetic algorithm (GA) and software
reconfigurable devices [1]. In this section, we explain the
basic idea of EHW after the brief description of GA.

2.1 Genetic Algorithm

GA is a robust search algorithm which is loosely based on
population genetics [2]. GA can effectively find solutions in
a huge search space at a reasonable cost of computation.
Before the GA search starts, candidates of solutions,
represented as binary bit strings, are prepared. This is
called a population. A candidate is called a chromosome. In
Fig. 1a, there are four chromosomes in a population. Also,
an evaluation function, called fitness function, needs to be
defined for a problem to be solved in order to evaluate
chromosomes. A chromosome with a high fitness value is
likely to be a good solution of the problem.

GA search goes as follows: Two chromosomes chosen
randomly from a population are mated and they go through
genetic operations like the crossover to yield better
chromosomes for next generations (See Fig. 1b). This is
repeated until about a half of the population are replaced
with new chromosomes. Because the population size is
fixed, chromosomes with lower fitness values tend to be

(configuration bit configuration bit
|

00110100000110001000 —— 100110100000110001101
GA
‘ down load ‘ down load
FPGA FPGA
10 10
|1 EEEEN > |1
evolve
12 12

evaluate in the environment evolved circuit

Fig. 2. Evolvable hardware at gate-level.

eliminated from a population. Therefore, after several
generations of GA search as in Fig. 1c, relatively high
fitness chromosomes remain in a population and some of
them are chosen as solutions of the problem (Compare with
Fig. 1a).

2.2 Basic Idea of Evolvable Hardware

The basic idea of EHW is to regard the configuration bits of
a software reconfigurable device as the chromosome of GA
(Fig. 2). The search space of configuration bits is very huge,
but GA is very effective without a priori knowledge about
the search space.

As a fitness function, we choose the performance of the
hardware circuit. For example, in data compression with
EHW, we use predictive function implemented by hard-
ware [3]. As a fitness function, we chose the data
compression rate. A circuit of predictive function with a
higher data compression rate is likely to remain in a
population. When the good chromesome is obtained, it is
immediately downloaded into the reconfigurable device.

In EHW, it is not required to specify the detailed
hardware design. Instead, we define a fitness function. A
fitness function is the instinct to evolve the hardware circuit.
If a fitness value of a current hardware circuit is degraded
due to partial malfunction or some changes in the
environment, then the GA process of EHW is invoked
and the search for a better hardware is initiated. Therefore,
EHW continues to reconfigure itself in order to get a better
performance.

The chromosome of EHW specifies two things. One is
function type of the evolution unit. In Fig. 2, the evolution
units correspond to gates like AND-gate and OR-gate. The
other is the interconnection among evolution units. EHW
can be classified into two classes according to the grain size
of an evolution unit; gate-level and function-level. Fig. 2 is
an example of gate-level evolution. In function-level
evolution, each evolution unit is higher hardware function
than gate-level evolution [4]. The GRD chip belongs to the
function-level evolution.

3 REQUIREMENTS FOR NEURAL NETWORK
PROCESSING

Most of the industrial neural network (NN) applications are
limited to neural networks with off-line learning where
learning phase and the execution (recognition) phase are
separate. Such a neural network never changes during its

630

Chromosome

(G,at1,b1,w1) (S,62,d2,w2) .

wi w2

(@) é Downloading

Network ? Genetic Operations
s— =

; _
Xr jumumab»
| i

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

i (G,a1,b1,w1) (G,a2,02.W2) e e

ve (S,Ci,di,Wi)a X (G,a15,b15,w1 5)

(b)

Downloading

e
o

Dsh ||

-y

Ei!l(!
XIX2 e®e

Reconfigured
Dynamically

X1X2 ®oe

(c) N Gaussian
-~ Sigmoid function

Fig. 3. Evolvable hardware for neural network learning.

execution and therefore lacks the flexibility needed. We
contend that, in order to use neural networks in a broader
range of practical applications, they have to be capable of
on-line learning. On-line learning allows neural networks to
adapt dynamically to changing problems. In this section, we
examine this in more detail.

3.1 Ontogenic Neural Network

The advantage of a neural network is the ability to adapt to
problems by changing interconnection weights on-line.
However, it is very difficult to determine the topology of
neural network (i.e., the number of hidden layers and units
per layer) in advance of the execution. If hidden layer nodes
are less than required, it is impossible for the network to
learn the problem. On the other hand, if hidden layer nodes

(d) /A Gaussian and summation
& Sigmoid function and summation

are more than required, the network overlearns the problem
and, hence, has poor generalization capability. As a result,
trial and error while determining the topology are
inevitable to obtain optimal performance. Some neural
networks, called ontogenic neural networks, try to solve this
problem by letting the network autonomously determine the
best topology and interconnection weights for a given
problem at the execution phase [5].

Ontogenic neural networks are promising for on-line
learning and are necessary for practical applications.

3.2 Lack of Dynamically Reconfigurable Neural
Network Hardware

Even though an ontogenic neural network allows the
dynamic adaptation to a problem, conventional neural

MURAKAWA ET AL.: THE GRD CHIP: GENETIC RECONFIGURATION OF DSPS FOR NEURAL NETWORK PROCESSING 631

32bit RISC CORE

NEC V830

Chip Size : 14.9mm x 14.9mm Process : 0.35 um
Fig. 4. GRD chip.

network hardware systems have not provided the reconfi-
guration capability of the network structure that is needed
during execution. To our knowledge, digital neural hard-
ware so far have been developed mainly for acceleration of
neural computation [6].

Optimal performance of neural network hardware is
obtained when the logical NN structure matches the
physical NN hardware structure. Therefore, dynamically
reconfigurable NN hardware is a key to applications of
ontogenic neural networks. In addition, NN hardware
systems for industrial applications should be compact for
embedded systems. Stand-alone NN hardware is preferred
to back-end NN hardware like SIMD neural machines.

The GRD chip is a building block for the configuration of
scalable NN hardware systems. A system built with the
GRD chips can dynamically reconfigure its hardware

structure to be tailored to the optimal topology without a
host machine.

3.3 Learning Time

Long learning time is one of the obstacles when neural
networks are used to industrial applications. This is
especially significant in multilayer perceptrons (MLPs) with
back propagation (BP) learning. The MLP uses the sigmoid
function as a node function.

To improve the learning speed, radial basis function
(RBF) networks [7] may be an appealing choice. In RBF
networks, the node function is a Gaussian function where
the response to inputs is more localized compared with the
sigmoid function. This leads to faster convergence of up to
three orders of magnitude compared with MLP [8].

However, compared with MLP, RBF networks require a
large number of hidden layer nodes, particularly for high-
dimensional input/output spaces (the “curse of dimension-
ality”). This becomes an obstacle to compact implementa-
tion. Thus, a trade-off exists between learning time and size
of the neural network. It was therefore our idea to mix the
use of RBFs and sigmoid functions within a single
architecture. Further, rather than specifying a priori how
the two functions should be combined, we developed a
method of using a GA to tailor the node functions in a
network to a given problem adaptively. To reduce the
learning time, a steepest descent method is first applied as a
local learning algorithm to bring the network weights to a
reasonable level. This local learning is performed in parallel
by the hardware.

4 EvoLvABLE HARDWARE FOR NEURAL NETWORK
LEARNING

As described in Section 2, we have developed 1) a learning
scheme which utilizes a GA to automatically select both of
the optimal network topology and the node functions, and

Addr Data
Bus Bus
V830 _ | FFO = ouT
100MHz 32 bit - (Bstages)
data mem 4K, cache 45 o -
st mem 4K, cachie 4K Global PEU! done
B hromosome PEU statuz
Registers
Re; PFU
PFU fonction
e . | control .) N . 1,
RAM o - i) PEU g0 CTWOTK
32bit X 8Kw =ik %
| Address .
o =1 Control it
Ixternal Addr T —
¢ 4‘:,_’__,_,_ 42:} gl V g SyEtens addy
26 o I
Fxicrnal Das [] E
< / ,
41_" ﬁ)b' il o) System date

Fig. 5. Overview of the GRD chip.

EERREERE

N1 IN2 IN3 IN4 IN5 IN6 IN7

632

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

ouT
16
MPX
t
|
PFU14
i
PFU12 PFU13
PFU8 PFU9 PFU10 PFU11
PFUO | | PFU1 PFU2 | | PFU3 | | PFU4 | | PFUs | | PFUs | | PFU7
il
|
16| (16 16| [16 16| [16 16| [i6
INO IN1 IN2 IN3 IN4 IN5 IN6 IN7
Fig. 6. PFU network.
n
2) the GRD chip which functions as a building block for y=f(z) = Zwk 1 (), (1)
configuring a scalable neural network hardware system. =
In this section, we describe the genetic learning and then ~where x = (zy,---,z,) is the input to the network, y is the

show how the network is mapped onto the GRD chips.

4.1 Genetic Learning
The neural network considered here is aimed at industrial

applications which need a neural network for the approx-
imation of nonlinear functions. The function of the network

is defined as follows:

output of the network and n is the number of the hidden
layer node functions. For simplicity, each function py(z) is

either a radial basis function (RBF) or a sigmoid function:

”

pi(x) = [[exp(—(xi — ai)’ /bir) (2)

i=1

or

TABLE 1
Comparison of Computation Time for a Node Function with Four Inputs
(9GRD Chips vs. Sun Ultra2 200MHz)

GRD SUN Ultra2 200MHz
execution of one RBF node 0.88 usec 75.8 usec
execution of one sigmoid node 0.64 psec 74.3 usec
execution and learning of one RBF node 3.49 psec 688 usec
execution and learning of one sigmoid ﬁode 2.12 usec 661 usec

In the GRD chip, execution of one RBF node takes 11 + 9r/2 cycles and learning takes 14 + 18r cycles. Execution of one sigmoid node takes
15 + 3r/2 cycles and learning takes 21 + Tr cycles (r is the number of the inputs to the network).

MURAKAWA ET AL.: THE GRD CHIP: GENETIC RECONFIGURATION OF DSPS FOR NEURAL NETWORK PROCESSING

633

INPUT INPUT
16| 16| :
FIFO "™ | FIFO [~
(8stages) (8stages)
-ENI -ENI MO
X Y A0
|
1
* cA
\ ' 7 X : 7\ ' / = j
16
A-BUS B-BUS] C-BUS
& 1 Local Chromosome
| 1 | | | | Register Files
/ \ / \ / 2 Port RAM
|16 |16 |32 |16|_ 16bit X 320word
R s U V VA A
| Address Controller I—o
MPY ALU Y 4 &
T w CAM MaskO
shifter | 32 shifter | 32 Yy Mask1
16
|>Mout ||> Mrs ||> M | |>Aout ”> Ars | A
T — | T A Base0
status status Basel
0
1
-ENO
OUTPUT
Fig. 7. PFU architecture.
1

() (3)

1 texp(Xi cinwi — di)’
where r is the number of the inputs to the network. Other
types of the node function can also be implemented with
the GRD chip. The genetic learning determines the network
topology (e.g., the number of nodes n) and the choice of
node functions (e.g., Gaussian or sigmoid function) adap-
tively for a given application. Initial values of the weights
w; and the parameters of the node functions (e.g.,
@ik, bik, ci, di) are also determined by the GA and then
tuned by local learning with the steepest descent method
(for more details of genetic operations, see [9]).

Fig. 3 illustrates this genetic learning. A chromosome of
the GA represents one network. The network is evolved by
applying the genetic operators to the chromosome. For
example, Fig. 3 shows how a network with two hidden
layer nodes (Fig. 3a) is evolved to have 15 nodes (Fig. 3b).

4.2 Mapping on the GRD Chips

Here, we show how the network obtained by the GA is
mapped on the GRD chips and how they are reconfigured
dynamically.

The GRD chip is a building block for the configuration of
a scalable neural network hardware system. Neural net-

work hardware of an arbitrary size can be configured with
multiple GRD chips. The GRD chip has a binary tree
network of 15 DSPs whose height can be reconfigured. The
RISC processor in the GRD chip executes the GA. Each DSP
can calculate one Gaussian or sigmoid function. Thus, one
GRD chip can process 15 nodes in parallel. If more than 15

0.8 |

0.7 | g &
0.6 \
0.5 r
04
0.3
0.2 s

0.1 |

60 80 100 120 140

Fig. 8. Normalized prediction error versus number of hidden layer nodes.

634

AN

s(t) \
A L AN /}\

JUTUL 7

transmission signal\/ received signal

channel

Transversal Filter

y(©)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

y(t-1) y(t-m+1)

}i. oo r{z}_l

equalizer

iInas

i fr
o

TUUL g

outpul

y(t-m+1)

Evolvable Hardware

Fig. 9. Adaptive equalizers based on a linear transversal filter and based on the GRD chip.

nodes are required, GRD chips are directly connected in a
tree shape. In this case, multiple chips construct a
reconfigurable binary tree network of DSPs. The tree height
is changed according to the chromosome of the GA.

The network structure obtained by the GA is immedi-
ately mapped on the GRD chips. For example, the network
having a Gaussian function and a sigmoid function in Fig. 3a
can be mapped onto the GRD chip in Fig. 3c.

The functions and tree height of the GRD chips are
dynamically controlled by rewriting the chromosome on the
chips. For example, in Fig. 3¢, the output of the GRD chip is
connected to the output of the DSP No. 2. After the
evolution, in Fig. 3d, the output of the GRD chip is
reconfigured to be connected to the output of the DSP
No. 4. Also, in Fig. 3¢, the DSP No. 5 calculates the sigmoid
function. After the evolution, in Fig. 3d, this DSP is
reconfigured to calculate the Gaussian.

Binary tree connections are very useful when the
summation of outputs of nodes is calculated. All the DSPs
in Fig. 3d are configured to conduct the summation in
parallel. For example, the DSP No. 2 calculates the Gaussian
first and then adds the result and the output of the DSP
No. 1 and No. 5.

The above implementation is for the fastest computation.
For slower applications, one GRD chip suffices for proces-

sing more than 15 nodes. A DSP in the GRD chip can
process up to 84 neurons in time division multiplexing.

5 THE ARCHITECTURE OF THE GRD CHIP
5.1 Overview

The GRD chip consists of a 100 Mhz 32-bit RISC processor
and 15 DSPs (Fig. 4). Fig. 5 gives the overall structure of the
GRD chip. The RISC processor is the NEC V830 which is
designed for multimedia applications. The DSP, a 33 Mhz
16-bit fixed point processor, is called a PFU (Programmable
Function Unit). 15 PFUs are connected in a reconfigurable
network of a binary tree shape (See Fig. 6). The GRD chip
accepts eight 16-bit inputs and generates a 16-bit output
with the MIMD parallel processing of 15 PFUs. The tree
shape interconnection is powerful, especially when the
summation of neuron outputs is calculated.

The GRD chip includes the V830 RISC processor in order
to perform genetic reconfiguration of PFUs. This means that
the GRD chip can reconfigure itself. The organization of
PFU is shown in Fig. 7. The content addressable memory
(CAM) is employed to accelerate the computation of
nonlinear functions (e.g., sigmoid function and Gaussian).
Consequently the GRD chip attains 319 MCPS (Mega
Connection Per Second) performance in MLP.

MURAKAWA ET AL.: THE GRD CHIP: GENETIC RECONFIGURATION OF DSPS FOR NEURAL NETWORK PROCESSING 635

100 T
EHW —
Transversal Filter
x
2
© |
T 10 A
g W
i \
&
_,/\‘/““ ‘V\f\y R VA \
! //\\ \,Av\/\f | M N \’/W,
1 1 1 L 1
0 20 40 60 80 100

Generation

Fig. 10. Learning performance of the GRD-based equalizer (SNR:
15 dB).

The GRD chip can process up to 1,260 neurons (84
neurons per PFU). To configure a scalable hardware system
easily, GRD chips can be directly connected each other via
FIFO buffers inside the PFU. For example, a 19-inch rack
implementation of 16 VME triple-height boards (nine GRD
chips on a board) can realize the performance of 46 GCPS
(Giga Connection Per Second) in MLP.

5.2 The V830 Processor

The V830 conducts the following: 1) the genetic reconfi-
guration of the PFU network, 2) SIMD control of the PFUs
when the local learning is conducted at each PFU, and 3)
master control of the other GRD chips when multiple GRD
chips are used. Details of 1), 2), and 3) are described below.

5.2.1 Genetic Reconfiguration

The GA program running on a V830 determines the
topology, the node functions of an optimal neural network
for a given problem. The chromosomes describing the
topology and the node function type of each PFU are
written into global chromosome registers (see Fig. 5). The
chromosomes for initial values of function parameters
including connection weights are directly written by the
V830 into local chromosome registers in each PFU.

The reconfiguration of the network topology corre-
sponds to the selection of the height of the binary tree
network in the GRD chip. The chromosome bits (i.e., genes)
corresponding to the network topology are the selector bits
of a multiplexer which actually select the tree size. At the
multiplexer, one of the four PFUs (i.e., PFU No. 0, §, 12, 14
in Fig. 6) is selected as the output of the GRD chip.

The reconfiguration time for the GRD chip is very quick.
It is between 455 nsec and 461 psec, depending on the
number of neurons processed in the GRD chip. Although
this is just for reference, configuration time for FPGAs is
between 3 and 19 millisecond for Xilinx and Altera chips.

5.2.2 SIMD Control of 15 PFUs

After the topology and node function types are determined
by the GA, weights and function parameters are tuned by
the local learning. This can be done in parallel at PFUs in
the GRD chip. A broadcast (BC) register and synchroniza-

tion control are supplied at each PFU. With these, the V830
performs the SIMD control in local learning. Although
MIMD parallel processing with PFUs assumes neural
network processing, the GRD architecture can be used
flexibly for other parallel processing applications (e.g.,
wavelet transformation).

5.2.3 Master Control of the Other GRD Chips

V830 at the top of the GRD tree is used for master control of
other GRD chips in a multichip implementation. The V830
controls the other chips using nonmaskable interrupts. The
chromosomes obtained by the GA program are passed to
other GRD chips via external two-port FIFO buffers.

5.3 Programmable Function Unit

The PFU accepts two 16-bit inputs from other PFUs via
eight stage FIFOs and generates one 16-bit output. ALU
(Arithmetic Logic Unit) and Multiplier are pipelined and
operate in parallel. There are four types of 32-bit
instructions.

The PFU executes one function according to the chromo-
some in the global chromosome register. Two hundred
fifty-two local chromosome registers in a PFU are used to
calculate weights and function parameters. 2 x 4+ 1 local
chromosome registers are needed for an RBF node (r is the
number of the inputs). Therefore, up to 84 RBF nodes can be
handled by a PFU. To access these registers effectively, a
relative addressing mode is available.

The PFU of the GRD chip includes a CAM to speed up
the calculation of nonlinear functions such as the Gaussian
and sigmoid function. The PFU takes only three cycles for a
Gaussian calculation.

The execution times in basic neural computation are
shown in Table 1, including comparisons with SUN
Ultra2 200Mhz. GRD is two orders of magnitude faster
than the SUN.

6 CHaoTIC TIME SERIES PREDICTION

The first problem to which we apply our learning method is
learning the chaotic time series generated by the Mackey-
Glass [10] differential equation:

dx(t)
dt

x(t—=T)
1+a(t—T)""

=—bz(t)+a (2)
This problem is recognized as a benchmark for comparing
the learning and generalization abilities of different neural
architectures. We compared the result of our learning
method with MLP and RBF network of the same size.

6.1 Learning Methods

The learning task is to predict a value at point (¢ + I) from
the four data in the past,

{z(t),2(t — D),z(t — 2D),z(t — 3D)},

where D =6 and I = 85. Following previous studies [10],
we generated the time series with the parameters a = 0.2,
b=0.1, and T = 17. Training data points were randomly
selected from points t = 500-4,000 of the time series.

Each learning experiment was carried out as follows:

636

100 |y T T T]
o EHW ——
TTrssseooo o Transversal Filter
.
\\
10
9
o \\\
5 1t \\]
S N\
w \
& 0.1 | \\ 1
AY
0.01 | \]
1 1 L 1 \\é

0 5 10 15 20 25
SNR (dB)

Fig. 11. Bit error rate of the GRD-based equalizer versus SNR.

6.1.1 Genetic Learning

A network to approximate the training set was evolved by
genetic learning. The fitness of each network was based on
the sum of the squared error over the training set.
Experiments were carried out which restricted the max-
imum number of the hidden layer nodes to 15, 30, 45, 60, 75,
and 135 nodes. The population size was 80 and each run
was terminated at generation 150.

6.1.2 RBF Network

The RBF networks were produced by the k-means cluster-
ing algorithm [8]. This is the most commonly used
technique for determining the structure of an RBF network.

6.1.3 Multilayer Perceptron

The three layer perceptrons were trained with the back-
propagation rule. The learning rate and number of itera-
tions were the same as that of the steepest descent method
in the local learning of the GA.

6.2 Evaluation of the Network

After each network’s training was complete, it was tested
on a data set consisting of the next 500 time series data
points following the end of the training data. The quality of
the network was measured by the normalized error on this
test data (where normalized error is the root-mean-squared
error divided by the standard deviation of the correct
prediction).

6.3 Simulation Results

The normalized prediction errors with these three learning
methods are shown in Fig. 8. From Fig. 8 we can see that
genetic learning can evolve a network which is superior to
the MLP and the RBF network produced by the k-means
clustering algorithm. For the same network size, the
prediction error is roughly 1/2.

For the learning time, the execution with nine GRD chips
is almost 160 times faster than on a Sun Ultra2 200MHz. We
have a simulation result that the execution with nine GRD
chips takes 262 seconds, while the execution on the Sun
takes 41,797 seconds.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

= & # AR noise e(t)
G(z)=1+d;z -1 nonlinear channel
st : y()
R G@) -G
A
)
OF = >
d3
O} >
dyq

Fig. 12. Nonlinear transmission channel used in the simulations.

7 AN ADAPTIVE EQUALIZER FOR DIGITAL MOBILE
COMMUNICATION

To examine the performance of our system, we conducted a
simulation of adaptive equalization in digital mobile
communication.

High-speed communications channels are often im-
paired by linear and nonlinear channel distortion and
additive noise. To obtain reliable data transmission in such
communications systems, adaptive equalizers are required
[11]. In digital mobile communications, the channel can be
influenced by environmental conditions such as landscape
and the presence of buildings. The task of the equalizer is to
recover the transmitted symbols s(t) based on the channel
observation y(t) (Fig. 9).

Existing adaptive equalization techniques for time-
varying channels employ a linear transversal filter [12],
[13]. However, if the nonlinear channel distortion is too
severe, adaptive equalizers based on such linear transversal
filters suffer from severe performance degradation. For
such channels, nonlinear adaptive equalizers based on
neural networks were proposed [14], [15]. But, the algo-
rithms are very complicated for hardware implementation.

To overcome these difficulties, we apply our system to
the adaptive equalizer. A communications system that
employs an adaptive equalizer based on GRD chips (we call
this GRD-based equalizer) is shown in Fig. 9. The
transmitter sends a known training sequence to the receiver,
and the receiver adjusts the GRD-based equalizer so that it
reproduces the correct transmitted symbols.

The GRD-based equalizer has three advantages. First,
the execution speed of the equalizer is extremely fast
because the result of adaptation to the environment is the
hardware structure itself. Second, the GRD-based equal-
izer can accomplish on-line adaptation. Third, the non-
linear functions of the hidden nodes make possible
nonlinear equalization.

7.1 Learning Performance of the GRD-Based

Equalizer
We simulated the learning performance of the proposed
GRD-based equalizer. The transfer function of the channel
was given by G(z) =1.0+1.527! and zero-mean white
Gaussian noise was added to the output of the channel. The
order of the equalizer was 2 (m = 2).

MURAKAWA ET AL.: THE GRD CHIP: GENETIC RECONFIGURATION OF DSPS FOR NEURAL NETWORK PROCESSING

1.6 T T
di
1.4
1.2 +
5 1
0.8 r
0.6 r J
04 L L L L 1 L 1
0 20 40 60 80 100 120 140 160
Generation

Fig. 13. Time-varying channel (drastic change in d;).

A training set of eight data points was generated at every
generation. Using a population size of 80, the fitness of each
individual was determined by n/8, where n was the
number of correct classifications by the GRD chip. The
bit-error-rate (BER) was defined as the ratio of misclassified
to correct symbols in the output of the best-of-generation
individual. The BER was evaluated at every generation
based on 10° random input symbols. Simulations were
carried out which restricted the maximum number of the
hidden layer nodes to 15.

Fig. 10 shows the learning performance of this simulation
for a signal-to-noise ratio (SNR) of 15 dB. The solid curve
was obtained by averaging the results of 100 independent
runs. The broken line shows the learning curve of a
transversal-filter-based equalizer, whose total number of
training sequences was the same as that of the GRD-based
equalizer. As can been seen, the BER of the GRD-based
equalizer is far lower. This is due to the ability of the
evolved network to synthesize nonlinear functions.

Fig. 11 shows the BER versus SNR achieved by the GRD-
based equalizer at generation 100. We found that a
significant improvement in the BER could be achieved by
the GRD-based equalizer, especially at a high SNR.

100 T | !
EHW —
Transversal Filter
I
|
N ’\ ’\
S | |
Y ! |
-— | \
g | ’ \H \\
- 10 . \ MN’\/«“ 1
S VIS g Y LA
w W
= Wy
\A\ f
Y
Na
\/\/\\/\’A\A! \vr\
1 L L L L 1 L 1
0 20 40 60 80 100 120 140 160
Generation

Fig. 15. Adaptive equalization of the GRD-based equalizer (SNR: 15
dB).

05 ; e .
’,/ \\ Vvl —
{ \ \
’r” \\ ’r"’ \\
0.45 | [
/ ! / 4
| \ / |
|
i | / \
| \\ | \
|
04 ’r’ \\ ,’ |
i i / |
- / | 4
T ! \ §
! 4 \\
! i
0.35 .
!” \\ \\\
/ \
”r’ \\ \\\
0.3 L AV AN
0.25 I 1 I I | I 1
0 20 40 60 80 100 120 140 160
Generation

Fig. 14. Time-varying channel (gradual change in d,).

7.2 Adaptive Equalization of Time-Varying
Channels

In real communications systems, the characteristics of the

channel are usually time-varying. Hence, adaptive equal-

izers are required to follow such changes and compensate

for the channel distortion.

We therefore simulated the performance of the GRD-
based adaptive equalizer for time-varying channels, using
the nonlinear channel shown in Fig. 12. The transmitted
sequence is passed through a linear channel whose transfer
function is G(z) = 1 + d; 2! and the output of the channel is
added to the nonlinear harmonics. The value of the gain
coefficients dy, d3, and d; determines how severe the
nonlinear distortion will be. Such nonlinear channel models
are frequently encountered in data transmission over digital
satellite links. The linear transversal-filter-based adaptive
equalizer cannot compensate for such nonlinear channel
distortion.

We simulated the bit-error-rate (BER) achieved by the
GRD-based adaptive equalizer whose order m was 2.
Simulations were performed for the case in which d;
changed drastically during evaluation (Fig. 13) and for the
case in which d; changed gradually (Fig. 14). In the

100 T ! .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, EHW —
Transversal Filter
10 ¢ E
S /N / ™\
(0] ,"” \L\ !”’ \\\
5 | / \ /’ \\
% 14 { (M ,/ \‘ E
< \, / N / L
m \ ’r’ \"\’\ { \\
= ! / " / Y N
@ IN A i v
o Mr’ﬂ fﬂ fw | Al I }\‘]
P!
Y |
O 01 L 1 \l’ L L 1 L L
o 20 40 60 80 100 120 140 160
Generation

Fig. 16. Adaptive equalization of the GRD-based equalizer (SNB:
15 dB).

637

638

simulations, the coefficients were set to dy = 0.6, d3 = 0.5,
and dy = 0.4. The length of the training sequence was 8. For
the genetic learning, the maximum number of the hidden
layer nodes was restricted to 15 and the population size was
80. The results were averaged over 100 independent runs.

The BER achieved by the GRD-based equalizer for the
channels of Fig. 13 and Fig. 14 are shown in the graphs of
Fig. 15 and Fig. 16, respectively. These graphs demonstrate
that GRD-based equalizers have the ability to follow both
drastic and gradual environmental change.

For the learning of adaptive equalizer, we have a
simulation result that the execution of 150 generations with
one GRD chip takes 2.51 seconds while the execution on
Sun Ultra2 200MHz takes 36.87 seconds.

8 CONCLUSION

We have described the GRD chip which is an evolvable
hardware chip for neural network processing. The GRD
chip realizes 1) autonomous configuration of hardware
structure by genetic algorithm and 2) on-line hardware
configuration. With these features, the GRD chip can deal
with practical industrial applications, especially those
which require the ability to cope with time-varying
problems and real-time constraints. In addition, GRD is
suitable for embedded wuse and also for multichip
configuration.

The GRD chip was just manufactured in April 1998. It is
planned to use it for two applications, CATV modem and
prosthetic EMG(Electro Myo Graph)-controlled hand.
Those are challenging applications with time-varying
nature and real-time constraint to demonstrate the GRD
chip.

ACKNOWLEDGMENTS

This work is supported by MITI Real World Computing
Project (RWCP). We thank Dr. Otsu and Dr. Ohmaki in
Electrotechnical Laboratory and Dr. Shimada in RWCP for
their support.

REFERENCES

[1] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. Garis, and T. Furuya,
“Evolvable Hardware with Genetic Learning,” Proc. Simulation of
Adaptive Behavior, 1992.

[2] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison Wesley, 1989.

[3] H. Sakanashi, M. Salami, M. Iwata, S. Nakaya, T. Yamauchi, T.
Inuo, N. Kajihara, and T. Higuchi, “Evolvable Hardware Chip for
High Precision Printer Image Compression,” Proc. 15th Nat'l Conf.
Artificial Intelligence (AAAI98), 1998.

[4] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and
T. Higuchi, “Hardware Evolution at Function Level,” Proc. Parallel
Problem Solving from Nature IV, pp. 62-71, 1996.

[5] E. Fiesler, “Comparative Bibliography of Ontogenic Neural
Networks,” Proc. Int’l Conf. Artificial Neural Networks, pp. 793-
796, 1994.

[6] CNAPS Server, Preliminary Data Sheet. Adaptive Solutions, Inc.,
1992.

[71 M.].D. Powell, “Radial Basis Functions for Multivariable Inter-
polation: A Review,” Algorithms for Approximation, M.G. Cox, ed.,
pp. 143-167, 1987.

[8] J.Moody and C.J. Darken, “Fast Learning in Networks of Locally-
Tuned Processing Units,” Neural Computation, no. 1, pp. 281-294,
1989.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 48, NO. 6, JUNE 1999

[9] M. Murakawa, S. Yoshizawa, I. Kajitani, and T. Higuchi, “On-Line
Adaptation of Neural Networks with Evolvable Hardware,” Proc.
Seventh Int’l Conf. Genetic Algorithms, pp. 792-799, 1997.

M.C. Mackey and L. Glass, “Oscillation and Chaos in Physiolo-
gical Control Systems,” Science, vol. 197, pp. 287-289, 1977.

[11] J. Proakis, Digital Communications. Prentice Hall, 1988.

[12] B. Widrow, Adaptive Signal Processing. Prentice Hall, 1985.

[13] S.U.H. Qureshi, “Adaptive Equalization,” Proc. IEEE, vol. 73,
pp- 1,349-1,387, 1985.

S. Chen, GJ. Gibson, F.N. Cowan, and P.M. Grant, “Adaptive
Equalization of Finite Non-Linear Channels Using Multilayer
Perceptrons,” Signal Processing, vol. 20, no. 2, pp. 107-119, 1990.
S. Chen, G.J. Gibson, F.N. Cowan, and P.M. Grant, “Reconstruc-
tion of Binary Signals Using an Adaptive Radial Basis Function
Equalizer,” Signal Processing, vol. 22, no. 1, pp. 77-93, 1991.

(10]

(14]

[15]

Masahiro Murakawa received his BE, ME, and
PhD degrees in mechano-informatics engineer-
ing from the University of Tokyo in 1994, 1996,
and 1999, respectively. He is currently a
researcher at the Electrotechnical Laboratory,
Tsukuba, Japan. His research interests include
evolutionary algorithms, reconfigurable comput-
ing, neural networks, and reinforcement learn-
ing. He received the best paper award at the
second international conference on evolvable
systems. He is a member of the Information Processing Society of
Japan (IPSJ) and Japanese Neural Network Society (JNNS).

Shuji Yoshizawa received BS, MS, and PhD
degrees in engineering in 1962, 1964, and 1971
from the University of Tokyo. From 1974 to
1992, he was an associate professor in the
Department of Mathematical Engineering, Uni-
versity of Tokyo. He is currently a professor in
the Department of Mechano-Informatics, Uni-
versity of Tokyo. His research interests are
mainly in nonlinear dynamical systems, neural
networks, and MEG measuring and modeling of
brain functions. He is the president of Japan Neural Network Society, a
member of the IEEE, INNS, ENNS, SICE, |IEICE, JMES, and JSME.

Isamu Kajitani received his BE and ME degrees
from the College of Engineering Sciences,
University of Tsukuba in 1994 and 1996,
respectively. Since 1996, he has been working
toward the PhD degree in evolvable hardware at
the same university. His research interests
include evolutionary algorithms, reconfigurable
computing, neural networks, and reinforcement
learning. He received the Best Student Paper
award at the Second International Conference

g

on Evolvable Systems.

MURAKAWA ET AL.: THE GRD CHIP: GENETIC RECONFIGURATION OF DSPS FOR NEURAL NETWORK PROCESSING

Xin Yao received his BSc from the University of
Science and Technology of China (USTC) in
1982, his MSc from the North China Institute of
Computing Technologies (NCI) in 1985, and his
PhD from USTC in 1990. He is an associate
professor in the School of Computer Science,
University College, the University of New South
Wales (UNSW), Australian Defence Force
Academy (ADFA). He held post-doctoral fellow-
ships at the Australian National University (ANU)
and the Commonwealth Scientific and Industrial Research Organisation
(CSIRO) before joining ADFA in 1992. He has published a number of
papers in the fields of evolutionary computation and neural networks. He
was the program committee co-chair of IEEE ICEC 97 in Indianapolis
and CEC ’99 in Washington, D.C. He was also a program committee
chair/co-chair of the Third International Conference on Computational
Intelligence and Multimedia Applications (ICCIMA '99), the Second Asia-
Pacific Conference on Simulated Evolution And Learning (SEAL ’'98),
ICCIMA ’97, SEAL 96, and the Eighth Australian Joint Conference on Al
(Al’95). He is a senior member of the IEEE, an associate editor of IEEE
Transactions on Evolutionary Computation and Knowledge and In-
formation Systems: An International Journal, and an editorial board
member of Journal of Cognitive Systems Research. He is the second
vice-president of the Evolutionary Programming Society.

639

Nobuki Kajihara received his BE degree in
electronics engineering from Yamaguchi Uni-
versity in 1981 and ME degree in control
engineering from Osaka University in 1983. He
is a principal researcher at NEC C&C Media
Research Laboratories, which he joined in 1986
and where he has been engaged in the research
and development of parallel circuit simulation
machine, parallel neural network simulation

“ machine, and recofigurable architecture. His
research interests include reconfigurable computing, parallel architec-
tures, and neural networks. He is a member of the Information
Processing Society of Japan, the Institute of Electronics Information
and Communication Engineers, Japan Society for Artificial Intelligence,
and Japan Neural Network Society.

Masaya lwata received his BE, ME, and PhD
degrees in applied physics from the Osaka
University in 1988, 1990, and 1993, respectively.
He is a senior researcher in the Computer
Science Division of Electrotechnical Laboratory,
AIST, MITI, Japan. His research interests are in
developing adaptive hardware devices using
genetic algorithms and their applications to
pattern recognition, etc. He was a postdoctoral

Ve
» |
‘ % fellow in optical computing at ONERA-CERT,

Toulouse, France, in 1993.

Tetsuya Higuchi received BE, ME, and PhD
degrees, all in electrical engineering, from
Keio University in 1978, 1980, and 1984,
respectively. He heads the Evolvable Systems
Laboratory in Electrotechnical Laboratory,
AIST, MITI, Japan. He is also in charge of
the adaptive devices group in the MITI
national project, Real World Computing Pro-
ject. His current interests include evolvable
hardware systems, parallel processing archi-
tecture in artificial intelligence, and adaptive systems.

