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Econometrica, Vol. 57, No. 6 (November, 1989), 1361-1401 

THE GREAT CRASH, THE OIL PRICE SHOCK, AND THE UNIT 
ROOT HYPOTHESIS 

BY PIERRE PERRON1 

We consider the null hypothesis that a time series has a unit root with possibly nonzero 
drift against the alternative that the process is "trend-stationary." The interest is that we 
allow under both the null and alternative hypotheses for the presence of a one-time change 
in the level or in the slope of the trend function. We show how standard tests of the unit 
root hypothesis against trend stationary alternatives cannot reject the unit root hypothesis 
if the true data generating mechanism is that of stationary fluctuations around a trend 
function which contains a one-time break. This holds even asymptotically. We derive test 
statistics which allow us to distinguish the two hypotheses when a break is present. Their 
limiting distribution is established and selected percentage points are tabulated. We apply 
these tests to the Nelson-Plosser data set and to the postwar quarterly real GNP series. In 
the former, the break is due to the 1929 crash and takes the form of a sudden change in the 
level of the series. For 11 out of the 14 series analyzed by Nelson and Plosser we can reject 
at a high confidence level the unit root hypothesis. In the case of the postwar quarterly real 
GNP series, the break in the trend function occurs at the time of the oil price shock (1973) 
and takes the form of a change in the slope. Here again we can reject the null hypothesis of 
a unit root. If one is ready to postulate that the 1929 crash and the slowdown in growth 
after 1973 are not realizations of an underlying time-invariant stochastic process but can be 
modeled as exogenous, then the conclusion is that most macroeconomic time series are not 
characterized by the presence of a unit root. Fluctuations are indeed stationary around a 
deterministic trend function. The only "shocks" which have had persistent effects are the 
1929 crash and the 1973 oil price shock. 

KEywoRDs: Hypothesis testing, intervention analysis, structural change, stochastic 
trends, deterministic trends, functional weak convergence, Wiener process, macroeconomic 
time series. 

1. INTRODUCTION 

THE UNIT ROOT HYPOTHESIS has recently attracted a considerable amount of 
work in both the economics and statistics literature. Indeed, the view that most 
economic time series are characterized by a stochastic rather than deterministic 
nonstationarity has become prevalent. The seminal study of Nelson and Plosser 
(1982) which found that most macroeconomic variables have a univariate time 
series structure with a unit root has catalyzed a burgeoning research program 
with both empirical and theoretical dimensions. 

Nelson and Plosser's study was followed by a series of empirical analyses 
which basically confirmed their findings. Some (Stulz and Wasserfallen (1985) 
and Wasserfallen (1986), among others) applied a similar Dickey-Fuller (1979) 
statistical methodology to other economic series. On the statistical front, there 

11 wish to thank Brian Campbell, Larry Christiano, Jean-Marie Dufour, Clive Granger, Whitney 
Newey, Hashem Pesaran, the referees, and the editor for useful comments. Christian Dea and 
Nicholas Marceau provided useful research assistance. This research was supported by the Social 
Sciences and Humanities Research Council of Canada, the Natural Sciences and Engineering Council 
of Canada, and Quebec's F.C.A.R. grants. The first draft of this paper was written while the author 
was Assistant Professor at the Universite de Montreal. 
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1362 PIERRE PERRON 

emerged an interest in developing alternative approaches to test the unit root 
hypothesis. Examples include: the class of tests proposed by Phillips and Perron 
(1988) and the methodology suggested by Campbell and Mankiw (1987, 1988) 
and Cochrane (1988) using an estimate of the spectral density at frequency zero. 
Empirical applications of these methodologies generally reaffirmed the conclusion 
that most macroeconomic time series have a unit root (e.g., Perron (1988)). 

These studies had many effects on economic theorizing. They seem to confirm 
previous analyses which had advanced the unit root hypothesis for particular 
economic series, e.g., consumption (Hall (1978)), velocity of money (Gould and 
Nelson (1974)), and stock prices (Samuelson (1973)). They also launched a series 
of theoretical investigations with implications consistent with a unit root, e.g., 
Blanchard and Summers (1986) for employment. Furthermore, a considerable 
stock of statistical tools was developed for more general models with integrated 
variables; these include the cointegration framework (Engle and Granger (1987)) 
and multivariate systems (Stock and Watson (1988) and Phillips and Durlauf 
(1986)). 

As far as macroeconomic theories are concerned, the most important implica- 
tion of the unit root revolution, is that under this hypothesis random shocks have 
a permanent effect on the system. Fluctuations are not transitory. This implica- 
tion, as forcefully argued by Nelson and Plosser, has profound consequences for 
business cycle theories. It runs counter to the prevailing view that business cycles 
are transitory fluctuations around a more or less stable trend path. It is therefore 
of importance to assess carefully the reliability of the unit root hypothesis as an 
empirical fact. 

The aim of this paper appears startling, given the results in the above 
mentioned literature. Our conclusion is that most macroeconomic time series are 
not characterized by the presence of a unit root and that fluctuations are indeed 
transitory. Only two events (shocks) have had a permanent effect on the various 
macroeconomic variables: the Great Crash of 1929 and the oil price shock of 
1973. 

Of course, to reach such a conclusion, a particular postulate must be intro- 
duced which differentiates our approach from the previous ones. This postulate is 
that the Great Crash and the oil price shock were not a realization of the 
underlying data-generating mechanism of the various series. In this sense, we 
consider these shocks as exogenous. The exogeneity assumption is not a state- 
ment about a descriptive model for the time series representation of the variables. 
It is used here as a device to remove the influence of these shocks from the noise 
function. A more detailed discussion of these issues and their implications can be 
found in Section 6. 

These two shocks are rather different in nature. On one hand, the Great Crash 
created a dramatic drop in the mean of most aggregate variables. On the other 
hand, the 1973 oil price shock was followed by a change in the slope of the trend 
for most aggregates, i.e., a slowdown in growth. In this light, our aim is to show 
that most macroeconomic variables are "trend-stationary" if one allows a single 
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UNIT ROOT HYPOTHESIS 1363 

change in the intercept of the trend function after 1929 and a single change in the 
slope of the trend function after 1973. 

Our approach is in the spirit of the "intervention analysis" suggested by Box 
and Tiao (1975). According to their methodology, "aberrant" or "outlying" 
events can be separated from the noise function and be modeled as changes or 
"interventions" in the deterministic part of the general time series model. Using 
such a strategy makes it "possible to distinguish between what can and what 
cannot be explained by the noise" (Box and Tiao (1975, p. 72)). These "interven- 
tions" are assumed to occur at a known date. The same strategy is used in the 
present analysis in that we consider the time of the changes in the trend function 
as fixed rather than as a random variable to be estimated. 

To make our point as unambiguous as possible, we use the same data set as 
Nelson and Plosser, as well as the real GNP series analyzed by Campbell and 
Mankiw. The data set used by Nelson and Plosser contains fourteen macroeco- 
nomic variables sampled annually. All series end in 1970 and contain only one 
break, the 1929 Great Crash. We shall not analyze the unemployment rate series 
since there is a general agreement that it is stationary. The real GNP series is 
postwar quarterly from 1947:1 to 1986:III and so contains only one break as well, 
the 1973 oil shock. Furthermore, to make our analysis as similar as possible to 
previous ones, the statistical methodology applied here is an extension of the 
Dickey-Fuller methodology (as used by Nelson and Plosser) to test for the 
presence of a single unit root in a univariate time series. 

The plan of the paper is as follows. Section 2 motivates the ensuing analysis 
and presents the alternative models considered. Section 3 shows that usual tests 
will not be able to reject the unit root hypothesis if in fact the deterministic trend 
of the series has a single break (either in the intercept or the slope). In Section 4, 
we develop formal statistical tests of the null hypothesis of a unit root which can 
distinguish the unit root hypothesis from that of a stationary series around a 
trend which has a single break. The asymptotic distributions under the null 
hypothesis are derived and tabulated. Empirical results from applying these 
procedures are presented in Section 5. Section 6 contains a discussion of some 
issues raised by our analysis and suggestions for future research. All theorems are 
proved in Appendix A. 

2. MOTIVATION 

The null hypothesis considered is that a given series { Yt }, (of which a sample 
of size T + 1 is available) is a realization of a time series process characterized by 
the presence of a unit root and possibly a nonzero drift. However, the approach 
is generalized to allow a one-time change in the structure occurring at a time 
TB (1 < TB < T). Three different models are considered under the null hypothesis: 
one that permits an exogeneous change in the level of the series (a "crash"), one 
that permits an exogenous change in the rate of growth, and one that allows both 
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1364 PIERRE PERRON 

change: These hypotheses are parameterized as follows: 

Null hypotheses: 

Model (A) yt = I + dD(TB) t +yt- + et, 

Model (B) yt = i +yt- + (M2- )DUt + et, 

Model (C) Yt= =l+Yt-l+dD(TB)t+(y2-#1)DUt+et, where 

D(TB)t = 1 if t=TB +l, Ootherwise; 

DUt= 1 if t> TB, 0 otherwise; and 

A (L) et = B(L) Vt, 

vt - i.i.d. (0, 2), with A(L) and B(L) pth and qth order polynomials, respec- 
tively, in the lag operator L. 

The innovation series {et}) is taken to be of the ARMA(p, q) type with the 
orders p and q possibly unknown. This postulate allows the series { yt to 
represent quite general processes. More general conditions are possible and will 
be used in subsequent theoretical derivations. 

Instead of considering the alternative hypothesis that Yt is a stationary series 
around a deterministic linear trend with time invariant parameters, we shall 
analyze the following three possible alternative models: 

Alternative hypotheses: 

Model(A) Y1=P1+#t+GL2-ttj)DU,+et, 
Model (B) Yt = L + 13lt + (/2 - 1l)1DTt * + et, 

Model (C) Yt = 1 + ,81t + (A2- Aj)DUt + (/2- I)DTt + et 

where 
D1Tt t - TB, and DTt = t if t > TB and O otherwise. 

Here, TB refers to the time of break, i.e., the period at which the change in the 
parameters of the trend function occurs. Model (A) describes what we shall refer 
to as the crash model. The null hypothesis of a unit root is characterized by a 
dummy variable which takes the value one at the time of break. Under the 
alternative hypothesis of a "trend-stationary" system, Model (A) allows for a 
one-time change in the intercept of the trend function. For the empirical cases we 
have in mind, TB is the year 1929 and JU2 < 1.- Model (B) is referred to as the 
"changing growth" model. Under the alternative hypothesis, a change in the 
slope of the trend function without any sudden change in the level at the time of 
the break is allowed. Under the null hypothesis, the model specifies that the drift 
parameter ,u changes from 1,k to tL2 at time TB. In the empirical examples 
presented in Section 5, TB is the first quarter of 1973 and /2 < /1, reflecting a 
slowdown in growth following the oil shock. Model (C) allows for both effects to 
take place simultaneously, i.e., a sudden change in the level followed by a 
different growth path. 
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Note: The broken straight line is a fitted trend (by OLS) of the form Y, = ,u + IDU, + fit where 
DUt = O if t < 1929 and DUt = 1 if t > 1929. 

FIGURE 1.-Logarithm of " Nominal Wages." 

To motivate the use of these three models as possible alternatives to the unit 
root with drift hypothesis, we present in this section some descriptive analyses 
for three series: "nominal wages" (1900-1970), "quarterly real GNP" 
(1947:1-1986:III) and "common stock prices" (1871-1970). 

Figure 1 shows a plot of the logarithm of the nominal wage series. A feature of 
this graph is the marked decrease between 1929 and 1930. Apart from this 
change, the trend appears fairly stable (same slope) over the entire period. The 
solid line is the estimated trend line from a regression on a constant, a trend and 
a dummy variable taking a value of 0 prior and at 1929 and value 1 afterwards. 
Table I presents the results from estimating (by OLS) a regression of the 
Dickey-Fuller type, i.e.: 

k 

(1) Yt = /I t + Y + ECiAYt-i + ot 
i=l 

The first row presents the full sample regression. The coefficient on the lag 
dependent variable is 0.910 with a t statistic for the hypothesis that a = 1 of 
-2.09. Using the critical values tabulated by Dickey and Fuller, we cannot reject 
the null hypothesis of a unit root. When the sample is split in two (pre-1929 and 
post-1929), the estimated value of a decreases dramatically: 0.304 for the 
pre-1929 sample and 0.735 for the post-1929 sample. However, due to the small 
samples available, the t statistics are not large enough (in absolute value) to reject 
the hypothesis that a = 1, even at the 10 percent level. 

Two features are worth emphasizing from this example: (a) the full sample 
estimate of a is markedly superior to any of the split sample estimates and 
relatively close to one. It appears that the 1929 crash is responsible for the near 
unit root value of a; and (b) the split sample regressions are not powerful enough 
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1366 PIERRE PERRON 

TABLE I 

REGRESSION ANALYSIS FOR THE WAGES, QUARTERLY GNP, AND COMMON STOCK PRICE SERIES 

Regression: yt = & + ,#t + Fyty5 + Ay i + it 

Series/Period k j tA fi t# e ta S(e) 

(a) Wages 
1900-1970a 2 0.566 2.30 0.004 2.30 0.910 -2.09 0.060 
1900-1929 7 4.299 2.84 0.037 2.73 0.304 -2.82 0.0803 
1930-1970 8 1.632 3.60 0.012 2.64 0.735 -3.19 0.0269 

(b) Common stock prices 
1871-1970a 2 0.481 2.02 0.003 2.37 0.913 -2.05 0.158 
1871-1929 3 0.3468 2.13 0.0063 2.70 0.732 -2.29 0.1209 
1930-1970 4 -0.5312 -1.64 0.0166 1.96 0.788 -1.89 0.1376 

(c) Quarterly real GNP 
1947:I-1986:111 2 0.386 2.90 0.0004 2.71 0.946 -2.85 0.010 
1947:I-1973:1 2 0.637 3.04 0.0008 2.99 0.910 -3.02 0.0099 
1973:II-1986:III 1 0.883 2.23 0.0008 2.27 0.878 -2.23 0.0102 

aResults taken from Nelson and Plosser (1982, Table 5). 

to reject the hypothesis that a = 1 even though the estimates are well below one. 
It would be useful, in this light, to have a more powerful procedure based on the 
full sample that would allow the 1929 break to be exogenous. 

Figure 2 graphs the postwar quarterly real GNP series. Here, the series behave 
according to Model (B) where there is no sharp change in the level of the series at 
the 1973:1 break point but rather a change in the slope. The solid line is a fitted 
trend where a dummy variable is included in the regression, taking the value 0 
prior and at 1973:1 and the value (t - 105) after 1973:1 (1973:1 being the 105th 
observation in the sample). Table I compares regressions of the form (1) with full 
and split samples. Again, the estimate of a is lower in both subsamples than with 

TABLE II 

SAMPLE AUTOCORRELATIONS OF THE "DETRENDED" SERIES 

Series Period T Variance r5 r2 r3 r4 r5 r6 

Real GNP A 1909-1970 62 0.010 0.77 0.45 0.23 0.11 0.05 0.04 
Nominal GNP A 1909-1970 62 0.023 0.68 0.31 0.12 0.08 0.11 0.12 
Real per capita GNP A 1909-1970 62 0.012 0.81 0.54 0.33 0.20 0.13 0.09 
Industrial production A 1860-1970 111 0.017 0.71 0.44 0.32 0.17 0.08 0.12 
Employment A 1890-1970 81 0.005 0.82 0.59 0.43 0.30 0.20 0.15 
GNP deflator A 1889-1970 82 0.015 0.82 0.63 0.45 0.31 0.17 0.06 
Consumer prices A 1860-1970 111 0.066 0.96 0.89 0.80 0.71 0.63 0.54 
Wages A 1900-1970 71 0.016 0.76 0.47 0.26 0.12 0.03 -0.03 
Real wages C 1900-1970 71 0.003 0.74 0.40 0.12 -0.12 -0.27 -0.33 
Money stock A 1889-1970 82 0.023 0.87 0.69 0.52 0.38 0.25 0.11 
Velocity A 1860-1970 102 0.036 0.90 0.79 0.70 0.62 0.57 0.52 
Interest rate A 1900-1970 71 0.587 0.77 0.58 0.38 0.25 0.15 0.11 
Common stock prices C 1871-1970 100 0.066 0.80 0.53 0.36 0.20 0.10 0.08 

Quarterly GNP B 47:I 86:III 159 0.001 0.94 0.83 0.70 0.57 0.45 0.35 

Note: A, B, and C denote the detrending procedure corresponding to the given model under the alternative 
hypothesis. 
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Note: The broken straight line is a fitted trend (by OLS) of the form: Yj = ,i + fit + yDT* where 
DTt *=O if t < 1973:I and DT, * = t-TB if t > 1973:I = TB. 

FIGURE 2.-Logarithm of "Postwar Quarterly Real GNP." 

the full sample (given the quarterly nature of the series, the difference is 
important). The same features discussed above appear to hold when there is a 
change in the slope of the trend function. 

As a final example, consider thle common stock price series graphed in Figure 
3. The break point is again in 1929 but in this case there appears to be both a 
sudden change in the level of the series in 1929 and a higher growth rate after. 
The solid line is the estimated trend with two dummy variables added, an 
intercept dummy (O prior and at 1929, 1 after 1929) and a slope dummy (O prior 
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4 
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Note: The broken straight line is a fitted trend (by OLS) of the form Y-, = jI+ ? DU, + fit + Y2 DTt 
where DU, = DT, = 0 if t 61929 and DU, = 1, DTt = t if t > 1929. 

FIGURE 3.-Logarithm of "Common Stock Prices." 
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and at 1929 and t after 1929). The estimated values of a (in regression (1)) with 
the full sample are 0.913 but are only 0.732 using the pre-1929 sample and 0.788 
using the post-1929. Here again, the t statistics are not large enough, however, to 
reject the unit root hypothesis at even the 10 percent level using any of the 
subsamples.2 

Table II presents the autocorellation function of the "detrended series" for the 
full set of variables analyzed by Nelson and Plosser, along with the postwar 
quarterly real GNP series. All series are detrended according to Model (A) (with 
a constant, a trend, and an intercept dummy) except for the postwar Quarterly 
Real GNP Series (with a slope dummy instead of the intercept dummy, Model 
(B)) and the real wage and common stock price series (with both a slope and 
intercept dummy, Model (C)). Unlike the "standard" detrended series (see Table 
4 of Nelson-Plosser), the autocorrelations decay quite rapidly for all variables 
except for the consumer prices and velocity series. This behavior of the autocorre- 
lation function is certainly not the one usually associated with either a random 
walk or a detrended random walk. Indeed, the "detrended" series appear station- 
ary. 

The results of this section motivate the analysis presented in the following 
sections. We first investigate the effects of the two types of changes in the trend 
function that we consider on the statistical properties of autoregressive estimates 
of the type found in regression (1) (both in finite samples and asymptotically). 
We find that such changes create a spurious unit root that may not vanish, even 
asymptotically. To overcome the problem of the low power associated with 
testing for a unit root using split samples, formal test statistics, which permit the 
presence of either or both an intercept and a slope shift, are developed in Sec- 
tion 4. 

3. THE EFFECT OF A SHIFT IN THE TREND FUNCTION ON TESTS 
FOR A UNIT ROOT 

To assess the effects of the presence of a shift in the level of the series or a shift 
in the slope (at a single point of time) on tests for the presence of a unit root, we 
first present a small Monte Carlo experiment. Consider first the "crash hypothe- 
sis" (Model (A)). We generated 10,000 replications of a series { y) } of length 100 
defined by 

(2) Yt A=i1 + (2- lic)DUt + Pt + et (t = 1,. .., T), 

where DUt =1 if t > TB, and 0 otherwise. 

2Dickey-Fuller tests for the presence of a unit root using split samples are presented in Appendix 
B for all the series considered. The results are presented for values of k ranging from 1 to 12. These 
results show that (i) the conclusions drawn are not sensitive to the value of k chosen; (ii) for some 
series it is possible to reject the unit root hypothesis, especially when considering the post-1929 
subsample. Furthermore, the statistical significance of the lagged first-differences (not reported) 
suggest that a large value of k may be needed. For example, the t statistics on the eighth lagged 
first-difference is often statistically significant. A similar pattern will occur in the full sample tests 
reported in subsequent sections. 
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Note: a is the estimated autoregressive parameter in regression (4). The data-generating mecha- 
nism is given by equation (2) with t,u = 0, fi = 1.0 and { et } i.i.d. N(0, 1), T = 100 and TB = 50. 

FIGURuE 4.-C.D.F. of & under the "Crash" Model. 

For simplicity, t,z = 0, / = 1, TB = 50, T = 100 and the innovations et are i.i.d. 
N(O, 1). For the "changing growth" hypothesis, a similar setup is considered 
except that yt is generated by 

(3) Yt=P+Plt+ (#2- #,)DTt* +et (t =l,~...,~T), 
where DTt* = t -TB if t> TB, and O otherwise. 

Again, ,u = 0, f31 = 1, TB = 50, T = 100, and et - i.i.d. N(O, 1). For each replica- 
tion, we computed the autoregressive coefficient x in the following regression, 
using ordinary least squares: 

(4) Yt=A+t+?'Yt-l+ t- 
Figure 4 graphs the cumulative distribution function of a when the data 

generating process (D.G.P.) is given by (2) for various values of IL2. This 
experiment reveals that as the magnitude of the crash increases (.U2 decreases), 
the c.d.f of & becomes more concentrated at a value ever closer to 1. The 
corresponding mean and variance of the sample of a generated are shown in 
Table III. Figure 5 graphs the c.d.f. of a when the D.G.P. is given by (3) for 
various values Of fP2. As fP2 diverges from /3l, again, the c.d.f. becomes more 
concentrated and closer to one. The computed mean and variance of & presented 
in Table III confirms this behavior. 

3Note that when the error structure is i.i.d., a is free of nuisance parameters and hence can be used 
as a formal test statistic on the same ground as the t statistic. However, we also performed a similar 
experiment with the t statistic on a (a = 1) in regression (4) as well as in a regression with additional 
lags of first-differences as regressors. The results obtained show the same behavior. If anything, the t 
statistic with extra lags of first-differences as regressors shows a still greater bias toward nonrejection 
of the null hypothesis of a unit root. These results are available upon request. We prefer to report our 
result in terms of the behavior of the estimator a instead of its t statistic because it makes clear that 
what causes the nonrejection is not due solely to the behavior of the variance estimator. What is of 
importance is that & is biased towards unity. 
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TABLE III 

MEAN AND VARIANCE OF a 

(a) Crash Simulations, 1 = 0, fi = 1 

2 = 0 2 =-2 P2 = - 5 F2 10 L2 =-25 

Mean -0.019 0.172 0.558 0.795 0.899 
Variance 0.00986 0.01090 0.00471 0.00089 0.00009 

(b) Breaking Trend Simulations, /It = 1, it= 0 

2 = 1-.0 2 = 0.9 2 = 0.7 2 = 0-4 2 = 0.0 

Mean -0.019 0.334 0.825 0.949 0.981 
Variance 0.00986 0.00938 0.00094 0.00009 0.00001 

See notes to Figure 4 for case (a) and Figure 5 for case (b). 

What emerges from this experiment is that if the magnitude of the shift is 
significant, one could hardly reject the unit root hypothesis even if the series is 
that of a trend (albeit with a break) with i.i.d. disturbances. In particular, one 
would conclude that the shocks have permanent effects. Here, the shocks clearly 
have no permanent effects, only the one-time shift in the trend function is 
permanent. 

To analyze the effect of an increase in the sample size on the distribution of a 

with a shift of a given magnitude, we derive the asymptotic limit of a. To this 
end, we again consider processes generated by Models (A), (B), or (C) under the 
alternative hypotheses, but we enlarge the framework by allowing general condi- 
tions on the error structure {et }. Many such sets of conditions are possible and 
would allow us to carry out the asymptotic theory. For simplicity, we use the 
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Note: a is the estimated autoregressive parameter in regression (4). The data-generating mecha- 
nism is given by equation (3) with ,u = 0, f1 = 1.0, { et } i.i.d. N(O, 1), T = 100, TB = 50. 

FIGURE 5.-C.D.F. of & under the "Breaking Trend" Model. 
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UNIT ROOT HYPOTHESIS 1371 

"mixing-type" conditions of Phillips (1987) and Phillips and Perron (1988). These 
are stated in Assumption 1. 

ASSUMPTION 1: (a) E(e,) = 0 all t; (b) SUpt Elet1?e+ < X for some /3> 2 and 
E>O; (C) aJ2 =limTM T-1E(ST) exists and a2>O, where ST= YTef;(d) {e1} 
is strong mixing with mixing numbers am that satisfy: OO a 1-2/f < 00. 

These conditions are general enough to permit the series { et } to be generated 
by a finite order ARMA(p, q) process with Gaussian innovations. To carry out 
the asymptotic analysis, we shall require that both the pre-break and post-break 
samples increase at the same rate as the total number of observations, T, 
increases. To this effect, we assume, for simplicity, that TB = XT for all T. We 
refer to A as the "break fraction." The asymptotic limits are taken as T increases 
to infinity in a sequence that ensures an integer value of TB for a given A. This 
type of increasing sequence is assumed throughout the paper. The results proved 
in Appendix A are presented in the following theorem. 

THEOREM 1: Let {Yt}o be a sample of size T+ 1 generated under one of the 
alternative hypotheses with the innovations { et } satisfying Assumption 1. Let '-' 

denote convergence in probability. Furthermore, let TB = AT, for all T and 0 < A < 
1; then as T-* oo: 

(a) The "crash hypothesis": Under Model (A) 

a It'l { [ -2 ]2A + 71) } {[ul - P2 ]2A + ae2) }1 

where 
T 

A=[A-4A2+6A3-3A4], Y1= lim T-1' E(e,e,1), 
T- oo 1 

and 
T 

2 = lim T-1' EE(e2) 
1 

(b) The "breaking trend hypothesis ": Under either Model (B) or (C) 

(i) cx 1, 

(ii) T(a- -1) {- 3(-1 + 4A - 52 + 2A3)} 

-{2(-3+4A- 3A2+3A3-A4)}1 

Part (a) of Theorem 1 shows that under the crash hypothesis, the limit of a 
depends on the relative magnitude of I,1 - Iu212 A and ae2. In particular, this 
limit gets closer to one as 1,I - ,U2]2 increases. Another feature is that the limit of 
a is always greater than the true first-order autoregressive coefficient of the 
stationary part of the series, yJ/a2. However, since &- does not converge to 1, the 
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1372 PIERRE PERRON 

usual statistics for testing that a = 1, such as T(d - 1) or the t statistic on a, 
would eventually reject the null hypothesis of a unit root. Nevertheless, added to 
the generally poor power properties of tests for a unit root is the consideration 
that the limit of a is inflated above its true value. These conditions are such that 
it could be difficult to reject the unit root hypothesis in finite samples. 

There is another interpretation to the results under the crash hypothesis. As 
stated in model (A), the change in the intercept of the trend function is given by 
(M2 -,1), a fixed value. This implies that in the asymptotic derivations we are 
considering a shift which decreases relative to the level of the series as the sample 
size increases. It may be more appropriate to specify the change in the intercept 
as a magnitude relative to the level of the series at the time of the break. Since at 
this period the level of the series is proportional to TB, we can specify ( L2 - 

as a proportion of TB, say, (A2 - Al) = YTB. In this case the "crash" is propor- 
tional to the level of the series. Since TB -- o as T -x 00, it is clear, from part (a), 
that under this interpretation, a 1. 

Such ambiguity does not occur under the "breaking trend hypothesis" (Models 
(B) or (C)) as is shown by part (b) of Theorem 1. Here, the limit of a is 1 
irrespective of the behavior of the intercept and the limit of T(& - 1) is invariant 
to the relative magnitude of the shift (f2 versus fl). The expression in part (b, ii) 
is a function of X. However, it varies from 0 to 1/2 for values of X in the range 
(0, 1). Since the one-sided 5 percent asymptotic critical value of T(5 - 1) is 
- 21.8 under the null hypothesis of a unit root (Fuller (1976)), Theorem 2 implies 
that the unit root hypothesis could not be rejected, even asymptotically.4 

These results could be extended to more general test statistics, such as the t 
statistics. Nevertheless, the picture is clear. Tests of the unit root hypothesis are 
not consistent against "trend stationary" alternatives when the trend function 
contains a shift in the slope. Although they are not inconsistent against a shift in 
the intercept of the trend function (if the change is fixed as T increases), their 
power is likely to be substantially reduced due to the fact that the limit of the 
autoregressive coefficient is inflated above its true value. When interpreting the 
"crash" as proportional to the level of the series as T increases, a unambiguously 
converges to one and implies a considerable loss in power. There is therefore a 
need to develop alternative statistical procedures that could distinguish a process 
with a unit root from a process stationary around a breaking trend function. 

4. ALTERNATIVE STATISTICAL PROCEDURES 

In this section, we extend the Dickey-Fuller testing strategy to ensure a 
consistent testing procedure against shifting trend functions. We shall present 
several ways to do so, all of which are asymptotically equivalent, and discuss the 
main differences between each. 

After the first draft of this paper was written, we became aware of a result similar to part (b, i) of 
Theorem 1 proved by Rappoport and Reichlin (1987). In fact, in the case of deterministic trends with 
multiple shifts in slope, they prove the following more general result: "If the true model contains 
K + 1 segments, then any fitted model involving K or less segments will, asymptotically, yield a larger 
sum of squared residuals than [a difference stationary] model" (p.9). 
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UNIT ROOT HYPOTHESIS 1373 

Consider first detrending the raw series { y, } according to either model (A), 
(B), or (C). Let { Y, }, i = A, B, C be the residuals from a regression of Y, on (1) 
i = A: a constant, a time trend, and DU,; (2) i = B: a constant, a time trend, and 
DT, *; (3) i= C: a constant, a time trend, DUE, and DT. Furthermore, let a' be 
the least squares estimator of a in the following regression: 

(5) yt' = alYt'_ 1 + et (i =A, B, C; t = 1,29,.... T). 

Up to this point the extensions from the no break model are straightforward 
enough. However, matters are not so simple concerning the distribution of the 
statistics of interest, namely the normalized bias, T(&i - 1), and the t statistic on 
&, t'i (i = A, B, C). Needless to say, the only manageable analytical distribution 
theory is asymptotic in nature. But two additional features are also present over 
the usual procedure: (a) extra regressors and (b) the split sample nature of these 
extra regressors. To this effect, we derive the asymptotic distribution of T(a&- 1) 
and t,i under the null hypothesis of a unit root. As in Section 3, we require that 
the break point TB increases at the same rate as the total sample size T. Again, 
for simplicity, it is assumed that TB = XT with both T and TB integer valued. 

The method of proof is similar to that of Phillips (1987) and Phillips and 
Perron (1988). We use weak convergence results that hold for normalized 
functions of the sum of the innovations when the latter are assumed to satisfy 
Assumption 1. The limiting distributions obtained under this general setting are 
then specialized to the i.i.d. case. The asymptotic distributions in the i.i.d. case 
are evaluated using simulations, and critical values are tabulated. We then show 
how the results can be extended to innovations { et } that follow the general 
ARMA(p, q) process in the same way that the Dickey-Fuller regressions are 
modified by adding extra lags of first-differences of the data as regressors. 

The main results concerning the asymptotic distributions of the normalized 
bias estimators and the t statistics of the autoregressive coefficient under the null 
hypothesis of a unit root are presented in the next theorem. 

THEOREM 2: Let{ytj be generated under the null hypothesis of model i 
(i = A, B, C) with the innovation sequence { et I satisfying Assumption 1. Let =* 
denote weak convergence in distribution and X = TB/T for all T. Then, as T-- oo: 

(a) T( a-1) * HI/Ki, 

(b) t i (giKi)12, 

where 

HA = gAD1-D541-D642; KA = 9AD2-D402-D301; 

HB =giD, + D53 + D8s44; KB =gD2 + D74 + D3043; 

Hc = gcDg + D13&5 - D1446; Kc = gcD10 - D12&6 + D1145; 
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1374 PIERRE PERRON 

with 

P1 = 6D4 + 12D3; #2 = 6D3 + (1 - X)1-1)D; 

+3 = (1 + 2X)(1-A) - 
D7-(1 + 3X)D3; 

+4= (1 + 2X)(1 - X) 1kD3 -(1- 
3 
D7; 

IP5 = D12 - Dl; A6 = A5 + (1-_A)2 D12/A3; 

and 

D= ( )(w(1)2 -_ e2/02) - w(1) w(r) dr; 

D2 = w(r)2dr -[ w(r) dr]; 

D3 = rw(r) dr-( )fw(r) dr; D4= w(r) dr-X fw(r) dr; 

D= w(1)/2 - jw(r) dr; D6 = w(X) -Xw(l); 

D7 = frw(r) dr-A Xw(r) dr- ((1-)2/2)j w(r) dr; 

D8= ((l-X2)/2)w(1)- jw(r) dr; 

Ds=|w(r)d--( w(r) drX(-) ( w(r) dr) 

Do= (w(1)2- e2/2)/2 - X-lw(X) Xw(r) dr 

-(w(1) - w(X))(1 - X)1 l (r) dr; 

Dll = f rw(r) dr -(2( + A)| jw(r) dr + (2)jXw(r) dr; 

D12= rw(r) dr - (X/2)j w(r) dr; 

D13= (1-X)w(l)/2 + w(X)/2 - jw(r) dr; 

D14= Xw(X)/2 - jw(r) dr; 

A = 1- 3(1 - X)X; gB= 3A3; gc= 12(1 - X)2; 
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UNIT ROOT HYPOTHESIS 1375 

and where w(r) is the unit Wiener process defined on C[O, 1], a2 = limToo 
E[T 1 ST] ST = ' et, and a0 = limTOE[T1XTe,I. 

Theorem 2 provides a representation for the limiting distribution of the 
normalized least squares estimators and their t statistics in terms of functionals 
of Wiener processes. These limiting distributions are functions of the parameter 
X, the ratio of the pre-break sample size to total sample size. It is easy to verify 
that when X is either 0 or 1, the limiting distributions are identical over all 
models and are given by: 

T(a-1)= H/K and ta=:(a1/qe)H/K1/2 

where 

H= (,)(w(1)2 - 2/02) + 12[ rw(r) dr - (21w(r) dr] 

* [j1w(r) dr-()w(1)] -w(l)j w(r) dr, 

K= w(r)2 dr- 12( jrw(r) dr) 

+ 12j1w(r) drj rw(r) dr - 4( w(r) dr) 

These latter asymptotic distributions correspond to those derived by Phillips 
and Perron (1988) in the case where no dummy variables are included. 

The expressions for the limiting distributions in Theorem 2 depend on addi- 
tional nuisance parameters, apart from X, namely a2 and a,2. As in Phillips 
(1987) and Phillips and Perron (1988), a2 is the variance of the innovations and 
a2 is, in the case of weakly stationary innovations, equal to 2 Tf(0) where f(0) is 
the spectral density of {et} evaluated at frequency zero. When the innovation 
sequence {et} is independent and identically distributed, a2 = a2 and, in that 
case, the limiting distributions are invariant with respect to nuisance parameters, 
except X. 

Therefore, when a 2= a2, percentage points of the limiting distributions can be 
tabulated for given values of X. Tables IV, V, and VI present selected percentage 
points that will allow us to carry hypothesis testing. The critical values are 
obtained via simulation methods. We briefly describe the steps involved. First, we 
generate a sample of size 1,000 of i.i.d. N(O, 1) random deviates, {et }. We then 
construct sample moments of the data which converge weakly to the various 
functionals of the Wiener process involved in the representation of the asymp- 
totic distributions. For example, as T - oo, T-12 lTet w(1) T l/2STBe = 

w(X), T 3j2St ej =_e Jow(r) dr, =L(gkej1)et (_ (w(1)2-1), etc. With a 
sample size of 1,000 and i.i.d. N(0, 1) variates, we can expect the approximation 
to be quite accurate. Once the various functionals are evaluated, we construct the 
expressions in Theorem 2 and obtain one realization of the limiting distributions 
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TABLE IV.A 

PERCENTAGE POINTS OF THE ASYMPTOTIC DISTRIBuTION OF T (a -1) IN MODEL A 
Time of Break Relative to Total Sample Size: X 

A = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1% - 34.17 - 35.85 -35.07 - 34.44 - 34.07 -35.83 -35.59 - 34.86 - 34.65 
2.5% - 28.93 - 30.35 - 29.92 - 29.26 - 29.00 - 29.80 -29.61 -29.40 - 29.35 
5% - 25.04 -26.00 -25.90 -25.40 -25.25 - 25.56 -25.99 - 25.82 -25.40 

10% - 21.45 -22.16 -21.93 -21.61 -21.55 -21.79 - 22.33 -22.10 -21.48 
90% - 4.57 -5.19 -5.13 -4.28 - 3.85 -4.36 -5.15 - 5.32 -4.62 
95% - 3.40 - 3.90 - 3.80 - 2.83 - 2.38 - 2.92 - 3.86 - 3.87 - 3.27 
97.5% -2.35 -2.92 -2.85 -1.69 -1.42 -1.89 -2.78 -2.84 -2.13 
99% - 1.28 -1.70 -1.60 -0.61 -0.40 -0.78 -1.58 -1.78 -1.39 

TABLE IV.B 

PERCENTAGE POINTS OF THE ASYMPTOTIC DISTRIBuTION OF ta IN MODEL A 
Time of Break Relative to Total Sample Size: X 

A= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1% -4.30 -4.39 -4.39 -4.34 -4.32 -4.45 -4.42 -4.33 -4.27 
2.5% - 3.93 -4.08 -4.03 -4.01 -4.01 -4.09 -4.07 - 3.99 -3.97 
5% - 3.68 - 3.77 -3.76 -3.72 - 3.76 -3.76 - 3.80 - 3.75 - 3.69 

10% - 3.40 - 3.47 -3.46 - 3.44 - 3.46 -3.47 - 3.51 - 3.46 - 3.38 
90% -1.38 -1.45 -1.43 -1.26 -1.17 -1.28 -1.42 -1.46 -1.37 
95% -1.09 -1.14 -1.13 -0.88 -0.79 -0.92 -1.10 -1.13 -1.04 
97.5% - 0.78 -0.90 -0.83 -0.55 -0.49 -0.60 -0.82 -0.89 -0.74 
99% -0.46 -0.54 -0.51 -0.21 -0.15 -0.26 -0.50 -0.57 -0.47 

TABLE V.A 
PERCENTAGE POINTS OF THE ASYMPTOTIC DISTRIBUTION OF T(a -1) IN MODEL B 

Time of Break Relative to Total Sample Size: A 

A= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1% - 34.34 - 37.16 - 38.07 - 39.21 - 39.77 -40.08 - 38.70 -36.18 - 34.69 
2.5% - 28.74 - 31.97 -32.78 - 33.42 - 33.60 - 33.21 - 32.31 -31.45 - 29.42 
5% -25.00 -27.16 -28.61 -29.23 -29.65 -29.51 - 28.68 -27.24 -25.25 

10% - 21.26 -23.10 -24.20 -25.04 -25.40 -25.15 -24.30 -23.01 -21.24 
90% -4.27 - 5.09 - 5.92 -6.62 -6.96 -6.71 -6.08 - 5.26 -4.45 
95% - 3.12 -3.85 -4.50 - 5.06 -5.31 -5.15 -4.59 - 3.82 -3.16 
97.5% -2.20 - 2.69 -3.30 - 3.90 -4.14 -3.94 - 3.36 - 2.72 -2.21 
99% -1.11 -1.58 -2.19 - 2.50 - 3.01 -2.54 -2.20 -1.50 -1.24 

of the statistics T(ai - 1), tji (i = A, B, C). We replicate this procedure 5,000 
times and obtain the critical values from the sorted vector of replicated statistics. 
This procedure is performed for each statistic with nine values of the parameter 
X, the ratio of pre-break sample size to total sample size.5 

Several features are worth mentioning with respect to these critical values. 
First, as expected, for a given size of the test, the critical values are larger (in 

5For some evidence on the adequacy of this method to obtain critical values for limiting 
distributions involving functions of Wiener processes, see Chan (1988). 
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TABLE V.B 

PERCENTAGE POINTS OF THE ASYMPTOTIC DISTRIBUTION OF t- IN MODEL B 
Time of Break Relative to Total Sample Size: X 

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1% - 4.27 -4.41 -4.51 -4.55 -4.56 -4.57 -4.51 - 4.38 -4.26 
2.5% - 3.94 -4.08 -4.17 -4.20 -4.26 -4.20 -4.13 -4.07 - 3.96 
5% - 3.65 - 3.80 - 3.87 -3.94 - 3.96 - 3.95 -3.85 - 3.82 - 3.68 

10% - 3.36 -3.49 - 3.58 -3.66 -3.68 -3.66 -3.57 -3.50 - 3.35 
90% -1.35 -1.48 -1.59 -1.69 -1.74 -1.71 -1.61 -1.49 -1.34 
95% -1.04 -1.18 -1.27 -1.37 -1.40 -1.36 -1.28 -1.16 -1.04 
97.5% -0.78 -0.87 -0.97 -1.11 -1.18 -1.11 -0.97 -0.87 -0.77 
99% -0.40 -0.52 -0.69 -0.75 -0.82 -0.78 -0.67 -0.54 -0.43 

TABLE VI.A 

PERCENTAGE POINTS OF THE ASYMPTOTIC DISTRIBUTION OF T(& -1) IN MODEL C 
Time of Break Relative to Total Sample Size: X 

A= 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1% - 36.17 - 39.97 -42.98 -45.52 -44.07 -44.75 -43.02 -41.48 - 36.58 
2.5% - 30.65 - 34.92 - 36.48 - 37.12 - 37.56 - 37.72 - 37.50 - 35.16 - 31.82 
5% - 26.63 -29.95 - 32.47 -33.22 - 33.79 - 33.19 -33.11 - 30.70 -27.16 

10% - 22.68 -25.50 -27.90 -29.39 -29.41 -29.04 -28.14 -25.79 -22.62 
90% -4.74 - 5.85 - 7.35 - 8.43 - 8.84 -8.55 -7.41 -6.17 -4.89 
95% - 3.41 -4.34 - 5.50 -6.67 -7.19 -6.79 - 5.66 -4.52 - 3.52 
97.5% - 2.51 - 3.19 -4.14 - 5.37 - 5.82 - 5.47 -4.33 - 3.35 - 2.49 
99% - 1.31 -2.14 - 2.82 - 3.96 -4.39 -4.24 -2.80 - 2.02 -1.28 

TABLE VI.B 

PERCENTAGE POINTS OF THE ASYMPTOTIC DISTRIBUTION OF ta IN MODEL C 
Time of Break Relative to Total Sample Size: X 

A- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1% - 4.38 - 4.65 -4.78 -4.81 -4.90 -4.88 -4.75 -4.70 -4.41 
2.5% -4.01 -4.32 -4.46 -4.48 -4.53 -4.49 -4.44 -4.31 -4.10 
5% - 3.75 - 3.99 -4.17 -4.22 -4.24 -4.24 -4.18 -4.04 - 3.80 

10% - 3.45 - 3.66 - 3.87 -3.95 - 3.96 -3.95 - 3.86 - 3.69 - 3.46 
90% -1.44 -1.60 -1.78 -1.91 -1.96 -1.93 -1.81 -1.63 -1.44 
95% -1.11 -1.27 -1.46 -1.62 -1.69 -1.63 -1.47 -1.29 -1.12 
97.5% - 0.82 -0.98 -1.15 -1.35 -1.43 -1.37 -1.17 -1.04 -0.80 
99% -0.45 -0.67 -0.81 -1.04 -1.07 -1.08 -0.79 -0.64 -0.50 

absolute value) for each model than the standard Dickey-Fuller critical values 
when considering the left tail. One would therefore expect a loss in power. 
Secondly, although the critical values are not significantly influenced by the value 
of the parameter X, the maximum (in absolute value) occurs around the value 
X = 0.5, i.e., for a break at mid-sample.6 In the left tail, critical values of the 
statistics are smallest (in absolute value) when X is close to 0 or 1. This is to be 

6The simulated critical values suggest that the limiting distributions are symmetric around X = 0.5. 
This feature seems intuitively plausible. We have not, however, proved that such is the case. 
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expected since, as previously mentioned, the critical values are identical to those 
of Dickey and Fuller when X = 0, 1. 

Some critical values are worth noticing. Consider the t statistics. Under Model 
(A), the "crash hypothesis", the 5 percent critical value has a minimum (over 
values of X) of -3.80. Under Models (B) and (C), the corresponding figures are 
- 3.96 and -4.24 respectively. The critical values under the various models are 
therefore noticeably smaller than the standard Dickey-Fuller critical value of 
- 3.41 (see Dickey (1976) and Fuller (1976)). 

These sets of results can be used to perform hypothesis testing. One simply 
picks the critical value corresponding to the sample value of X at the chosen 
significance level. Since we only provide critical values for a selected grid of X's, 
the procedure suggested is to choose the critical value corresponding to the value 
of X nearest to its sample value, i.e., TB/T. Given that the differences in the 
critical values over adjacent values for X in the tables are not substantially 
different, this procedure should not cause misleading inferences. 

4.1. Extensions to More General Error Processes: Case (1) 

Using regressions (5) (i = A, B, C) and the critical values in Tables IV, V, and 
VI is valid only in the case where the innovation sequence { e, } is uncorrelated. 
When there is additional correlation, as one would expect, an extension is 
necessary. Two approaches are possible. One is to follow the approach suggested 
by Phillips (1987) and Phillips and Perron (1988). This involves finding a set of 
transformed statistics that would converge weakly to the limiting distributions 
expressed in Theorem 2 with a2 ae2. The other approach is that suggested by 
Dickey and Fuller (1979) and Said and Dickey (1984). 

Consider first the extension to Phillips' (1987) procedure. It is useful first to 
write the limiting distributions of Theorem 2 in a different, more compact form. 
To do so, we adopt the framework suggested by Ouliaris, Park, and Phillips 
(1988). Define wi(r) (i = A, B, C) to be the stochastic process on [0,1] such that 
wi(r) is the projection residual of a Wiener process w(r) on the subspace 
generated by the following set of functions: (1) i = A:1, r, du(r), where du(r) = 0 
if r s X and du(r) = 1 if r > X; (2) i = B: 1, r, dt*(r), where dt*(r) = 0 if r < X 
and dt*(r) = r- X if r > X; (3) i = C: 1, r, du(r), dt(r), where dt(r) = 0 if r < X 
and dt(r) = r if r > X. Adopting this notation, an alternative representation of 
the limiting distributions in Theorem 2 is given by: 

T(&a- 1) ( wi(r)dw(r) + 8 )(wi (r)dr ) (i =A, B, C) 

and 

tai~ (a/ae)(fl wi(r)dw(r) + 8) wi(r2 dr) (i =A, B, C) 

where 8 = (a2 - a2)/(2a2). 
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Now, define 67 and 67i to be, respectively, any consistent estimator of a2 and 
a based on the estimated residuals from regression (5)(i = A, B, C).7Also define 
S12 (i-A, B, C) to be the residual sum of squares from the regression Yt-i on (1) 
i=A: 1,t,DU,; (2) i=B: 1,t,DTt*; and (3) i=C: 1,t, DUt, DTt. We then 
define the transformed statistics as: 

(6) Z(a=i) T(ai- 1)- T2( i ife6)/2S7 (i=A, B, C), 

(7) Z(tei) ( -ei/Ii) tji - T( -i2 -6e)/2i1Si (i = A, B, C). 

Following Ouliaris, Park, and Phillips (1988), it is straightforward to show 
that: 

(8) Z(a) (fwi(r)dw(r))(flw,(r) 2dr) (i =A, B, C) 

and 

(9) Z(tai) ( wi (r ) dw ( fr)) w ( )2 dr (i = A, B, C). 

The limiting distributions in (8) and (9) are those whose critical values are 
presented in Tables IV, V, and VI derived using the representation given by 
Theorem 2. 

The other approach adopts the procedures suggested by Dickey and Fuller 
(1979, 1981) and Said and Dickey (1984) which add extra lags of the first 
differences of the data as regressors in equation (5). This extended framework is 
characterized by the following regression (again estimated by OLS): 

k 

(10) &YYt = diyt + E EijdYt'i- + it (i = A, B, C) 
j=l 

where 

In the above representation, ax is the OLS estimator of a, the sum of the 
autoregressive coefficients and the test is again that a = 1. The parameter k 
specifies the number of extra regressors added. In a simple AR(p) process, k =p. 
In a more general ARMA(p, q) process with p and q unknown, k must increase 
at a controlled rate with the sample size. Arguments similar to those developed 
by Said and Dickey can be used to show that the limiting distributions of the 
statistics tai (i = A, B, C) are the same when the innovation sequence is an 
ARMA( p, q) process and regression (10) is used, as they are when the errors are 
i.i.d. and regression (5) is used. However, slightly more restrictive assumptions 
are needed with respect to the innovation sequence { et } and the truncation 
parameter k for this asymptotic equivalence to hold. They are detailed in the 
following Assumption (see Said and Dickey (1984)). 

7See Phillips (1987), Phillips and Perron (1988), and Perron (1988) for details. 
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ASSUMPTION 2: (a) A(L)e =B(L)v,; (b) v, is a sequence of i.i.d. (0,a2) 
random variables with finite (4 + 8)th moment for some 8 > 0; (c) k -- oo and 
T-'k3 -* 0 as T - oo. 

4.2. Extensions to More General Error Processes: Case (2) 

A possible drawback of the methods suggested above is that they imply that 
the change in the trend function occurs instantaneously. Given, for instance, that 
the Great Depression was not an instantaneous event but lasted several years, 
one may wish to allow for such a transition period during changes in the trend 
function. One way to model this is to suppose that the economy reacts gradually 
to a shock to the trend function.8 Consider, for instance, Model (A) where a 
crash occurs. A plausible specification of the trend function, say A, is given by: 

(11) As=yi+t+y (L)DUt 

where {'(L) is a stationary and invertible polynomial in L with A(0) = 1 and 
i= 2 - 1l The long run change in the trend function is given by y4(l) while 
the immediate impact is simply y. A similar framework holds for models (B) 
and (C). 

One way to incorporate such a gradual change in the trend function is to 
suppose that the economy responds to a shock to the trend function the same 
way as it reacts to any other shock, i.e. to impose 4i(L) = B(L)-1A(L) (see 
Section 2). In the literature on outliers specification the framework suggested here 
is analogous to the so-called "innovational outlier" model whereas the frame- 
work considered in Section 4.1 is analogous to the "additive outlier" model (see, 
e.g., Tsay (1986)). We can then implement tests for the presence of a unit root in 
a framework that directly extends the Dickey-Fuller strategy by adding dummy 
variables in regression (1). The following regressions, corresponding to Models 
(A), (B), and (C) are constructed by nesting the corresponding models under the 
null and alternative hypotheses: 

k 

(12) yf= ,uA + ADU+ 'At + JAD(TB)t +ay + 
At 

i=l 

k 

(13) y=,i + 6BDU+ A y J;*+&By 1+ + AD AB 

i=l 

(14) vYtP +A CDU+ Ct+ yCDT +dCD(TB), + ACy 

k 

+ A 
+ 2 C^At_i + et, 
i=l 

The null hypothesis of a unit root imposes the following restrictions on the true 
parameters of each model: Model (A), the "crash hypothesis": aA =1, 13A = 0, 

8 
Again, this treatment is analogous to the methodology proposed by Box and Tiao (1975) 

concerning intervention analyses. 
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OA = 0; Model (B), the "breaking slope with no crash": a' = 1, yB =0, B = 0; 
and Model (C), where both effects are allowed: aC = i, yC= 0, cC= 0. Under 
the alternative hypothesis of a "trend stationary" process, we expect aA, aB, 

aeC < 1; #A, [B3, C # 0; OA, C , yB,yC # 0. Finally, under the alternative hypoth- 
esis, dA, dC, and OB should be close to zero while under the nul hypothesis they 
are expected to be significantly different from zero. 

The asymptotic distribution of the t statistics tjA and t C in (12) and (14) are 
the same, respectively, as the asymptotic distribution of t,A and taC in (10). 
However such a correspondence does not hold for the t statistic teB in (13). 
Apart from the one-time dummy variable d(TB)t, regressions (13) and (14) are 
equivalent; hence the asymptotic distribution of taB is identical to the asymp- 
totic distribution of taC. This implies that in the above framework, it is not 
possible to test for a unit root under the maintained hypothesis that the trend 
function has a change in slope with the two segments joined at the time of the 
change. Consequently, tests for the presence of a unit root in Model (B) will have 
less power using regression (13) than using (10) where the asymptotic critical 
values of the t statistic on a are smaller (in absolute value). However, it is still 
possible to test for a unit root with constant drift against a trend stationary 
process as in Model (B) and use the critical values of Table V. One simply runs 
the regression: 

k 

(15) y~=AB +fBt+ A?BDT* +&5AtA+ t (15) Xt = 1B +:t+y T+ a Yt1+Eci y-i+et. 
i= 1 

The asymptotic distribution of the t statistic t&B in (15) is the same as the 
asymptotic distribution of the t statistic teB in (10). Given that the regressor DUt 
is absent from (15), this case, however, implies that the change in drift is not 
permitted under the null hypothesis. 

Finally, note that it is possible to apply Phillips' nonparametric procedure 
using regressions (12) through (14) without the lagged first-differenced regressors 
and applying the corrections given by (6) and (7). However, such a procedure has 
the unattractive feature of imposing only a one-period adjustment to the change 
in the trend function. In the notation of (11), it imposes A(L) = 1 - 41L where 
A is the coefficient on the first lag in the polynomial B(L)-1A(L). 

The procedures outlined in this section permit testing for the presence of a unit 
root in a quite general time series process which allows a one-time break in the 
mean of the series or its rate of growth (or both). In the next section, we apply 
these procedures in the specific context of breaks at the time of the 1929 crash 
and the 1973 oil shock. 

5. EMPIRICAL APPLICATIONS 

We apply the test statistics derived in the previous section to the data set used 
by Nelson and Plosser and to the postwar quarterly real GNP series. The data set 
considered by Nelson and Plosser consists of fourteen major macroeconomic 
series sampled at an annual frequency. We omit the analysis of the unemploy- 
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ment rate series given that it is generally perceived as being stationary. The 
sample varies for each series with a starting date between 1869 and 1909. 
However, each series ends in 1970. Given that we entertain the hypothesis that 
only the 1929 Great Crash and the 1973 oil price shock caused a major change in 
trend function, each series in this data set contains only one break. It is therefore 
possible to apply the tests described in the previous section. Similarly, the 
quarterly postwar real GNP series contains a single break as the sample goes 
from 1947:1 to 1986:11L. Following Nelson and Plosser, we consider the loga- 
rithm of each series except for the interest rate for which we use the level. 

Of the thirteen series in the Nelson-Plosser data set that we analyze, prelimi- 
nary investigations showed that eleven were potentially well-characterized by a 
trend function with a constant slope but with a major change in their level 
occurring right after the year 1929. For these series, the maintained hypothesis is, 
therefore, that of Model (A) and given that the Great Crash did not occur 
instantaneously but lasted several years, we apply regression (12) to carry out our 
testing procedure. The two series that were not modeled as such are the "real 
wages" and "common stock price" series. For these series, it appeared that not 
only a change in the level occurred after 1929 but there was also an increase in 
the slope of the trend function after this date. For these reasons, the maintained 
hypothesis is that of Model (C), and we use regression (14) to implement our 
tests. 

The postwar quarterly real GNP series offers yet a different picture. The 1973 
oil price shock did not cause a significant drop in the level of the series. However, 
after that date, the slope of the trend function has sensibly decreased. This 
phenomenon is consistent with the much discussed slowdown in the growth rate 
of real GNP since the mid-seventies; see, for example, the recent symposium in 
the Journal of Economic Perspectives (1988). For these reasons, the maintained 
hypothesis is that of Model (B). Given the inherent difficulty in testing for a unit 
root allowing lagged effects for the change in the trend function, we apply 
regression (10) (i = B) to carry the testing procedure. Modeling the change in the 
trend function following the 1973 oil price shock as instantaneous, at least 
appears more plausible than the change that occurred during the Great Depres- 
sion. 

Table VII presents the corresponding estimated regressions for each series 
along with the t statistic on the parameters for the following respective hypothe- 
ses: IL = 0, B = 0, 0 = 0, y = 0, d= 0, and xx = 1. Recall that under the hypothesis 
of a unit root process , L 0 (in general), ,B= 0, 8 = 0 (except in regression 
Models (C)), y = 0, d # 0, and a = 1. Under the alternative hypothesis of 
stationary fluctuations around a deterministic breaking trend function: ,t # 0, 
9#0, 8 0 , y 0(in general), d=0, and a< 1. 

The value of k chosen is determined by a test on the significance of the 
estimated coefficients ci. We actually used a fairly liberal procedure choosing 
a value of k equal to say k* if the t statistic on c, was greater than 1.60 in 
absolute value and the t statistic on cl for 1> k* was less than 1.60 (with a 
maximum value for k of 8, except for the postwar quarterly real GNP series 
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TABLE 

VII 

TESTS 

FOR 
A 

UNIT 

ROOT 

(a) 

Regression 

(12), 

Model 
A; 
y, 
= 
,u 
+ 

6DU, 
+ 
fit 
+ 

dD(TB), 
+ 

6y,tt 
+ 
I 

Ay, 

- 

+ 

TB= 

1929 

T 

X 

k 

u 

t'A 

4 

t6 

fi 

to 

d 

td 

& 

t& 

S(e) 

Real 

GNP 

62 

0.33 
8 

3.441 

5.07 

-0.189 

-4.28 

0.0267 

5.05 
- 

0.018 

-0.30 

0.282 
- 

5.03a 

0.0509 

Nominal 

GNP 

62 

0.33 
8 

5.692 

5.44 

-0.360 

-4.77 

0.0359 

5.44 

0.100 

1.09 

0.471 

-5.42a 

0.0694 

Real 

per 

capita 

GNP 

62 

0.33 
7 

3.325 

4.11 

-0.102 

-2.76 

0.0111 

4.00 

-0.070 

-1.09 

0.531 
- 

4.09b 

0.0555 

Industrial 

production 

111 

0.63 
8 

0.120 

4.37 

-0.298 

-4.58 

0.0323 

5.42 

-0.095 

-0.99 

0.322 
- 

5.47a 

0.0875 

Employment 

81 

0.49 
7 

3.402 

4.54 

-0.046 

-2.65 

0.0057 

4.26 

-0.025 

-0.77 

0.667 
- 

4.51a 

0.0295 

GNP 

deflator 

82 

0.49 
5 

0.669 

4.09 

-0.098 

-3.16 

0.0070 

4.01 

0.026 

0.53 

0.776 

-4.04b 

0.0438 

Consumer 

prices 

111 

0.63 
2 

0.065 

1.12 

-0.004 

-0.21 

0.0005 

1.75 

-0.036 

-0.79 

0.978 

-1.28 

0.0445 

Wages 

71 

0.41 
7 

2.38 

5.45 

-0.190 

-4.32 

0.0197 

5.37 

0.085 

1.36 

0.619 

-5.41a 

0.0532 

Money 

stock 

82 

0.49 
6 

0.301 

4.72 

-0.071 

-2.59 

0.0121 

4.18 

0.033 

0.68 

0.812 
- 

4.29b 

0.0440 

Velocity 

102 

0.59 
0 

0.050 

0.932 
- 

0.005 

-0.20 
- 

0.0002 

-0.35 
- 

0.136 
- 

2.01 

0.941 

-1.66 

0.0663 

Interest 

rate 

71 

0.41 
2 

-0.018 

-0.088 

-0.343 

-2.06 

0.0105 

2.64 

0.197 

0.64 

0.976 

-0.45 

0.2787 

(b) 

Regression 

(14), 

Model 
C; 
y, 
= 
A 
+ 

#DU, 
+ 
fit 
+ 

jDT, 
+ 

dD(TB), 
+ 

&y,- 

+ 

I- 

AYE 

+ 

TB 
= 

1929 

T 

X 

k 

A 

tAi, 

6 

# 

fi 

t'A 

Y 

t 

d 

td 

& 

t& 

S(e) 

Common 

stock 

prices 

100 

0.59 
1 

0.353 

4.09 
- 

1.051 

-4.29 

0.0070 

4.43 

0.0139 

3.98 

0.128 

0.76 

0.718 

-4.87b 

0.1402 

Real 

wages 

71 

0.41 
8 

2.115 

4.33 

-0.190 
- 

3.71 

0.0107 

3.79 

0.0066 

3.33 

0.031 

0.78 

0.298 

-4.28c 

0.0330 

(c) 

Regression 

(10). 

Model 
B; 
y, 

+ 
?t 
+ 

yDT7* 

+y; 
y 

, 

+ 

_l 

+ 

I 

TB= 

1973:I 

T 

X 

k 

A 

t,, 

fi 

to 

Y 

t1 

a 

ta 

S(e) 

Quarterly 

real 

GNP 

159 

0.66 
10 

6.977 

1160.51 

0.0087 

97.73 
- 

0.0031 
- 

12.06 

0.86 
- 

3.98c 

0.0097 

NOTE: 
a, 
b, 

and 
c 

denote 

statistical 

significance 
at 

the 

1%, 

2.5%, 

and 

5% 

level 

respectively. 
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where we used a maximum of 12). This liberal procedure is justified in the sense 
that including too many extra regressors of lagged first-differences does not affect 
the size of the test but only decreases its power. Including too few lags may have 
a substantial effect on the size of the test. 

Consider first the series for which we applied Model (A). To evaluate the 
significance of the t statistic on a. we use the critical value presented in Table 
IV.B with a value of X closest to the ratio of pre-break sample size to total 
sample size. Of the eleven series in that group, the unit root hypothesis cannot be 
rejected even at the 10 percent level for three of them: "consumer prices," 
"interest rate" and "velocity." However, we can reject the null hypothesis of a 
unit root at that 2.5 percent level or better for all other eight series. We can reject 
it at the 1 percent level for the following series: "real GNP," "nominal GNP," 
"industrial production," "employment," and "wages," and at the 2.5 percent 
level for the series "real per capita GNP," "GNP deflator," and "money stock." 
In some cases the coefficient a, which is an estimate of the sum of the 
autoregressive coefficients, is dramatically different from one. For example, it is 
0.282 for "real GNP" and 0.322 for "industrial production." 

Given that the unit root hypothesis can be rejected for the eight series 
mentioned above, we can assess the significance of the other coefficients using the 
fact that the asymptotic distribution of their t statistic is standardized normal. In 
all cases, the estimated coefficients on the constant (,i), the post-break dummy 
(0), and the trend (/B) are significant at least at the 5 percent level. All series 
showed a trend function with a positive slope and a significant decrease in level 
just after 1929. For these eight series the coefficient on the break dummy (d) is 
not significant. These results strongly suggest that, except for the "consumer 
price," "velocity," and "interest rate" series, the underlying process is one of 
stationary fluctuations around a deterministic trend function. 

Consider now panel (b) of Table VII which presents the results for the 
"common stock price," and "real wages" series estimated under Model (C). We 
can reject the null hypothesis of a unit root at the 2.5 percent level for "common 
stock prices" and at the 5 percent level for the "real wages" series. In both cases, 
the constant (,i), the post-break constant dummy (0), the trend (/B), and the 
post-break slope dummy (y) are highly significant, while the break dummy (d) is 
not. The coefficients a for the "real wages" series is very low at 0.298 while for 
the "common stock price" it is at 0.718 showing substantial mean reversion 
effects. This finding about the "common stock price" series is particularly striking 
given the vast amount of theoretical and empirical studies supporting the random 
walk hypothesis in this situation. 

Finally, panel (c) of Table VII presents the results for the postwar quarterly 
real GNP series using regression (10) corresponding to Model (B). In this case, 
the null hypothesis that a = 1 can be rejected at the 5 percent level with an 
estimated coefficient 5 equal to 0.86. This result is especially significant given the 
usual poor power properties of tests for a unit root against stationary alternatives 
when using a data set with a small span sampled frequently (see, e.g., Perron 
(1987) and Shiller and Perron (1985)). The other estimated coefficients in panel 
(c) confirm the relevance of the "trend stationary" model versus the "unit root" 
model. The coefficient on the post-break slope dummy coefficient (y) is highly 
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significant. The estimated regression is therefore consistent with an underlying 
process characterized by stationary fluctuations around a deterministic trend 
function with a decrease in the slope after 1973.9 

Table A3 in Appendix B presents the estimated value for the sum of the 
autoregressive coefficient, a, and its t statistic for the null hypothesis a = 1, for 
all values of the truncation lag parameter k between 1 and 12. In general, the 
results are quite robust to which value of k is selected. 10 

The results presented in this section are quite striking. The unit root hypothesis 
can be rejected for all but three series. To obtain these results, only a rather weak 
postulate needed to be imposed, namely the presence of a one-time change in the 
trend function. We claim that this is a weak postulate for the following reasons. 
As shown by Nelson and Plosser and Campbell and Mankiw, all the series 
analyzed have a unit root if the trend function is not allowed to change. This 
view implies that the 1929 crash is simply one big outlier in the innovation 
sequence. On the other hand, it also implies that the post-1973 growth slowdown 
is a succession of smaller innovations and that the mean of the innovations is 
different for the pre-1973 and the post-1973 period. These alternative interpreta- 
tions are, we think, less appealing than the hypothesis of a break in the trend 
function, especially given that we allow such a break under both the null and 
alternative hypotheses. 

Given that the "consumer price," "velocity," and "interest rate" series appear 
to be characterized by the presence of a unit root, it seems worthwhile to see if 
this feature is stable in the pre and post 1929 samples. The subsample Dickey- 
Fuller type regressions are presented in Appendix B for values of k between 1 
and 12. Consider first the "consumer price index." With k = 2, the estimated 
value of the sum of the autoregressive coefficients, &- is 0.965 for the pre-1929 
sample with a t statistic of - 1.28. We therefore cannot reject the null hypothesis 
of a unit root for this subperiod. However, for the post-1929 sample, the picture 
is rather different; when k = 7, & has a value of 0.704 with a t statistic of -4.56 
significant at the 1 percent level. The nonrejection of the unit root hypothesis 
using the full sample is due to the pre-1929 sample. After 1929, the unit root is no 
longer present. 

The case for the "velocity" series has a special feature. It has been well 
documented that the U.S. velocity series declined steadily until 1946, remained at 
a fairly constant level until 1970, before increasing (see, for example, Poole (1988) 
and Gould and Nelson (1974)). For this reason, we discuss applications of the 
standard Dickey-Fuller procedure for the following three samples: 1869-1929, 
1930-1945, 1946-1970. We cannot reject the unit root hypothesis with the 
pre-1929 sample even though & is only 0.865 (k = 0). However, the picture is 

9Basically, the same estimates of the sum of the autoregressive coefficient a and its t statistic were 
obtained using regressions (13) and (14), for all values of k, showing some robustness for the results 
presented. We also applied Phillips' nonparametric procedure to the detrended series (equations (6) 
and (7), i = B). These test statistics did not allow the rejection of the null hypothesis of a unit root. 

10One notable exception is the quarterly real GNP series where the t statistic is significant at the 5 
percent level with k = 2 or k = 10. It is significant at the 2.5 percent level with k = 11, with a value of 
- 4.32. We choose to report the result of k = 10 because the 10th lagged first-difference was highly 
significant (t statistic of 2.29) while the 11th and 12th lags were not. 
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dramatically different using post-1929 samples. For the period 1930-1945, with 
k = 1, a is estimated at - 0.011 with a t statistic (for testing a = 1) of - 3.44 
which is significant at the 5 percent level. Though this result should be taken with 
caution due to the small number of observations, it is suggestive of a quite 
different behavior. The period 1946-1970 affords a modest amount of additional 
information and yields still more dramatic results: with k= 4, a is equal to 0.00 
with a t statistic (for a = 1) of - 5.86, significant at the 1 percent level using the 
Dickey-Fuller critical values. It therefore appears that the "velocity" and "con- 
sumer price" series yield similar results: the presence of a unit root before 1929 
but not after. 

The results for the interest rate series indicate that, in this case, the unit root 
hypothesis cannot be rejected at usual significance levels for both subsamples 
(even though a is estimated at 0.540 (k = 3) with the pre-1929 sample). Indeed, 
given our previous results, we can conclude that only the "interest rate" series is 
characterized by the presence of a unit root after 1929. All the other series are 
better construed as stationary fluctuations around a deterministic trend function 
for this period. 

6. DISCUSSION AND CONCLUDING COMMENTS 

When testing for the presence of a unit root in a time series of data against the 
hypothesis of stationary fluctuations around a deterministic trend function, the 
use of a long span of data has definite advantages. It allows tests with larger 
power compared to using a smaller span, in most cases even if the latter allows 
more observations (see Shiller and Perron (1985) and Perron (1987)). The 
drawback, however, is that a data set with a large span has more chance to 
include a major event which one would rather consider as an outlier or as 
exogenous given its relative importance. The arguments in this paper rest on the 
postulate that two such events have occurred in the 20th century: the 1929 Great 
Crash and the slowdown in growth after the oil shock of 1973. We therefore 
considered, as a relevant alternative, a trend function with a change in the 
intercept in 1929 and a change in the slope after 1973. 

Let us discuss, in more detail, what are the relevant issues in drawing particular 
conclusions about the nature of economic fluctuations from our results. It is 
particularly important to put our results into perspective and also highlight what 
has not been shown. 

The first important issue to point out is that we have not provided a formal 
unconditional statistical model of the time series properties of the various 
aggregates. A rejection of the null hypothesis of a unit root conditional on the 
possibility of shifts in the underlying trend function at known dates does not 
imply that the various series can be modeled as stationary fluctuations around a 
completely deterministic breaking trend function. As a matter of general princi- 
ple, a rejection of the null hypothesis does not imply acceptance of a particular 
alternative hypothesis. However, since the tests were designed to have power 
against a specific class of alternative hypotheses, it is useful to look among close 
members of that class to propose an interesting statistical model for the various 
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aggregates. Only with such a model is it possible to provide forecasts with 
appropriate standard errors. 

We certainly do not entertain the view that the trend function including its 
changes are deterministic. This would imply that one would be able to forecast 
with certainty future changes. This is indeed quite unappealing. What we have in 
mind in specifying our class of maintained hypotheses can be parameterized as 
follows: 

(16) Yt ,= Q t + zt, qt At + 9tt, 

where A(L)Zt = B(L)et; et ,i.i.d.(O, a2); tt=pt-, + V(L)vt, and f = fit-, + 

W(L)wt. Here, the Zr's are (not necessarily stationary) deviations from the trend 
function qt. The intercept and the slope of the trend functions, ti and Pt, are 
themselves random variables modeled as integrated processes with W(L), V(L) 
stationary and invertible polynomials. However, the important distinction is that 
the timing of the occurrence of the shocks vt and wt are rare relative to the 
sequence of innovations {et}, for example, poisson processes with arrival rates 
specified such that their occurrences are rare relative to the frequency of the 
realizations in the sequence { et }. The intuitive idea behind this type of modeling 
is that the coefficients of the trend function are determined by long-term 
economic fundamentals (e.g., the structure of the economic organization, popula- 
tion growth, etc.) and that these fundamentals are rarely changed. In our 
examples, vt is nonzero in 1929 (the great depression) and w, is nonzero in 1973 
(the oil price shock). 

In this sense, our exogeneity assumption about the changes in the trend 
function is a device that allows taking these shocks out of the noise function into 
the trend function without specific modeling of the stochastic nature of the 
behavior of It and 8t. It is in this sense that our approach does not provide an 
unconditional representation of the time series properties of the various variables. 

Estimation of models of the form (16) by specifying a probability distribution 
for the error sequences {et,wt, vtw is clearly an important avenue of future 
research. Interesting recent advances on this topic have been provided by 
Hamilton (1987) and Lam (1988) where the slope of the trend function is allowed 
to take two different values and the changes are modeled as a binomial process. 
However, no methods are currently available to test whether Zt is integrated or 
not in this framework.11 Problems in estimation of models of the form (16) are 
further compounded by the fact that, according to our view, only one nonzero 
realization of both v, and wt would be present in the data set typically available 
for the series of interest. 

In the above framework, the purpose of this paper is to test whether Zt is an 
integrated process or not, i.e. to test whether the shocks {et} have persistent 
effects that do not vanish over a long horizon. Our approach is to remove from 
the noise function two events that occurred at two dates where we believe 
positive occurrences of the shocks { vt, w) } happened and to model them as part 

"1Both authors studied the behavior of the postwar quarterly real GNP with possible shifts in the 
slope of the trend function. Hamilton (1987) imposes Zt to be an integrated process while Lam (1988) 
leaves Z, unconstrained. 
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of the trend function. The fact that we model these changes as exogenous implies 
that our results are conditional. That is, conditional upon the presence of a 
change in the trend function in 1929 and 1973, the fluctuations are transitory 
(i.e., Zt is stationary). 

An important direction for future research is to make this conditional result 
into an unconditional statement. This could, in principle, be achieved by a direct 
test for structural change in the trend function. In a sense, our procedure allows 
such a test, but conditional on a change occurring at a fixed known date. Hence, 
problems of pre-testing and "data mining" could be raised regarding the role of 
looking, ex-post, at the data on the choice of the date.12 Accordingly, what is 
needed is a test for structural changes in the trend function occurring at unknown 
dates. The problem, however, is that care must be applied to ensure that the test 
has an adequate size under both the unit root and trend-stationary hypotheses. 
No such test is currently available in the literature. We hope to report, in the near 
future, developments in this area and applications in this context. 

However, an important issue of observational equivalence could not even be 
settled by such a formal test for structural change. Consider, for instance, the 
following limiting case in the crash model.13 A trend-stationary model with a 
break and where the errors have zero variance is observationally equivalent to a 
unit root model with drift where the errors have a high probability of being zero 
but are occasionally nonzero and finite. In general, when the variance of the 
errors is nonzero, the two models will be nearly observationally equivalent with 
the disturbances in the unit root model having fat tails. We are able to make a 
distinction in our empirical result through the mixing conditions (see Assump- 
tions 1 and 2) which prohibit fat tailed disturbances. Any formal test for 
structural change would, presumably, also have to impose some mixing condition 
prohibiting fat-tailed disturbances, thereby not resolving this issue of near- 
observational equivalence. 

In fact, any test for the presence of a unit root against trend-stationary 
alternatives is subject to another type of observational equivalence, as recently 
argued by Cochrane (1987) and Blough (1988). Indeed, in finite samples, any 
trend-stationary process is nearly observationally equivalent to a unit root 
process with a strong mean-reversion component, i.e. where the errors have a 
moving-average component with a root near minus one.'4 The fact that we reject 
the unit root hypothesis excluding the event of 1929 suggests that if there is a unit 
root at all the correlation structure of the innovation sequence must exhibit 
substantial mean reversion. 

12See, for example, Christiano (1988). 
1This issue and its following illustration were raised by a referee. 
14PThis observational equivalence problem only disappears asymptotically. In other words, in finite 

samples, any test for a unit root with ARMA errors should have zero power. Formally, the critical 
values should be determined such that the test has a given fixed size over all possible values of the 
nuisance parameters (here, the additional correlation in the errors). Given the near observational 
equivalence, any such test would have zero power by definition. The unit root tests can be rationalized 
by arguing that we are willing to have the wrong size over some of the parameter space 'exactly 
because for all practical purposes it does not matter whether we label a series as trend stationary or 
difference stationary with a strong mean-reversion component. 
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To sum up: trend stationary processes with a break are nearly observationally 
equivalent to unit root processes with strong mean-reversion and a fat-tailed 
distribution for the error sequence. Whichever view one adopts cannot be decided 
by data alone. Nevertheless, the picture under any of these views is basically the 
same: shocks had little, if any, persistence effect over a long horizon. Only those 
associated with the Great Depression and the oil price shock significantly altered 
the long run behavior of the series. 

While choosing one view over the other is a matter of convenience for 
interpreting the data, it has profound implications for a multitude of statistical 
procedures. Indeed, under the unit root view one must ensure the validity of the 
procedures under fat-tailed disturbances, and at the moment very few are 
appropriate in a time series context. Hence for all practical purposes, it may be 
more advantageous to adopt the trend-stationary view with breaks and detrend 
our series accordingly prior to analyzing the remaining noise. 

Department of Economics, Princeton University, Princeton, NJ 08544, U.S.A.; 
and Centre de Recherche et De'veloppement en Economique, Universite de Montreal, 
C.P. 6128, Succ. A, MontrJal, Canada, H3C - 3J7. 

Manuscript received October, 1987; final revision received February, 1989. 

APPENDIX A 

The conditions imposed by Assumption 1 permit us to use a functional weak convergence result 
due to Hermdorf (1984). Let St = tle, (So = 0) and define the following variable lying in the space 
D[0, 13: 

XT(r)=-u1T-'/2S[Trl=r'J7T-1/2 _l, (j-l)/Ts r<j/T ( .j T) 

XT (1)- 1T-1/2ST. 

Hermdorf's theorem states that under the conditions of Assumption 1, XT(r) =* w(r) where 
denotes weak convergence to the associated probability measure and w(r) is the unit Wiener process 
defined on C[0,1], the space of all continuous functions on the interval [0,11. Following Phillips 
(1987) and Phillips and Perron (1988), it is easy to derive the following lemma related to functions of 
St. These results will be used in proving both Theorems 1 and 2. 

LEmMA A.1: Let St = EX. le(So =0) and assume that the innovation sequence { e,t} satisfies the 
conditions of Assumption 1. Furthermore, let TB = XTfor all T; then as T-3 oo: 

IB B 

(a) T-3/2 Si af w(r) dr; 

TB 

(b) T 2 jS12 =2fw(r)2 dr; 

TB 

(c) T- 5/2 EA Crf rw(r) dr; 

TB 

(d) T 3/2 >je2e a Xw(X) - w(r) dr); 

T 

(e) T 5?S.J_ej (s /2)(w(1) a 
I 
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The results in (a) through (d) are simple extensions of those in Phillips (1987) and Phillips and 
Perron (1988); part (e) is proved in Phillips (1987). The previous results can be recovered by simply 
letting X = 1 in which case TB = T. For example, to prove part (a): 

TB TB 

T3/29 S =a fi/ T l/2a -S[Trjdr=a xXT(r)dr =*J w(r)dr 

using Herrndorf's weak convergence result and the continuous mapping theorem (see, e.g., Billingsley 
(1968)). The proofs of (b), (c), and (d) are entirely analogous. 

PROOF OF THEOREM 1: We consider first the most general model (C) in which both ,B (the slope) 
and ,u (the intercept) are allowed to change, i.e.: 

Yt =IL + 81t + et (0 < t A TB) 

(A1) Y=2 + ( 2 
#1 

)TB + ,B2t + et (TB < t < T). 

The following lemma provides a convenient representation of the sample moments of {Yt }y 

LEMMA A.2: Assume that {Yt)} is generated according to (A.1) with the innovation sequence {et, 
satisfying Assumption 1; then, 

T 

(a) Ety,I = (1/6)[,81(3X - A3) +f,2(2 - 3X + 3)]T3 
1 

+( l4L 2+ A2(1 -2) + X(1 - X)(,81 -,2)]T2 

? [(3/2)jLX + (3/2)(I - X)f2 - 12- (1/3)#,X - (1/3)#2(l- X)] T 

+ [T-3/2 te,ij]T3/2 +Op() 

T 

(b) Eyt-= (1)[#(X2-2X) + (I + 2A-3A?)]T2 2 

+ [XAI + (1 - X)js2 + (3/2)#1X - (')p2(1 + 3A)]T 

T 

(c) E yt2l= (113)[,#2A+(3 - 2/ ) + X 22 (1 _ ?)3 + 3(- l,2 + (1/ _ A)2] T3 

+ [lAJX2 + F22(1 -_A2)_(-)(A +) -2,2(_ ? A)2)]Te2 

T TB T 

+2 X(/pl-#2)T- 1/ et + #T-3/2 tet - 2T -3/2 E: tet T 3/2 

TRB+1 1 TB+ 1 

+ [ 21 + (1/6)#B2A? + ,ul,BX + (1 - XA),22 + (1/6),822 (1 - A) 

+y2R(1-A)-2y2 T-' Tlet2 lT+ op (T), 
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T 

(d) EYtYt, = (1/3)[ #2?2j(3 - 2X) + #? (1 -)3 + 3,81,82X(1 - X)2] T3 1~~~~~~~~~ 

[ lX2 + P212(1-2 2)]T2 

TB T T 

+ 2 IT-3/2 tet?1 +2T-3/2 E te t_l +X(#I - 2)T-1/2 E e, T 3/2 
TB+1 TB+1 

+ [,2+22(1 - X) - (1/3)(X132 + (1- X)1322) 

+ X( #2-131132) + X1(L2 + Al) - 2XA2/02] T+ o,(T). 

It is straightforward but tedious to show that a is given by - = A/D where 

(A.2) A = (T2/2 + T/2) > tyt -1> Yt 

-(T T3/3 + T 2/2 + T16) E yt- I yy Y-T tyt_lyEtyt 

+(T T2/2 + T/2) Ey,-, E tYt + ( T4/12 - T2/12) SY,tyt- 

and 

(A.3) D = ( T4/ 1- 2)yt- l-T( , t_1i) 

+ (T + T)-(Ptyt ,yt--(T3/3 + T2/2 + T16) 

where all summations run from 1 to T. To prove part (b) we derive the limits of T- 7A and T- 7D 
using Lemma A.2: 

T- 7D (1/12)T- ty2 - T-6(Ety1tl) 

? T-3Etyt-, - T -t_l (1/3)T4(y11) + ot(l) 

= (1/36)[I32X3 + B22(1 - 3X + 2X3) + 3132#,3X(1 - A2)] 

- (1/36)[13X(3 - A2) + 12(2 - 3X + A3)]2 

+ (1/12)131X(3 -A2) + #2(2 - 3X ?+ 3)][ 1X(2 -X) +? 2(1- X)2] 

-(1/12) [ ,8l(2 - A) +^1 )]+o() 

Simple algebra yields: 

(A.4) T-7D (1/36)( 3 + 4A - 3A 4 + 3A s - A6)(,Bl _82 )2. 

Similarly, 

T =A T _ty1_T * tT - (1/3)T4(Fyt1)2 - T6(tty1)2 

+ (1/12)T 3y1y p1 + op(l) 

= (1/12)[131X(3 - 2) + 132(2- 3X + 3)] *[,13(2 - X) + 132(1 _ X)21 

-(1/12)[,81X(2-X) + 12(1 _ X)2]2 

- (1/36)[1 1X(3 - X2) + 2(2 - 3X +)] 

+ (1/36)[ #2X3 + #22(1 - 3 + 2X3) +3#2 1 f- V)] + op(l 
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and 

T-7A (1/36)(-3A2 + 4A3 - 3A4 + 3A5 - A6)(fl, - ,2)2 

Therefore, a = T-7A/T-7D 1 proving part (b, i). To prove part (b, ii), note that T(a - 1)= 
T 6(A - D)/T-7D. Simple manipulation yields: 

T (A - D) = (1/12)T2(1y,y,1 -(1/12)T 2y,/_ + T 

+ (1/6)T-YTYt1 - (1) T-4YTE ty_1 - (1/12)T-4 (Y,1)2 

+ op (1) 

= (1/24)[fij#A2 + f?(1 - A)2 + 2fl,1f2A(1 - A)] 

? (1/12)[/?1X(3 -A2) + ,82(2 -3A + 3) [,81A(2 -X) + /2(1 -X)2] 

?(1/12)[(f1 - 2)X?+2] * [t (2-XA) ?+ R2(1 - A)2] 

- (1/12)[(f1 - 12)X?+2] [P1X(3 - A2) + f2(2- 3A + X3) 

- (1/12) [f1X (2 - A) + R2 (1 - A)2] ? op(1) 

and 

T-6(A - D) -(1/24)(f,B _p2)2[_A? + 4A3 - 5A + 2A]. 

Therefore, 

T(a-1) -- (3/2)[-1+ 4A -5A2 + 2A3] [-3 + 4A -3A2 + 33 -A4] 1 

proving part (b, ii). 

PROOF OF PART (a): The proof of part (a) is straightforward but tedious. The following arguments 
present the main steps. First, the expressions for the moments of { y, } in Lemma A.2 can be written 
as follows: 

T 
ty,l =ajT3+bjT2+ciT3/2+diT+op(T), 

Tyt- = a2T2 + b2T+ c2T1/2 + d 

y,_1 =a3T3 + b3T2 +c3T32 +d3T+op(T), 

T1YtYt- == a4T3 + b4T2 +?c4T3/2 +d4T+ op(T). 

The coefficients a,, b,, c, and d, (i= 1,...,4) are given by the corresponding expressions in 
Lemma A.2 where the condition ,= = #2= / is imposed. From (A.3), the denominator of a is given 
by: 

T-5D = a3/12 - al + aja2 -2a/3]T2 

+ [b3/12 - 2a1b1 + a12 + b1a2 + a1a2 -(2/3) a2b2- a2/2]T 

+ [c3/12 - 2a1c1 + alc2 + cla2 -(2/3) a2c2] T1/2 

?[d3/12 - a3/12 -b2- 2ald + ald2+ blb2 

?d1a2 ? alb2 + bla2 -b22/3 - (2/3)a2d2 -a2b2-a 2/6] + op(l). 
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Now, tedious algebra shows that the 0(T2), O(T), and 0(T1/2) coefficients all cancel out and the 
sum of the 0(1) coefficients yields the following result: 

T -D S (1/12) a72 + (1/12) [/L1-, 2 ]2[A-4A2 + 6A3 - 3A4]. 

To analyze the limit of T-5A, the numerator of &, we need the expansions for E2y, and S2ty,. These 
are given by: 

1 tYt= a1T3 + (b, + ,B/2) T2 + c1T3/2 + (1/3)(d1 + (5/6)p + 2) T + oP (T), 

?llyt=a2T 
+(b2?+#)T+c2T2 +?d2. Then we can write, using (A.2): 

T-5A - [aia2 -a 2/3 -a2 + a4/12] T2 

?(a,a2 + (b2 + )(a1/2-a2/3) + (b1 + //2)(a2/2 - a,) - a 2/2 + b4/12 

+ a1b2/2 - alb, - a2b2/3 + b1a2/2] T 

+ [a1c2 + c1a2 - (2/3) a2c2 - 2a1c1 + c4/12] T1/2 

+ [(b2 + 1)(bl/2 + a1/2 - b2/3 - a2/2) 

? (1/3)(d1 + (5/6)3 + A2)(a2/2 - a,) 

+ (b1 + P/2)(b2/2 + a2/2 - bl) + d1a2/2 + b1a2/2 - a2d2/3 - a2b2/2 

-a 2/6 - d1al + ald2/2 + d4/12 + a4/12]. 

Again, tedious algebra shows that the 0(T2), O(T), and 0(T1/2) terms all cancel out and that the 
sum of the coefficients remaining yields the following result: 

T- 5A -(+ (1/12) ? [, - 
A2 ]2[A - 4X2 + 6A3 - 3A4]. 

This proves part (a). 

PROOF OF THEOREM 2: We first note some invariance properties of the estimators a' (i = A, B, C): 
LA is invariant with respect to ,u and d; aB is invariant to g, and Au2; and ac is invariant to d, , 
and AL2. Hence, without loss of generality, we can study the limiting distribution of T(L' - 1) and t& 
under the null hypothesis that the sequence {Yt} is generated according to: 

(A.5) yt =yt-, + et (t= 1. T) 

with the innovation sequence satisfying Assumption 1. It is also straightforward to show that under 
(A.5), a' (i = A, B, C) are asymptotically equivalent to the least-squares estimators aL (i = A, B, C) in 
the following regressions: 

(A.6) Yt ? + DUt + At Ay 1?t,A, 

(A.7) yiB + B t + ,BDTt* + 
- 

yt 

(A.8) Y = Ac + ?cDUt + ?ct + ?cDTt + a?cyt1+t 

where DUt = 1 and DT7 = DTt* = if t TB and DU, = O, DT t - TB, DTt = t if t > TB. Since we 
are also concerned with regressions of the type (A.6)-(A.8) later in the text, we shall derive the 
limiting distributions concerning L (i = A, B, C) using the representation of aL (i = A, B, C). Note, 
however, that LA in (A.6) and a in (A.9) are not invariant to the value of the parameter d under the 
null hypothesis. To achieve invariance, one must introduce a dummy variable D(TB)t taking value 1 
at t = TB + 1 and 0 elsewhere, as is done in regressions (12) and (14). Under the null hypothesis, LB is 
not invariant to a drift taking two distinct values: i,u and /2. To achieve invariance, the variable DUt 
must be introduced in (A.7). However, this affects the limiting distribution of LB which becomes 
equivalent to that of ac. Hence, one cannot analyze directly the case of a joint segmented trend 
function in a one-step type regression. We now turn to the proof of the theorem deriving the limiting 
distribution of T(a' - 1) and t&i (i = A, B, C) in (A.6) through (A.8). 
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The following Lemma provides weak convergence results for the sample moments of the data and 
will be used extensively. Its proof is a simple extension of Lemma A.1 and follows the methods of 
Phillips (1987) and Phillips and Perron (1988). 

LEMMA A.3: Let {Y}To be a stochastic process generated according to (A.5) with the innovation 
sequence satisfying Assumption 1. Furthermore, let TB = AT; then as T oo: 

TB 

(a) T- 3/2 yt= ajw(r) dr, 
1o 

TB 

(b) T- 5/2 ty, of rw(r) dr, 

TB 

(c) T~2 'y7 = a2jX(r)2 dr, (c) o 
T 

(d) T- yt- l e, =>(/2) ( w()-e/a). 

Parts (a), (b), and (c) are simple generalizations of results in Phillips (1987) and Phillips and Perron 
(1988) where TB = T and hence X = 1; part (d) is proved in Phillips (1987). 

Using the property that a regression of the form y = X1,f1 + X2,f2 + e^ yields a numerically 
identical estimator /2 as obtained in a regression of the form y* = X2*j'2 + e where y* and X2* are 
projections of y and X2, respectively, on the space spanned by the vectors in X1, (A.6), (A.7), and 
(A.8), can be written as: 

(A.9) ~ ~ ~ ~ ~~-ii 1+ i (t=1 T; i=A, B,C), (A.9) Y" t ,#iXl,t + 'i X2,t + &ii*l+e t ,... ; ,B ) 

where 

PA = B; = YBY; C = yC 

YA t YBt Yt Y, 

YA*t-1 YBt-1 Yt-1 - -1' 

XlAt = X1Bt = t - 

Xlct = t - cl if t < TB and =t -C2 otherwise, 

X2A, = DUt - X, 

X2Bt = - t* if t < TB and =t - TB - i* otherwise, 

X2ct = tc- c if t TB and =0 otherwise, 

Yct=y,-A if t <TB and =yt-B otherwise, 

Yc*t-i =Yt- -A' if t , TB and =Y- - B' otherwise, 
and 

T T-TB 

t =T- 2t = (T +1)/2, t* =T-1 2:, t =T(l -) A)/2 + (1 - A )/2, 
1 1 

cl = t-T(1-X)/2, c2 =t + TX/2, 

TB TB 

A =-Y+ A-lTl (y--Yi), B = Y- (1-A) lT-1(yt-Yi), 
1 1 

TB TB 

A' = Y_l ?X-'T-' (Y,-1- ii), B'= Y1Q~-(1 A) lT1l E(Y,1 -Y_ 

1 1 

T T 

T_ 'yt, Y_11=T-lyy-l. 
1 1 
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Now, let Yl1 =(yi*.,Yy,T-1), E' = (el. eT), Z = [Xli, X2J], Xli = (X,11, Xli,T), X2, 
(X21,11. X2i T); then, under the null hypothesis, 

(A.10) &I -1 = (Yi'y,) i'E- (Y1'1Y) 1'Zi [ Z,' (I-Py)Z] Z ' P E 

where Py, = Y1 (Y1' 1)- ?7' . Furthermore, define the following terms: 

Zi'Z, = 
[b, c ]' Zil Yi [=ji ] [' = 

]L 

Straightforward manipulation yields the following representation for a" - 1: 

(A.ll) a-1 = [(aic, - b?) Yi'E- ciHiKi + biJiKi - aiJiLi + b,H1Lj]/ 

[(aic, - b) a i c1H72 + 2b1HRJj] 
--E, /F. 

The quantities involved are defined as follows with their respective limits as T oo, obtained using 
Lemma A.3: 

aA = aB = T3/12 - T/12, T 3aA = T3aB 1/12, 

bA = -(1-X)XT2/2, T2bA (1 - )A/2, 

CA = (1-X)XT, T1cA-+ (1-X)X, 
T 

YA' YA = YBYB-,(Y,l- -1)2 
1 

T2YAYA = TY2 YBy [j w(r)2dr j w(r) dr)], 

T 

YA'E= YB E=-?(yl-1 - V-l)e,, 

T-1YA'E= T-1YYBE (a2/2)(w(1)2-ae2/a2)-a2w(1)f w(r) dr, 

T 

HA = HB D=t(Yt-lY ) 
1 

T 5/2HA = T-5/2H8 a rw(r) dr- (a2) jw(r) dr, 

TB 

JA= ,(yt-l1-Y-j), T 3/2JA =*a w(r)dr-aX lw(r)dr, 

T T 

KA = KB = Etut - ut, T32KA = T32KB * (a/2)w(1) - a wf(r) dr, 
1 1 

TB 

LA = E(et-e ), T-112LA OcrW(X) -aXw(1), 
1 
T 

T-TB 

cB= T *2 + , (_-*2T-3CB -(1-A)3(l + 3A)/12, 

T 

JB= E (t TB)(Yt-1 Y-l)9 
TB +1 

T-/2JsB=* aj 1rw(r) dr- Xcaj1w(r) dr- ((1 - X)2/2) aj w(r) dr, 
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T8 LB E (t t- TB) (et ), T- 3/2LB-( ((1-A W)/2) caw (1)-rr w (r) dr, 

TB T 

ac= 
2 

(t- C1)2+ , (t-c2)2, T-3ac (1- )2/12 +X3/12, 
1 TB+1 

TB 

= , (t - c1)2, T 3bC X3/12, 

TB 

CC = F (t - C1)2, T-3cc 13/12, 

TB T 

Yc'yc= (yt--A )2 + , (y,- -B')2, 
1 TB+1 

T CYYc-rq [ w(r) dr x1(fXw(r)dr) -(1 -X) 1(f w(r) dr)], 

TB T 

Yc E = F,( yt_- -A') et + F ( Yt --B')et,, 
1 TB+1 

T- 1Y'E W (a2/2)(w(1)2-a2/a2)-X-1a2w(X)f w(r) dr 

- a2(w(1) - w(A))(l - XA)'f1w(r) dr, 

TB T 

Hc = , (t - cl)(y,l -A')+ ? (t-C2)(Y,-1-B'), 
1 TB+1 

T5/2Hc aG[f'o rw(r) dr-(1)(j +X)f w(r) dr? +() w(r) dr]j 

Jc= Y.(t-cj)(Y,-- A'), T- C =: a [fXrw(r) dr-(X/2)f w(r) dr], 

TB T 

Kc = E (t-Cl)e, + F, (t-C2)et, 
1 TB+1 

T-3/2KC a[21)(1 - X)w(l) + (1)w(AX) w(r) dr] 

Lc = , (t- cl e,, T-3/2Lc *a[(X/2)w(X)j- Xw(r)drj 

Now, using (A.11), we can write the statistics as follows: 

(A.12) T('A-1) - T- /Th6FA, 

(A.13) taA = T EA/[SA2 T6FA T-(aAcA -bA)]1/ 

(A.14) T(a& - 1) = T-7EJ/T8, i = B, C, 

(A.1) t& = T7E,/S,2 -8F - T-6 (aici -b2) 1/2, i = B, C, 

where 92 = T- 12Tet,. 
The results of Theorem 2 follow taking the limits of the expressions in (A.12) through (A.15) as 

T-+ oo, using the weak convergence results of the relevant moments (given above) and the fact that 
?,2(i = A, B, C) converges in probability to a2e as T-. oo. 
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APPENDIX B 

EXTENDED SET OF RESULTS FOR TESTS OF A UNIT ROOT USING SPLIT 
AND FULL SAMPLES 

TABLE 
Al 

TESTS 

FOR 
A 

UNIT 

ROOT 

ON 

PRE-1929 

SAMPLES 

Regression: 
y, 
= 

+ 

P3t 
+ 

5ytY, 

+ 

-1_1d, 

AY,-, 
+ 
.t 

k=1 

k=2 

k= 
3 

k=4 

k=5 

k=6 

k=7 

k 

8 

k=9 

k=10 

k=11 

k=12 

Real 

GNP 

& 

0.44 

0.42 

0.43 

0.32 

t- 

-2.33 

-1.83 

-1.43 

-1.27 

Nominal 

GNP 

& 

0.60 

0.52 

0.45 

0.44 

0.57 

ta 

-2.14 

-2.04 

-1.80 

-1.12 

-0.89 

Real 

per 

capita 

GNP 

& 

0.39 

0.37 

0.37 

0.23 

ta 

-2.44 

-1.91 

-1.51 

-1.36 

Industrial 

production 

a 

0.69 

0.72 

0.65 

0.64 

0.69 

0.73 

0.68 

0.71 

ta 

- 

3.14 

-2.57 
- 

3.00 

-2.83 

-2.18 

-1.78 

-1.93 

-1.43 

Employment 

a 

0.76 

0.80 

0.80 

0.78 

0.82 

0.74 

0.61 

0.56 

ta 

-2.16 

-1.65 

-1.72 

-1.91 

-1.43 

-2.05 

-2.85 

-2.63 

GNP 

deflator 

a 

0.84 

0.80 

0.78 

0.77 

0.79 

0.75 

0.74 

0.71 

ta 

-2.44 

-2.79 

-2.66 

-2.54 

-2.10 

-2.19 

-2.05 

-2.05 

Consumer 

prices 

a 

0.95 

0.97 

0.96 

0.96 

0.96 

0.97 

0.96 

0.96 

ta 

-1.89 

-1.28 

-1.37 

-1.50 

-1.47 

-1.29 

-1.37 

-1.41 

Wages 

a 

0.76 

0.73 

0.68 

0.66 

0.63 

0.54 

0.30 

0.43 

t& 
- 

2.32 

-2.22 

-2.35 

-2.09 

-1.90 
- 

2.08 

-2.82 

-1.67 

Real 

wages 

a 

0.44 

0.50 

0.49 

0.43 

0.24 

0.28 

0.09 

0.68 

ta 

-2.83 

-2.23 

-2.05 

-1.89 

-2.21 

-1.71 

-1.84 

-0.63 

Money 

stock 

& 

0.75 

0.71 

0.55 

0.61 

0.55 

0.46 

0.25 

-0.04 

ta 

-2.88 

-2.89 

-4.20 

-2.71 

-2.53 

-2.54 

-3.01 

-3.37 

Velocity 

& 

0.89 

0.90 

0.91 

0.90 

0.93 

0.91 

0.89 

0.90 

ta 

-1.52 

-1.33 

-1.22 

-1.17 

-0.82 

-0.93 

-1.12 

-1.08 

Interest 

rate 

& 

0.73 

0.71 

0.54 

0.54 

t- 

-1.73 

-1.53 

-2.06 

-1.59 

Common 

stock 

prices 

a 

0.81 

0.86 

0.73 

0.75 

0.76 

0.75 

0.64 

0.68 

0.61 

ta 

-1.95 

-1.27 

-2.29 

-1.83 

-1.60 

-1.55 

-2.09 

-1.75 

-2.06 

Quarterly 

real 

GNPa 

a 

0.93 

0.91 

0.92 

0.93 

0.93 

0.92 

0.91 

0.90 

0.90 

0.88 

0.86 

0.89 

ta 

-2.51 

-3.02 

-2.52 

-2.23 

-2.18 

-2.41 

-2.60 

-2.83 

-2.68 

-3.04 

-3.40 

-2.62 

aThe 

sample 

for 

Quarterly 

Real 

GNP 
is 

47:1-73:1. 
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TABLE 
A2 

TESTS 

FOR 
A 

UNIT 

ROOT 

ON 

POST-1929 

SAMPLES 

Regression: 

=1 

+ 
e 

k=1 

k=2 

k=3 

k=4 

k=5 

k=6 

k=7 

k=8 

k=9 

k=10 

k=11 

k=12 

Real 

GNP 

a 

0.72 

0.75 

0.75 

0.78 

0.74 

0.66 

0.56 

0.33 

0.22 

0.18 

0.30 

0.09 

ta 
- 

3.48 

-3.00 

-2.57 

-1.96 

-2.16 
- 

2.65 
- 

3.03 
- 

5.32 
- 

3.97 

-3.19 

-2.05 

-2.34 

Nominal 

GNP 

a 

0.76 

0.87 

0.87 

0.89 

0.86 

0.79 

0.72 

0.63 

0.56 

0.51 

0.41 

0.40 

ta 

- 

3.37 

-1.87 

-1.60 

-1.35 

-1.66 

-2.40 

- 

2.93 

-4.10 

- 

3.39 

- 

3.20 

- 

2.91 

-2.24 

Real 

per 

capita 

GNP 

& 

0.78 

0.79 

0.79 

0.82 

0.78 

0.71 

0.63 

0.43 

0.34 

0.32 

0.46 

0.30 

ta 

-3.05 

-2.91 

-2.55 

-1.96 

-2.19 

-2.64 

-3.03 

- 

5.36 

-3.91 

- 

3.08 

-1.89 

-2.13 

Industrial 

production 

& 

0.68 

0.69 

0.66 

0.63 

0.71 

0.64 

0.53 

0.23 

0.03 

-0.11 

-0.03 

-0.24 

ta 

-2.84 

-2.75 

- 

2.65 

-2.52 

-1.76 

- 

2.13 

- 

2.55 

- 

5.75 

- 

4.38 

- 

3.61 

- 

2.40 

- 

2.33 

Employment 

& 

0.78 

0.80 

0.80 

0.83 

0.80 

0.72 

0.67 

0.47 

0.55 

0.42 

0.24 

0.10 

ta 

-3.14 

-2.66 

-2.34 

-1.80 

-2.02 

-2.64 

-2.70 

- 

5.61 

-2.94 

- 

3.24 

- 

3.30 

-2.79 

GNP 

deflator 

& 

0.85 

0.92 

0.91 

0.87 

0.87 

0.83 

0.72 

0.76 

0.75 

0.81 

0.75 

0.68 

ta 

-2.60 

-1.32 

-1.68 

-2.29 

-2.25 

-2.64 

-4.47 

- 

3.08 

-2.57 

-1.73 

- 

2.14 
- 

2.48 

Consumer 

prices 

a 

0.84 

0.91 

0.90 

0.88 

0.85 

0.81 

0.70 

0.68 

0.62 

0.72 

0.67 

0.58 

ta 

-2.92 

-1.64 

-1.76 

-2.10 

-2.50 

-2.72 

-4.55 

- 

3.45 

- 

3.21 

-1.98 

-2.04 

- 

2.39 

Wages 

a 

0.78 

0.88 

0.89 

0.88 

0.85 

0.81 

0.77 

0.76 

0.78 

0.75 

0.66 

0.60 

ta 

- 

3.37 

-1.69 

-1.41 

-1.46 

-1.77 

-2.12 

- 

2.27 

- 

3.19 

-2.02 

- 

2.48 

- 

3.06 

- 

2.81 

Real 

wages 

a 

0.72 

0.71 

0.70 

0.75 

0.68 

0.54 

0.58 

0.36 

0.40 

0.23 

0.14 

-0.35 

ta 

- 

3.33 

-3.10 

-2.55 

-1.84 

-2.14 

-2.79 

-2.05 

- 

3.31 

-2.14 

-2.34 

-1.89 

-2.11 

Money 

stock 

a 

0.89 

0.93 

0.92 

0.91 

0.89 

0.87 

0.86 

0.79 

0.67 

0.63 

0.59 

0.39 

ta 
- 

3.01 

-1.85 

-2.03 

- 

2.55 

-2.50 

-2.59 

-2.57 

-4.57 

- 

5.93 

- 

3.61 

- 

2.83 

-4.05 

Velocity 

a 

0.61 

0.67 

0.63 

0.71 

0.69 

0.66 

0.60 

0.52 

0.49 

0.63 

0.50 

0.36 

ta 

- 

3.82 

-2.70 

- 

2.80 

-1.97 

-1.95 

-1.91 

- 

2.11 

- 

2.33 

- 

2.16 

-1.43 

-1.82 

-2.54 

Interest 

rate 

& 

1.07 

0.98 

1.01 

1.03 

1.04 

1.06 

0.97 

ta 

1.11 

-0.28 

0.14 

0.37 

0.51 

0.60 

-0.25 

Common 

stock 

prices 

& 

0.65 

0.84 

0.79 

0.79 

0.75 

0.64 

0.58 

0.64 

0.62 

0.66 

0.58 

0.52 

ta 

- 

3.48 

-1.58 

-1.99 

-1.89 

-2.13 

- 

3.07 

-2.96 

-1.99 

-2.00 

-1.63 

-1.64 

-1.56 

Quarterly 

real 

GNP' 

a 

0.88 

0.84 

0.85 

0.84 

0.82 

0.80 

0.77 

0.80 

0.73 

0.65 

0.52 

0.52 

t- 

-2.23 

-2.74 

- 

2.39 

-2.44 

-2.48 

-2.63 

-2.80 
- 

2.19 

- 

2.78 

- 

3.30 

-4.03 

- 

3.17 

aThe 

sample 

for 

Quarterly 

Real 

GNP 
is 

73:11-86:111. 
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TABLE 
A3 

TESTS 

FOR 
A 

UNIT 

ROOT 

ON 

THE 

FULL 

SAMPLES 

(1)a 

k=1 

k=2 

k-3 

k=4 

k=5 

k=6 

k=7 

k=8 

k=9 

k=10 

k=11 

k=12 

Real 

GNP 

(12) 
& 

0.71 

0.68 

0.66 

0.63 

0.62 

0.55 

0.43 

0.28 

0.19 

0.19 

0.15 

0.13 

t- 

-4.04 

-4.06 
- 

3.86 
- 

3.73 
- 

3.48 
- 

3.87 

-4.81 
- 

5.03 

-4.89 

-4.14 

-4.16 

-4.20 

Nominal 

GNP 

(12) 
a 

0.70 

0.69 

0.69 

0.70 

0.66 

0.60 

0.56 

0.47 

0.46 

0.41 

0.23 

0.34 

te 

-4.43 

-4.17 

-3.87 

-3.58 

-4.01 

-4.70 

-4.88 

-5.42 

-5.18 

-5.38 

-7.86 

-5.98 

Real 

per 

capita 

GNP 

(12) 
a 

0.76 

0.73 

0.72 

0.70 

0.70 

0.64 

0.53 

0.43 

0.39 

0.42 

0.37 

0.34 

ta 

-3.62 

-3.58 

-3.37 

-3.21 

-2.94 

-3.27 

-4.09 

-4.08 

-3.89 

-3.14 

-3.23 

-3.17 

Industrial 

production 

(12) 
& 

0.67 

0.65 

0.59 

0.56 

0.61 

0.57 

0.48 

0.32 

0.40 

-0.37 

-0.29 

-0.32 

te 

-4.63 

-4.46 

-4.84 

-4.69 

-3.83 

-3.98 

-4.65 

-5.47 

-4.15 

-4.05 

-4.45 

-4.08 

Employment 

(12) 
a 

0.78 

0.80 

0.77 

0.76 

0.78 

0.73 

0.67 

0.60 

0.64 

0.62 

0.59 

0.58 

ta 

-3.77 

-3.29 

-3.72 

-3.78 

-3.12 

-3.94 

-4.51 

-4.76 

-3.59 

-3.58 

-3.59 

-3.49 

GNP 

deflator 

(12) 
& 

0.84 

0.82 

0.81 

0.78 

0.78 

0.75 

0.74 

0.71 

0.70 

0.69 

0.67 

0.68 

t45 

-3.79 

-3.99 

-3.89 

-4.16 

-4.04 

-4.20 

-4.10 

-4.32 

-4.28 

-4.34 

-4.35 

-4.00 

Consumer 

prices 

(12) 
a 

0.97 

0.98 

0.97 

0.97 

0.97 

0.97 

0.97 

0.96 

0.96 

0.96 

0.97 

0.97 

te 

-1.87 

-1.28 

-1.68 

-2.19 

-2.06 

-1.89 

-2.01 

-2.01 

-1.90 

-1.93 

-1.49 

-1.44 

Wages 

(12) 
a 

0.77 

0.76 

0.74 

0.73 

0.71 

0.68 

0.62 

0.62 

0.64 

0.63 

0.60 

0.67 

t 

-4.31 

-4.15 

-4.25 

-4.05 

-4.21 

-4.73 

-5.41 

-4.91 

-4.62 

-4.63 

-4.69 

-3.64 

Real 

wages 

(14) 
a 

0.68 

0.63 

0.57 

0.52 

0.49 

0.47 

0.38 

0.30 

0.29 

0.28 

0.27 

0.29 

t45 

-3.87 

-3.97 

-4.11 

-4.06 

-3.89 

-3.62 

-4.02 

-4.28 

-4.11 

-3.82 

-3.64 

-3.37 

Money 

stock 

(12) 
& 

0.87 

0.87 

0.85 

0.86 

0.84 

0.81 

0.78 

0.76 

0.74 

0.74 

0.72 

0.77 

te 

-3.94 

-3.61 

-3.86 

-3.66 

-3.82 

-4.29 

-4.69 

-4.56 

-4.36 

-4.29 

-4.32 

-3.18 

Velocity 

(12) 
a 

0.93 

0.94 

0.95 

0.96 

0.97 

0.97 

0.96 

0.95 

0.96 

0.96 

0.94 

0.98 

t.t 

-1.82 

-1.53 

-1.41 

-1.11 

-0.74 

-0.79 

-0.94 

-1.09 

-0.91 

-0.89 

-1.22 

-0.49 

Interest 

rate 

(12) 
a 

1.01 

0.98 

0.97 

0.98 

0.98 

0.99 

1.004 

1.01 

1.01 

1.03 

0.99 

0.97 

ta 

0.12 

-0.45 

-0.53 

-0.34 

-0.31 

-0.24 

0.07 

0.22 

0.12 

0.46 

-0.08 

-0.40 

Common 

stock 

prices 

(14) 
a 

0.72 

0.73 

0.72 

0.74 

0.76 

0.76 

0.75 

0.75 

0.73 

0.67 

0.62 

0.60 

t 

-4.87 

-4.39 

-4.43 
- 

3.91 

-3.53 
- 

3.52 
- 

3.51 
- 

3.41 
- 

3.52 

-4.19 

-4.50 

-4.35 

Quarterly 

real 

GNP 

(10) 
a 

0.92 

0.90 

0.91 

0.90 

0.90 

0.90 

0.89 

0.89 

0.88 

0.86 

0.84 

0.87 

i 
= 
B 
ta 

-3.33 

-3.97 

-3.47 

-3.18 

-3.16 

-3.39 

-3.51 

-3.42 

-3.55 

-3.98 

-4.32 

-3.28 

aThe 

number 
in 

column 

(1) 

refers 
to 

the 

regression 

model 

used 
to 

test 

for 
a 

unit 

root 

using 

the 

full 

samples. 

See 

the 

discussion 
in 

the 

text. 
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