THE GREATEST PRIME DIVISOR OF A PRODUCT OF CONSECUTIVE INTEGERS

SHANTA LAISHRAM AND T. N. SHOREY

1. Introduction

Let $k \geq 2$ and $n \geq 1$ be integers. We denote by

$$
\Delta(n, k)=n(n+1) \cdots(n+k-1) .
$$

For an integer $\nu>1$, we denote by $\omega(\nu)$ and $P(\nu)$ the number of distinct prime divisors of ν and the greatest prime factor of ν, respectively, and we put $\omega(1)=0, P(1)=1$.

A well known theorem of Sylvester [7] states that

$$
\begin{equation*}
P(\Delta(n, k))>k \text { if } n>k . \tag{1}
\end{equation*}
$$

We observe that $P(\Delta(1, k)) \leq k$ and therefore, the assumption $n>k$ in (1) cannot be removed. For $n>k$, Moser [5] sharpened (1) to $P(\Delta(n, k))>\frac{11}{10} k$ and Hanson [3] to $P(\Delta(n, k))>1.5 k$ unless $(n, k)=(3,2),(8,2),(6,5)$. Further Faulkner [2] proved that $P(\Delta(n, k))>2 k$ if n is greater than or equal to the least prime exceeding $2 k$ and $(n, k) \neq(8,2),(8,3)$. In this paper, we sharpen the results of Hanson and Faulkner. We shall not use these results in the proofs of our improvements. We prove
Theorem 1. We have
(a)

$$
\begin{equation*}
P(\Delta(n, k))>2 k \text { for } n>\max \left(k+13, \frac{279}{262} k\right) . \tag{2}
\end{equation*}
$$

(b)

$$
\begin{equation*}
P(\Delta(n, k))>1.97 k \text { for } n>k+13 \tag{3}
\end{equation*}
$$

We observe that 1.97 in (3) cannot be replaced by 2 since there are arbitrary long chains of consecutive composite positive integers. The same reason implies that Theorem 1 (a) is not valid under the assumption $n>k+13$. Further the assumption $n>\frac{279}{262} k$ in Theorem 1 (a) is necessary since $P(\Delta(279,262)) \leq 2 \times 262$.

[^0]Now we give a lower bound for $P(\Delta(n, k))>2 k$ which is valid for $n>k>2$ except for an explicitly given finite set. For this, we need some notation. For a pair (n, k) and a positive integer h, we write $[n, k, h]$ for the set of all pairs $(n, k), \cdots(n+h-1, k)$ and we set $[n, k]=[n, k, 1]=\{(n, k)\}$. Let
$A_{10}=\{58\} ; \quad A_{8}=A_{10} \cup\{59\} ; \quad A_{6}=A_{8} \cup\{60\} ;$
$A_{4}=A_{6} \cup\{12,16,46,61,72,93,103,109,151,163\} ;$
$A_{2}=A_{4} \cup\{4,7,10,13,17,19,25,28,32,38,43,47,62,73,94,104,110,124,152,164,269\}$
and $A_{2 i+1}=A_{2 i}$ for $1 \leq i \leq 5$. Further let

$$
\begin{aligned}
& A_{1}=A_{2} \cup\{3,5,6,8,9,11,14,15,18,20,23,26,29,33,35,39,41,44,48,50,53, \\
&56,63,68,74,78,81,86,89,95,105,111,125,146,153,165,173,270\} .
\end{aligned}
$$

Finally we denote B as the union of the sets $[8,3],[5,4,3],[14,13,3]$ and $\{(k+1, k) \mid k=3,5,8,11,14,18,63\}$. Then
Theorem 2. We have

$$
\begin{equation*}
P(\Delta(n, k))>1.95 k \text { for } n>k>2 \tag{4}
\end{equation*}
$$

unless and only unless $(n, k) \in[k+1, k, h]$ for $k \in A_{h}$ with $1 \leq h \leq$ 11 or $(n, k)=(8,3)$.

If $k=2$, we observe (see Lemma 7) that $P(\Delta(n, k))>2 k$ unless $n=3,8$ and that $P(\Delta(3,2))=P(\Delta(8,2))=3$. Thus the estimate (4) is valid for $k=2$ whenever $n \neq 3,8$. We observe that $P(\Delta(k+$ $1, k)) \leq 2 k$ and therefore, 1.95 in (4) cannot be replaced by 2 . There are few exceptions if 1.95 is replaced by 1.8 in Theorem 2 . We derive from Theorem 2 the following result.

Corollary 1. We have

$$
\begin{equation*}
P(\Delta(n, k))>1.8 k \text { for } n>k>2 \tag{5}
\end{equation*}
$$

unless and only unless $(n, k) \in B$.

2. Lemmas

We begin with a well known result due to Levi ben Gerson on a particular case of Catalan equation.
Lemma 1. The solutions of

$$
2^{a}-3^{b}= \pm 1 \text { in integers } a>0, b>0
$$

are given by $(a, b)=(1,1),(2,1),(3,2)$.
Next we state a result of Saradha and Shorey [6] on a lower bound for $\omega(\Delta(n, k))$.

Lemma 2. For $n>k>2$, we have

$$
\omega(\Delta(n, k)) \geq \pi(k)+\left[\frac{1}{3} \pi(k)\right]+2
$$

unless and only unless (n, k) belongs to the union of sets

$$
\left\{\begin{array}{l}
{[4,3],[6,3,3],[16,3],[6,4],[6,5,4],[12,5],[14,5,3],[23,5,2],} \\
{[7,6,2],[15,6],[8,7,3],[12,7],[14,7,2],[24,7],[9,8],[14,8],} \\
{[14,13,3],[18,13],[20,13,2],[24,13],[15,14],[20,14],[20,17] .}
\end{array}\right.
$$

We shall use Lemma 2 only when $k=3$ or $5 \leq k \leq 8$. Let p_{i} denote the $i-$ th prime number. Then

Lemma 3. We have
(6)
$p_{i+1}-p_{i}< \begin{cases}35 & \text { for } p_{i} \leq 5591 \\ 15 & \text { for } p_{i} \leq 1123, p_{i} \neq 523,887,1069 \\ 21 & \text { for } p_{i}=523,887,1069 \\ 9 & \text { for } p_{i} \leq 361, p_{i} \neq 113,139,181,199,211,241,283,293,317,337 .\end{cases}$
Lemma 4. Let \mathfrak{N} be a positive real number and k_{0} a positive integer. Let $I\left(\mathfrak{N}, k_{0}\right)=\left\{i \mid p_{i+1}-p_{i} \geq k_{0}, p_{i} \leq \mathfrak{N}\right\}$. Then

$$
P(n(n+1) \cdots(n+k-1))>2 k
$$

for $2 k \leq n<\mathfrak{N}$ and $k \geq k_{0}$ except possibly when $p_{i}<n<n+k-$ $1<p_{i+1}$ for $i \in I\left(\mathfrak{N}, k_{0}\right)$.
Proof. Let $2 k \leq n<\mathfrak{N}$ and $k>k_{0}$. We may suppose that none of $n, n+1, \cdots, n+k-1$ is a prime, otherwise the result follows. Let $p_{i}<n<n+k-1<p_{i+1}$. Then $i=\pi(n)$ and $p_{\pi(n)}<n<\mathfrak{N}$. For $\pi(n) \notin I\left(\mathfrak{N}, k_{0}\right)$, we have

$$
k-1=n+k-1-n<p_{\pi(n)+1}-p_{\pi(n)}<k_{0}
$$

which implies $k-1<k_{0}-1$, a contradiction. Hence the assertion.

The following result is on the estimates for primes due to Dusart [1, p.14].
Lemma 5. For $\nu>1$, we have
(i) $\pi(\nu) \leq \frac{\nu}{\log \nu}\left(1+\frac{1.2762}{\log \nu}\right)$
(ii) $\pi(\nu) \geq \frac{\nu}{\log \nu-1}$ for $\nu \geq 5393$.

Lemma 6. Let $X>0$ and $0<\theta<e-1$ be real numbers. For $l \geq 0$, let

$$
\begin{aligned}
& X_{0}=\max \left(\frac{5393}{1+\theta}, \exp \left(\frac{\log (1+\theta)+0.2762}{\theta}\right)\right) \\
& X_{l+1}=\max \left(\frac{5393}{1+\theta}, \exp \left(\frac{\log (1+\theta)+0.2762)}{\theta+\frac{1.2762(1-\log (1+\theta))}{\log ^{2} X_{l}}}\right)\right)
\end{aligned}
$$

Then we have

$$
\pi((1+\theta) X)-\pi(X)>0
$$

for $X>X_{l}$.
Proof. Let $l \geq 0$ and $X>X_{l}$. Then $(1+\theta) X \geq 5393$. By Lemma 5, we have

$$
\begin{aligned}
\delta:=\pi((1+\theta) X)-\pi(X) & \geq \frac{(1+\theta) X}{\log (1+\theta) X-1}-\frac{X}{\log X}\left(1+\frac{1.2762}{\log X}\right) \\
& \geq \frac{X}{\log (1+\theta) X-1}\left\{1+\theta-\frac{\log (1+\theta) X-1}{\log X}\left(1+\frac{1.2762}{\log X}\right)\right\} \\
& \geq \frac{X}{\log (1+\theta) X-1}\left\{1+\theta-\left(1-\frac{1-\log (1+\theta)}{\log X}\right)\left(1+\frac{1.2762}{\log X}\right)\right. \\
& \geq \frac{X}{\log (1+\theta) X-1}\{F(X)+G(X)\}
\end{aligned}
$$

where $F(X)=\theta-\frac{\log (1+\theta)+0.2762}{\log X}$ and $G(X)=\frac{1.2762(1-\log (1+\theta))}{\log ^{2} X}$. We see that $G(X)>0$ and decreasing since $0<\theta<e-1$. Further we observe that $\left\{X_{i}\right\}$ is a non-increasing sequence. We notice that $\delta>0$ if $F(X)+G(X)>0$. But $F(X)+G(X)>F(X)>0$ for $X>X_{0}$ by the definition of X_{0}. Thus $\delta>0$ for $X>X_{0}$. Let $X \leq$ X_{0}. Then $F(X)+G(X) \geq F(X)+G\left(X_{0}\right)$ and $F(X)+G\left(X_{0}\right)>0$ if $X>X_{1}$ by the definition of X_{1}. Hence $\delta>0$ for $X>X_{1}$. Now we proceed inductively as above to see that $\delta>0$ for $X>X_{l}$ with $l \geq 2$.

Lemma 7. Let $n>k$ and $k \leq 16$. Then

$$
\begin{equation*}
P(\Delta(n, k)) \leq 2 k \tag{7}
\end{equation*}
$$

implies that $(n, k) \in\{(8,2),(8,3)\}$ or $(n, k) \in[k+1, k]$ for $k \in$ $\{2,3,5,6,8,9,11,14,15\}$ or $(n, k) \in[k+1, k, 3]$ for $k \in\{4,7,10,13\}$ or $(n, k) \in[k+1, k, 5]$ for $k \in\{12,16\}$.

Proof. We apply Lemma 1 to derive that (7) is possible only if $n=3,8$ when $k=2$ and $n=5,6,7$ when $k=4$. For the latter assertion, we apply Lemma 1 after securing $P((n+i)(n+j)) \leq 3$ with $0 \leq i<j \leq 3$ by deleting the terms divisible by 5 and 7 in $n, n+1, n+2$ and $n+3$. For $k=3$ and $5 \leq k \leq 8$, the assertion follows from Lemma 2.

Thus we may assume that $k \geq 9$. Assume that (7) holds. Then there are at most $1+\left[\frac{k-1}{p}\right]$ terms divisible by the prime p. After removing all the terms divisible by $p \geq 7$, we are left with at least 4 terms only divisible by 2,3 and 5 . Further out of these terms, for each prime 2,3 and 5 , we remove a term in which the prime divides to a maximal power. Then we are left with a term $n+i$ such that $n \leq n+i \leq 8 \times 9 \times 5=360$. Let $n \geq 2 k$. We now apply Lemma 4 with $\mathfrak{N}=361, k_{0}=9$ and (6) to get $P(\Delta(n, k))>2 k$ for $k \geq 9$ except possibly when $p_{i}<n<n+k-1<p_{i+1}, p_{i}=$ $113,139,181,199,211,241,283,293,317,337$. For these values of n, we check that $P(\Delta(n, k))>2 k$ is valid for $9 \leq k \leq 16$. Thus it suffices to consider $k<n<2 k$. We calculate $P(\Delta(n, k))$ for (n, k) with $9 \leq k \leq 16$ and $k<n<2 k$. We find that (7) holds only if (n, k) is given in the statement of the Lemma 7 .

3. Proof of Theorem 1 (a)

Let $n>\max \left(k+13, \frac{279}{262} k\right)$. In view of Lemma 7 , we may take $k \geq 17$ since $n \leq k+5$ for the exceptions (n, k) given in Lemma 7 . It suffices to prove (2) for k such that $2 k-1$ is prime. Let $k_{1}<k_{2}$ be such that $2 k_{1}-1$ and $2 k_{2}-1$ are consecutive primes. Suppose (2) holds at k_{1}. Then for $k_{1}<k<k_{2}$, we have

$$
P(n(n+1) \cdots(n+k-1)) \geq P\left(n \cdots\left(n+k_{1}-1\right)\right)>2 k_{1}
$$

implying $P(\Delta(n, k)) \geq 2 k_{2}-1>2 k$. Therefore we may suppose that $k \geq 19$ since $2 k-1$ with $k=17,18$ are composites. We assume from now onward in the proof of Theorem 1 (a) that $2 k-1$ is prime. We put $x=n+k-1$. Then $\Delta(n, k)=x(x-1) \cdots(x-k+1)$. Let $f_{1}<f_{2}<\cdots<f_{\mu}$ be all the integers in $[0, k)$ such that

$$
\begin{equation*}
P\left(\left(x-f_{1}\right) \cdots\left(x-f_{\mu}\right)\right) \leq k . \tag{8}
\end{equation*}
$$

We derive as in the proof of [4, Lemma 4] to get

$$
\begin{equation*}
k!>x^{\mu-\pi(k)}\left(1-\frac{k}{x}\right)^{\mu} \tag{9}
\end{equation*}
$$

We may suppose $\omega(\Delta(n, k)) \leq \pi(2 k)$ otherwise (2) follows. Then

$$
\begin{equation*}
\mu \geq k-\pi(2 k)+\pi(k) \tag{10}
\end{equation*}
$$

which we use as in [4, Lemma 4] to derive from (9) that
(11) $x<k^{\frac{3}{2}}$ for $k \geq 87 ; x<k^{\frac{7}{4}}$ for $k \geq 40 ; x<k^{2}$ for $k \geq 19$.

If $x \geq 7 k$ and $k>57$, then we derive as in [4, Lemma 7] from (10) that $x \geq k^{\frac{3}{2}}$. Thus we get from (11) that $x<7 k$ for $k \geq 87$. Putting back $n=x-k+1$, we may assume that $n<6 k+1$ for $k \geq 87, n<k^{\frac{7}{4}}-k+1$ for $40 \leq k<87$ and $n<k^{2}-k+1$ for $19 \leq k<40$.

Let $k<87$. Suppose $n \geq 2 k$. Then $2 k \leq n<k^{\frac{7}{4}}-k+1$ for $40 \leq k<87$ and $2 k \leq n<\overline{k^{2}}-k+1$ for $19 \leq k<40$. Thus Lemma 4 with $\mathfrak{N}=87^{\frac{7}{4}}-87+1, k_{0}=35$ and (6) implies that $P(\Delta(n, k))>$ $2 k$ for $k \geq 35$. We note here that $2 k \leq n<\mathfrak{N}$ for $35 \leq k<40$. Let $k<35$. Taking $\mathfrak{N}=34^{2}-34+1, k_{0}=21$ for $21 \leq k \leq 34$ and $\mathfrak{N}=19^{2}-19+1, k_{0}=19$ for $k=19$, we see from Lemma 4 and (6) that $P(\Delta(n, k))>2 k$ for $k \geq 19$. Here the case $k=20$ is excluded since $2 k-1$ is composite. Therefore we may assume that $n<2 k$. Further we observe that $\pi(n+k-1)-\pi(2 k) \geq \pi(2 k+13)-\pi(2 k)$ since $n>k+13$. Next we check that $\pi(2 k+13)-\pi(2 k)>0$. This implies that $[2 k, n+k-1]$ contains a prime.

Thus we may assume that $k \geq 87$. Then we write $n=\alpha k+1$ with $\frac{279}{262}-\frac{1}{k}<\alpha \leq 6$ if $k \geq 201$ and $1+\frac{12}{k}<\alpha \leq 6$ if $k<201$. Further we consider $\pi(n+k-1)-\pi(\max (n-1,2 k))$ which is

$$
\begin{aligned}
& =\pi((\alpha+1) k)-\pi(\alpha k) \quad \text { for } \alpha \geq 2 \\
& \geq \pi\left(\left[\frac{541}{262} k\right]\right)-\pi(2 k) \quad \text { for } \alpha<2 \text { and } k \geq 201 \\
& \geq \pi(2 k+13)-\pi(2 k) \quad \text { for } \alpha<2 \text { and } k<201 .
\end{aligned}
$$

We check by using exact values of π function that $\pi(2 k+13)-$ $\pi(2 k)>0$ for $k<201$ and $\pi\left(\left[\frac{541}{262} k\right]\right)-\pi(2 k)>0$ for $201 \leq k \leq 2616$. Thus we may suppose that $k>2616$ if $\alpha<2$. Also $\left[\frac{541}{262} k\right] \geq \frac{540}{262} k$ for $k>2616$. Now we apply Lemma 6 with $X=\alpha k, \theta=\frac{1}{\alpha}, l=0$ if $\alpha \geq 2$ and $X=2 k, \theta=\frac{4}{131}, l=1$ if $\alpha<2$ to get $\pi(n+k-$ 1) $-\pi(\max (n-1,2 k))>0$ for $X>X_{0}=\frac{5393}{1+\frac{1}{\alpha}}$ if $\alpha \geq 2$ and $X>X_{1}=\frac{5393}{1+\frac{4}{131}}$ if $\alpha<2$. Further when $\alpha<2$, we observe that $X=2 k>X_{1}$ since $k>2616$. Thus the assertion follows for $n<2 k$. It remains to consider the case $\alpha \geq 2$ and $X \leq 5393\left(1+\frac{1}{\alpha}\right)^{-1}$. Then $2 k \leq n<n+k-1=X\left(1+\frac{1}{\alpha}\right) \leq 5393$. Now we apply Lemma 4 with $\mathfrak{N}=5393, k_{0}=35$ and (6) to conclude that $P(\Delta(n, k))>2 k$.

4. Proof of Theorem 1 (b)

In view of Lemma 7 and Theorem 1 (a), we may assume that $k \geq 17$ and $k<n \leq \frac{279}{262} k$. Let $X=\frac{279}{262} k, \theta=\frac{245}{279}, l=0$. Then for $k<n \leq X$, we see from Lemma 6 that

$$
\pi(2 k)-\pi(n-1) \geq \pi((1+\theta) X)-\pi(X)>0
$$

for $X>X_{0}=5393(1+\theta)^{-1}$ which is satisfied for $k>2696$ since $(1+\theta) X=2 k$. Thus we may suppose that $k \leq 2696$. Now we check with exact values of π function that $\pi(2 k)-\pi\left(\frac{279}{262} k\right)>0$. Therefore $P(\Delta(n, k)) \geq P(n(n+1) \cdots 2 k) \geq p_{\pi(2 k)}$. Further we apply Lemma 6 with $X=1.97 k, \theta=\frac{3}{197}$ and $l=25$. We calculate that $X_{l} \leq 284000$. We conclude by Lemma 6 that

$$
\pi(2 k)-\pi(1.97 k)=\pi((1+\theta) X)-\pi(X)>0
$$

for $k>145000$. Let $k \leq 145000$. Then we check that $\pi(2 k)-$ $\pi(1.97 k)>0$ is valid for $k \geq 680$ by using the exact values of π function. Thus

$$
\begin{equation*}
p_{\pi(2 k)}>1.97 k \text { for } k \geq 680 . \tag{12}
\end{equation*}
$$

Therefore we may suppose that $k<680$. Now we observe that for $n>k+13, \pi(n+k-1)-\pi(1.97 k) \geq \pi(2 k+13)-\pi(1.97 k)>0$, the latter inequality can be checked by using exact values of π function. Hence the assertion follows since $n<1.97 k$.

5. Proof of Theorem 2

By Theorem 1 (b), we may assume that $n \leq k+13$. Also we may suppose that $k<680$ by (12). For $k \leq 16$, we calculate $P(\Delta(n, k))$ for all the pairs (n, k) given in the statement of Lemma 7. We find that either $P(\Delta(n, k))>1.95 k$ or (n, k) is an exception stated in Theorem 1 (a). Thus we may suppose that $k \geq 17$. Now we check that $\pi(n+k-1)-\pi(1.95 k)>0$ except for $(n, k) \in[k+1, k, h]$ for $k \in A_{h}$ with $1 \leq h \leq 11$ and the assertion follows.

6. Proof of Corollary 1

We calculate $P(\Delta(n, k))$ for all (n, k) with $k \leq 270$ and $k+1 \leq$ $n \leq k+11$. This contains the set of exceptions given in Theorem 2. We find that $P(\Delta(n, k))>1.8 k$ unless $(n, k) \in B$. Hence the assertion (5) follows from Theorem 2.

References

[1] Pierre Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D thesis, Université de Limoges, 1998.
[2] M. Faulkner, On a theorem of Sylvester and Schur, J. Lond. Math. Soc., 41 (1966), 107-110.
[3] D. Hanson, On a theorem of Sylvester and Schur, Canad. Math. Bull., 16 (1973), 195-199.
[4] S. Laishram and T. N. Shorey, Number of prime divisors in a product of consecutive integers, Acta Arith. 113 (2004), 327-341.
[5] L. Moser, Insolvability of $\binom{2 n}{n}=\binom{2 a}{a}\binom{2 b}{b}$, Canad. Math. Bull.(2), 6 (1963), 167-169.
[6] N. Saradha and T. N. Shorey, Almost squares and factorisations in consecutive integers, Compositio Math. 138 (2003), 113-124.
[7] J. J. Sylvester, On arithmetical series, Messenger of Mathematics, XXI (1892), 1-19, 87-120, and Mathematical Papers, 4(1912), 687-731.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: shanta@math.tifr.res.in
E-mail address: shorey@math.tifr.res.in

[^0]: 2000 Mathematics Subject Classification: Primary 11A41, 11N05, 11N13.
 Keywords: Arithmetic Progressions, Primes.

