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Abstract —A ‘‘grid’’ bootstrap method is proposed for con� dence-interva l
construction , which has improved performance over conventiona l boot-
strap methods when the sampling distribution depends upon the parameter
of interest. The basic idea is to calculate the bootstrap distribution over a
grid of values of the parameter of interest and form the con� dence interval
by the no-rejection principle . Our primary motivation is given by
autoregressiv e models, where it is known that conventiona l bootstrap
methods fail to provide correct � rst-order asymptotic coverage when an
autoregressiv e root is close to unity. In contrast , the grid bootstrap is
� rst-order correct globally in the parameter space. Simulation results
verify these insights, suggesting that the grid bootstrap provides an
important improvement over conventiona l methods. Gauss code that
calculates the grid bootstrap intervals—and replicates the empirical work
reported in this paper—is available from the author’s Web page at
www.ssc.wisc.edu , bhansen.

I. Introduction

FOR MOTIVATION, consider the autoregressive (AR)
model of order 1 with trend, which may be written as

Yt 5 µ0 1 µ1t 1 yt (1)

yt 5 a yt 2 1 1 et, (2)

t 5 1, . . . , n, with and et independent and identically
distributed (i.i.d.) with unknown distribution function P(·),
Eet 5 0, and Ee t

2 , ` . Correct inference in the AR model (1)
and (2) is the � rst step towards correct inference in more
complicated time-series models. The standard method to
estimate the model is by ordinary least squares (OLS) on the
single equation

Yt 5 µ80 1 µ81t 1 a Yt 2 1 1 et.

Let aˆ and s( aˆ ) denote the OLS estimate of a and its standard
error.

Our goal is to construct an b % con� dence interval for the
AR parameter a . The conventional asymptotic interval is
based on the asymptotic N(0, 1) approximation to the
t-statistic

t( a ) 5
aˆ 2 a

s( aˆ )
, (3)

which is valid in the AR(1) model when | a | , 1. Unfortu-
nately, the normal approximation is quite poor in practice,

especially when | a | is large.1 To see the extent of this
distortion, the dashed lines in � gure 1 plot the 5% and 95%
quantile functions of the bootstrap distribution of t( a ) for the
velocity series for 1869–1988 from Schotman and van Dijk
(1991), an extension of the Nelson-Plosser (1982) data set.
These functions mark the quantiles of the sampling distribu-
tion of the t-statistic t( a ) assuming that the data was
generated from equation (2) as a is varied over the range
[0.90, 1.06]. The precise manner in which these functions
are calculated will be discussed in section III,A. What is
important for our purposes is that the normal approximation
suggests that these quantile functions should be constant at
2 1.645 and 1.645, respectively, and it is striking how
different the functions are from these values.

When conventional asymptotic approximations are poor,
many researchers turn to the bootstrap. The bootstrap
replaces the asymptotic sampling distribution by an exact
distribution that acts as if the empirical distribution of the
sample is the population distribution. In particular, the
parametric percentile-t bootstrap constructs a con� dence
interval for a parameter a by evaluating the sampling
distribution of the t-statistic t( a ) assuming that the data were
generated from equation (2) with the true value of a

equaling the OLS estimate aˆ . We can read the percentile-t
bootstrap interval for a from the information provided in
� gure 1, assisted by the dotted lines. From the OLS estimate
aˆ 5 0.962, the dotted lines move vertically to the 95% and
5% bootstrap quantile functions, with the intersections
marked by the open diamonds. From these points, the dotted
lines move horizontally to the t-statistic function t( a ). The
points of intersection, marked by open rectangles, are the
percentile-t bootstrap endpoints. They are projected onto the
x axis and marked by the white arrowheads. This 90%
percentile-t bootstrap interval is [0.958, 1.030].

The percentile-t bootstrap makes the implicit approxima-
tion that the bootstrap quantile functions (such as those
displayed in � gure 1) are constant functions, at least over the
relevant range of the potential con� dence interval, which is
false in the AR model. This nonconstancy persists in large
samples if we cast the leading coefficient as local-to-unity.
Setting a 5 1 1 c/n and holding c � xed as n ® ` , then the
t-statistic for a has the asymptotic distribution

t( a ) Þ
e

0

1
WcdW

(e 0

1
Wc

2)1/2
(4)

where Wc is a detrended diffusion process. The asymptotic
distribution of equation (4) depends on a through the
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reparameterization c; hence, the t-statistic is nonpivotal. As c
is not consistently estimated by least squares, it follows that
the percentile-t interval has incorrect � rst-order asymptotic
coverage. That is, in the local-to-unity framework, the
interval does not properly control Type I error. This diffi-
culty was pointed out by Basawa et al. (1991). This means
that even in large samples, the coverage probability of the
percentile-t interval is quite poor for true values of a near the
unit root, and the Type I error is not controlled globally in the
parameter space. It follows that the percentile-t interval
(even asymptotically) has the incorrect size over the station-
ary region a [ ( 2 1, 1).2

As the conventional bootstrap fails to provide an asymp-
totically correct con� dence interval, it would appear that
there is no hope to construct one with proper coverage.
Fortunately, this is not the case. Indeed, we can easily read
what I call the grid bootstrap con� dence interval from � gure
1, and this interval has excellent coverage properties. The
endpoints are found from the intersections of the quantile
functions with the t-statistic line and are marked by the open
circles. These endpoints are projected onto the x axis and
marked by the solid arrowheads. This 90% interval is
[0.956, 1.034]. The left endpoint is almost identical to that
from the percentile-t bootstrap, but the right endpoint is
somewhat higher.

Unlike the percentile-t interval, the grid bootstrap interval
is asymptotically justi� ed even in the local-to-unity setting.
We are able to show that the grid bootstrap con� dence
interval has � rst-order correct asymptotic coverage for both
stationary and local-to-unity autoregressive models. Thus,
the grid bootstrap asymptotically controls type I error
globally in the parameter space.

Our methods are a natural extension of several earlier
papers on con� dence-interval construction in autoregressive
models. Stock (1991) showed how to construct asymptoti-
cally valid con� dence intervals for the largest autoregressive
root in local-to-unity AR models. Andrews (1993) showed
how to construct exact con� dence intervals in the AR(1)
model with Gaussian errors.3 Andrews and Chen (1994)
suggested an approximation to extend this method to
higher-order AR models. Nakervis and Savin (1996) used
bootstrap methods for hypothesis testing in the AR(1)
model. While our paper borrows ideas and methods from
these earlier papers, ours is the � rst to show how to construct
correct bootstrap con� dence intervals in autoregressive
models.

The grid bootstrap intervals presented in this paper are
similar to the test-inversion bootstrap (TIB) intervals and
studentized test-inversion bootstrap (STIB) intervals of
Carpenter (1999). Similar intervals appear in DiCiccio and

2 Size is the maximum probability of Type I error over the parameter
space.

3 If we impose the assumption that the errors are i.i.d. Gaussian, our
grid- a interval correspond s to Andrews’ interval.

FIGURE 1—VELOCITY: 1869–1988
90%-PERCENTILE-t AND GRID-t CONFIDENCE INTERVALS

Note: The dashed lines are the 5% and 95% bootstrap quantile functions q*n( u | a ). The solid line is the t-statistic function t( a ) 5 ( aˆ 2 a )/s( a ˆ ). The intersections mark the endpoints of the grid-t con� dence interval.
The linear projections mark the endpoints of the percentile-t interval.
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Romano (1990), Garthwaite and Buckland (1992) and
Kabaila (1993), although there are differences between these
papers regarding the choice of studentization and the
estimation of nuisance parameters. Carpenter (1999) presents
a number of applications of this method, including the AR(1)
model, but does not provide a theory or justi� cation relevant
to the local-to-unity model.

An alternative to the methods presented here might be the
subsampling con� dence intervals of Romano and Wolf
(1998), who discuss con� dence-interval construction for the
AR(1) model, allowing for a possible unit or explosive root,
using reestimates based on subsamples. This method is quite
distinct from those presented here.

The organization of the paper is as follows. Section II
describes the sampling framework, introduces the grid
bootstrap, and gives conditions under which the grid boot-
strap provides � rst-order asymptotic coverage, and discusses
computation. Section III investigates the autoregressive
model. Formal proofs of bootstrap consistency are provided
for both stationary and near-integrated cases. Section IV
investigates the bootstrap methods using Monte Carlo
methods. Both AR(1) and AR(2) models are examined.
Section V provides several applications to the Nelson-
Plosser data set. The velocity and real per capita GNP series
are carefully explored as examples of the AR(1) and AR(2)
models, respectively. Grid-t bootstrap intervals are provided
for the leading AR coefficient for all thirteen series. Proofs
of the theorems are presented in the appendix.

2. The Gr id Bootstrap

A. Framework

A sample Xn is generated from a distribution Gn(x| a , h ) 5

P(Xn # x| a , h ) which depends on a parameter of interest
a [ R and a nuisance parameter h [ J , where n denotes
sample size. The nuisance parameter space J may be in� nite
dimensional (i.e., the space of error distributions) and is
endowed with a metric d( h , h 8). Let aˆ denote an estimate of
a and s( aˆ ) its standard error. We assume that for each a there
is some estimator h ˆ ( a ) [ J of the nuisance parameter h ,
which may (but need not) be a function of a .

Let Sn( a ) be a nondegenerate test statistic of the hypoth-
esis H0: a 0 5 a , which is a monotonic function of a . For
example, two obvious choices include the nonstudentized
estimate b( a ) 5 aˆ 2 a and the t-statistic t( a ) 5 ( aˆ 2 a )/
s( aˆ ). The statistic Sn( a ) has a sampling distribution that
possibly depends on ( a , h ). Let

Fn(x | a , h ) 5 P(Sn( a ) # x| a , h )

denote its distribution function. For � xed ( a , h ), let qn(u | a , h )
be the inverse of Fn (making the approximation that Fn is
continuous in x). This function satis� es

Fn(qn( u | a , h ) | a , h ) 5 u .

Since qn(u | a , h ) is the u quantile of the distribution of Sn( a ),
we will refer to qn(u | a , h ) as the quantile function of the
distribution. Note that, for � xed ( a , h ), the quantile function
qn( u | a , h ) is real-valued and increasing in u .

We de� ne the bootstrap quantile function q*n(u | a ) 5

qn( u | a , h ˆ ( a )). We call this a bootstrap function since it is
evaluated at the estimate h ˆ ( a ), and is thus random. We de� ne the
b -level grid bootstrap con� dence region for a as the set

Cg 5 {a [ R : q*n(u 1 | a ) # Sn( a ) # q*n(u 2 | a )} (5)

where u 1 5 1 2 (1 2 b )/2 and u 2 5 (1 2 b )/2; so b 5 u 2 2
u 1. This con� dence region is de� ned as the set of parameter
values for which the test statistic does not fall out of a
100 b % likelihood set, where the latter is de� ned assuming
that a is the true value. If Sn( a ) 5 aˆ 2 a , we will call Cg the
grid- a interval, if Sn( a ) 5 t( a ), we will call Cg the grid-t
interval. This con� dence region is designed to be central or
equal-tailed; i.e., it is the intersection of two one-sided
con� dence intervals, and is designed to have the probability
of error equally likely in either direction.

When there is no nuisance parameter h (or the sampling
distribution does not depend on h ), the quantile functions
qn( u | a ) are nonrandom, and the con� dence region Cg has
exact coverage. In this context, the region Cg is a traditional
con� dence region described in most standard statistics texts.
See, for example, Cramér (1946, Ch. 34).

The con� dence region Cg has several properties that are
shared by con� dence regions constructed from criterion
functions4: that Cg may be disjoint, empty, or may contain
the entire parameter space. This is not necessarily undesir-
able; indeed, Dufour (1997) has shown that, in certain
contexts, it is necessary for properly sized con� dence
intervals to be unbounded with positive probability. (In such
cases, the natural conclusion is that the sample provides no
information concerning the parameter.)

In most cases, Cg will be a simple interval, with the left
endpoint a L given by the intersection of Sn( a ) and q*n(u 2 | a ),
and the right endpoint a U given by the intersection of
Sn( a ) and q*n( u 1 | a ). When Cg is disjoint, a conservative
con� dence interval Cg 5 [ a L, a U] for a can be de� ned as
the convex hull of Cg.

It is helpful at this point to contrast the de� nition of Cg

with that for a conventional bootstrap con� dence region,
which can be de� ned by the formula

Cb 5 {a [ R : q*n(u 1 | aˆ ) # Sn( a ) # q*n(u 2 | aˆ )}.

The difference between the grid bootstrap region Cg and the
conventional bootstrap region Cb is that the former allows
the bootstrap quantile function q*n( u 1| a ) to be a free function
of a , while the conventional bootstrap approximates this
function by evaluating it at the point estimate aˆ .

4 For example, the Anderson-Rubin (1949) con� dence interval for
parameters in a linear simultaneous equations model.
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B. Bootstrap Consistency

It is helpful to � rst state the conditions for � rst-order
accuracy of the conventional bootstrap.

PROPOSITION (1) Suppose that for a sequence of estimators
aˆ and h ˆ [ J , | aˆ 2 a | ® p 0 and d ( h ˆ , h ) ® p 0. Suppose that
for all sequences a n and h n [ J such that | a n 2 a | ® 0 and
d (h n, h ) ® 0 then Fn(x| a n, h n) converges weakly to a
continuous distribution function F(x| a , h ). Then P( a [
Cb) ® b as n ® ` .

Proposition (1) states that the conventional bootstrap
con� dence interval has correct � rst-order coverage if the
parameters are consistently estimated and Sn( a ) has an
asymptotic distribution, where the convergence to the asymp-
totic distribution is locally uniform in the parameter space.
We can give an analogous condition for the grid bootstrap.

PROPOSITION (2) Suppose that, for a sequence of estimators
h ˆ ( a ) [ J , d ( h ˆ ( a ), h ) ® p 0. Suppose that for all sequences
h n such that d ( h n, h ) ® 0, then Fn(x| a , h n) converges
weakly to a continuous distribution function F(x| a , h ). Then
P( a [ Cg) ® b as n ® ` .

Proposition (2) gives conditions under which the grid
bootstrap con� dence interval is � rst-order accurate. The
requirement is that the nuisance parameters are consistently
estimated, while no restriction is made concerning the
estimate of the parameter of interest. The conditions of
proposition (2) are strictly less restrictive than those of
proposition (1), suggesting that the grid bootstrap applies
more generally than the conventional bootstrap, in the sense
of � rst-order asymptotic coverage.

Carpenter (1999) examines an analog of our grid bootstrap
intervals, where the nuisance parameter estimate h ˆ ( a ) 5 h ˆ does
not depend on a . He shows that, if the model satis� es the
properties of Hall’s (1988) smooth function model, then the
one-sided grid-t interval5 (his STIB interval) has coverage
error of order n 2 1, and the one-sided grid- a interval (his TIB
interval) has coverage error of order n 2 1/2. These are
identical to the rates obtained by the percentile-t interval.

It is possible that the grid-t interval has coverage error of
order n 2 1 under weaker conditions than the conventional
percentile-t (in analogy to the lesser conditions of proposi-
tion (2) relative to proposition (1)), but this is unknown and
left to future research.

C. Computation

To calculate the grid bootstrap con� dence interval Cg, we
need the bootstrap quantile function q*n( u | a ). These are
generally unknown, but, for a given a , these quantiles may
be estimated using simulation methods. This technique is
frequently mislabeled ‘‘bootstrapping,’’ but it is more prop-

erly labeled a simulation estimate of a bootstrap quantile.
The steps of this calculation are as follows. For a given a , let
G*n(x| a ) 5 Gn(x | a , h ˆ ( a )) be the bootstrap distribution of the
sample. We assume that it is possible by simulation to
generate random samples X*n from this distribution. Gener-
ate B such samples. For each sample X*n, calculate the test
statistic S*n( a ). Sort the B simulated test statistics S*n( a ). The
100 u % order statistic q̂*n( u | a ) is the simulation estimate of
q*n( u | a ). The accuracy of the estimate is increasing in B.
Setting B 5 999 or B 5 1999 are common choices that result
in fairly accurate estimates of relevant quantiles.6

We need to calculate the bootstrap quantile function
q*n( u | a ) as a function of a , not just for a single value. A
numerically intensive (but feasible) solution is to select a
� ne grid AG 5 [ a 1, a 2, . . . , a G] and calculate q̂*n(u | a ) at
each a [ AG. A more efficient solution is to recognize that
q̂*n( u | a ) is likely to be a smooth function of a ; so nonparamet-
ric methods are appropriate. A computationally straightfor-
ward method is to apply kernel regression.

The technique works as follows. First, pick a grid AG 5

[ a 1, a 2, . . . , a G] and calculate q̂*n( u | a ) by simulation at each
a [ AG. Second, smooth the estimated function q̂*n( u | a )
using kernel regression. For given a , the kernel estimate is

q̃*n(u | a ) 5

o
j 5 1

G

K (a 2 a j

h )q̂*n( u | a j)

o
j 5 1

G

K (a 2 a j

h )
,

where K(u) is a kernel function and h is a bandwidth. In my
simulations and applications, I use the Epanechnikov kernel
K(u) 5

3
4(1 2 u2)1( |u | # 1) and pick the bandwidth by

least-squares cross-validation. In practice, graphical dis-
plays of the unsmoothed estimates q̂*n(u | a ) and the smoothed
estimates q̃*n(u | a ) help to assess estimation accuracy and
bandwidth choice.

The estimator q̃*n(u | a ) is not arbitrary. Chamberlain
(1994) shows that a parametric regression function � t to the
estimates q̂*n(u | a ) is a near-efficient GMM estimator of the
unknown quantile functions q*n( u | a ). Since the form of the
quantile functions is unknown and a is scalar, it is appropri-
ate to use a nonparametric estimator. We select kernel
regression because it is particularly � exible and easy to
implement.

The con� dence set Cg is de� ned as the set of points a for
which Sn( a ) lies between q*n(u 1| a ) and q*n(u 2| a ). Our estimate
Ĉg is de� ned analogously:

Ĉg 5 {a [ R : q̃*n(u 1 | a ) # Sn( a ) # q̃*n( u 2 | a )}.

This may be found graphically by displaying graphs of
q̃*n( u 1| a ), Sn( a ), and q̃*n( u 2| a ). In most cases, Ĉg will be a

5 He does not examine symmetric two-sided intervals .
6 It is convenient to pick B so that (B 1 1) u 5 i is an integer, for then the

ith ordered value of S*n( a ) is the quantile estimate q̂*n(u | a ).
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simple interval, with the left endpoint aˆ L given by the
intersection of Sn( a ) and q̃*n( u 2 | a ), and the right endpoint aˆ U

given by the intersection of Sn( a ) and q̃*n( u 1| a ).
An important issue for implementation is the choice of B

and G. Consistent estimation of the bootstrap quantile
function q*n( u | a ) requires that both B and G diverge to
in� nity, which suggests that both need to be fairly large in
applications, but it is unclear how to determine their values
optimally in practice. While the broader goal is to calculate
con� dence intervals with the desired coverage accuracy, the
more-narrow practical goal is to accurately estimate Cg as
de� ned in equation (5) which reduces to accurate estimation
of the endpoints a L and a U determined by the intersections
of Sn( a ) with q*n(u 1 | a ) and q*n( u 2 | a ), respectively. The
accuracy of the estimates aˆ L and aˆ U can be assessed as
follows. Consider aˆ L. Let Dq 5 (d/d a ) q*n( u 2| a ) and Ds 5

(d/d a ) Sn( a ) and assume Dq . Ds. If |q̃*n(u 2|a ) 2 q*n ( u 2 | a ) | #
e , then, based on a linear approximation, | aˆ L 2 a L| #
e /(Dq 2 Ds). This shows that the accuracy of aˆ L as an
estimate of a L depends on the accuracy of q̃*n(u 2 | a ) (which
can be improved by increasing B), but also on the relative
slopes Dq 2 Ds. a L will be more accurately estimated when
Dq 2 Ds is large (for example, when q*n( u 2| a ) is increasing
in a ). The estimate is particularly inaccurate if Dq < Ds,
which occurs when the functions q*n(u 2 | a ) and Sn( a ) have
similar slopes at a L. We show later (� gure 3) that this is an
empirically relevant concern. When it is determined that
Dq < Ds, the number of bootstrap replications B will have to
be increased to ensure accurate endpoint estimation.

Some experimentation suggested that choices are low as
G 5 25 and B 5 399 can produce reasonable results in many
cases. (These settings are used in the simulations of section
IV.B.) For the empirical results reported in section V, we use
higher resolution, setting G 5 200 and B 5 1999 in most
cases. In all cases, the computation requirements are quite
modest.

III. Autoregressive Models

A. Bootstrap Intervals

The observed data is (Y2 k1 1, . . . , Y1, . . . , Yn). The AR(k)
model with trend is

Yt 5 µ0 1 µ1t 1 yt (6)

yt 5 a1 yt 2 1 1 a2 yt 2 2 1 · · · 1 ak yt 2 k 1 et, (7)

t 5 1, . . . , n, with et independent and identically distributed
with unknown distribution function P(·), Eet 5 0, and Ee t

2 ,
` . The initial condition y*0 5 ( y2 k1 1, . . . , y0) is � xed.

The single-equation representation is

Yt 5 µ80 1 µ81t 1 a1Yt 2 1 1 a2Yt 2 2

1 · · · 1 akYt 2 k 1 et.
(8)

An alternative representation is the so-called ADF
reparameterization

Yt 5 µ80 1 µ81t 1 r 1Yt 2 1 1 r 2D Yt 2 1

1 · · · 1 r k D Yt 2 k1 1 1 et.
(9)

We focus on equation (9). Let r 5 ( r 1, . . . , r k) be the
autoregressive parameters from (9). Our goal is to construct
con� dence intervals for r .

The model is estimated by least squares. Let rˆ denote the
estimate of r from OLS estimation of equation (9). Let êt

denote the OLS residuals and (s1, . . . , sk) the least-squares
standard errors for rˆ . Let tj 5 ( rˆ j 2 r j)/sj denote the
t-statistic for r j.

The model is described by the parameters (r , P, µ0, µ1).
The sampling distribution of the t-statistic tj and estimate rˆ j

are invariant to the values of µ0 and µ1, so, to evaluate these
distributions, we can describe the model by the set ( r , P) [
(Rk 3 J ), where J is the space of mean-zero random
variables. P is estimated by P̂, the empirical distribution of
the residuals êt. (Since an intercept is included in the
regression, note that P̂ [ J .)

The conventional percentile-t con� dence interval for r j,
denoted Cb( j), is obtained by evaluating the sampling
distribution of the t-statistic tj at the point estimate (rˆ, P̂).
This may be numerically implemented by simulating time
series from equation (7) using the autoregressive coefficients
rˆ and drawing the errors independently from the OLS
residuals (ê1, . . . , ên).

The grid bootstrap con� dence interval for r j, denoted
Cg( j), is obtained by taking that parameter as the parameter
of interest ( a in the notation of section II) and the remaining
parameters as nuisance parameters (h in the notation of
section II). For example, the grid bootstrap con� dence
interval for r 1 is constructed by setting a 5 r 1 and h 5

(r 2, . . . , r k, P). Our constrained estimate of h is h ˆ ( a ) 5

(rˆ2( a ), . . . , rˆk( a ), P̂) where P̂ is described above, and
(rˆ2( a ), . . . , rˆk( a )) are the constrained OLS estimates of
equation (9), imposing the constraint r 1 5 a . These can be
computed from OLS regression of Yt 2 a Yt2 1 on (1, t,
D Yt2 1, . . . , D Yt2 k1 1). Let rˆ( a ) 5 ( a , rˆ2( a ), . . . , rˆk( a )). The
grid bootstrap evaluates the sampling distribution of the test
statistic at the estimates ( a , h ˆ ( a )) 5 (rˆ( a ), P̂). This may be
numerically implemented by simulating time series from
equation (7) using the autoregressive coefficients rˆ( a ) and
drawing the errors independently (with replacement) from
(ê1, . . . , ên).

B. Bootstrap Consistency

Bose (1988) has shown that, for stationary autoregres-
sions with � nite 8th moments,

sup
x

|Fn(x|f ) 2 Fn(x|f ˆ ) | 5 o(n 2 1/2)
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(in the notation of section II.B) which is a stronger result
than proposition (1). Under weaker conditions, we now
show that the conventional and grid bootstrap methods
achieve � rst-order asymptotic coverage. Let a(z) 5

(1 2 a1Z 2 a2Z2 2 · · · 2 akZk) be the lag polynomial cor-
responding to model (7).

Theorem (1) In model (6) through (7), if all roots of a(z)
lie outside the unit circle and Ee t

2r , ` for some r . 1, then
the conditions of proposition (1) are satis� ed. Hence, for all
1 # j # k, P (r j [ C b( j)) ® b and P (r j [ Cg ( j)) ® b as
n ® ` .

Theorem (1) shows that, if the autoregression is station-
ary, then both the conventional bootstrap and the grid
bootstrap achieve � rst-order correct asymptotic coverage.
Since the limiting distributions of the t-statistics are standard
normal, we expect that both methods achieve asymptotic
re� nements (along the lines of Carpenter (1999)), but do not
provide a proof here.

We now consider near-nonstationary autoregressions and
focus on con� dence intervals for r 1. Suppose that

yt 5 r 1 yt 2 1 1 r 2D yt 2 1 1 · · · 1 r kD yt 2 k1 1 1 et

r 1 5 1 1 C/n

with C � xed as n ® ` . Assume that the roots of r (z) 5 1 2

r 2z 2 · · · 2 r kzk2 1 lie outside the unit circle. This is known
as a near unit root model, nesting a pure unit root (C 5 0),
large stationary roots (C , 0), and mildly explosive roots
(C . 0). Technically, we should let r 1 and yt depend on n
(array notation), but we will not do so here to preserve
continuity in notation.

In this model, it is known that the asymptotic distributions
of the OLS estimate rˆ1 and its t-statistic are nonstandard,
indeed, letting r 5 r (1),

n( rˆ 1 2 r 1) ® d r

e
0

1
WcdW

e
0

1
Wc

2
, (10)

t1 5
rˆ1 2 r 1

s1

® d

e
0

1
WcdW

(e 0

1
Wc

2)1/2
(11)

where W is a standard Brownian motion and Wc is a
detrended Gaussian diffusion process with parameter c 5 C/
r . Since the asymptotic distributions depend on C which is
not consistently estimable (observe that Ĉ 5 n( rˆ 1 2 1) has
an asymptotic distribution given by equation (10)), it
follows that the conventional bootstrap cannot achieve
� rst-order asymptotic consistency. This was observed by

Basawa et al. (1991). The grid bootstrap, in contrast, is able
to produce consistent coverage.

Theorem (2) In model (6) through (7), if r 1 5 1 1 C/n,
all roots of r (z) lie outside the unit circle, and Ee t

2r , ` for
some r . 1, then P( r 1 [ Cg(1)) ® b as n ® ` .

Theorems (1) and (2) together show that the grid boot-
strap achieves bootstrap consistency for r 1 throughout the
parameter space, including r 1 5 1, unlike the conventional
percentile-t bootstrap. This global property is good news for
the grid bootstrap, for it suggests that this procedure should
be less sensitive to model parameters than the conventional
bootstrap, and thus has better size.

While it would be desirable to establish an asymptotic
re� nement for the grid bootstrap, it appears impossible
given present knowledge because it is unknown whether
there exists an Edgeworth expansion for this model. While
Abadir (1993) and Knight and Satchell (1993) provide
Edgeworth expansions for the random-walk model with
Gaussian errors, their arguments do not carry over to the
non-Gaussian case. Furthermore, in AR(k) models other
than the AR(1), it is quite likely that an asymptotic
re� nement is impossible, since the limiting distributions
(10) and (11) depend on the nuisance parameters (r 2, . . . ,
r k) through c.

The asymptotic distributions of the t-statistics for r 2

through r k, however, are standard normal, so both the
conventional percentile-t bootstrap and the grid bootstrap
are expected to achieve � rst-order asymptotic consistency
for the coefficients ( r 2, . . . , r k). We do not provide a proof
of this proposition, however, as it appears to involve a rather
delicate argument. As the nuisance parameter C is not
consistently estimated, the conditions of proposition (1) and
(2) are not satis� ed, implying that an alternative proof
method is necessary. Furthermore, since the asymptotic
distribution of the t-statistics are standard normal, it is
possible that the bootstrap procedures will achieve an
asymptotic re� nement. This is not obvious, however, since
the nuisance parameter c is not consistently estimated.
Whether or not the bootstrap methods achieve an asymptotic
re� nement may depend on whether the second term in the
Edgeworth expansion depends on c (and this is currently
unknown).

IV. Monte Car lo Simulations

To assess the performance of the grid bootstrap in
practice, we report two Monte Carlo experiments for the
AR(1) and AR(2) models. We consider the problem of
constructing central con� dence intervals with 100 b 5 90%
coverage. (Equivalently, we are assessing the properties of
one-sided 95%-con� dence intervals.) A correctly-con-
structed central con� dence interval will have the property
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that, in 5% of the samples, the true value will lie to the left of
the con� dence interval, and, in 5% of the samples, the true
value will lie to the right of the con� dence interval.

The bootstrap methods require a treatment of the initial
condition. We treat the initial condition y*0 5 ( y2 k1 1, . . . ,
y0) as � xed, and estimate its value by the � rst k values from
least-squares detrending of the time series. These � xed
initial values are then � xed for each bootstrap evaluation.
Since the bootstrap distributions are quite sensitive to the
initial conditions when the model is explosive, we set the
initial condition to zero when the autoregressive parameters
used in the bootstrap evaluation have an explosive or unit
root. The treatment of the initial conditions was symmetric
across the various bootstrap methods compared.

All experiments are based on 5,000 replications and
consider samples of size n 5 60, 120, and 240.

A. AR(1) Model

Samples were generated from the AR(1) model yt 5

a yt 2 1 1 et setting a 5 0.6, 0.9, 1.0, and 1.02 using Gaussian
errors. The initial value y0 was drawn from the unconditional
distribution when a , 1, and was set to 0 for a $ 1.

Seven con� dence interval methods were compared.7 All
methods are based on OLS estimation of the AR(1) with
trend

Yt 5 µ0 1 µ1t 1 r Yt 2 1 1 et.

1. Conventional asymptotic con� dence interval aˆ 6

1.645s ( aˆ ).
2. Stock’s (1991) local-to-unity asymptotic con� dence

interval.
3. Percentile bootstrap (e.g., Efron & Tibshirani, 1993,

ch. 13).
4. Percentile-t bootstrap (e.g., Hall, 1992).
5. Biased-corrected percentile bootstrap (Kilian, 1998).
6. Grid- a .
7. Grid-t.

The conventional bootstrap methods used B 5 999
simulated samples for each Monte Carlo replication. For the
grid bootstrap methods, we set AG to be G 5 50 evenly
spaced points on [ aˆ 6 6s( aˆ )] and generated B 5 399
simulated samples at each grid point. The quantiles were
smoothed using an Epanechnikov kernel with the bandwidth
selected by least-squares cross-validation. When the con� -
dence intervals Cg are disjoint, we report the convexi� ed re-
gion Cg.

The results are summarized in table 1. For each method of
computing con� dence intervals, the percentage of samples
in which the true value of a lay to the left of the estimated

con� dence interval is reported in the row labeled PL.
Similarly, the percentage of samples in which the true value
of a lay to the right of the estimated con� dence interval is
reported in the row labeled PR. Ideally, these percentages
should be close to 0.05. (The standard errors for the
percentages are 0.003.)

The asymptotic interval is biased downwards, which
means that the true value is too rarely to the left of the
con� dence interval and is much too often to the right of the
con� dence interval. The percentile method is even more
biased than the asymptotic interval, with considerably worse
sampling performance. The percentile-t method works well
in large samples with stationary roots, but is quite biased at
or near the unit root. Kilian’s bias-corrected percentile
method performs somewhat similar to the percentile-t
method, with poor coverage probabilities in small samples
or near the unit root. The only nongrid method that provides
good coverage is Stock’s con� dence interval, which pro-
vides very accurate coverage rates for a equal or near unity
(including the explosive case), but is quite poor for a 5 0.6,
and the error increases with sample size.

In contrast, the grid bootstrap methods provide near-exact
or conservative coverage for all experiments. The grid- a and
grid-t are near-exact central con� dence intervals for a # 1,
but are slightly biased for a . 1. In addition to the coverage
rates, the median length of the con� dence intervals was also
computed (but not reported). The grid- a and grid-t intervals
had nearly identical lengths.

This simulation veri� es the predictions of the theory: The
grid bootstrap methods are the only con� dence interval
techniques that work well globally in the parameter space.

7 To be fair, most of the existing methods (other than Stock’s interval)
were designed and motivated for stationary autoregressions , so there is no
reason to be surprised if they fail to provide good coverage for near-
nonstationar y cases.

TABLE 1.—ACTUAL AR(1) CONFIDENCE INTERVAL TYPE I ERROR

a 5 0.6 a 5 0.9 a 5 1.0 a 5 1.02

PL PR PL PR PL PR PL PR

n 5 60
Asymptotic 0.01 0.14 0.00 0.34 0.00 0.76 0.00 0.89
Stock 0.03 0.17 0.05 0.06 0.06 0.05 0.05 0.06
Percentile 0.00 0.35 0.00 0.87 0.00 1.00 0.00 1.00
Percentile-t 0.06 0.07 0.05 0.13 0.02 0.31 0.01 0.43
Kilian 0.03 0.09 0.00 0.13 0.00 0.33 0.00 0.48
Grid- a 0.05 0.05 0.04 0.04 0.05 0.05 0.03 0.07
Grid-t 0.05 0.05 0.05 0.04 0.05 0.04 0.03 0.07

n 5 120
Asymptotic 0.01 0.12 0.00 0.23 0.00 0.77 0.00 0.64
Stock 0.00 0.50 0.05 0.06 0.05 0.05 0.04 0.05
Percentile 0.00 0.24 0.00 0.61 0.00 1.00 0.00 0.96
Percentile-t 0.05 0.06 0.07 0.09 0.02 0.30 0.15 0.28
Kilian 0.04 0.07 0.00 0.09 0.00 0.29 0.00 0.73
Grid- a 0.04 0.04 0.05 0.05 0.05 0.05 0.07 0.07
Grid-t 0.05 0.04 0.05 0.05 0.05 0.05 0.06 0.07

n 5 240
Asymptotic 0.02 0.08 0.01 0.16 0.00 0.77 0.05 0.11
Stock 0.00 1.00 0.04 0.07 0.05 0.05 0.04 0.05
Percentile 0.01 0.15 0.00 0.41 0.00 1.00 0.01 0.19
Percentile-t 0.05 0.05 0.06 0.07 0.02 0.31 0.05 0.03
Kilian 0.04 0.05 0.03 0.07 0.00 0.27 0.01 0.19
Grid- a 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.04
Grid-t 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
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Other methods work well in subsets of the parameter space
but not globally, and hence have poor size.

B. AR(2) Model

Samples were generated from the AR(2) model

yt 5 r 1 yt 2 1 1 r 2D y t 2 1 1 et.

setting r 1 5 0.6, 0.9, and 1.0, r 2 5 2 0.4 and 0.4, and using
Gaussian errors. The initial values ( y2 1, y0) were drawn
from the unconditional distribution when r 1 , 1, and were
set to zero for r 1 5 1.

Three con� dence-interval methods for r 1 and r 2 were
compared. All methods are based on OLS estimation of the
AR(2) with trend

Yt 5 µ 1 b t 1 r 1Yt 2 1 1 r 2D Yt 2 1 1 et.

We compared the performance of the conventional asymp-
totic 90%-con� dence interval, the percentile-t interval, and
the grid-t interval. (In AR(k) models, the Stock procedure
provides con� dence intervals for the largest autoregressive
root, not for the individual autoregressive parameters, so it
could not be included in this comparison.)

To reduce the computation burden, the grid-t intervals
were calculated using G 5 25 evenly spaced points on
[ aˆ 6 5s( aˆ )]. Otherwise, the methods are identical as de-
scribed in the previous section.

The results are summarized in tables 2 and 3, for r 1 and r 2,
respectively. The tables report the probabilities of the two
errors PL 5 P( r , C) and PR 5 P(r . C), which should be
close to 5% if the methods are working properly.

For nearly all the cases considered, the grid-t interval has
near-correct coverage. In contrast, the asymptotic intervals
for r 1 are quite poor in all cases considered, and the
asymptotic intervals for r 2 are poor when r 2 5 2 0.4. The
percentile-t intervals for r 1 perform similarly to the results
found for the AR(1) model, with good performance in large
samples and stationary parameters, but poor performance
when r 1 is near unity. The percentile-t intervals for r 2, on the
other hand, are generally quite well behaved, except when
n 5 60 and r 1 5 1.

In summary, the simulation results con� rm the theoretical
predictions. The asymptotic and percentile-t intervals for r 1

are highly inaccurate when r 1 is large, and this inaccuracy
can be eliminated through the use of the grid-t bootstrap. For
inference on the parameter r 2, both the conventional percen-
tile-t interval and the grid-t interval are quite accurate.

V. Empir ical Illustrations

A. Velocity

We now illustrate the application of the grid bootstrap to
an AR(1) using a widely studied data series. We use the

annual log velocity series of Nelson and Plosser (1982)
extended by Schotman and van Dijk (1991) to cover the
years 1869–1988. The AR(1) speci� cation was used by
Nelson and Plosser in their analysis, so we adopt the same
speci� cation here. Figure 1 shows the construction of the
percentile-t and grid-t con� dence intervals. The solid down-
ward sloping line is the t-statistic function t( a ) 5 ( aˆ 2 a )/
s( aˆ ). The dashed lines are the 5% and 95% bootstrap
quantile functions, which are clearly quite nonlinear in a .
The open circles denote the intersection points, and the black
arrows indicate the endpoints of the grid-t interval. The
percentile-t intervals can be read using the dotted lines,

TABLE 2.—AR(2) CONFIDENCE INTERVALS FOR r 1

r 1

n 5 60 n 5 120 n 5 240

0.6 0.9 1.0 0.6 0.9 1.0 0.6 0.9 1.0

r 2 5 2 0.4
Asymptotic PL 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.00

PR 0.20 0.42 0.77 0.14 0.28 0.77 0.10 0.20 0.77
Percentile-t PL 0.07 0.05 0.02 0.07 0.06 0.02 0.06 0.07 0.02

PR 0.09 0.15 0.31 0.06 0.10 0.31 0.06 0.08 0.31
Grid-t PL 0.05 0.06 0.04 0.06 0.05 0.05 0.05 0.06 0.05

PR 0.04 0.04 0.06 0.04 0.04 0.05 0.05 0.05 0.06

r 2 5 0.4
Asymptotic PL 0.01 0.00 0.00 0.02 0.01 0.00 0.02 0.01 0.00

PR 0.14 0.28 0.76 0.10 0.18 0.77 0.08 0.13 0.78
Percentile-t PL 0.06 0.07 0.03 0.06 0.06 0.02 0.05 0.06 0.02

PR 0.07 0.11 0.31 0.06 0.08 0.31 0.05 0.06 0.31
Grid-t PL 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05

PR 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.04 0.06

TABLE 3.—AR(2) CONFIDENCE INTERVALS FOR r 2

r 1

n 5 60 n 5 120 n 5 240

0.6 0.9 1.0 0.6 0.9 1.0 0.6 0.9 1.0

r 2 5 2 0.4
Asymptotic PL 0.16 0.15 0.20 0.12 0.12 0.14 0.09 0.10 0.11

PR 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02
Percentile-t PL 0.07 0.08 0.10 0.06 0.06 0.07 0.06 0.05 0.06

PR 0.06 0.06 0.05 0.06 0.05 0.04 0.05 0.05 0.05
Grid-t PL 0.05 0.05 0.07 0.05 0.05 0.06 0.05 0.05 0.06

PR 0.05 0.05 0.04 0.05 0.04 0.04 0.05 0.05 0.04

r 2 5 0.4
Asymptotic PL 0.07 0.07 0.05 0.06 0.06 0.05 0.06 0.06 0.05

PR 0.03 0.04 0.06 0.04 0.04 0.05 0.04 0.04 0.05
Percentile-t PL 0.06 0.06 0.04 0.05 0.06 0.04 0.06 0.05 0.05

PR 0.06 0.06 0.09 0.06 0.06 0.07 0.05 0.05 0.06
Grid-t PL 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04

PR 0.05 0.05 0.07 0.05 0.06 0.06 0.05 0.05 0.05

TABLE 4.—EXTENDED NELSON-PLOSSER

VELOCITY, 1869–1988, AR (1)

a L a U

Asymptotic 0.924 1.0011
Stock 0.944 1.036
Percentile 0.813 0.968
Percentile-t 0.958 1.030
Kilian 0.862 1.015
Grid- a 0.955 1.038
Grid-t 0.956 1.034

601THE GRID BOOTSTRAP AND THE AUTOREGRESSIVE MODEL



which show how the percentile-t approximates the bootstrap
quantile functions by � at lines at the OLS estimate aˆ . The
open arrows denote the percentile-t endpoints.

Figure 2 shows a similar construction for the grid- a

interval. The solid line denotes the normalized estimate
function b( a ) 5 aˆ 2 a , and the dotted lines the 5% and 95%
bootstrap quantile functions. The intersections denote the
endpoints of this grid bootstrap con� dence interval.

Table 4 reports the con� dence interval endpoints con-
structed by the various methods described in section IV.A.
For these calculations, the conventional bootstrap methods
used 1,999 bootstrap replications, and the grid bootstrap
method used 1,999 at each of 200 gridpoints.

B. Real Per Capita GNP

Considerable attention has been devoted to the persis-
tence properties of U.S. output. We now explore this series
(real per capita GNP from 1909 through 1988) in greater
detail. Following Nelson and Plosser (1982), we use an
AR(2) with trend, and 90%-con� dence intervals were calcu-
lated for the two AR coefficients both by the percentile-t
method and the grid-t bootstrap using 9,999 bootstrap
replications and a grid with 200 gridpoints. The results are
reported in table 5. Figures 3 and 4 plot the bootstrap grid-t
quantile functions and 90%-con� dence intervals for the two
parameters.

The reason for the choice of an extremely large number of
bootstrap replications was because of the difficulty in

identifying the right endpoint of the grid-t interval for r 1. As
can be seen in � gure 3, the right endpoint lies in a downward-
sloping region of the function q*n(0.05 | a ), and it appears that the
slope is quite similar to that of the t-statistic function. As a
result, the exact point of intersection is difficult to determine
unless q*n (0.05 | a ) is precisely estimated, as discussed in
section II.C. It is for this reason that the number of bootstrap
replications was set high. Observe that this contrasts with the
situation in � gures 1 and 2, where the right endpoint lies in
the region in which the quantile functions are upward-
sloping, implying greater estimation precision.

The grid-t bootstrap yields strictly larger con� dence
intervals than the percentile-t bootstrap for both parameters.
Most notably, the right endpoint of the con� dence interval
for r 1 is much larger (0.983) using the grid bootstrap than the
percentile-t (0.937). The reason can be seen from � gure 3.
The lower bootstrap quantile function falls as r 1 increases
towards unity (re� ecting the increased bias in OLS estima-
tion), and this dropoff is entirely missed by the percentile-t
bootstrap. The left endpoint is less affected because the
upper bootstrap quantile function is relatively � at in that
region.

Figure 4 shows that the distribution of the t-statistic for r 2

is relatively insensitive to the value of r 2, so that the grid-t
and percentile-t intervals will be quite similar. Nevertheless,
the grid-t bootstrap produces a slightly larger con� dence
interval for r 2 because the bootstrap quantile functions
(lower and upper) are decreasing as r 2 moves towards unity.

FIGURE 2—VELOCITY: 1869–1988
90%-GRID- a CONFIDENCE INTERVAL

Note: The dashed lines are the 5% and 95% bootstrap quantile functions q*n( u | a ). The solid line is the function ( a ˆ 2 a ). The intersections mark the endpoints of the grid- a con� dence interval.
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FIGURE 3—GNP PER CAPITA: 1909–1988
90%-CONFIDENCE INTERVALS FOR r 1

Note: The dashed lines are the 5% and 95% bootstrap quantile functions q*n( u | a ). The solid line is the t-statistic function t1( r 1) 5 ( r ˆ1 2 r 1)/s( rˆ1). The intersections mark the endpoints of the grid-t con� dence interval.
The linear projections mark the endpoints of the percentile-t interval.

FIGURE 4—GNP PER CAPITA: 1909–1988
90%-CONFIDENCE INTERVALS FOR r 2

Note: The dashed lines are the 5% and 95% bootstrap quantile functions q*n( u | a ). The solid line is the t-statistic function t2( r 2) 5 ( r ˆ2 2 r 2)/s( rˆ2). The intersections mark the endpoints of the grid-t con� dence interval.
The linear projections mark the endpoints of the percentile-t interval.
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C. Nelson-Plosser Revisited

Nelson and Plosser (1982) made a major impact on
econometrics by making the forceful case that the hypoth-
esis of an autoregressive unit root could not be rejected for
most major long-term macroeconomic time series. To make
this case, these authors used the augmented Dickey-Fuller
test with asymptotic critical values. Stock (1991) considered
the problem of constructing asymptotic con� dence intervals
based on a local-to-unity approximation for the largest
autoregressive root. Schotman and van Dijk (1991) extended
the original Nelson-Plosser data (which ran to 1970) through
the year 1988. We apply the grid bootstrap to construct
con� dence intervals for r 1 for both data sets.

We use the same transformations as Nelson-Plosser
(natural logs for all series with the exception of the bond
yield) and run the tests with a constant and time trend
included in the regressions. We use the same autoregressive
order k as Nelson-Plosser. Table 6 reports the thirteen series
used, the sample period, sample size, autoregressive order,
leading coefficient rˆ1 and standard error s( rˆ1), and 90%-
con� dence intervals for r 1 constructed by the grid-t boot-

strap. These bootstrap intervals were constructed using
1,999 bootstrap replications at each of 200 gridpoints.

The results for the original Nelson-Plosser data are quite
consistent with those reported by Nelson and Plosser. Our
90%-con� dence intervals contain unity for every series
except the unemployment rate. The con� dence intervals are
quite different from those that would be constructed by an
asymptotic approximation. Most notably, the left endpoints
are quite close to the point estimate.

The extension of the sample to 1988 provides some
important new information. While the point estimates are for
the most part not meaningfully changed, most of the
con� dence intervals are shorter. In fact, for two of the series
(Real per capita GNP and the Unemployment rate), the
bootstrap con� dence intervals do not include unity, suggest-
ing that these series are trend stationary. This result is
consistent with the � ndings of Diebold and Senhadji (1996).

VI. Conclusion

Conventional bootstrap methods work well in regular
statistical problems. The autoregressive model is nonregular
in that the asymptotic distribution of the t-statistic changes
discontinuously at the unit circle. This is a context where it is
known that conventional inference can fail. To remedy this
problem, we propose basing con� dence intervals on test
statistic inversion, and call this method the grid bootstrap.
This method is � rst-order consistent under strictly broader
conditions than for the conventional bootstrap, and these
conditions are satis� ed for the AR(k) model with a near unit
root.

We do not explore the high-order properties of our grid
bootstrap. We expect the grid bootstrap to achieve an
asymptotic re� nement under the same conditions as the
conventional percentile-t bootstrap, and possibly under more
general conditions. We leave this demonstration to future
research.

REFERENCES

Abadir, K. M., ‘‘The Limiting Distribution of the Autocorrelatio n Coeffi-
cient under a Unit Root,’’ The Annals of Statistics 21 (1993),
1058–1070.

Anderson, T. W., and H. Rubin, ‘‘Estimation of the Parameters of a Single
Equation in a Complete System of Stochastic Equations,’’ The
Annals of Mathematical Statistics 20 (1949), 46–63.

Andrews, D. W. K., ‘‘Exactly Median-Unbiase d Estimation of First-Order
Autoregressive /Unit Root Models,’’ Econometrica61 (1993), 139–
166.

Andrews, D. W. K., and H.-Y. Chen, ‘‘Approximately Median-Unbiase d
Estimation of Autoregressiv e Models,’’ Journal of Business and
Economic Statistics 12 (1994), 187–204.

Basawa, I. V., A. K. Mallik, W. P. McCormick, J. H. Reeves, and R. L.
Taylor, ‘‘Bootstrapping Unstable First-Order Autoregressive Pro-
cesses,’’ Annals of Statistics 19 (1991), 1098–1101.

Beran, R., ‘‘Prepivoting to Reduce Level Error of Con� dence Sets,’’
Biometrika 74 (1987), 457–468.

Bickel, P. J., and D. A. Freedman, ‘‘Some Asymptotic Theory for the
Bootstrap,’’ Annals of Statistics 9 (1981), 1196–1217.

Bose, A., ‘‘Edgeworth Correction by Bootstrap in Autoregressions, ’’
Annals of Statistics 16 (1989), 1709–1722.

Carpenter, J., ‘‘Test Inversion Bootstrap Con� dence Intervals,’’ Journal of
the Royal Statistical Society, Series B 61 (1999), 159–172.

TABLE 5.—REAL PER CAPITA GNP, 1909–1988 90% BOOTSTRAP CONFIDENCE

INTERVALS, AR(2)

Parameter rˆ s( rˆ)
Percentile-t

Interval

Grid-t
Bootstrap
Interval

r 1 0.816 0.052 (0.768, 0.937) (0.763, 0.983)
r 2 0.402 0.103 (0.220, 0.554) (0.211, 0.560)

TABLE 6.—GRID-T BOOTSTRAP CONFIDENCE INTERVALS FOR r 1

Series Period n k rˆ1 s( rˆ1) 90% Interval

Nelson-Plosser Data Set
Real GNP 1909–1970 62 2 0.825 0.058 (0.775, 1.030)
Nominal GNP 1909–1970 62 2 0.907 0.029 (0.880, 1.014)
Real per capita GNP 1909–1970 62 2 0.818 0.059 (0.762, 1.031)
Industrial production 1860–1970 111 6 0.835 0.063 (0.783, 1.048)
Employment 1890–1970 81 3 0.861 0.051 (0.816, 1.034)
Unemployment rate 1890–1970 81 4 0.706 0.081 (0.620, 0.954)
GNP de� ator 1889–1970 82 2 0.915 0.033 (0.890, 1.025)
Consumer prices 1860–1970 111 4 0.968 0.016 (0.961, 1.019)
Wages 1900–1970 71 3 0.910 0.039 (0.884, 1.035)
Real wages 1900–1970 71 2 0.831 0.055 (0.782, 1.029)
Velocity 1869–1970 102 1 0.941 0.035 (0.929, 1.043)
Bond yield 1900–1970 71 3 1.032 0.046 (1.020, 1.078)
S&P 500 1871–1970 100 4 0.908 0.043 (0.878, 1.040)

Extended Nelson-Plosser Data Set
Real GNP 1909–1988 80 2 0.824 0.050 (0.773, 1.013)
Nominal GNP 1989–1988 100 2 0.936 0.022 (0.916, 1.012)
Real per capita GNP 1909–1988 80 2 0.816 0.052 (0.763, 0.983)
Industrial production 1860–1988 129 6 0.841 0.058 (0.789, 1.040)
Employment 1890–1988 99 3 0.864 0.046 (0.822, 1.024)
Unemployment rate 1890–1988 99 4 0.715 0.071 (0.634, 0.909)
GNP de� ator 1889–1988 100 2 0.968 0.020 (0.962, 1.025)
Consumer prices 1860–1988 129 4 0.987 0.010 (0.989, 1.018)
Wages 1900–1988 89 3 0.939 0.029 (0.922, 1.028)
Real wages 1900–1988 89 2 0.929 0.041 (0.906, 1.042)
Velocity 1869–1988 120 1 0.962 0.023 (0.956, 1.034)
Bond yield 1900–1988 89 3 0.953 0.034 (0.958, 1.051)
S&P 500 1871–1988 188 4 0.932 0.035 (0.911, 1.036)

604 THE REVIEW OF ECONOMICS AND STATISTICS



Chamberlain, G., ‘‘Quantile Regression, Censoring, and the Structure of
Wages,’’ in C. Sims (ed.), Advances in Econometrics: Sixth World
Congress (1994), 171–209.

Cramér, H., Mathematical Methods of Statistics (Princeton: Princeton
University Press, 1946).

Davidson, J., Stochastic Limit Theory: An Introduction for Econometri-
cians (Oxford: Oxford University Press, 1994).

DiCiccio, T. J., and J. P. Romano, ‘‘Nonparametric Con� dence Limits by
Resampling Methods and Least Favorable Families,’’ International
Statistical Review 58 (1990), 59–76.

Diebold, F. X., andA. S. Senhadji, ‘‘The Uncertain Unit Root in Real GNP:
Comment,’’ American Economic Review 86 (1996), 1291–1298.

Dufour, J. M., ‘‘Some Impossibility Theorems in Econometrics with
Applications to Structural and Dynamic Models,’’ Econometrica65
(1997), 1365–1387.

Efron, B., and R. J. Tibshirani , An Introduction to the Bootstrap (New
York: Chapman-Hall, 1993).

Fuller, W. A., Introduction to Statistical Time Series, 2nd Ed. (New York:
Wiley, 1996).

Garthwaite, P. H., and S. T. Buckland, ‘‘Generating Monte Carlo Con� -
dence Intervals by the Robbins-Monro Process,’’ Applied Statisti-
cian 41 (1992), 159–171.

Hall, P., ‘‘Theoretical Comparison of Bootstrap Con� dence Intervals’’
(with discussion) . Annals of Statistics 16 (1988), 927–985.

——— The Bootstrap and Edgeworth Expansion (New York: Springer-
Verlag, 1992).

Hansen, B. E., ‘‘Convergence to Stochastic Integrals for Dependent Heteroge-
neous Processes,’’Econometric Theory 7 (1992), 489–500.

Kabaila, P., ‘‘Some Properties of Pro� le Bootstrap Con� dence Intervals, ’’
Australian Journal of Statistics 35 (1993), 205–214.

Kilian, L., ‘‘Small-Sample Con� dence Intervals for Impulse Response
Functions,’’ this REVIEW 80 (1998), 218–230.

Knight, J. L., and S. E. Satchell, ‘‘Asymptotic Expansions for Random
Walks with Normal Errors,’’ Econometric Theory 10 (1993),
363–376.

Mallows, C. L., ‘‘A Note on Asymptotic Joint Normality,’’ Annals of
Mathematical Statistics 39 (1972), 755–771.

Nankervis, J. C., and N. E. Savin, ‘‘The Level and Power of the Bootstrap t
Test in the AR(1) Model with Trend,’’ Journal of Business and
Economic Statistics 14 (1996), 161–168.

Nelson, C. R., and C. I. Plosser, ‘‘Trends and Random Walks in
Macroeconomic Time Series,’’ Journal of Monetary Economics 10
(1982), 139–162.

Phillips, P. C. B., ‘‘Approximations to Some Finite Sample Distributions
Associated with a First-Order Stochastic Difference Equation,’’
Econometrica45 (1977), 463–485.

Phillips, P. C. B., and V. Solo, ‘‘Asymptotics for Linear Processes,’’ The
Annals of Statistics 20 (1992), 971–1001.

Romano, J. P., and M. Wolf, ‘‘Subsampling Con� dence Intervals for the
Autoregressive Root,’’ unpublished manuscript , Department of
Statistics, Stanford University (1998).

Schotman, P. C., and H. K. van Dijk, ‘‘On Bayesian Routes to Unit Roots,’’
Journal of Applied Econometrics 6 (1991), 387–401.

Shao, J., and D. Tu, The Jackknife and Bootstrap (New York: Springer,
1995).

Stock, J. H., ‘‘Con� dence Intervals for the Largest Autoregressive Root in
U.S. Macroeconomic Time Series,’’ Journal of Monetary Econom-
ics 28 (1991), 435–460.

APPENDIX

Proof of proposition (1): Let f 5 ( a , h ) and f ˆ 5 ( aˆ , h ˆ ). Observe that

Cb 5 { a [ R : Fn(qn( u 1 | f ˆ ) | f ˆ ) # Fn(Sn( a ) | f ˆ ) # Fn(qn( u 2 | f ˆ ) | f ˆ )}
5 { a [ R : u 1 # Fn(Sn( a ) | f ˆ ) # u 2},

so

P( a [ Cb) 5 P(u 1 # Fn(Sn( a ) | f ˆ ) # u 2). (12)

As discussed in section 2.3 of Beran (1987), the assumptions (a restate-
ment of Beran’s condition 1) imply that Fn(x | f ˆ ) ® p F(x | f ) uniformly in x.

They also imply that Fn(x | f ) ® F(x | f ), where Fn(x | f ) is the distribution
of Sn( a ). Thus, Fn(Sn( a ) | f ˆ ) ® d U[0, 1], and, from equation (12), we
conclude P( a [ Cb) ® u 2 2 u 1 5 b .

Proof of proposition (2): Let F*n(x | a ) 5 Fn(x | a , h ˆ ( a )). Observe that
F*n(q*n ( u | a )) | a ) 5 u . Thus,

Cg 5 { a [ R : F*n(q*n( u 1 | a ) | a ) # F*n(Sn( a ) | a ) # F*n(q*n( u 2 | a ) | a )}
5 { a [ R : u 1 # F*n(Sn( a ) | a ) # u 2},

so

P( a [ Cg) 5 P( u 1 # F*n(Sn( a ) | a ) # u 2).

The assumptions imply that F*n(x | a ) 5 Fn(x | a , h ˆ ( a )) ® p F(x | a , h )
uniformly in x, and that Fn(x | a , h ) ® F(x | a , h ), where Sn( a ) has
distribution Fn(x | a , h ). It follows that F*n(Sn( a ) | a ) ® d U[0, 1], and thus
P( a [ Cg) ® u 2 2 u 1 5 b .

Proof of theorem (1): We show that the conditions of proposition (1)
hold, and thus the conclusion s of proposition (1) and (2) follow. Let f 5

( r , P) and f ˆ 5 ( rˆ , P̂). De� ne Mallows’ distance (Mallows, 1972)

d2r(H, G) 5 inf
X,Y

\X 2 Y \ 2r

where the in� mum is over all possible joint distributions of (X, Y) whose
marginal distribution s are H and G, respectively. Then, set

d( f , f 8) 5 | r 2 r 8 | 1 d2r(P, P8).

Under the assumptions, it is known that d( f , f ˆ ) ® p 0. (For a discussion of
convergence with respect to d2r, see Shao and Tu (1995, section 3.1.2).) It
remains to show that, for all sequences f n such that Pn [ J and d( f n,
f ) ® 0, then Fn(x | f n) converges weakly to a continuous distribution
function F(x | f ).

Let xt 5 (1 (t/n) yt2 1 yt2 2 . . . yt 2 k) and set

Xn 5 (1n o
t 5 1

n

e t
2,

1

n o
t 5 1

n

xtx8t,
1

Î n
o
t 5 1

n

xtet).

It is sufficien t to study Xn as the statistics rˆ j 2 r j and tj 5 ( rˆ j 2 r j)/sj are
continuous functions of Xn. Under the assumptions, it is well known that

Xn ® d X 5 ( s 2, M, Z), (13)

where Z , N(0, s 2M) and

M 5 lim
n ® `

1

n o
t5 1

n

Ext x8t.

Now, for any f n 5 ( r n, Pn) where d( f n, f ) ® 0 and Pn [ J , let ynt be
determined by f n. That is, ynt follows the process

ynt 5 r n1 ynt 2 1 1 r n2 D ynt2 1 1 · · · 1 r nkD ynt2 k1 1 1 ent (14)

where ent are i.i.d. mean-zero draws from Pn and r n 5 (r n1, . . . , r nk). This
process is nonstationar y (unless the initial condition is drawn from the
unconditiona l distribution) . As long as the initial condition is bounded, it
does not affect the distribution theory presented here, so we make the
simplifying assumption that process (14) has been generated over an
in� nite time horizon.

Let xnt 5 (1 (t/n) ynt 2 1 ynt 2 2 . . . ynt2 k) and

X*n 5 (1n o
t 5 1

n

ent
2 ,

1

n o
t5 1

n

xntx8nt,
1

Î n
o
t 5 1

n

xntent).
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The proof of the theorem is completed by showing that X*n ® d X as n ® ` .
(Since the limit is the same as in (13), and the statistics are continuous
functions of Xn and X*n, their limiting distribution s are the same.)

Let R satisfy Eet
2r , R , ` . Since d2r(P, Pn) ® 0, then Eent

2r ® Ee t
2r , R

(Bickel & Freedman, 1981). Thus, for n sufficiently large, for all n $ n,
Eent

2r # R. Thus, ent
2 is uniformly integrable . Hence, as n ® ` ,

1

n o
t5 1

n

ent
2 5

1

n o
t 5 1

n

(ent
2

2 Eent
2 ) 1 Eent

2 ® p s 2 (15)

by the WLLN for independen t uniformly integrable random arrays and the
fact that d2r(P, Pn) ® 0 implies Eent

2 ® Eet
2 5 s 2.

We next show that

1

n o
t5 1

n

ynt
2 ® p lim

n® `

1

n o
t 5 1

n

Eyt
2. (16)

Extended arguments of this form show that (1/n) S t 5 1
n xntx8nt ® p M.

Since a(L)yt 5 et and the roots of a(L) lie outside the unit circle, then
yt 5 b(L)et where b(L) 5 a(L) 2 1 5 1 1 b1L 1 b2L2 1 · · · . Since a(L) is
� nite-order, it follows that the bj coefficients decline exponentially , so
S j5 1

` j | bj | , ` . For any r n, there is a corresponding polynomial an(L). Since
| r n 2 r | ® 0, there is an n sufficientl y large so that, for all n $ n, bn(L) 5

an(L) 2 1 5 1 1 bn1L 1 bn2L2 1 · · · exists and S j5 1
` j | bnj | # K , ` . For

the remainder of the argument, assume that n $ n. Thus, ynt 5 bn(L)ent . For
j 5 0, 1, . . . , let

fnj 5 o
k5 0

`

bnkbnk1 j.

Following the decomposition for squared linear processes introduced by
Phillips and Solo (1992),

ynt
2 5 fn0ent

2 1 2entẽnt2 1 2 (znt 2 znt 2 1)

where

ẽnt2 1 5 o
j5 1

`

fnjent 2 j

and

znt 5 o
k5 0

`

o
s 5 k1 1

`

bns
2 ent2 k

2 1 2 o
j 5 1

`

o
k5 0

`

o
s 5 k1 1

`

bnsbns 1 jent 2 kent2 k2 j.

Hence,

1

n o
t5 1

n

ynt
2 5 fn0

1

n o
t 5 1

n

ent
2 1 2

1

n o
t5 1

n

ent ẽnt2 1 1
zn0 2 znn

n
. (17)

We now examine the terms on the right-hand side of (17). First, notice
that entẽnt2 1 is a MDS, and is uniformly integrable since

\entẽnt 2 1 \r # o
j 5 1

`

| fnj | \entent 2 1 \ r # o
j5 1

`

o
k5 0

`

| bnkbnk1 j | R2/r

# ( o
k5 0

`

| bnk | )2 R2/r # K 2R2/r , ` .

Hence, (1/n) S t5 1
n entẽnt2 1 ® p 0. Second, znt 5 Op(1) since

\ znt \r # o
k5 0

`

o
s 5 k1 1

`

bns
2 \ent2 k

2 \r 1 2 o
j 5 1

`

o
k5 0

`

o
s 5 k1 1

`

| bns | | bns 1 j | \ent 2 kent2 k2 j \r

# (K 1 2K 2)R1/2r , ` .

Thus, (zn0 2 z nn)/n ® p 0. Finally,

1

n o
t 5 1

n

ynt
2 5 fn0

1

n o
t5 1

n

ent
2 1 Op(1) ® p f0s 2

by equation (15), where f0 5 S k5 0
` bk

2. This yields (16) as needed, since

f0s 2 5 lim
n® `

1

n o
t 5 1

n

Eyt
2.

Finally, since xntent is a martingale difference array, n2 1/2 S t 5 1
n xntent ® d

N(0, s 2M) if

1

n o
t 5 1

n

xntx8ntent
2 ® p s 2M (18)

and

1

Î n
max
t # n

|xntent | ® p 0. (19)

(See Davidson (1994), theorem (24.3).)
Consider equation (18). It consists of elements of the form

1

n o
t 5 1

n

ynt 2 1
2 ent

2 5 fn0

1

n o
t 5 1

n

ent 2 1
2 ent

2 1 2
1

n o
t 5 1

n

ent2 1 ẽnt 2 2ent
2

1
1

n o
t 5 1

n

D znt2 1ent
2 ® p f0 s 2 s 2

by calculation s similar to those above, and the facts that ent
2 is independen t

of ent2 1
2 , ent 2 1ẽnt2 2 , and D znt2 1, that E(ent 2 1ẽnt 2 2) 5 0 and E( D znt2 1) 5 0.

This establishes equation (18).
To show equation (19), observe that \ ynt \ r # S k5 0

` | bnk | \ent 2 k\ r # KR1/2;
thus, E | xnt | 2r # kK rR, and, hence, E | xntent | 2r 5 E | xnt | 2rE | ent | 2r # kK rR2.
Thus, for any d . 0,

P ( 1

Î n
max
t# n

| xntent | . d )# o
t 5 1

n

P ( 1

Î n
|xntent | . d )

# o
t5 1

n E | xntent | 2r

nr d 2r
#

kK rR2

nr 2 1 d 2r
® 0.

This completes the demonstration of X*n ® d X as n ® ` , which completes
the proof.

Proof of theorem (2): For simplicity of exposition , we will discuss the
proof for the case where there is no included constant and time trend. In
this case, under our assumptions , the asymptotic distribution s of n( rˆ 2 r 1)
and t1 are given by equation (10) and (11), respectivel y, where Wc(r) is the
Gaussian diffusion process that solves dWc(r) 5 cWc(r) 1 dW(r).

Let a 5 r 1 5 1 1 C/n, h 5 ( r 2, . . . , r k, P) [ (Rk2 1 3 J ) and set

d( h , h 8) 5 o
j 5 2

k

| r j 2 r 8j | 1 d2r(P, P8).

It is clear that d( h , h ˆ ( a )) ® p 0.
Take any sequence h n [ (Rk2 1 3 J ) such that d( h , h n) ® 0. Let ynt be

determined by ( a , h n). That is, ynt follows the process

ynt 5 (1 1 C/n) ynt 2 1 1 r n2 D ynt 2 1 1 · · · 1 r nkD ynt 2 k1 1 1 ent

where ent are i.i.d. mean-zero draws from Pn. Let rˆn1 denote the OLS
estimate of r 1 from this sample and tn1 its t-statistic. To complete the proof,
we need to show that the asymptotic distributions of rˆn1 and tn1 are
equation (10) and (11), respectivel y.
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As discussed in the previous section, for n sufficientl y large, Eent
2r # R,

and ent
2 is uniformly integrable. Since (1/n) S t 5 1

[nr] Eent
2 ® r s 2 for all r, (1/n)

S t5 1
n ent

2 ® p s 2, and n 2 1/2 maxt# n | ent | ® p 0, (by arguments similar to
equation (18) and (19)) it follows by Donsker’s theorem for martingale
difference arrays (Davidson (1994) Theorem (27.14)) that

1

Î n
o
t5 1

[nr]

ent Þ s W(r) (20)

as n ® ` . Let Snt 5 (1 1 c/n)Snt2 1 1 ent . Then equation (20) and Hansen
(1992, theorem (3.1)) imply

1

Î n
Sn[nr] 5 exp (2 [nr]

n
c) 1

Î n
o
t 5 1

[nr]

exp ((tn)c)ent 1 Op(1)

Þ exp ( 2 rc) e
0

r
exp ( l c) s dW( l )

5 s Wc(r).

Let r n(z) 5 1 2 r n2z 2 · · · 2 r nkzk2 1. For sufficientl y large n, r n(z) 5 r n 1
r *n(z)(1 2 z) where r n 5 r n(1) and the coefficient s of r *n(z) have exponen-
tial decay. Let j nt 5 r *n(L)D ynt and S*nt 5 r n(L) ynt. Observe that

D S*nt 5
c

n
S*nt 2 1 1

c

n
j nt2 1 1 ent.

Since n2 1/2 supt # n | j nt | ® p 0, then n2 1/2S*n[nr] 5 n 2 1/2Sn[nr] 1 op(1) Þ
s Wc(r). Now, let bn(z) 5 r n(z) 2 1 so b 5 1/ r . Then,

1

Î n
yn[nr] 5 bn(L)S*n[nr] 5 bnS*n[nr] 1 Op(1) Þ bs Wc(r) 5

s

r
Wc(r).

By the continuous-mappin g theorem, we conclude that

1

n2 o
t 5 1

n

ynt2 1
2 Þ

s 2

r 2 e 0

1
Wc

2, (21)

and, by Hansen (1992, theorem (3.1))

1

n2 o
t 5 1

n

ynt2 1ent Þ
s 2

r
e

0

1
Wc dW. (22)

Results (21) and (22) are the fundamenta l determinants of the asymptotic
distribution s of rˆn1 and tn1 (10) and (11). The only addition equations
needed to establish is (15), and that for j 5 1, . . . , k,

1

n3/2 o
t5 1

n

ynt2 1 D ynt2 j ® p 0,

and both follow from standard arguments. We conclude that the asymptotic
distribution s of rˆn1 and tn1 are (10) and (11), respectively, which completes
the proof.
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