
 

 

 University of Groningen

The GRIFFIN Collaborative Virtual Community for Architectural Knowledge Management
Lago, Patricia; Farenhorst, Rik; Avgeriou, Paris; Boer, Remco C. de; Clerc, Viktor; Jansen,
Anton; Vliet, Hans van
Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Lago, P., Farenhorst, R., Avgeriou, P., Boer, R. C. D., Clerc, V., Jansen, A., & Vliet, H. V. (2010). The
GRIFFIN Collaborative Virtual Community for Architectural Knowledge Management. In EPRINTS-BOOK-
TITLE University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-08-2022

https://research.rug.nl/en/publications/2bb5cccf-e19d-4e70-a3da-d78c45593a08


Chapter 10

The GRIFFIN Collaborative Virtual Community

for Architectural Knowledge Management

Patricia Lago, Rik Farenhorst, Paris Avgeriou, Remco C. de Boer, Viktor

Clerc, Anton Jansen, and Hans van Vliet

Abstract Modern software architecting increasingly often takes place in geograph-

ically distributed contexts involving teams of professionals and customers with dif-

ferent backgrounds and roles. So far, attention and effort have been mainly dedicated

to individuals sharing already formalized knowledge and less to social, informal col-

laboration. Furthermore, in Web 2.0 contexts, little to no attention has been given to

practitioners carrying out complex, collaborative, and knowledge-intensive tasks in

organizational contexts.

This chapter shows how we can effectively support the combination of formal and

informal collaboration and build a Virtual Community for architectural knowledge

sharing. We present a set of collaboration scenarios that define a conceptual model

for such a Virtual Community. A solution in this area would realize the expectations

of companies involved in IT and working in distributed settings to effectively exploit

their expertise, and turn their professional knowledge into a global IT portfolio.

10.1 Introduction

The notion of software architecture is one of the key technical advances to the

field of software engineering over the last decade. The advantages of using explicit

software architecture include early interaction with stakeholders, its basis for

establishing work breakdown structure and early assessment of quality attributes [2].

The GRIFFIN project develops notations, tools, and associated methods to

extract, represent, and use architectural knowledge that currently is not documented

or represented in the system. In GRIFFIN, Architectural Knowledge (AK) is defined

as the integrated representation of the software architecture of a software-intensive

system or a family of systems, the architectural design decisions, and the external

context/environment. The project emphasizes sharing architectural knowledge in a

P. Lago (B)

VU University Amsterdam, 1081 HV Amsterdam, Netherlands

e-mail: patricia@cs.vu.nl

195I. Mistrík et al. (eds.), Collaborative Software Engineering,

DOI 10.1007/978-3-642-10294-3_10, C© Springer-Verlag Berlin Heidelberg 2010



196 P. Lago et al.

distributed, global context. Some of the results can be found in [6, 7, 8, 9, 10, 11,

12, 13, 16, 17].

GRIFFIN is a joint research project of the VU University Amsterdam and the

University of Groningen, both in the Netherlands. The research is carried out in a

consortium with various industrial partners, both large and small. These partners

provide us with case studies and give feedback. The domains of these case studies

range from a family of consumer electronics products to a highly distributed system

that collects scientific data from around 15,000 sensors to a service-oriented system

in a business domain.

Although considerable progress has been made, we still lack techniques for

capturing, representing, and maintaining knowledge about software architectures.

While much attention has been given to documenting architectural solutions, the

rationale for these solutions often remains implicit and is often exchanged in inter-

personal, informal communication. The incomplete representation of the needed AK

leads to several problems that are generally recognized in any software engineering

project, and that become just worse in distributed and global software development:

• Lack of first-class representation [3] architectural solutions, design decisions,

and rationale lack a first class representation in the software architecture.

Consequently, the knowledge about the “what and how” of the software archi-

tecture is quickly lost. Experience shows that this documentation on architecture

design decisions is difficult to interpret and use by individuals not involved in the

initial design of the system.

• Architectural knowledge is cross-cutting and intertwined [3] architectural knowl-

edge addresses technical, business, organizational, and cultural aspects that influ-

ence architectural decisions and design solutions. Due to its inter-disciplinary

nature, architectural knowledge is cross-cutting, affecting multiple components

and connectors, and one piece of architectural knowledge often becomes inti-

mately intertwined with another piece of architectural knowledge.

• High cost of change [3] a resulting problem is that a software architecture,

once implemented, is prohibitively expensive to change. Moreover, changing or

removing existing design decisions is difficult.

• Design rules, constraints, and rationale violated [3] during the evolution of

software systems, designers and even architects may easily violate the design

rules, constraints, and rationale imposed on the architecture during earlier design

iterations.

• Obsolete design decisions not removed [3] removing obsolete architecture design

decisions from an implemented architecture is typically avoided, or performed

only partially, because of (1) the effort required, (2) perceived lack of benefit

and (3) concerns about the consequences, due to the lack of knowledge about

them. The consequence is a rapid erosion of the software system, resulting in

high maintenance cost.

• Architectural knowledge is dispersed and undocumented: documented or for-

malized architectural knowledge is usually limited to technical architectural

solutions. Non-technical knowledge such as business and cultural aspects remains



10 The GRIFFIN Collaborative Virtual Community 197

tacit and only known to individuals. This architectural knowledge is then lost, and

difficult (if not impossible) to trace back and reuse in later developments.

• Documented architectural knowledge neglects interdisciplinary use: architectural

knowledge documentation should convey the overall architecture to persons with

different culture, skills, and responsibilities in different architectural aspects or

subsystems. Persons working at the subsystem level easily lose track of relations

between their “part” and the overall architecture. This hampers traceability and

may lead to changes that conflict with the general architectural decisions, which

instead should orchestrate the differences between the involved parties.

When software engineering projects are distributed or global, the problems

above are aggravated. Knowledge transfer is a communication process requiring

strict interaction and agile information exchange. In local software development,

it is already difficult to rationalize the type and amount of knowledge we need to

exchange. If in addition exchanges occur remotely and via a technological infras-

tructure, we have to make this knowledge explicit, and we need to identify agile

means to render this process as dynamic and powerful as possible.

In this chapter, we describe the conceptual collaborative scenarios implementing

a virtual community aimed at sharing architectural knowledge in a distributed set-

ting. As envisaged by Zhuge [25] “Modern communication facilities like the Internet

provide people with unprecedented social opportunities for knowledge generation

and sharing”. To improve this knowledge generation and sharing, Zhuge designed

a knowledge grid that supports social activities in different environmental spaces.

In our work we aim at realizing such a knowledge grid for professionals involved

in the software architecture processes. To this end, we first highlight some trends

in architectural knowledge representation and sharing. Then, we define the collabo-

ration requirements for the GRIFFIN virtual community followed by the scenarios

realizing them. We further show how this set of scenarios combine formalized and

informal AK sharing; a combination that can be finally mapped on Web 2.0 services.

10.1.1 From a Codification/Personalization to a Hybrid Knowledge

Management Strategy

In most literature, e.g. [21], knowledge is classified into tacit, documented, and

formalized knowledge. Tacit knowledge (e.g., organization strategies or best prac-

tices) is implicitly known and used by software architects, but not made explicit.

Documented knowledge about software architecture (e.g., design decisions or ratio-

nale) can be interpreted and used by humans, whereas formalized knowledge (e.g.,

domain-specific ontologies) can be created and used by both humans and software

systems.

In software development organizations much knowledge is kept in unstructured

forms: FAQs, mailing lists, email repositories, bug reports, lists of open issues, etc.

Lightweight tools such as wikis, weblogs, and yellow pages are other examples of

relatively unstructured repositories to share information in global projects.



198 P. Lago et al.

In the knowledge management literature, a distinction is made between a per-

sonalization strategy and a codification strategy [14]. A personalization strategy

emphasizes interaction between knowledge workers. The knowledge itself is kept

by its creator. One personalization strategy is to record who knows what, as e.g.,

in yellow pages. Each person then has his/her own way to structure the knowledge.

The threshold to participate is usually low, but the effort to find useful information

is higher. In a codification strategy, knowledge is codified and stored in a repository.

The repository may be unstructured (as in wikis) or structured according to some

model. In the latter case, the structure of the repository can be used while query-

ing. An advantage of a structured repository is that the information has the same

form. A disadvantage is the extra effort it takes to cast the information in the form

required. A hybrid strategy may be used to have the best of those different worlds

[1, 11].

10.1.2 From Closed to Open Virtual AK Communities

When we speak of knowledge virtual communities we are immediately brought back

to the concepts of open source software communities [4] and Internet and web-based

communities [23]. Both were born as open social environments of peers. As such,

access from non-members is allowed and aspects like task assignment and work

progress are delegated to the initiative of the individual.

In the early 2000s we observed the shift of the so-called closed communities

living inside business and governmental organizations toward more open, agile prac-

tices. This shift witnessed the creation in large business organizations of hybrid

communities, such as inner-source software communities created according to the

same principles of OSS development, collaborating (to some extent) with exter-

nal, open communities but living within the boundaries of the organization. In a

similar way, with the advent of Web 2.0, principles such as “radical trust on mass-

contributed contents” or “using the web as a knowledge sharing platform” [22]

enterprises applied the same principles to let their employees share the organiza-

tional know-how. For example, Yakovlev [24] gives an overview of widely known

Web 2.0 mechanisms that enable the autonomous creation of virtual communities

of peers. Among them we find wikis (used by enterprises to aggregate input from

members of various focused groups), RSS feeds (allowing community members to

remain up-to-date on selected subjects), social networking (supporting autonomous

community building) and folksonomies (supporting users of a social environment in

collaboratively creating and managing tags to annotate and categorize content).

In summary, organizations moved from closed to open (but regulated) commu-

nities thanks to the acceptation of modern principles and the adoption of enabling

technologies. The GRIFFIN virtual community provides one example of such com-

munities. It is meant to support a community of professionals (software architects)

to effectively carry out their daily work and further contribute to (and learn from)

the community with its own (architectural) knowledge. A combination of strategies

for knowledge codification and personalization should provide each individual with



10 The GRIFFIN Collaborative Virtual Community 199

the necessary flexibility, to fit in the own working practice and to provide sufficient

incentives for successful AK management.

10.2 Requirements for Collaboration in a Distributed

Environment of Software Architects

Within the context of architectural knowledge management, four broad topics can

be identified:

• AK sharing focuses on methods, tools, and techniques for exchanging AK

among stakeholders directly (through personalization) or indirectly (through

codification).

• AK discovery focuses on the methods, tools, and techniques to find, extract,

and make accessible the relevant AK dispersed across the documentation that

accompanies a software product.

• AK traceability focuses on methods, processes, and tools for codifying and

interrelating AK.

• AK compliance focuses on ensuring that the architectural design decisions are

known, understood, and complied with in the resulting system.

The combination of the four topics of AK sharing, discovery, traceability

and compliance poses the following requirements for collaboration in distributed

environments of software architects:

Manage architectural decisions. Architecting is a decision making process and

architects have to consider lots of technical and non-technical requirements, con-

straints, and concerns. To assist architects in the thought process of balancing these

forces, the collaborative virtual community needs to offer support for managing

architectural decisions and all associated knowledge. This will allow sharing of the

“reasoning behind” architectural designs, because this is what architectural deci-

sions and their rationale represent. It also allows maintaining an explicit backlog

of open issues, concerns, and decisions [15]. This requirement for the collaborative

virtual community includes providing overviews of architectural decisions taken,

plus the relationships between those decisions. Finally, insight in the completeness,

correctness, and consistency of a set of architectural decisions helps architects in

reflecting on the developed solutions, and in identifying conflicts between decisions

taken.

Codify architectural knowledge. The result of the processes of architecting are

reported in artifacts like documents and models. Sharing them allows AK transfer.

In this way the architects and stakeholders not directly involved in decision making,

can participate or acquire after-the-fact information.

Search architectural knowledge. Next to assisting practitioners in producing

architectural knowledge, support during consumption of such knowledge (e.g.,

searching) is equally important. The need for a more balanced view on AK



200 P. Lago et al.

sharing, in which support for both producing and consuming AK is included, has

been discussed before [19]. Moreover, one of the main requirements practitioners

stated is support in retrieving the right architectural knowledge at the right time

[12]. This can boost reuse of AK (reusable assets are better accessible) and stimulate

learning among practitioners (knowledge can be found more easily).

Support community building. Due to the size and complexity of most software

systems, it is often infeasible for one architect to be responsible for everything

himself. This focus on teamwork is especially true in global software engineering

environments where the architect-role is often fulfilled by multiple collaborat-

ing architects. Consequently, AK management support should support community

building. This may include facilities to hold discussions or chat with colleagues,

to organize and plan meetings, workshops or events, to peer-review deliverables of

colleagues, to find contact information, expertise and interests of colleagues, and to

retrieve information about what colleagues are currently working on.

Provide intelligent support. We argue that architects would welcome intelligent

support (advice, guidelines) just after or during activities producing and assessing

AK (e.g., writing an architectural description). Intelligent support is more useful

if combined with a certain level of pro-activity. For instance, intelligence and pro-

activity can be provided using avatars that think along with practitioners and suggest

ideas, challenge decisions, play the devil’s advocate, etc.

Enrich architectural knowledge. Ideally architectural knowledge should be pro-

duced and shared below the surface without bothering architects. Automatically

distilling patterns out of unstructured data, for example, would lead to production of

AK without an architect explicitly doing this. Producing and consuming architec-

tural knowledge should thus not be considered an extra, resource-consuming activity

but rather an invisible part of other organizational processes. Enrichment of archi-

tectural knowledge means support for intelligence and pro-activity, which would

also benefit practitioners in their daily work, is the (semi-) automatic interpretation

of content in order to enrich this content. Text mining services could for example

be employed to automatically sift and winnow through existing architectural knowl-

edge stored (e.g., in a database) looking for new patterns, defining best practices, or

locating trends. Based on the findings additional meta-data could be generated by

such a service and eventually presented to the practitioner.

10.3 A Collaborative Virtual Community for AK Management

Within GRIFFIN, we envision a virtual and distributed community of professionals

willing to create and share knowledge.

A virtual community is defined on Wikipedia as “a group of people that pri-

marily interact via communication media [...] rather than face to face, for social,

professional, educational or other purposes”. We extend this definition to embrace

organizations as well as individuals. Accordingly, we consider a virtual commu-

nity as a group of virtual spaces, where each virtual space can correspond to whole



10 The GRIFFIN Collaborative Virtual Community 201

Fig. 10.1 Distributed community of organizational virtual spaces

organizations, teams of people or individuals. As illustrated in Fig. 10.1 organiza-

tions can share AK in a grid-like configuration of connected sites (like organiza-

tion A) and/or departments or business units (like organization B) where employees

carry out collaborative activities. Individuals hence work in their virtual space where

they can manage their own knowledge and eventually share part of this knowledge

with (remote) counterparts in a collaborative social network of professionals.

10.3.1 Support for Collaborative AK Management

For each of the four AK management topics introduced before (AK sharing, AK

discovery, AK traceability, and AK compliance) we researched the state-of-the-

practice as well as the challenges experienced by the GRIFFIN industrial partners.

For each topic, the following illustrates the related virtual spaces that we designed

and developed, and the architecture process activities they support.

10.3.1.1 Virtual Spaces for AK Sharing

There are several broad activities within the architecting process that demand for

architectural knowledge sharing (AKS). These include:

Decision making. Architecting is inherently a decision making process.

Architects need to balance quality criteria, stakeholder concerns and requirements,

and take a number of architectural design decisions in which they reuse architectural

styles and patterns. Architects guide the architecting process by interacting with



202 P. Lago et al.

stakeholders, and are typically involved in various organization and business related

processes. To keep track of all knowledge being created or shared in these processes,

architects maintain a backlog [15]. In this backlog an overview of decisions taken,

constraints, concerns, open issues etc., are maintained to facilitate decision making,

and check for conflicts or other issues.

Building up architectural knowledge. Although every software development

project is unique, some architectural solutions can be applied in different circum-

stances. To facilitate reuse of architectural best practices (such as architectural

patterns, styles and tactics) this architectural knowledge needs to be built up.

This process involves transforming application-specific architectural knowledge

into application-generic architectural knowledge that can be retrieved easily and

applied in future projects.

Stay up-to-date. A lot of architectural knowledge is potentially relevant for archi-

tects. In order to build up expertise it is important to stay up-to-date on market trends

and to be able to learn from available application-generic and application-specific

architectural knowledge.

Describing software architectures. One of the important tasks of architects is

writing down their solution and communicating it with their stakeholders. Often

architecture design is described using a number of architectural views and view-

points. In creating an architecture description important aspects are both the

structure of the document and its completeness and internal consistency. To achieve

this, annotation of AK within an architecture description is necessary.

Personalization support in a community. It is important that architects know

where to find and how to contact each other when needed, so that the expertise

of one architect can assist others. Services such as a chat service or yellow pages

service (“who knows what”) can be used for this purpose.

To carry out these AK sharing activities, several conceptual scenarios have been

designed for the AKS virtual spaces, some of which we show below:

Discuss and negotiate (Scenario SAKS,1)

Situation: Architect(s) need to decide for an architectural design. This involves

meeting all needs and concerns of the relevant stakeholders.

Problem: Each stakeholder has its own concerns and needs that often conflict with

the overall goals of the system to be developed. Architects need to balance all these

concerns in a satisfactory way.

Solution: With a decision making component architects are better supported in nego-

tiating or discussing with colleagues or other stakeholders in the architecting process

about which decisions to take and why. This component acts as an automated way of

managing the backlog. It facilitates architects in dealing with multiple concerns at

the same time by visualizing the decision space, indicating which decisions conflict

with each other, etc. This also helps in personally analyzing tradeoffs and con-

flicts between decisions and alternative solutions. The decision making component



10 The GRIFFIN Collaborative Virtual Community 203

SAKS-3

S AKS-2

SAKS-1, SAKS-2
Decision

space

Decision making
component

Best practice
repository

Fig. 10.2 Decision making component in relation to codified AK

manipulates (i.e., create, read, update, delete) AK stored in a decision space database

that keeps a data set for each project.

Scenario description (see Fig. 10.2):

(a) The architects use the decision making component as visual guide during their

discussions and negotiations about the architecture design.

Subscribe to architectural knowledge (Scenario SAKS,4)

Situation: Architects would like to stay up-to-date.

Problem: How to inform architects of potentially available architectural knowledge

without flooding them with information?

Solution: An architect can use a subscription and notification service to subscribe to

specific AK topics. Based on this information the architect’s user profile is created

or updated. The user profiles database connects to databases where the architectural

knowledge itself is being stored (i.e., the decision space database and best prac-

tice repository) to determine what types of architectural knowledge an architect can

subscribe himself to.

Scenario description (see Fig. 10.3):

S
AKS-4, S

AKS-5

SAKS-4, 
SAKS-5

subscription &
Notification service

SAKS-5 SAKS-4, SAKS-5

SAKS-4

User
profiles

Decision
space

Best practice
repository

Fig. 10.3 Subscription and notification of AK



204 P. Lago et al.

(a) The user profiles database keeps a list of subscription topics built from the con-

tents of the decision space database and best practice repository. These AK

sources define a number of topics dependent on the AK stored.

(b) Using the subscription & notification service, the architect creates his user pro-

file by adding contact information, expertise areas and by indicating in which

architectural knowledge categories he is interested.

(c) All codified architectural knowledge that fits these categories is marked as

potentially interesting to this subscribed user and presented to him when the

time is right (cf. Scenario SAKS, 5).

Notify architects about architectural knowledge (Scenario SAKS,5)

Situation: Architects would like to stay up-to-date.

Problem: How to inform architects of potentially available AK without flooding

them with information?

Solution: An architect is notified by a subscription and notification service about

potentially interesting AK depending on his user profile (for example using RSS

feeds or email) as soon as new AK is stored in one of the databases. This notification

mechanism enables the Just-in-Time AK requirement discussed in [12].

Scenario description (see Fig. 10.3):

(a) The subscription and notification service periodically scans for updated AK

codified in one of the databases, and tries to match this with the user profiles

stored.

(b) The AK (or a link to the source) is pushed to all users whose profiles indicate a

match.

10.3.1.2 Virtual Spaces for AK Discovery

Although AK discovery has broader applications, it has originally been developed

and piloted to support software quality audits. Discovery of AK from software prod-

uct documentation is a typical activity that an auditor must perform to collect the

information necessary for expressing an opinion on a product’s quality. A quality

assessment entails a comparison of the SOLL-state of the software product with its

IST-state. For this comparison, a thorough understanding of the actual state of the

software product is obviously needed. A problem an auditor may encounter is one

of information overload: by the time the quality of a product is being assessed, usu-

ally many documents have been written throughout which architectural knowledge

is scattered. The documentation typically contains information on many different

topics, including high-level system architecture, functional design, logical design,

and infrastructure architecture. These topics are not confined to a single document,

but have relations with other topics in other documents as well.

The result of the AKD process is the so-called augmented documentation, i.e.,

a semi-structured combination of the (unstructured) product documentation and

a (structured) quality ontology that defines generic quality criteria and relations



10 The GRIFFIN Collaborative Virtual Community 205

between them. The documentation is augmented with Latent Semantic Analysis-

inferred meaning (cf. [20]) and related to applicable quality criteria selected from

the quality ontology. Parts of the documentation that have a meaning closely related

to the meaning of a selected quality criterion have been identified. The selected

quality criteria form an index to the product documentation.

Augmented documentation eases the “findability” of architectural knowledge

and the comparison of IST-state product documentation with the SOLL-state eval-

uation frame. By using the LSA text analysis technique, the semantic structure

underlying the product documentation can be found. This allows for suggestions

regarding where to start reading when one is interested in a particular topic. It also

allows for suggestions regarding how to continue reading such that the semantic

difference between two consecutive documents is as small as possible, essentially

providing a reading guide or a route through the documentation. Such a reading

guide may for instance suggest a smooth trajectory from a high-level architectural

overview to increasingly finer-grained specifications.

Some of the most important topics from a quality audit point of view are top-

ics related to quality attributes and/or quality criteria. Therefore, in the discovery

space the documentation is related to the quality criteria from the quality ontology.

Parts of the documentation that have a meaning closely related to the meaning of

a selected quality criterion are identified through LSA. The selected quality criteria

form an index to the product documentation. Since the quality ontology defines rela-

tions between quality criteria, relations between product documentation parts can be

inferred.

To carry out the AKD activities here described, the following scenarios have been

supported by the AKD virtual spaces (shown in Fig. 10.4).

Selection of quality criteria (Scenario SAKD,1)

Situation: Start of the audit, where quality attributes and their priorities (according

to the customer) are known.

SAKD-1, SAKD-4SAKD-1

S AKD-4

SAKD-2, SAKD-3

SAKD-2,
SAKD-3

Quality
ontology

Project
documentation

Text analysis component

Selection component

Fig. 10.4 AK discovery in quality audits



206 P. Lago et al.

Problem: Which quality criteria to use to assess the product’s compliance with the

customer’s requested level of quality? Since quality criteria are applicable in dif-

ferent product audits, auditors may read through previous audit reports to find out

which quality criteria can be used. Obviously, such ad-hoc reuse is far from ideal,

being time consuming and not transparent.

Solution: Codification in “quality ontology” of quality criteria and their relations

according to generic AK structures (e.g., Kruchten’s ontology [18]) makes them

available for more systematic reuse. Intelligent visualization supports the auditor in

deciding which criteria to use.

Scenario description (see Fig. 10.4):

(a) The auditor uses the Selection component to provide a list of prioritized quality

attributes (e.g., 1=performance, 2=security, 3=usability).

(b) The auditor is presented with a list of measures that are known to favor those

quality attributes (e.g., “use secure connections” for security) or to hinder them

(e.g., “don’t use passwords”). From those measures, auditors may derive quality

criteria: measures that they expect to be in the product.

(c) The auditor indicates which measures should and should not be in the product,

i.e., selects the quality criteria to be used in the audit. Since certain measures

may be related (e.g., be in conflict or depend on each other) certain combi-

nations are not allowed and some others are mandatory. The quality ontology

identifies inconsistencies in the selected criteria and provides suggestions to

solve them.

(d) Further decision support is provided through mining from previous audits latent

relations that are not (yet) codified. This leads to suggestions such as “auditors

who selected the criterion you just selected, also selected criterion X”.

Accessing the body of knowledge (i.e., where to start reading, scenario SAKD,2)

Situation: quality criteria have been selected; auditors need to read the product doc-

umentation to gain a certain level of knowledge about the product they are auditing.

They want to gain a high-level understanding of the most important parts of the

product, i.e., “the architecture”.

Problem: the auditor does not know where to start reading, due to information

overload (too many documents) and AK scattered across multiple documents.

Solution: Text analysis (LSA) discovers the semantic structure of the set of product

documents and relates the meaning of high-level words (e.g., “architecture”) to rel-

evant parts in the product documentation, even if those words are not actually used

in that text (cf. [10]).

Scenario description (see Fig. 10.4):

(a) The auditors determine the type of information they need and provide a term

that denotes this interest (e.g., “architecture”).

(b) The auditors are provided with a list of documents (or parts of documents)

ranked according to how close the meaning of the text is to the meaning of

the term the auditors provided (cf. [10]).



10 The GRIFFIN Collaborative Virtual Community 207

Guidance through the body of knowledge (Scenario SAKD,3)

Situation: The auditors have read part of the documentation and want to continue

gaining further insight for the audit.

Problem: The auditors want to have a smooth progression through the documen-

tation, however, without any big jumps from e.g., high-level overview to low-level

detail and back again.

Solution: Text analysis provides a distance measure between different text parts that

is employed to guide the auditor through the documentation.

Scenario description (see Fig. 10.4):

(a) The auditors determine their subsequent information need and provide a

corresponding term (e.g., the name of a module for further investigation).

(b) The auditors are provided with a list of documents ranked according to: how

close the meaning of the text is to the meaning of the provided term; and how

close the meaning of the text is to the meaning of the previously read text

(cf. [10]).

Quality assessment (Scenario SAKD,4)

Situation: The auditors have gained an overall understanding of the software prod-

uct and now need to determine the product’s compliance with the selected quality

criteria.

Problem: Again, information overload: Too many documents and not all informa-

tion regarding a particular product quality can be expected to be located at a single

place.

Solution: By relating the meaning of the quality criterion (as defined in the quality

ontology by its description and relation to other criteria) to the meaning of the soft-

ware product documentation, parts of the documentation that talk about the criterion

can be identified.

Scenario description (see Fig. 10.4):

(a) The auditors select a criterion that they want to investigate.

(b) The auditors are provided with a list of documents ranked according to how

close the meaning of the text is to the meaning of the quality criterion.

10.3.1.3 Virtual Spaces for AK Traceability

In AK traceability, three concepts play an important role:

• Concepts: The classes of distinguished AK.

• Relationships: The relationships among these classes.

• Knowledge Entities (KE): Instances of a particular concept that can have

relationships to one or more other instances.



208 P. Lago et al.

The activities in a virtual space for AK traceability use these concepts. They

include the following activities:

Identify AK and traceability needs. Codifying AK and providing traceability at

the same time is a costly operation. Hence, it is important to minimize the required

effort to do so. This is achieved in two ways: by focusing on the real AK needs and

by reducing the effort of capturing of creating traceability.

Modeling the required AK and traceability information in a domain model. Based

on the identified needs, the virtual space should assist an architect in defining a

domain model for modeling the relevant AK concepts and relationships. This can

take the form of suggesting (part-of) existing models based on the earlier identified

needs.

Capture the knowledge according to this domain model. The virtual space should

assist stakeholders with capturing the relevant AK in KEs. This is achieved by either

automating the process (such as investigated in the discovery virtual space) or by

offering intelligent integrated tooling in environments in which this knowledge is

created or described.

Integrate captured knowledge with other sources. For the virtual space to offer

optimal traceability, the captured knowledge should be integrated (i.e., related) to

knowledge of other relevant sources. This activity is often intertwined with the cap-

turing activity. There are several ways in which a virtual space could achieve this

integration. First, a virtual space could automate this integration, e.g. by using text

analysis techniques. Second, it could offer step-by-step suggestions on how this

integration could take place, thereby guiding the integration process. Third, it could

offer search functionality and associated suggestions to facilitate a manual integra-

tion process. Often, a combination of these three different possibilities is used for

different concepts.

Consume the AK and its traceability. Once the needed AK has become traceable,

this knowledge can be used for various purposes, including the production of addi-

tional AK and the identified AK and traceability needs. Some of example scenarios

of this usage will be presented.

Evolve the knowledge. Typically, architecture is designed in multiple iterations.

Hence, there is a need to not only evolve the architecture design, but also its associ-

ated knowledge and relations. A virtual space should support incremental updating

of the KE and relationships, both in a reactive and proactive manner. For the former,

a stakeholder wants to change some AK, and see the consequences of this change.

For the latter, a virtual space should be able to detect certain changes and evolve

related AK accordingly. For example, the removal of a requirement potentially

invalidates the architectural decisions based on this requirement. With traceability,

a virtual space could automatically determine such impacts.

Find specific AK to relate to (Scenario STA,1)

Situation: The software architect wants to find specific AK to relate to, so as to

create traceability among the KE.



10 The GRIFFIN Collaborative Virtual Community 209

Problem: The number of KEs is typically very large and the specific KE might not

be codified yet.

Solution: Based on the domain model, the virtual space makes a first selection of

KE that could be related. Hence, it acts as a classification filter. In addition, the

virtual space uses the traceability information of the starting KE as a way to guess

what the context of the start point is and use this information to assist in the search

process.

Scenario description:

(a) The software architect selects a KE as a starting point.

(b) Optionally, the architect selects a possible relationship (automatically inferred

from the domain model) for the selected KE.

(c) Optionally, the architect can insert some keywords describing the KE to

search for.

(d) The virtual space tries to find plausible candidate KE to relate to and orders the

search results.

(e) The architect uses the traceability information to navigate through the search

results.

(f) The architect selects one of the found KE and codifies the relationship or decides

to manually create the missing KE.

Make an architectural decision (Scenario STA,2)

Situation: The software architect wants to make an architectural decision.

Problem: The software architect needs to rationalize this decision to convince

stakeholders of its relevance and correctness.

Solution: The architect defines the traceability of the architectural decision to other

AK. This makes the rationale of the decision traceable and helps in making the

decision process more transparent.

Scenario description:

(a) The software architect, helped by the virtual space, scopes the problem space,

thereby identifying the reason why an architectural decision has to be made.

(b) The software architect defines the alternative(s) considered.

(c) The architect captures the evaluation of the alternatives. The rationale for a

particular choice is codified by providing traceability to specific AK from the

problem space.

(d) The impact of the chosen alternative is considered for both the problem and

domain space. New AK is created and related accordingly.

Design maturity assessment (Scenario STA,4)

Situation: The software architect wants to know how mature the software architec-

ture design is. This includes the correctness, completeness, and consistency of the

design and its description.



210 P. Lago et al.

Problem: Judging the maturity of a design is not trivial, as it requires harmonizing

subjective judgments of multiple experts on both individual and collections of

KE. Again, information overload: Too many documents and not all information

regarding a particular product quality can be expected to be located at a single place.

Solution: The traceability provided by the codified AK allows for an automated

assessment of the completeness of the AK. Since the defined domain model allows

for assumptions about AK that should exist and their relationships. The explicit AK

provides stakeholders the opportunity to assert and administrate the correctness of

each individual KE. Consistency is improved, since navigating through and finding

related AK becomes more easy thanks to increased traceability.

Scenario description:

(a) The software architect selects an architecture description the maturity should be

assessed of.

(b) The virtual space identifies which parts of the AK are incomplete.

(c) The architect completes these AK omissions.

(d) The architect shares the architecture description and associated AK with relevant

stakeholders.

(e) Each of these stakeholders asses the correctness and consistency of the AK and

identify in the virtual space which parts are troublesome.

(f) The architect collects these remarks through the virtual space and resolves them

in a new version of the architecture description.

10.3.1.4 Virtual Spaces for AK Compliance

The architecture of a software system guides the software development activities by

providing the necessary direction for it. Architectural rules are the principles and

statements on the software architecture that must hold at all times, and thus must

be complied with [6]. Architectural compliance in global software development

(GSD) environments poses additional challenges for sharing AK and complying

with architectural rules.

The aim of compliance verification is that the resulting system is in line with the

principles as expressed in architectural rules. A collaborative virtual space should

allow for continuous compliance verification by promoting architectural knowledge

to relevant stakeholders and development sites to reduce the gap between reality and

the principles identified during compliance verification. Hence, the virtual space for

AK compliance should not only support compliance verification in hindsight, but

partly overlap with the virtual space for AK sharing.

To ensure compliance in GSD environments, the virtual space for AK compliance

supports the following activities:

Identify architectural rules requires the virtual space to characterize a (possible

sub-) set of architectural design decisions that are mandatory. The virtual space

presents the architectural design decisions in a format which allows practition-

ers to perform compliance verification, by allowing to indicate entry criteria for



10 The GRIFFIN Collaborative Virtual Community 211

e.g. the applicability of architectural rules for only part of the system, and criteria

that allow practitioners to determine when architectural rules are satisfied, and when

they are not.

The inject architectural rules in company practice is necessary to let the archi-

tectural rules sink in within the organization. The architectural rules need to be

made known to the practitioners across the different development sites and their

understanding should be verified explicitly.

Verify compliance supports matching designated parts of the implemented sys-

tem with applicable architectural rules. The virtual space for AK compliance

further supports a compliance officer in this process by running compliance checks

automatically, when applicable. The compliance verification results in a list of non-

compliance items that indicate what architectural rules are not complied with and

where in the system this non-compliance occurred.

Address situations of non-compliance The results of the verification are inter-

preted by the compliance officer and presented to the software architect(s). The

virtual space for AK compliance indicates the severity of the non-compliance which

helps the software architect to take adequate follow-up measures. These follow-up

measures can pertain to instructing or re-implementing architectural rules within

the software architecture, or for adjusting the set of architectural design decisions

which, in turn, will affect the set of architectural rules that hold.

The virtual space for AK compliance supports the following scenarios:

Identify architectural rules (Scenario SAKC,1)

Situation: Architect(s) need to decide what architectural knowledge should be

complied with in the software.

Problem: How does an architect indicate what architectural knowledge is manda-

tory? How can an architect be supported in providing the correct information that

allows for both correct implementation and compliance verification?

Solution: Designate a subset of architectural design decisions as architectural

rules.

Scenario description (see Fig. 10.5):

(a) The architect is provided with the set of architectural design decisions from the

decision space.

(b) The architect selects a set of architectural design decisions that should be

complied with.

(c) The architect augments the architectural design decisions with knowledge

necessary to increase their “verifiability”. This includes e.g.,

– Identification of the scope (both related to the system and the project) and

the impact of non-compliance.

– Identification of the way compliance verification can take place (using e.g.,

automated tools or manual inspections).



212 P. Lago et al.

S
A

K
C

-1
e

SAKC-1a,b

S AKC-1
c,d

S
A

K
C

-1

User
profiles

Expert component

Decision
space

Fig. 10.5 Identify architectural rules

(d) The architect identifies a compliance verification method from a list of verifica-

tion options provided to him.

(e) The architect identifies the stakeholders (per development site) that need to be

informed of the AK to comply with.

Push architectural knowledge to relevant stakeholders (Scenario SAKC,3)

Situation: Relevant stakeholders of architectural knowledge need to know what

architectural rules are mandatory and need to be complied with.

Problem: How to ensure that all relevant stakeholders are informed of the architec-

tural design decisions?

Solution: Use a notification system (see Scenario SAKS,5) and ensure that stakehold-

ers have consumed the architectural knowledge. The solution does not make use of

Notification
service

S
AKC-3a

S
AKC

-4b

SAKC-3a

SAKC-3aS AKC-3a

S AKC-4
b

Decision
space

User
profiles

Best practice
repository

SAKC-3b

SAKC-4a

Fig. 10.6 Push architectural rules to stakeholders and verify their understanding



10 The GRIFFIN Collaborative Virtual Community 213

a subscription service (Scenario SAKS,4) but uses a predefined set of stakeholders

that must be informed.

Scenario description (see Fig. 10.6):

(a) The notification service matches architectural knowledge designated as archi-

tectural rules with the user profiles.

(b) Based on the user profiles that need to be informed, the notification service

provides the architectural rules to the corresponding users.

Verify understanding with AK (Scenario SAKC,4)

Situation: Relevant stakeholders need to understand the architectural knowledge.

Problem: How to ensure that all relevant stakeholders understand the architectural

rules that must be implemented or complied with?

Solution: It is important to obtain feedback from the relevant stakeholders on their

understanding of, or concerns regarding this architectural knowledge. When devel-

opment sites are distributed, effective implementation of AK can only occur by

collecting feedback from these development sites [5, 6, 7].

Scenario description (see Fig. 10.6):

(a) Practitioners who have received the architectural rules can indicate whether they

are informed of the architectural knowledge.

(b) Feedback on the AK is solicited and transferred to the architect.

Address situations of non-compliance (Scenario SAKC,6)

Situation: A system does not comply with the current architectural rules.

Problem: What are possible measures that the architect can take?

Solution: The architect can either identify if the current architectural rules must be

modified to accommodate the current situation, or the practitioners of the respon-

sible development sites need to change the system comply with the architectural

rules.

Scenario description (see Fig. 10.7):

(a) The architect decides that certain architectural rules in its original form are no

longer applicable and updates the architectural rules accordingly.

(b) The architect reinforces the existing architectural rules. The architect may use

scenarios SAKC,3 and SAKC,4 as a minimum.

SAKC-6a
Decision

space

SAKC-6b

SAKC-6b

Fig. 10.7 Provide follow-up to compliance results



214 P. Lago et al.

10.3.2 Towards a Virtual AK Sharing Community

The previous sections presented the conceptual scenarios supporting AK sharing,

discovery, traceability, and compliance in a distributed virtual space. Let’s imagine

an AK sharing community of networked member organizations, each supporting

one or more of such scenarios. In addition to their individual contribution, each

scenario provides generic features that can further propel collaboration, which is

called “social cognition” in [5] i.e., “the ability of a group of people to remember,

think and reason”.

For example (see Fig. 10.8) an auditing organization can locally carry out the

quality audit of a product developed by a certain customer organization. The audit-

ing organization, on its own, can locally annotate AK, which might be relevant

for that audit. If the auditing organization and the customer organization connect

their local virtual spaces and if relevant auditors can subscribe to and be notified

of relevant new AK annotations, auditors are able to speed up the learning pro-

cess about what knowledge is necessary to achieve an opinion about the product’s

SAKS-4, SAKS-5

Subscription & 
Notification service

SAKS-4

SAKS-5

Auditor

S
A

K
S

-4
, S

A
K

S
-5

SAKD-1, SAKD-4SAKD-1

SAKD
-4

SAKD-2
,
SAKD-3

Auditing organization

Customer organization

Decision
space

Decision making
component

User
profiles

Best practice
repository

Quality
ontology

Selection component

Text analysis component

Project 
documentation

SAKS-3

S AKS-2

SAKS-1, SAKS-2

S
AKS-4, S

AKS-5

SAKS-1, SAKS-2

Fig. 10.8 Towards a community: connecting virtual spaces



10 The GRIFFIN Collaborative Virtual Community 215

quality. Further, experience and know-how can be improved, as well as the level of

trust between the two partner organizations.

In order to provide more advanced AK management support we envision more

of these scenarios that involve connecting virtual spaces of different organizations

or departments of organizations. This will further enhance collaboration among

different parties and will help in increasing the virtual community of architects.

10.4 Future Trends and Research Challenges

Building a virtual community into an organization is a long-term investment and

introduces substantial change. We need to bring convincing arguments, backed by

hard data, that such an investment is worthwhile. We also need ways to realize such

migration. Also to ensure that new scenario combinations (such as the example dis-

cussed in Section 10.3.2) improve the state of the practice, a research challenge is

to obtain a better understanding of what practitioners in the architecting process

need.

A second research challenge is related to the different terminology used by dif-

ferent organizations. Different organizations speak their own “language” of AK. If

AK is to be shared between organizations, then the virtual collaborative community

needs to support appropriate translations from the AK meta-model of one to those of

the other virtual spaces. This is a purely technical problem and can be resolved with

different technologies, e.g., from the ontologies and the semantic web community.

A cost-benefit analysis must be conducted, to make the right trade-off between the

cost of the translation (especially with evolving AK meta-models) and the perceived

benefit (quality of the translation).

Another – more technical – challenge is the visualization of AK in the different

virtual spaces. There is no one-size-fits-all visualization solution. Therefore we need

customizable solutions that can be tailored to the AK meta-model and even the

intended usage.

Crowd sourcing is another trend that may have a large impact on virtual AK com-

munities. The users of these communities may scale up to thousands, and may be

given the power to define, on their own, requirements and use cases for AK; they

may even design their own virtual spaces. This challenge needs to be addressed both

technically (provide the right crowd sourcing technologies) and non-technically

(showing people the benefits and leveraging their self-motivation).

Lastly, sharing AK through the virtual organizations raises many complicated

legal issues, with respect to intellectual property rights. Of course sharing AK

can happen both in open and in inner (closed consortia) communities. These

aspects need to be thoroughly inspected before large corporations are convinced to

contribute and share AK. Also, further research is needed about creating incentives

for architectural knowledge sharing, since the success of the virtual community is

largely determined by the amount of time and energy the users are willing to spend

on it.



216 P. Lago et al.

10.5 Conclusions

This chapter presented the conceptual view of the GRIFFIN collaborative commu-

nity for AK management. This community consists of virtual spaces supporting four

key AK management topics: AK sharing, discovery, compliance, and traceability.

We discussed how each of the scenarios has been designed in the GRIFFIN

project. We further illustrated one example about how such scenarios can be poten-

tially combined to implement more complex scenarios. In this way, scenarios

can provide general solutions to common AK management problems and propel

collaboration among individuals and across organizations.

We would like to especially encourage the industrial community to actively par-

ticipate in addressing the challenges and forming the future virtual AK communities.

We have come to the understanding that in the context of global software develop-

ment, the industry of software-intensive systems faces these challenges intensively

and with an increasing pace. There are still many problems that need to be resolved

and there will be substantial research conducted before AK virtual communities

become a reality. We hope that the industry will be keen in enthusiastically partic-

ipating to this research and shape the way AK communities will collaborate in the

future.

Acknowledgements This research has been partially sponsored by the Dutch Joint Academic

and Commercial Quality Research & Development (Jacquard) program on Software Engineering

Research via contract 638.001.406 GRIFFIN: a Grid for Information about architectural knowl-

edge.

References

1. Ali Babar M et al. (2007) Architectural knowledge management strategies: Approaches in

research and industry. 2nd Workshop on Sharing and Reusing architectural Knowledge –

Architecture, rationale, and Design Intent (SHARK/ADI).

2. Bass L, Clements P, Kazman R (2003) Software Architecture in Practice. 2nd edn. SEI Series

in Software Engineering. Boston, MA: Addison-Wesley.

3. Bosch J (2004) Software architecture: The next step. First European Workshop on Software

Architecture (EWSA).

4. Capiluppi A, Lago P, Morisio M (2003) Characteristics of open source projects. European

Conference on Software Maintenance and Reengineering.

5. Chi EH (2008) The social web: Research and opportunities. IEEE Computer (September)

41(9): 88–91.

6. Clerc V, Lago P, Van Vliet H (2007) Assessing a multi-site development organization

for architectural compliance. 6th Working IEEE/IFIP Conference on Software Architecture

(WICSA).

7. Clerc V, Lago P, Van Vliet H (2007) Global software development: Are architectural rules the

answer? International Conference on Global Software Engineering (ICGSE).

8. Clerc V, Lago P, Van Vliet H (2007) The architect’s mindset. 3rd International Conference on

the Quality of Software Architectures (QoSA).

9. De Boer RC et al. (2007) Architectural knowledge: Getting to the core. 3rd International

Conference on the Quality of Software Architectures (QoSA).



10 The GRIFFIN Collaborative Virtual Community 217

10. De Boer RC, Van Vliet H (2008) Architectural knowledge discovery with latent semantic

analysis: Constructing a reading guide for software product audits. Journal of Systems and

Software 81(9): 1456–1469.

11. Desouza KC, Awazu Y, Baloh P (2006) Managing knowledge in global software development

efforts: Issues and practices. IEEE Software 23(5): 30–37.

12. Farenhorst R et al. (2008) A just-in-time architectural knowledge sharing portal. 7th Working

IEEE/IFIP Conference on Software Architecture (WICSA).

13. Farenhorst R, Lago P, Van Vliet H (2007) EAGLE: Effective tool support for sharing architec-

tural knowledge. International Journal of Co-operative Information Systems (IJCIS) 16(3/4):

413–437.

14. Hansen MT, Nohria N, Tierney T (1999) What’s Your Strategy for Managing Knowledge?

Harvard Business Review 77(2): 106–116.

15. Hofmeister C et al. (2007) A general model of software architecture design derived from five

industrial approaches. The Journal of Systems and Software 80(1): 106–126.

16. Jansen A et al. (2007) Tool support for architectural decisions. 6th Working IEEE/IFIP

Conference on Software Architecture (WICSA).

17. Jansen A et al. (2008) Sharing the architectural knowledge of quantitative analysis. 4th

International Conference on the Quality of Software Architectures (QoSA).

18. Kruchten P (2004) An ontology of architectural design decisions in software-intensive

systems. 2nd Groningen Workshop on Software Variability Management.

19. Lago P, Avgeriou P (2006) 1st Workshop on sharing and reusing architectural knowledge,

Final Workshop Report. ACM SIGSOFT Software Engineering Notes 31(5): 32–36.

20. Landauer TK, Foltz PW, Laham D (1998) An introduction to latent semantic analysis.

Discourse Processes 25: 259–284.

21. Nonaka I, Takeuchi H (1995) The Knowledge-Creating Company. New York: Oxford

University Press.

22. O’Reilly T (2005) What is Web 2.0 – Design Patterns and Business Models for the Next

Generation of Software. Sebastopol CA: O’Reilly Media.

23. Preece J (2000) Online Communities: Designing Usability, Supporting Sociability.

Chichester: Wiley.

24. Yakovlev IV (2007) Web 2.0: Is it evolutionary or revolutionary? IT Professional, IEEE

Computer Society 9: 43–45.

25. Zhuge H (2004) The Knowledge Grid. Singapore: World Scientific Publishing Co.


	10 The GRIFFIN Collaborative Virtual Community for Architectural Knowledge Management
	10.1 Introduction
	10.1.1 From a Codification/Personalization to a Hybrid Knowledge Management Strategy
	10.1.2 From Closed to Open Virtual AK Communities

	10.2 Requirements for Collaboration in a Distributed Environment of Software Architects
	10.3 A Collaborative Virtual Community for AK Management
	10.3.1 Support for Collaborative AK Management
	10.3.1.1 Virtual Spaces for AK Sharing
	10.3.1.2 Virtual Spaces for AK Discovery
	10.3.1.3 Virtual Spaces for AK Traceability
	10.3.1.4 Virtual Spaces for AK Compliance

	10.3.2 Towards a Virtual AK Sharing Community

	10.4 Future Trends and Research Challenges
	10.5 Conclusions
	References


