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THE GRONE-MERRIS CONJECTURE

HUA BAI

Abstract. In spectral graph theory, the Grone-Merris Conjecture asserts that
the spectrum of the Laplacian matrix of a finite graph is majorized by the
conjugate degree sequence of this graph. We give a complete proof for this
conjecture.

The Laplacian of a simple graph G with n vertices is a positive semi-definite
n×n matrix L(G) that mimics the geometric Laplacian of a Riemannian manifold;
see §1 for definitions, and [2, 14] for comprehensive bibliographies on the graph
Laplacian. The spectrum sequence λ(G) of L(G) can be listed in non-increasing
order as

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn−1(G) ≥ λn(G) = 0.

For two non-increasing real sequences x and y of length n, we say that x is
majorized by y (denoted x � y) if

k∑

i=1

xi ≤

k∑

i=1

yi for all k ≤ n, and

n∑

i=1

xi =

n∑

i=1

yi.

This notion was introduced because of the following fundamental theorem.

Theorem 1 (Schur-Horn Dominance Theorem [18, 11]). There exists a Hermitian
matrix H with diagonal entry sequence x and spectrum sequence y if and only if
x � y.

In particular, if d(G) = (d1, d2, . . . , dn)
T is the non-increasing degree sequence of

G, which coincides with the diagonal entry sequence of the Laplacian matrix L(G),
the Schur-Horn Dominance Theorem implies that d(G) � λ(G). Grone [7] improves
this majorization result: if G has at least one edge, then (d1 +1, d2, . . . , dn−1, dn −
1)T � λ(G).

For a non-negative integral sequence d, we define its conjugate degree sequence
as the sequence d′ = (d′1, d

′
2, . . . , d

′
n)

T where

d′k := #{i : di ≥ k}.

Another important majorization relation is the following.

Theorem 2 (Gale-Ryser [6, 17]). There exists a (0, 1)-matrix A with row and
column sum vectors r and c if and only if r � c′.
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Applying this to the adjacency matrix ofG immediately gives that d(G) � d′(G).
In 1994, Grone and Merris [8, 9] raised the natural question whether the Lapla-

cian spectrum sequence and the conjugate degree sequence are majorization com-
parable.

Grone-Merris Conjecture. For any graph G, the Laplacian spectrum is ma-
jorized by the conjugate degree sequence

λ(G) � d′(G).

In this paper, we give a complete proof to the Grone-Merris Conjecture. As a
consequence, we have the double majorization d(G) � λ(G) � d′(G).

See [3] for a partial result in this direction, as well as [19, 12, 13, 1] for proofs in
the special cases. Also see [3] for a generalization to simplicial complexes, which is
still open.

1. The Laplacian matrix and the majorization relation

Let G = (V,E) be a simple finite graph with n = |V | vertices. We write i ∼ j

when the i-th vertex is adjacent to the j-th vertex, and we let di denote the degree
of the i-th vertex.

The Laplacian matrix L(G) of the graph G is the n× n matrix defined by

L(G)ij =

⎧
⎨
⎩

di if i = j;
−1 if i ∼ j;
0 otherwise.

We can also express the Laplacian as L(G) = D − A, where D is the diagonal
matrix defined by the degree sequence, and A is the adjacency (0, 1)-matrix of the
graph.

It is well known that L(G) is positive semi-definite, since it corresponds to the
quadratic form

xTL(G)x =
∑

i∼j

(xi − xj)
2 for x = (x1, . . . , xn)

T ∈ Rn.

Let λ = (λ1, λ2, . . . , λn)
T be the non-increasing spectrum sequence of the Lapla-

cian matrix L(G). The smallest eigenvalue is λn = 0, with eigenvector 1n =
(1, 1, . . . , 1)T .

Given two vectors x = (x1, . . . , xn)
T and y = (y1, . . . , yn)

T in Rn, rearrange
their components in non-increasing order as

x[1] ≥ x[2] ≥ · · · ≥ x[n], y[1] ≥ y[2] ≥ · · · ≥ y[n].

We say that x is majorized by y, and write x � y, if

k∑

i=1

x[i] ≤

k∑

i=1

y[i] for all 1 ≤ k ≤ n, and

n∑

i=1

xi =

n∑

i=1

yi.

We will make use of the following majorization inequality.

Theorem 3 (Fan [4]). If H1 and H2 are Hermitian matrices, then

λ(H1 +H2) � λ(H1) + λ(H1).
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2. Split graphs

A graph is split (also called semi-bipartite in [12]) if its vertices can be partitioned
into a clique V1 and a co-clique V2. This is equivalent to saying that the subgraph
induced by V1 is complete, and that the subgraph induced by V2 is an independent
set. See [5, 20, 15, 10] for many characterizations and properties of split graphs.

Given a split graph G = (V,E), let N = |V1| be the size of the clique, and
M = |V2| be the size of the co-clique. Let δ(G) be the maximum degree of vertices
in V2. Clearly δ(G) ≤ N , and the Laplacian matrix of the split graph G is of the
form

L(G) =

(
KN +D1 −A

−AT D2

)
,

where KN is the Laplacian matrix of the complete graph on N vertices, where D1

and D2 are diagonal matrices with diagonal entries the vertex degrees of V1, V2,
respectively, and where A is the adjacency matrix for edges between V1 and V2.

The Laplacian matrix is symmetric, and therefore Hermitian.

Theorem 4 (Courant-Fischer-Weyl [16]). Let the n × n matrix H be Hermitian,
with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then

λk = max
dim(S)=k

min
0�=x∈S

〈Hx, x〉

〈x, x〉
= min

dim(S)=n−k+1
max
0�=x∈S

〈Hx, x〉

〈x, x〉
,

where the max (resp. min) is taken over all k-dimensional (resp. (n − k + 1)-
dimensional) subspaces of Rn.

We first investigate the Laplacian spectrum of a split graph.

Proposition 5. If G is a split graph of clique size N , then

λN−1(G) ≥ N ≥ δ(G) ≥ λN+1(G).

Moreover, if λN (G) ≥ N , then

N∑

i=1

d′i = N2 +Tr(D1).

Proof. To prove the inequalities involving λN−1(G) and λN+1(G) by the Courant-
Fischer-Weyl Min-Max Principle, it suffices to find an (N − 1)-dimensional (resp.
M -dimensional) subspace for which the action of L(G) has a desirable lower (resp.
upper) bound. There are natural candidates.

Let P ⊂ RM+N be the (N − 1)-dimensional subspace consisting of all vectors of

the form

(
u

0M

)
with u ∈ RN and u ⊥ 1N . Then for any unit vector u ∈ Rn,

〈
L(G)

(
u

0M

)
,

(
u

0M

)〉
= 〈(KN +D1)u, u〉 = N + 〈D1u, u〉 ≥ N.

Similarly, consider the M -dimensional subspace Q ⊂ RM+N consisting of all

vectors of the form

(
0N

u

)
with u ∈ RM . Then for any unit vector u,

〈
L(G)

(
0N

u

)
,

(
0N

u

)〉
= 〈D2u, u〉 ≤ δ(G).

This proves the part of our first statement that λN−1(G) ≥ N ≥ δ(G) ≥ λN+1(G).
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When λN (G) ≥ N , we assert that the degree of any vertex in the clique V1 is
at least N . For this, suppose that our assertion is false, namely that there exists a
vertex v0 ∈ V1 with degree less than N . Then this vertex v0 is adjacent to none of
the vertices of the co-clique V2. Consequently G can be regarded as a split graph
with new clique V1 \ {v0} and new co-clique V2 ∪ {v0}. The size of the new clique

is Ñ = N − 1. Applying the first part of the proposition, we obtain that

λN (G) = λ
Ñ+1(G) ≤ Ñ = N − 1,

which is a contradiction.
For a conjugating pair of non-negative integral sequences, the partial sum of one

sequence can be computed in a different way as

N∑

i=1

d′i =
N∑

i=1

M+N∑

j=1

χ(dj ≥ i) =
M+N∑

j=1

min(dj , N),

where χ is the characteristic function. The second part of the proposition now
follows from the observation that

M+N∑

j=1

min(dj , N) =
∑

j∈V1

N +
∑

j∈V2

dj = N2 +Tr(D2) = N2 +Tr(D1).
�

The next lemma will play an essential role in our proof of the Grone-Merris
Conjecture. Its proof is presented in the next section.

Lemma 6. Assume that G is a split graph of clique size N . If either λN (G) > N

or λN (G) = N > δ(G), then the N-th inequality of the Grone-Merris Conjecture
holds, namely

N∑

i=1

λi ≤

N∑

i=1

d′i.

3. The homotopy method

This section is devoted to proving Lemma 6. We adopt a homotopy method,
following an idea of Katz [12] in his proof of the Grone-Merris Conjecture for 1-
regular semi-bipartite graph.

Let α ∈ [0, 1]. Define an (M +N)× (M +N) matrix Lα as

Lα = (1− α)

(
KN +M −JN×M

−JM×N N

)
+ α

(
KN +D1 −A

−AT D2

)
,

where JM×N denotes the M ×N matrix whose entries are all equal to 1.
Note that L1 = L(G) is the matrix we are interested in, and that L0 is the

Laplacian of a complete split graph. The spectrum of L0 is well understood:

Lemma 7. The Laplacian spectrum of the complete split graph of clique size N

and co-clique size M is

{ (M +N)(N), N (M−1), 0(1) },
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where P (Q) denotes Q copies of the number P . The eigenspace corresponding to the

eigenvalue N consists of all vectors of the form

(
0N

v

)
, where v is M -dimensional

and v ⊥ 1M ; the eigenspace corresponding to the eigenvalue (M + N) is spanned
by the orthogonal vectors

(0i−1, M +N − i, −1M+N−i)
T , 1 ≤ i ≤ N.

Lemma 8. If λN (G) > N or λN (G) = N > δ(G), then

λ
(α)
N+1 ≤ N < λ

(α)
N for all 0 ≤ α < 1.

Proof. We again make use of the Courant-Fischer-Weyl Min-Max Principle. Recall
that the M -dimensional subspace Q ⊂ RM+N consists of all vectors of the form(

0N

u

)
with u ∈ RM . Then for any unit vector u,

〈
Lα

(
0N

u

)
,

(
0N

u

)〉
= (1− α)〈Nu, u〉+ α〈D1(u), u〉

≤ (1− α)N + αδ(G) ≤ N.

Therefore, the (N + 1)-th largest eigenvalue λ
(α)
N+1 is at most N .

For the eigenvalue λ
(α)
N , let P̃ be the N -dimensional subspace which is spanned

by the eigenvectors of L1 corresponding to the N largest eigenvalues. Clearly P̃ ⊥
1M+N . For any unit vector v ∈ P̃ , we know from Lemma 7 that 〈L0(v), v〉 ≥ N .
Moreover,

〈Lα(v), v〉 = α〈L1(v), v〉+ (1− α)〈L0(v), v〉

≥ αλN (G) + (1− α)N ≥ N.

Therefore, the N -th largest eigenvalue λ
(α)
N is at least N .

We next proceed to show that the inequality on λ
(α)
N is strict when 0 ≤ α < 1.

We already know that λ
(0)
N = M + N . If λ

(α)
N = N for some 0 < α < 1, then the

above arguments show that necessarily

λN (G) = N, 〈L1v, v〉 = N, and L0(v) = Nv.

The first condition λN (G) = N implies that δ(G) < N , from our assumption
on λN (G); the third condition L0(v) = Nv implies that v is a unit vector in
Ker(L0 −N), thus in turn a unit vector of Q. Then

〈L1v, v〉 ≤ δ(G) < N,

which contradicts the second condition 〈L1v, v〉 = N . �

We now consider all possible N -dimensional subspaces

(
IN
V (α)

)
⊆ (1M+N )⊥,

where V (α) is an M ×N matrix. Here the notation of the subspace means that the

subspace is spanned by the column vectors of the matrix

(
IN
V (α)

)
.
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Lemma 9. If the subspace

(
IN
V (α)

)
⊆ (1M+N )⊥ is an invariant subspace of Lα,

then the matrix V (α) solves the quadratic matrix equation

V (α) [(1− α)M + α(N +D1)]

=− (1− α)JM×N − αAT + α
[
D2 − V (α)(JN×M −A)

]
V (α).

In terms of matrix entries, this means that

(1) v
(α)
ji =

−(1− α)− αχ(i ∼ j) + α
(
fjvji −

∑N

i′=1

∑
j′≁i′ v

(α)
ji′ v

(α)
j′i

)

(1− α)M + α(N + di)
,

where the non-negative integers di, fj are the entries of the diagonal matrices

D1 = Diag(d1, d2, . . . , dN ), D2 = Diag(f1, f2, . . . , fM ).

Proof. It is easy to see that the orthogonal complement in RM+N of the subspace(
IN
V (α)

)
is the subspace

(
−V (α)T

IM

)
. If the subspace

(
IN
V (α)

)
is an invariant

subspace of Lα, then so is its orthogonal complement, since Lα is a symmetric
matrix.

The Lα-invariance property is equivalent to the existence of two square matrices
Xα and Yα such that

Lα

(
IN −V (α)T

V (α) IM

)
=

(
IN −V (α)T

V (α) IM

)(
Xα 0
0 Yα

)
.

By comparison of the corresponding four block matrices, we immediately obtain
that

Xα = KN + (1− α)M + αD1 − [(1− α)JN×M + αA]V (α),

Yα = (1− α)N + αD2 + [(1− α)JM×N + αAT ]V (α)T ,

together with a quadratic matrix equation for V (α):

V (α) [KN + (1− α)M + αD1] + (1− α)JM×N + αAT

=
{
(1− α)N + αD2 + V (α) [(1− α)JN×M + αA]

}
V (α).

Because

(
IN
V (α)

)
⊥ 1M+N , the entries of V (α) satisfy that

M∑

j=1

v
(α)
ji = −1 for any 1 ≤ i ≤ N.

This condition, in terms of matrices, is equivalent to JN×MV (α) = −JN×N . This
implies that V (α)KN = [N + V (α)JN×M ]V (α), with which the above quadratic
matrix equation can be simplified to

V (α)[(1− α)M + α(N +D1)]

=− (1− α)JM×N − αAT + α
[
D2 − V (α)(JN×M −A)

]
V (α). �
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The quadratic matrix equation is complicated, and is almost impossible to be
solved explicitly. Fortunately, we do not have to do so.

From Lemma 8 and the assumption on λN (G), we know that

λ
(α)
N+1 � λ

(α)
N for all α ∈ [0, 1].

Thus the subspace spanned by the eigenvectors of Lα corresponding to theN largest

eigenvalues is unique. Assume that this subspace is given by

(
IN
V (α)

)
, so that

the matrix V (α) is well defined.

Lemma 10. The map V (α) : [0, 1] → RM×N is a continuous function of α, for the
usual metric of RM×N .

Proof. Assume that αn is a sequence in [0, 1] such that αn → α as n → ∞.
According to the algebraic multiplicity of eigenvalues of Lα, there exist positive

integers l = l(α) and i1, . . . , il (i0 = 0 by convention) such that i1+i2+ · · ·+il = N

and

λ
(α)
i1+···+ik−1+1 = · · · = λ

(α)
i1+···+ik−1+ik

> λ
(α)
1+i1+···+ik−1+ik

, ∀1 ≤ k ≤ l.

Let {uβ
i }

M+N
i=1 be an orthonormal basis consisting of the eigenvectors correspond-

ing to the eigenvalues λ
(β)
i for any β ∈ [0, 1], and {Zαn

k }lk=1, {W
α
k }

l
k=1 denote two

sequences of monotonic subspaces of RM+N given by

Zαn

k = span{uαn

i : i ≤ i1 + · · ·+ ik}, Wα
k = span{uα

i : i > i1 + · · ·+ ik−1}.

By the Courant-Fischer-Weyl Min-Max Principle,

min
0�=u∈Z

αn

k

〈Lαn
(u), u〉

〈u, u〉
= λ

(αn)
i1+···+ik

→ λ
(α)
i1+···+ik

as n → ∞

and

max
0�=v∈Wα

k+1

〈Lα(v), v〉

〈v, v〉
= λ

(α)
1+i1+···+ik

� λ
(α)
i1+···+ik

.

It follows that Zαn

k ∩Wα
k+1 = {0} and Zαn

k ⊕Wα
k+1 = RM+N when n is sufficiently

large. Moreover, we obtain that Zαn

l =
⊕l

k=1 (Z
αn

k ∩Wα
k ) from

dim(Zαn

k ∩Wα
k ) = dim(Zαn

k ) + dim(Wα
k )− (M +N) = ik.

Consider a basis of the subspace Zαn

k ∩Wα
k which consists of unit vectors of the

form

uk,n,s = cos(θk,n,s)u
α
i1+···+ik−1+s + sin(θk,n,s)wk,s, 1 ≤ s ≤ ik,

for some unit vector wk,s ∈ Wα
k+1. Necessarily limn→∞ sin(θk,n,s) = 0, since

〈Lαn
(uk,n,s), uk,n,s〉 ≥ λ

(αn)
i1+···+ik

and

〈Lα(uk,n,s), uk,n,s〉 =cos2(θk,n,s)λ
α
i1+···+ik

+ sin2(θk,n,s)〈Lα(wk,s), wk,s〉

≤ cos2(θk,n,s)λ
(α)
i1+···+ik

+ sin2(θk,n,s)λ
(α)
i1+···+ik+1.

Any vector u ∈ Zαn

l can now be expressed as

u =
l∑

k=1

ik∑

s=1

ck,s

[
cos(θk,n,s)u

α
i1+···+ik−1+s + sin(θk,n,s)wk,s

]
.
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Assume that the maximum of |ck,s| is achieved at |ck0,s0 |. Due to the orthogo-
nality of {uα

i }i, the absolute value of the coefficient of uα
i1+···+ik0−1+s0

is at most

‖u‖. But when n is sufficiently large, it is at least

|ck0,s0 | ·

(
| cos(θk0,n,s0)| −

l∑

k=1

ik∑

s=1

| sin(θk,n,s)|

)
≥

|ck0,s0 |

2
.

Hence |ck0,s0 | ≤ 2‖u‖. For any given vector v ∈ Wα
l+1, we see that

|〈u, v〉| =

∣∣∣∣∣

l∑

k=1

ik∑

s=1

〈ck,s sin(θk,n,s)wk,s, v〉

∣∣∣∣∣ ≤ 2‖u‖ · ‖v‖ ·
l∑

k=1

ik∑

s=1

| sin(θk,n,s)|,

which goes to zero as n goes to infinity.

The subspace Zαn

l is nothing else but

(
IN

V (αn)

)
, while Wα

l+1 is nothing else

but

(
−V (α)T

IM

)
. The inner product of the i-th column vector of the first matrix

and the j-th column vector of the second matrix is equal to

V
(αn)
ji − V

(α)
ji ,

which must go to zero as n goes to infinity. This proves the continuity of V (α) on
α. �

Lemma 11. Let Ω be the subset

{(xji) :

M∑

k=1

xki = −1, ∀ 1 ≤ i ≤ N, and xji ≤ 0, ∀ 1 ≤ j ≤ M, 1 ≤ i ≤ N}

of RM×N . Then V (α) ∈ Ω for all α ∈ [0, 1].

Proof. Consider the subset

Γ = {α ∈ [0, 1) : V (α) ∈ Ω}

of the half-open half-closed interval [0, 1).

When α = 0, v
(0)
ji ≡ − 1

M
(see Lemma 7 or equation (1)). As a consequence,

V (0) ∈ Ω, so that 0 ∈ Γ and Γ is not empty.
Suppose there is a sequence of points αn ∈ Γ and limn→∞ αn = α with α still

in [0, 1). By Lemma 10, limn→∞ V (αn) = V (α). Because Ω is a compact set, so
V (α) ∈ Ω and α ∈ Γ. Therefore, Γ is a closed subset of [0, 1).

Suppose α ∈ Γ, namely V (α) ∈ Ω for some α ∈ [0, 1). Because the quantities

χ(i ∼ j), fj and v
(α)
ji′ v

(α)
j′i in equation (1) are all non-negative, we see that

v
(α)
ji ≤

−(1− α)

(1− α)M + α(N + di)
< 0 for all 1 ≤ j ≤ M, 1 ≤ i ≤ N.

Therefore V (α) is contained in the interior of Ω. Since V (α) depends continuously
on α, it follows that Γ is an open subset of [0, 1).

The interval [0, 1) is connected, and Γ is an open closed non-empty subset of it,
therefore Γ is equal to [0, 1).

By continuity at α = 1, V (1) is also in Ω. This proves that V (α) ∈ Ω for all
α ∈ [0, 1]. �
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During the proof of Lemma 9, we have already known that

Lα

(
IN
V (α)

)
=

(
IN
V (α)

)
Xα

where
Xα = KN + (1− α)M + αD1 − [(1− α)JN×M + αA]V (α).

So the sum of the N largest eigenvalues of L1 is equal to the trace of

X1 = KN +D1 −AV (1).

But V (1) ∈ Ω by Lemma 11, therefore

Tr(AV (1)) =
N∑

i=1

∑

j:j∼i

vji ≥
N∑

i=1

M∑

j=1

vji = −N.

Then
N∑

i=1

λi = N(N − 1) + Tr(D1)− Tr(AV (1)) ≤ N2 +Tr(D1).

By Proposition 5, this completes the proof of Lemma 6.

4. Proof of the Grone-Merris Conjecture

For consistence we restate the Grone-Merris Conjecture here.

Grone-Merris Conjecture. For any graph G, its Laplacian spectrum is ma-
jorized by its conjugate degree sequence, namely λ(G) � d′(G).

The Grone-Merris Conjecture behaves nicely under complementation, in the
sense of the proposition below.

The complement graph of a graph G is a graph G on the same vertices such
that two vertices of G are adjacent if and only if they are not adjacent in G. The
Laplacian matrices of the graph G and of its complementary graph G are related
by the property that

L(G) + L(G) + Jn = nIn.

All these matrices commute with each other, so that

λ(G) = (n− λn−1(G), . . . , n− λ1(G), 0);

d′(G) = (n− d′n−1(G), . . . , n− d′1(G), 0).

From these we see that

Proposition 12. For any 1 ≤ k < n, the k-th inequality holds for the graph G if
and only if the (n− k − 1)-th inequality holds for the complement graph G,

k∑

i=1

λi(G) ≤
k∑

i=1

d′i(G) ⇐⇒
n−1−k∑

j=1

λj(G) ≤
n−1−k∑

j=1

d′j(G), ∀1 ≤ k < n.

We are now ready to prove the Grone-Merris Conjecture.
Assume that the Grone-Merris Conjecture is not true, and the graph G = (V,E)

is a counterexample. Namely, there exists an integer k with 1 < k < n = |V |, such
that

k∑

i=1

λi >

k∑

i=1

d′i.
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Without loss of generality, we can assume that this integer k is minimum over
all counterexamples. Then we have

k−1∑

i=1

λi ≤

k−1∑

i=1

d′i, and λk > d′k.

Moreover, we can further assume that the number |E| of edges is minimum over
all counterexamples with the same k. Under this assumption, we claim that

Lemma 13. For any two vertices i, j in the graph G, if di ≤ k and dj ≤ k, then
they are not adjacent in G.

Proof. We will prove this by contradiction by assuming that the lemma is false.
Namely there exists a pair of vertices such that

di ≤ k, dj ≤ k, i ∼ j.

Let G̃ be the graph obtained from G by deleting the edge ij. Due to the minimum
property of |E|, we must have

k∑

i=1

λi(G̃) ≤
k∑

i=1

d′i(G̃).

Two Laplacian matrices are related via L(G) = L(G̃) + H, where Hn×n is a
positive semi-definite matrix whose only non-zero entries are Hii = Hjj = 1 and
Hij = Hji = −1. Applying Fan’s Theorem 3, we see that

k∑

i=1

λi(G) ≤
k∑

i=1

λi(G̃) +
k∑

i=1

λi(H) ≤
k∑

i=1

d′i(G̃) + Tr(H)

=

[
k∑

i=1

d′i(G)− 2

]
+ 2 =

k∑

i=1

d′i(G).

This contradicts our assumption that G was a counterexample, and therefore
concludes the proof. �

Next, we add new edges to G to get a new graph Ĝ. Add to G a new edge ij for
any pair of vertices i, j in G such that

di ≥ k, dj ≥ k, and i ≁ j.

The new graph Ĝ so obtained is a split graph.

The clique of Ĝ consists of all vertices of G whose degree is at least k, so the
size of the clique is equal to d′k(G). Let N = d′k(G) denote this size. The co-clique
consists of all vertices of G whose degree is less than k, so the maximum degree of

vertices in the co-clique is δ(Ĝ) ≤ k − 1.
Note that

d′1(Ĝ) = d′1(G), . . . , d′k(Ĝ) = d′k(G)

while λi(Ĝ) ≥ λi(G) for all 1 ≤ i ≤ n, so these two inequalities are still valid for

the new graph Ĝ, namely

k∑

i=1

λi(Ĝ) >

k∑

i=1

d′i(Ĝ) and λk(Ĝ) > d′k(Ĝ) = N.

Let us discuss the relationship between N and k.
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If N < k, then λk(Ĝ) ≤ λN+1(Ĝ) ≤ N , which leads to a contradiction. The
second inequality comes from Proposition 5.

If N = k, then Ĝ is a split graph of clique size N , with the property that

N∑

i=1

λi(Ĝ) >

N∑

i=1

d′i(Ĝ) and λN (Ĝ) > N.

This contradicts Lemma 6.
So k < N . Note that Ĝ is a split graph of clique size N . In this graph Ĝ, the

maximum degree of vertices in the co-clique is at most (k− 1), while the minimum
degree of vertices in the clique is at least (N − 1). This means that

d′N−1(Ĝ) = · · · = d′k+1(Ĝ) = d′k(Ĝ) = N.

Combining this with λk+1(Ĝ) ≥ . . . ≥ λN−1(Ĝ) ≥ N from Proposition 5, we see
immediately that the inequality

k∑

i=1

λi(Ĝ) >
k∑

i=1

d′i(Ĝ) can be extended to
N−1∑

i=1

λi(Ĝ) >
N−1∑

i=1

d′i(Ĝ).

Then we proceed to compare λN (Ĝ) with the clique size N .

First consider the case where λN (Ĝ) ≥ N . Because N = d′N−1(Ĝ) ≥ d′N (Ĝ), the

split graph Ĝ has clique size N , with the additional property that

N∑

i=1

λi(Ĝ) >

N∑

i=1

d′i(Ĝ) and λN (Ĝ) ≥ N > δ(Ĝ).

This again contradicts Lemma 6.

In the other case, where λN (Ĝ) < N , we switch attention to the complement

graph of Ĝ. This complement graph is another split graph Ĝ. Its clique size is M ,
and

λM (Ĝ) = (N +M)− λN (Ĝ) > M.

According to Proposition 12,

N−1∑

i=1

λi(Ĝ) >
N−1∑

i=1

d′i(Ĝ) =⇒
M∑

i=1

λi(Ĝ) >
M∑

i=1

d′i(Ĝ).

Therefore, Ĝ is a split graph of clique size M , with the additional property that

M∑

i=1

λi(Ĝ) >

M∑

i=1

d′i(Ĝ) and λM (Ĝ) > M.

This again contradicts Lemma 6.
All possible cases are eliminated, and the Grone-Merris Conjecture is proved.
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