
JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 9, Number 1, January 1996

THE GROTHENDIECK DUALITY THEOREM

VIA BOUSFIELD’S TECHNIQUES

AND BROWN REPRESENTABILITY

AMNON NEEMAN

0. Introduction

Let f : X → Y be a proper morphism of schemes. Then, under mild hypotheses
on f, X , and Y , Grothendieck proved that there is a natural isomorphism

Rf∗RHomX(x, f !y) ' RHomY (Rf∗x, y)

of objects in the derived category. We should perhaps briefly remind the reader
what this means.

Let D+(qc/X) be the derived category of bounded–below chain complexes of
quasi-coherent sheaves on X . Let Rf∗ : D+(qc/X) → D+(qc/Y ) be the right
derived functor of f∗. Then the statement above asserts that Rf∗ has a right
adjoint, denoted f !, and that f ! behaves well with respect to pullbacks by open
immersions.

Grothendieck’s original proof of the existence of f ! was constructive. It amounted
to a local computation. Since derived categories are basically unsuited for local
computations, the argument turns out to be quite unpleasant; see [8].

There is an abstract way to prove the existence of f ! in the literature. It is due
to Deligne [7]. The approach was developed and elaborated by Verdier [17], where
it is shown that almost everything in [8] can be obtained directly from Deligne’s
result.

All these results assumed the scheme X Noetherian. Lipman recently developed
a deep theory for removing the Noetherian hypotheses. The reader is referred to
[10] and [11].

Unfortunately, none of the approaches generalizes well to D–modules. Given
a morphism f : X → Y , one can define a morphism Rf+ on the corresponding
derived categories of complexes of D–modules. It turns out that Rf+ has a right
adjoint. But the existence of the right adjoint has until now always been proved
by factoring f suitably, defining certain trace maps which à priori depend on the
factorization, and finally proving that they are independent of factorizations.

What we propose to do here is show that all of the results are direct consequences
of a very simple, general statement about triangulated functors on triangulated
categories.
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206 AMNON NEEMAN

Definition 1.7. Let S be a triangulated category. Suppose that all small coprod-
ucts exist in S. Suppose there exists a set S of objects of S such that

(1) For every s ∈ S, Hom(s,−) commutes with coproducts.
(2) If y is an object of S and Hom(s, y) = 0 for all s ∈ S, then y = 0.

Such a triangulated category S is called compactly generated.

The Brown Representability Theorem, in one version, states:

Theorem 4.1. Let S be a compactly generated triangulated category, T any tri-
angulated category. Let F : S → T be a triangulated functor. Suppose F respects
coproducts ; that is, the natural map∐

λ∈Λ

F (sλ)→ F

(∐
λ∈Λ

sλ

)
is an isomorphism. Note that although we are not assuming that T has coproducts,
we are assuming that the object on the right is a coproduct of the objects on the left.
Then there exists a right adjoint for F , namely a functor G : T → S, for which
there is a natural isomorphism

HomS (x,Gy) = HomT (Fx, y) .

We will see that Grothendieck duality is an immediate consequence. Even the
non–noetherian statements come very cheaply.

Sections 1 and 2 are introductory. They give the definitions and elementary
properties of compactly generated categories. They also discuss why the categories
one naturally wants to consider are examples; in particular, the derived category
of quasi-coherent sheaves on X , and the derived category of quasi-coherent sheaves
of D-modules. There is, however, a technical point. In the context of Brown
representability, it is essential to have triangulated categories with direct sums.
Thus we must work with unbounded derived categories. Sections 1 and 2 also discuss
why the natural functors one might consider, for instance Rf∗, respect coproducts.

It should be definitely be noted that nothing in Section 1 is new. Except for
the terminology, the results can certainly all be found in SGA6. There is also an
excellent exposition of them in Thomason’s [16]. But there are two reasons for
giving a complete and self–contained exposition of these facts. One is to keep this
article self–contained. But more importantly, both [1] and [16] are pre–Bousfield.
This needs to be made precise. As the reader will easily observe by studying the
dates, [16] came long after Bousfield’s [3], [4] and [5]. But as far as the author knows,
it was not until [2] that it was realised that Bousfield’s techniques applied to these
problems. And [2] is more recent than [16]. Ever since [2], the present author
has delighted in taking every opportunity to point out that Bousfield’s techniques
make all the old results much clearer, more general and easier to prove. Section 1
is to be taken in this vein. In fact, perhaps the entire article is little more than a
manifestation of the above.

As for Section 2, it redoes the classical theory from the new perspective offered by
Thomason’s localisation theorem. Classically, the proof that D(qc/X) is compactly
generated relied on finding enough line bundles on X . It follows from Thomason’s
localisation theorem that one does not need line bundles. This is explained in
Section 2. Again, the observation is not new, it was first made by Thomason in
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[16]. Section 2 is the only section in this article which assumes familiarity either
with Thomason’s article on the subject, or with [13]. There is, for the reader’s
benefit, a summary of the needed results in Theorem 2.1. A reader willing to
assume that all his/her schemes have ample line bundles can skip Section 2, except
for the last page and a half which discuss homotopy colimits.

There is a technical point which perhaps deserves mention. In the literature, one
frequently considers some other triangulated categories. For instance, the category
D(qc/X) of complexes of quasi–coherent sheaves on X may be replaced by Dqc(X),
the category of complexes of sheaves of OX modules on X , with quasi–coherent
cohomology. There is a natural functor

F : D(qc/X) −→ Dqc(X).

It turns out that this functor is an equivalence of categories if X is quasi–compact
and separated; see [2], Corollary 5.5. A similar statement holds for the derived
categories of D–modules; I leave it to the reader to state and prove the analogue.
We will make no explicit use of this fact. It is only mentioned to comfort the experts
who might be concerned about such things.

A similar statement also is valid for maps. Given a morphism f : X → Y , there
are induced maps Rf∗ : D(qc/X) → D(qc/Y ) and Rf∗ : D(X) → D(Y ). It is
comforting to know that they agree; there is a commutative diagram

D(qc/X) → D(qc/Y )
↓ ↓

D(X) → D(Y ).

It is possible to give a proof based on homotopy theoretic ideas as in [2], but for a
written proof we refer the reader to [10], Proposition 3.9.2.

Sections 3 and 4 contain the proof of the Brown Representability Theorem,
Theorem 4.1. The proof itself is very short and simple, and although not very
different from Brown’s proof in [4], we include it for the reader’s convenience.

The last two sections, Sections 5 and 6, treat the same problems that are ad-
dressed by Verdier in [17]. What is different here is (1) that we work with un-
bounded derived categories, and (2) that the argument is entirely based on the
behaviour of coproducts. In Section 5 we ask when does the right adjoint f ! of
Rf∗ : D(qc/X) → D(qc/Y ) respect coproducts? It turns out that one can give
a simple, satisfactory criterion, and what makes the question “natural” is that f !

respects coproducts precisely when

f !(y) ' Lf∗(y)⊗ f !OY .
In other words, f ! respects coproducts when there is a dualizing complex f !OY ,
and f ! is given as tensor product with f !OY . Note that we will always write ⊗ for
the left derived functor L⊗.

The final question we address is when the functor f ! localizes well; that is,
when it gives an isomorphism in D(qc/Y ), as in Grothendieck’s original theorem.
Although our treatment here is not complete, we give a useful sufficient criterion.
The reader should note that Theorem 2 in Verdier [17], p. 394, seems better than the
result we get here; but this is partly a delusion. Verdier’s theorem is about D+

qc(X)
whereas Proposition 6.2 deals with Dqc(X). The difference between bounded and
unbounded derived categories is crucial here. Without boundedness hypotheses
Theorem 2 in Verdier [17] fails. Another way to say this is that certain functors that
come up in the proof commute with coproducts in D+

qc(X) but not with coproducts
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in Dqc(X). See the proof of Proposition 6.3 for a proof of Verdier’s result based on
coproducts (in the non–noetherian case too). See Example 6.5 for a counterexample
showing that without some conditions, one cannot expect Verdier’s theorem to hold
in the unbounded derived category.

It should be emphasised that here also, the topological techniques work without
any hypothesis that the schemes be noetherian. We recover, therefore, Lipman’s
results.

The point of this article is that Grothendieck duality is very easy to prove by
homotopy theoretic techniques. It is an immediate consequence of Brown repre-
sentability. But the reader is not assumed familiar with homotopy theory; hence
the first few sections, in which we attempt to give something like a self–contained
treatment. The reader is not assumed familiar with much of the literature on the
subject, especially not with previous articles by the present author. What is as-
sumed is some familiarity with derived categories. Since we will be working almost
entirely with unbounded derived categories, the reader should be familiar with the
work of Spaltenstein [15] on extending Rf∗ and tensor products to unbounded com-
plexes. There is a brief account of Spaltenstein’s results in Sections 1 and 2 of [2];
this account is recommended because it uses the notations and terminology of the
topologists, which we will also follow here.

Finally, I wish to thank Morava for directing me to the problem. I read Residues
and Duality many years ago, before I learned any topology. But Morava kept
suggesting that there is more there than meets the eye. There is a topological
analogue one would like to understand. On rereading Residues and Duality, it
became clear to me that even the algebraic geometry could be understood better.
I also want to thank Alonso, Jeremias, Kuhn and Lipman for helpful conversations
and useful comments. Lipman was especially helpful, reading earlier versions of
this manuscript, pointing out gaps and making many suggestions. The referee also
pointed out helpful simplifications and corrections.

The D-module problem of directly constructing the right adjoint of Rf+ was
posed by Nick Katz nine years ago. By a happy accident, I am now able to solve
it.

1. Preliminaries, approached classically

Let T be a triangulated category. There are several hypotheses one likes to place
on T in order to work with it.

Definition 1.1. The category T is said to contain small coproducts if, for any
small set Λ and any collection {tλ, λ ∈ Λ} of objects tλ ∈ Ob(T ) indexed by Λ, the
categorical coproduct ∐

λ∈Λ

tλ

exists in T .

Remark 1.2. It turns out that one can prove two things:
1.2.1. The suspension functor commutes with coproducts; that is the natural

map ∐
λ∈Λ

Σtλ → Σ

{∐
λ∈Λ

tλ

}
is an isomorphism.
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1.2.2. The coproduct of any set of triangles is a triangle.
The proof of this may be found in the yet–to–be–completed [14]. If the reader

is unhappy with this, just modify Definition 1.1 so that a category T containing
small coproducts is assumed to satisfy 1.2.1 and 1.2.2.

Example 1.3. Let X be a scheme. Let D(qc/X) be the derived category of chain
complexes of quasi-coherent sheaves over X .

Suppose {xλ| λ ∈ Λ} is a set of objects of D(qc/X). That is, each xλ is a chain
complex

→ xn−1
λ

∂→ xnλ
∂→ xn+1

λ → .

Then it is nearly trivial that the chain complex

−→
∐
λ∈Λ

xn−1
λ

∐
∂

−→
∐
λ∈Λ

xnλ

∐
∂

−→
∐
λ∈Λ

xn+1
λ −→

is the coproduct of the xλ in the category D(qc/X). It is also nearly trivial that
coproducts of triangles are triangles. For a proof, see [2], Corollary 1.7.

Lemma 1.4. Let X be a quasi-compact, separated scheme and let Y be a scheme.
Let f : X → Y be a separated morphism. Let Rf∗ : D(qc/X) → D(qc/Y ) be the
direct image functor. Then the natural map

∐
λ∈Λ

Rf∗xλ → Rf∗

{∐
λ∈Λ

xλ

}

is an isomorphism; that is, Rf∗ respects coproducts.

Proof. The question being local in Y , we may assume Y affine. Since X is quasi-

compact, it may be covered by finitely many open affines: X =
n⋃
i=1

Ui, with Ui

affine. We will prove the lemma by induction on the number n of open affines.
If n = 1, then X = U1 is affine. Thus the map

Spec(S) = X → Y = Spec(R)

corresponds to a ring homomorphism R→ S. The category D(qc/X) is just D(S),
the derived category of chain complexes of S–modules. The functor Rf∗ : D(S)→
D(R) just takes a chain complex of S–modules and views it as a chain complex of
R–modules. This clearly preserves coproducts.

If n > 1, let U = U1, V =
n⋃
i=2

Ui. Then U ∩ V =
n⋃
i=2

(U1 ∩ Ui), and U1 ∩ Ui is

affine because X is separated. Thus both V and U ∩ V are unions of n− 1 affines.
By induction, the theorem holds for the maps fU : U → Y, fV : V → Y and
fU∩V : U ∩ V → Y .

Let iU : U ↪→ X, iV : V ↪→ X and iU∩V : U ∩ V ↪→ X be the open immersions.
Then any object x of D(qc/X) admits a triangle:
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R(iU∩V )∗i
∗
U∩V (x)

−→x R(iU)∗i
∗
Ux⊕R(iV )∗i

∗
V (x)

(1)
↖ ↙

Thus we deduce a triangle:

Rf∗R(iU∩V )∗i
∗
U∩V (x)

−→Rf∗(x) Rf∗R(iU )∗i
∗
U(x) ⊕Rf∗R(iV )∗i

∗
V (x)

(1)
↖ ↙

But now

Rf∗R(iU)∗ = R(fU )∗,

Rf∗R(iV )∗ = R(fV )∗,

Rf∗R(iU∩V ) = R(fU∩V )∗

all commute with coproducts by the induction hypothesis. The functors i∗U , i
∗
V and

i∗U∩V commute with coproducts because they have right adjoints. Therefore, in the
morphism of triangles∐

λ∈Λ

Rf∗(xλ) →
∐
λ∈Λ

[R(fU )∗i
∗
U (xλ)⊕R(fV )∗i

∗
V (xλ)] →

∐
λ∈Λ

R(fU∩V )∗i
∗
U∩V (xλ)

α ↓ β ↓ γ ↓

Rf∗

(∐
λ∈Λ

xλ

)
→ R(fU )∗i

∗
U

(∐
λ∈Λ

xλ

)
⊕R(fV )∗i

∗
V

(∐
λ∈Λ

xλ

)
→ R(fU∩V )∗i

∗
U∩V

(∐
λ∈Λ

xλ

)
the maps β and γ are isomorphisms; hence so is α.

Corollary 1.5. If in Lemma 1.4 we take Y to be the scheme Spec(Z), then Rf∗
is just the derived functor of the global section functor. We deduce that if X is a
quasi-compact, separated scheme, then the functors Hi

Hi(X,−) : D(qc/X)→ {abelian groups}
respect coproducts.

Definition 1.6. An object c of T is called compact if, for any coproduct of objects
of T ,

HomT

(
c,
∐
λ∈Λ

tλ

)
=
∐
λ∈Λ

HomT (c, tλ).

Observation. The suspension of a compact object is compact.
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Definition 1.7. The triangulated category T is called compactly generated if T
contains small coproducts, and there exists a small set T of compact objects of T ,
such that

Hom(T, x) = 0⇒ x = 0.

In other words, if x is an object of T , and for every t ∈ T , Hom(t, x) = 0, then x
must be the zero object.

Definition 1.8. If T is a compactly generated triangulated category, then a set T
of compact objects of T is called a generating set if

(1) Hom(T, x) = 0⇒ x = 0;
(2) T is closed under suspension; T = ΣT .

Remark 1.9. Let T be any set of objects in T as in Definition 1.7. Then⋃
i∈Z

ΣiT

is a generating set as in Definition 1.8. (1) holds because it holds for T ; and clearly
the set ⋃

i∈Z
ΣiT

is stable under suspension. It needs only be remarked that any suspension of a
compact object is compact, and hence the set consists only of compact objects of
T .

Example 1.10. Let X be a quasi-compact, separated scheme. Let T = D(qc/X)
be the category of chain complexes of quasi-coherent sheaves on X . By Example 1.3
we know that T contains small coproducts. Now let L be any line bundle on X .
View L as an object of D(qc/X); it is the complex of sheaves which is just L in
degree 0. Then

Hom

(
L,
∐
λ∈Λ

tλ

)
= H0

(
L−1 ⊗

∐
λ∈Λ

tλ

)
.

Now tensor product respect coproducts, since it has a right adjoint. The functor
H0 respects coproducts by Corollary 1.5. It follows that L is a compact object of
T = D(qc/X).

Now suppose L is an ample line bundle. For any m ∈ Z, Lm is compact. For
any n ∈ Z, ΣnLm is also compact. Let

T = {ΣnLm|m,n ∈ Z}.
I assert that T is a generating set for T . Suppose x 6= 0 is an object of T . Then
it has some non-trivial sheaf cohomology; for some n, H−n(x) 6= 0. But H−n(x)
is a quasi-coherent sheaf on X , and because L is ample, Lt ⊗H−n(x) has non-zero
global sections for some t >> 0. If x is the complex

→ x−n−1 ∂→ x−n
∂→ x−n+1 →,

then there is a surjective map of quasi-coherent sheaves on X

ker(x−n → x−n+1)→H−n(x),

and it follows that, choosing t large enough, we can find a class

s ∈ H0(Lt ⊗ x−n)
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which maps to 0 in H0(Lt ⊗ x−n+1), and whose image in H0(H−n(Lt ⊗ x)) is
non-zero. This immediately gives us a non-zero map

ΣnL−t → x.

If all such maps vanish, so must x.

Example 1.11. In Example 1.10 we can replace a single ample line bundle by a
family; if X admits a family of line bundles {Lα| α ∈ A} which is jointly ample,
then

T = {ΣnLmα |m,n ∈ Z, α ∈ A}

will do for a generating set of compact objects. See [1], p. 171.

Example 1.12. Let X be a smooth quasi-compact variety of finite type over a

field k of characteristic zero. Let T = D
(
qc D-modules

X

)
be the derived category of

chain complexes of quasi-coherent D-modules over X . Once again, it is trivial that
T contains small coproducts.

Because X is smooth, one knows by a trick of Kleiman that there is an ample

family of line bundles; cover X by open affines X =
⋃
i∈I

Ui and let Li be the line

bundle O(Di), where Di is the divisor X−Ui. Then the Li’s form an ample family.
Now observe

Hom
D
(
qc D-modules

X

) (DX ⊗OX Lmi , x) = HomD(qc/X) (Lmi , x) .

From this it follows that Σn
(
DX ⊗OX L

m
i

)
are compact for all i,m and n, and the

set

T =
{

Σn
(
DX ⊗OX L

m
i

)
| i ∈ I, m, n ∈ Z

}
is a generating set.

Example 1.13. Let X be a quasi-compact, separated scheme. In Example 1.10 we
proved that any line bundle L on X , viewed as an object of D (qc/X), is compact.
Given ample families of line bundles on X , we used this to construct a generating
set.

Let us now observe that if c ∈ D (qc/X) is any perfect complex on X , it is
compact. Recall that a complex c is perfect if, locally on X , it is isomorphic to a
bounded complex of finitely generated, projective OX -modules.

Proof. Let
∐
λ∈Λ

xλ be a coproduct in D (qc/X). Let

RHom
(
c,
∐
λ∈Λ

xλ

)

be the sheaf RHom; it is an object of D (qc/X). I assert that the natural map in
D (qc/X),

φc :
∐
λ∈Λ

RHom(c, xλ)→RHom
(
c,
∐
λ∈Λ

xλ

)
,
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is an isomorphism whenever c is a perfect complex. The problem is local in X ;
we may therefore assume that X is affine, and c is a bounded complex of finitely
generated projective OX -modules.

If c is ΣmOX , then φc is clearly an isomorphism. If c is ΣmOnX , a finite direct sum
of ΣmOX ’s, then φc is also an isomorphism. If c = c′⊕c′′ and φc is an isomorphism,
so are φc′ and φc′′ . Hence φc is an isomorphism whenever c is a suspension of a
finitely generated projective module.

Now if we have a triangle

c′′

−→c c′

(1)
↖ ↙

and φΣmc′ and φΣmc′′ are isomorphisms for all m ∈ Z, then it follows from the 5-
lemma that φΣmc is an isomorphism for all m ∈ Z. Therefore the full subcategory
of c’s such that φΣmc is an isomorphism for all m ∈ Z is triangulated and contains
the finitely generated projective OX -modules. Hence it contains finite complexes
of finitely generated projectives.

Thus we have proved that for c a perfect complex,

φc :
∐
λ∈Λ

RHom(c, xλ)→RHom
(
c,
∐
λ∈Λ

xλ

)
is an isomorphism. But

Hom

(
c,
∐
λ∈Λ

xλ

)
= H0

[
RHom

(
c,
∐
λ∈Λ

xλ

)]

= H0

[∐
λ∈Λ

RHom (c, xλ)

]
=

∐
λ∈Λ

H0 [RHom (c, xλ)]

=
∐
λ∈Λ

Hom (c, xλ) ,

where the third equality is by Corollary 1.5, which assures us that H0 respects
coproducts.

Example 1.14. Let X be a quasi-compact, separated smooth scheme of finite type
over a field k of characteristic 0. Then by Example 1.12 we know that objects of

the form Σn{DX ⊗OX L} are compact in T = D
(
qc D-modules

X

)
. But much as in

Example 1.13, it can be shown that any bounded complex with coherent cohomology
is compact. Note that because DX is locally of finite projective dimension, any
coherent sheaf can locally be replaced by a finite chain complex of finitely generated
projectives. We leave the details to the reader.
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2. The approach using Thomason’s localisation theorem

Let T be a triangulated category. In this section, and for the remainder of the
article, we adopt the notation that T c stands for the full subcategory of compact
objects in T .

Let X be a quasi–compact, separated scheme. In Section 1 we saw how to prove
that the categoryD(qc/X) is compactly generated, providedX has an ample family
of line bundles; see Example 1.11. On the other hand, we also know that if X is
arbitrary (that is, quasi–compact and separated but not necessarily possessing any
line bundles), every perfect complex on X is compact. In this section we will use
Thomason’s localisation theorem to prove that D(qc/X) is compactly generated,
even without line bundles. First, we quote the theorem to which we will appeal.

Theorem 2.1. Let S be a compactly generated triangulated category. Let R be a
set of compact objects of S closed under suspension. Let R be the smallest full
subcategory of S containing R and closed with respect to coproducts and triangles.
Let T be the Verdier quotient S/R. Then we know :

2.1.1. The category R is compactly generated, with R as a generating set.
2.1.2. If R happens to be a generating set for all of S, then R = S.
2.1.3. If R ⊂ R is closed under the formation of triangles and direct summands,

then it is all of Rc. In any case, Rc = R∩ Sc.
2.1.4. Suppose t is a compact object of T . Then there is an object t′ ∈ T c, an

object s ∈ Sc and an isomorphism in T
s ' t⊕ t′.

Thus, t might not be isomorphic in T to a compact object in S, but it is the direct
summand of an object isomorphic in T to a compact object of S. Furthermore, t′

may be chosen to be Σt, or any other object whose sum with t is zero in K0.
2.1.5. Given an object s ∈ Sc, an object s′ ∈ S, and a morphism in T s → s′,

then there is a diagram in S
s̃

↙ ↘
s s′

where s̃ is compact, in the triangle r → s̃ → s → Σr, the object r is in Rc, and
when we reduce the diagram to T , the composite of the map s̃→ s′ with the inverse
of s̃→ s is the given map s→ s′.

Remark 2.2. For triangulated categories D(qc/X) where X is a scheme, the theo-
rem is due to Thomason [16]. In the generality in which the theorem is stated, it
may be found in [13]. Note that in [13] we assume not only that S is compactly
generated, but that the generating set may be taken to be Sc; in particular, we
assume Sc to be small. The reader will note that this is inessential to any of the
arguments in [13]. The only point where the proof uses the hypothesis on the small-
ness of Sc is in showing 2.1.4., and that comes at the very end. So in any case we
know the other properties. And in the proof of 2.1.4., it suffices to know that S is
compactly generated, and that by 2.1.1. it then follows that if S is a generating set,
the category R ⊂ S which is the smallest category containing S and closed with
respect to triangles and coproducts is all of S.

With this comment, we now give the references for the proofs. 2.1.2. really
follows from the proof in [13]. In the notation there, if j∗ : S −→ T is the natural
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functor and j∗ : T −→ S its right adjoint, then the objects j∗j
∗x are characterised

by the fact that Hom(R, j∗j
∗x) = 0. Since R generates S, it follows that for every

x, j∗j
∗x = 0. But the identity on j∗x factors as

j∗x→ j∗j∗j
∗x→ j∗x

and the middle object is zero. Hence j∗x = 0. This is true for every x, which means
that the category T is zero, and hence R = S.

For the remaining statements, 2.1.3. is Lemma 2.2 of [13]. 2.1.4. goes as follows.
The existence of t′ is Lemma 2.6 of [13], but as noted above, the proof needs to be
modified slightly to account for the fact that we are only assuming S compactly
generated. The fact that t′ may be taken to be Σt, or even anything else which is
isomorphic to −t in K0, may be found in the appendix to [13]. 2.1.5. is Lemma 2.5
of [13]. This leaves us with 2.1.1. which is trivial, so let us give the proof. Suppose
r is an object ofR such that Hom(R, r) = 0. Consider the full subcategory ⊥r ⊂ R,
defined by

⊥r = {x ∈ R|Hom(Σnx, r) = 0 for all n ∈ Z} .
Clearly, ⊥r is triangulated and closed under coproducts, and contains R. Hence
it must be all of R, in particular ⊥r contains r ∈ R. Thus Hom(r, r) = 0, hence
r = 0.

Corollary 2.3. Let X be a quasi–compact, separated scheme, and suppose we know
that D(qc/X) is compactly generated, and that the generating set consists of some
perfect complexes. Then the category of all perfect complexes on X is nothing other
than D(qc/X)c.

Remark 2.4. For now, we only know that D(qc/X) is compactly generated when
there is an ample family of line bundles. So for now Corollary 2.3 only applies in
that case. But this will change by the end of the section.

Proof of Corollary 2.3. Let S = D(qc/X), and let R be the set of perfect complexes
in Theorem 2.1. By hypothesis, R generates S, and hence by 2.1.2., R = S =
D(qc/X), and T is trivial. But R is closed with respect to direct summands and
triangles. Closure with respect to triangles is clear. Closure with respect to direct
summands asserts that a direct summand of a perfect complex is perfect. This
is local, so we may assume X affine. For affine X this is Proposition 3.4 in [2].
By 2.1.3. we therefore know that R = Rc; every compact object in D(qc/X) is a
perfect complex.

Now we come to the existence of compacts on a general X .

Proposition 2.5. Let X be a quasi–compact, separated scheme. Then the category
D(qc/X) is compactly generated.

It might be useful to state a lemma that clearly implies Proposition 2.5, and
which we will prove.

Lemma 2.6. Let X be a quasi–compact, separated scheme. Let U ⊂ X be a quasi–
compact, open subscheme. Let x be an arbitrary object of D(qc/X), and let u be a
perfect complex in D(qc/U). Suppose that we are given a map in D(qc/U) of the
form u→ x. Then there exists a perfect complex u′ in D(qc/U) so that the map

u⊕ u′ π1→ u→ x
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lifts to D(qc/X). There exists a perfect complex ũ on X, restricting to u ⊕ u′

on U , and a map ũ → x, defined on X, which restricts on U to the given map

u⊕ u′ π1→ u→ x.

Proof that Lemma 2.6 implies Proposition 2.5. Take U to be an open affine. Then
U admits an ample family of line bundles; the trivial bundle is ample. Thus we
already know that U is compactly generated, and that the compact objects are the
perfect complexes. If x is any object of D(qc/X) and the restriction of x to U is
non-zero, there is a perfect complex u on U and a non–zero map u→ x on U . By
Lemma 2.6 this map can be extended to a non–zero map ũ→ x on all of X , where
ũ is perfect. Thus, unless the restriction of x to every open affine U ⊂ X is zero,
there is a non–zero map from a perfect complex to x. But if the restriction of x to
every open affine U ⊂ X vanishes, then x vanishes.

Proof of Lemma 2.6. Suppose first that X is affine. Then X has an ample line
bundle; after all, the trivial bundle is ample. We therefore already know that
D(qc/X) is compactly generated. Furthermore, the compacts are precisely the
perfect complexes. Now let DX−U(qc/X) ⊂ D(qc/X) be the full subcategory
whose objects are complexes supported on X − U . That is,

DX−U(qc/X) = {x ∈ D(qc/X)|the restriction of x to U is acyclic} .

Lemma 6.1 of [2] shows that even DX−U (qc/X) is compactly generated, in fact,
generated by the suspensions of one compact object in D(qc/X).

In Theorem 2.1, let S be the category D(qc/X), and let R be a generating set
for DX−U(qc/X). This makes R = DX−U(qc/X). Now T is easily identified with
D(qc/U). Thomason localisation theorem applies, and we discover first that by
2.1.4. the complex u⊕ Σu may be lifted to a perfect complex ũ in D(qc/X), and
then by 2.1.5. that the map u⊕Σu→ x can be lifted to a map ũ→ x on all of X ,
possibly after changing the choice of ũ lifting u⊕ Σu.

Suppose next that X = U ∪ W , where W is affine. We know by the above
that the restriction of the map u → x can be extended from U ∩W to all of W .
Precisely, there is a perfect complex ũ on W and a map ũ→ x of complexes on W ,
so that the restriction to U ∩W is isomorphic to the map u ⊕ Σu → x. Thus, if
jW : W → X , jU : U → X and jU∩W : U ∩W → X are the open immersions, we
have an isomorphism on U ∩W of {jU∩W}∗{u⊕Σu} with {jU∩W}∗ũ. We are given
the maps β and γ, which we can complete to a morphism of triangles of complexes
on U ∪W = X

û → {jU}∗{u⊕ Σu} ⊕ {jW }∗ũ → {jU∩W}∗{jU∩W}∗{u⊕ Σu}
α↓ β↓ γ↓
x → {jU}∗{jU}∗x⊕ {jW}∗{jW }∗x → {jU∩W}∗{jU∩W}∗x

and it is easy to check that û is perfect and the map û→ x, defined on all of X , is
just a lifting of u⊕ Σu→ x from U to all of X .

Since X is quasi–compact, it can be covered by finitely many open affines, and
in finitely many steps of extending from U to U ∪W , with W affine, we extend to
all of X .

Theorem 2.1 can also be used to construct compactly generated categories. The
point being that given a compactly generated category S and a set of compact
objects R in it, the categories R and T are compactly generated.
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Example 2.7. Let X be a smooth, quasi-compact, separated scheme of finite type

over a field k of characteristic 0. Let S = D
(
qc D-modules

X

)
be the derived category

of chain complexes of quasi-coherent D-modules on X .
Let R ⊂ S be the set

R =

{
x ∈ Ob(S)

∣∣∣∣ Hi(x) = 0 for all but finitely many i, and
Hi(x) is holonomic for all i.

}
Because holonomic modules are coherent, it follows from Example 1.14 that R
consists of compact objects of T . Let R be as above. Then R is a compactly
generated triangulated category, with R for a generating set. We will call this R
by the name D(holo/X).

The key tool one uses is the homotopy colimit. Let T be a triangulated category
containing small coproducts. Let

X0 → X1 → X2 → · · ·

be a sequence of objects and morphisms in T . Then hocolim−→ Xi is by definition

the third edge of the triangle:∐
i

Xi 1-shift
−→

∐
i

Xi

(1)↖ ↙
hocolim−→ Xi

Lemma 2.8. Suppose c is a compact object of T , and suppose

X0 → X1 → X2 → · · ·

is a sequence of objects and morphisms in T . Suppose T admits small coproducts.
Then

Hom
(
c, hocolim−→ Xi

)
= lim
→

Hom(c,Xi).

Proof. Consider the triangle:∐
i

Xi
1-shift−→

∐
i

Xi

(1)↖ ↙
hocolim−→ Xi

Applying the homological functor Hom(c,−) we get a long exact sequence. In
particular

Hom

(
c,
∐
i

Xi

)
γ−→ Hom (c, hocolimXi) −→ Hom

(
c,
∐
i

ΣXi

)

↓ 1-shift

Hom

(
c,
∐
i

ΣXi

)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



218 AMNON NEEMAN

is exact. But c is compact, and hence in the following commutative square the
columns are isomorphisms:∐

i

Hom (c,ΣXi)
1-shift−→

∐
i

Hom (c,ΣXi)

| ↓ o | ↓ o

Hom

(
c,
∐
i

ΣXi

)
1-shift−→ Hom

(
c,
∐
i

ΣXi

)
.

But the top row is clearly injective. Hence the bottom row is injective, and we
deduce that γ is surjective.

We now have a commutative diagram∐
i

Hom (c,Xi)
1-shift−→

∐
i

Hom (c,Xi)

| ↓ o | ↓ o

Hom

(
c,
∐
i

Xi

)
1-shift−→ Hom

(
c,
∐
i

Xi

)
γ−→ Hom

(
c,hocolim
−→

Xi

)
−→ 0

where the bottom row is exact. The top row identifies Hom
(
c, hocolim−→ Xi

)
as lim
→

Hom(c,Xi).

3. Brown representability

In this section, we will prove:

Theorem 3.1. Let T be a compactly generated triangulated category. Let
H : T op → Ab be a homological functor. That is, H is contravariant and takes
triangles to long exact sequences. Suppose the natural map

H

(∐
λ∈Λ

tλ

)
→
∏
λ∈Λ

H(tλ)

is an isomorphism for all small coproducts in T . Then H is representable.

Proof. Let T be a generating set for T . Let U0 be defined as

U0 =
⋃
t∈T

H(t).

Thus elements of U0 can be thought of as pairs (α, t) with α ∈ H(t). Put

X0 =
∐

(α,t)∈U0

t.

Then

H(X0) =
∏

(α,t)∈U0

H(t),

and there is an obvious element in H(X0), namely the element which is α ∈ H(t)
for (α, t) ∈ U0. Call this element α0 ∈ H(X0). The construction is such that if
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t→ X0 is the inclusion of t into X0 =
∐

(α,t)∈U0

t corresponding to (α, t) ∈ U0, then

the induced map H(X0)→ H(t) takes α0 ∈ H(X0) to α ∈ H(t).
To give an object X0 and an element α0 ∈ H(X0) is by Yoneda’s lemma the

same as giving a natural transformation

φ0 : Hom(−, X0)→ H,

and what we have seen is precisely that

φ0(t) : Hom(t,X0)→ H(t)

is surjective, for all t ∈ T .
Suppose that for some i ≥ 0 we have defined an object Xi of T , and a natural

transformation

Hom(−, Xi)→ H.

Define Ui+1 by

Ui+1 =
⋃
t∈T

ker {Hom(t,Xi)→ H(t)} .

An element of Ui+1 can be thought of as a pair (f, t) where t ∈ T and f : t → Xi

is a morphism. Put

Ki+1 =
∐

(f,t)∈Ui+1

t,

and let Ki+1 → Xi be the map which is f on the factor t corresponding to the pair
(f, t). Let Xi+1 be given by the triangle:

Ki+1 −→ Xi

(1)↖ ↙
Xi+1

We have a map Hom(−, Xi) → H, which by Yoneda’s lemma corresponds to an
element αi ∈ H(Xi). Under the map

H(Xi)→ H(Ki+1) = H

 ∐
(f,t)∈Ui+1

t


=

∏
(f,t)∈Ui+1

H(t)

the element αi ∈ H(Xi) maps to zero; the f : t → Xi were chosen so that the
induced map Hom(t,Xi) → H(t) vanishes. But H is a homological functor; the
exact sequence

H(Xi+1)
k→ H(Xi)

j→ H(Ki+1),

coupled with the fact that j(αi) = 0, guarantees that there exists αi+1 ∈ H(Xi+1)
with k(αi+1) = αi. Choose such an αi+1. There is a corresponding natural trans-
formation

Hom(−, Xi+1)→ H
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rendering commutative the triangle:

Hom(−, Xi+1) −→ H

Hom(−, Xi)

↙ ↘

Let X = hocolim−→ Xi. I assert:

(1) There is a natural transformation Hom(−, X) → H rendering commutative
the triangles

Hom(−, X) −→ H

Hom(−, Xi)

↙ ↘

for every i.
(2) The natural transformation Hom(−, X)→ H is an isomorphism.

Proof of (1). Consider the triangle:∐
i

Xi
1-shift−→

∐
i

Xi

(1)↖ ↙
hocolim−→ Xi = X

Applying the cohomological functor H, we get an exact sequence

H(X) −→ H

(∐
i

Xi

)
1-shift−→ H

(∐
i

Xi

)

‖ ‖

∏
i

H(Xi)
1-shift−→

∏
i

H(Xi).

The element ∏
i

αi ∈
∏
i

H(Xi)

is in the kernel of (1-shift), and hence there is an α ∈ H(X) mapping to it. By
Yoneda, α corresponds to a natural transformation

Hom(−, X)→ H,
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and the fact that α maps to
∏
αi ∈ H(

∐
Xi) means that the diagram

Hom(−, X) −→ H

Hom(−, Xi)

↙ ↘

commutes for all i.
Proof of (2). It remains to show that

φ : Hom(−, X)→ H

constructed above is an isomorphism. Let us begin with objects t ∈ T . We will
show that, for all t ∈ T ,

φ(t) : Hom(t,X)→ H(t)

is an isomorphism.
Observe the commutative diagram:

Hom(t,X0)
↙ ↘

Hom(t,X) −→ H(t)

Since we know that Hom(t,X0)→ H(t) is surjective, it follows that

Hom(t,X)→ H(t)

is surjective. It remains only to prove it injective.
Let f ∈ Hom(t,X) with φ(t)(f) = 0. Now

f ∈ Hom(t,X) = Hom
(
t, hocolim−→ Xi

)
.

But as t ∈ T is compact, we have by Lemma 2.8 that

Hom
(
t, hocolim−→ Xi

)
= lim
→

Hom(t,Xi).

In other words, there exists fi : t→ Xi so that the composite

t
fi−→ Xi −→ X

is f . But the diagram

Hom(t,X) −→
k

H(t)

Hom(t,Xi)

j ↙ ↘

commutes, and j(fi) = f while k(f) = 0. It follows that fi ∈ ker{Hom(t,Xi) →
H(t)}, that is, (fi, t) ∈ Ui+1. This means that fi : t→ Xi factors through the map
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h in the triangle

 ∐
(fi,t)∈Ui+1

t

 = Ki+1 ←−
(1)

Xi+1

Xi

h↗ ↘ g

and hence g ◦ fi = 0. But the map

Xi
g−→ Xi+1

ḡ−→ X

satisfies

f = {ḡ ◦ g} ◦ fi
= ḡ ◦ {g ◦ fi}
= 0.

Thus φ(t) : Hom(t,X)→ H(t) is an isomorphism whenever t ∈ T .
Let S ⊂ T be the full subcategory of objects y ∈ T such that, for all n ∈ Z, the

map φ(Σny) : Hom(Σny,X)→ H(Σny) is an isomorphism. Then the category S
contains T , and is closed with respect to the formation of coproducts and triangles.
To finish our proof of Theorem 3.1, we need the following lemma.

Lemma 3.2. Let S ⊂ T be a full, triangulated subcategory containing T and closed
under the formation of T -coproducts of its objects. Then S = T .

Proof. Let S be the smallest subcategory of T which is full, triangulated, closed
with respect to T -coproducts of its objects, and contains T . Let Z be an object of
T . Let H = HomT (−, Z) be viewed as a homological functor on S.

Then S is compactly generated, with a generating set T . We can therefore apply
what we have proved so far about Brown representability to the functor H on S;
there is an object X of S, a natural transformation of functors on S

φ : HomS(−, X)→ HomT (−, Z),

and this natural transformation is an isomorphism on a full, triangulated subcate-
gory of S containing T and closed with respect to S-coproducts of its objects. But
S is minimal with this property; hence

HomS(−, X)→ HomT (−, Z)

is an isomorphism of functors on S.
By Yoneda’s lemma, this means there is a morphism X → Z in T so that, for

every object s of S,

Hom(s,X)→ Hom(s, Z)

is an isomorphism.
Complete X → Z to a triangle in T :

X −→ Z
(1)↖ ↙

Y
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One easily deduces that, for every object s of S, Hom(s, Y ) = 0. But T ⊂ S, and
hence for every object t ∈ T, Hom(t, Y ) = 0. But because T generates, Y = 0, and
hence X → Z is an isomorphism. Thus Z is an object of S, and since Z ∈ T was
arbitrary, S = T .

4. The adjoint functor theorem and examples

Theorem 4.1. Let S be a compactly generated triangulated category, T any tri-
angulated category. Let F : S → T be a triangulated functor. Suppose F respects
coproducts; the natural maps

F (sλ)→ F

(∐
λ∈Λ

sλ

)

make F

(∐
λ∈Λ

sλ

)
a coproduct of T . Then F has a right adjoint G : T → S.

Proof. Let t be an object of T , and consider the functor on S
s 7→ HomT (F (s), t).

This functor is homological and takes coproducts to products; we have

HomT

(
F

(∐
λ∈Λ

sλ

)
, t

)
= HomT

(∐
λ∈Λ

F (sλ), t

)
=

∏
λ∈Λ

HomT (F (sλ), t).

Hence, by Theorem 3.1, this functor is representable; there is a G(t) ∈ S with

HomT (F (s), t) = HomS(s,G(t)),

and by standard arguments, G extends to a functor, right adjoint to F .

Example 4.2. Let f : X → Y be a separated morphism of quasi-compact sepa-
rated schemes. Then

Rf∗ : D(qc/X)→ D(qc/Y )

has a right adjoint
f ! : D(qc/Y )→ D(qc/X).

Proof. We need only show thatRf∗ is triangulated and respects coproducts; the fact
that it is triangulated is obvious, the fact that it respects coproducts is Lemma 1.4.

Example 4.3. Let f : X → Y be a separated morphism of smooth, quasi-compact,
separated schemes of finite type over a field k of characteristic 0. Then

Rf+ : D

(
qc D-modules

X

)
→ D

(
qc D-modules

Y

)
has a left adjoint.

Proof. Since Rf+ is clearly a triangulated functor, the real point is to prove that
it respects coproducts. But Rf+ is given as

Rf+(x)
def
= Rf∗

(
DY←X ⊗DX x

)
and tensor product trivially respects coproducts, while Rf∗ does by Lemma 1.4.
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Example 4.4. With f : X → Y as in Example 4.3, let D(holo/X) and D(holo/Y )
be as in Example 2.7; that is, D(holo/X) is the smallest full, triangulated category

of D
(
qc D-modules

X

)
closed with respect to coproducts and containing the bounded

complexes with holonomic cohomology. It is well known that

Rf+ : D

(
qc D-modules

X

)
→ D

(
qc D-modules

Y

)
takes complexes with holonomic cohomology to complexes with holonomic coho-
mology. Since Rf+ is triangulated and respects coproducts, it takes D(holo/X) to
D(holo/Y ). It induces a functor, which we also denote Rf+,

Rf+ : D(holo/X)→ D(holo/Y ).

This functor has a left adjoint.

Proof. By Example 2.7, D(holo/X) is a compactly generated triangulated category.

The functor Rf+ is the restriction to D(holo/X) of a functor on D
(
qc D-modules

X

)
respecting coproducts; hence it respects coproducts. By Theorem 3.1, the adjoint
exists.

5. Commuting with coproducts

In Section 4, we constructed an adjoint to a functor F : S → T . Precisely, if
F : S → T is a triangulated functor, one sometimes has a right adjoint G : T → S.
Being a right adjoint, G certainly respects products. It turns out to be interesting
to know when G respects coproducts.

Theorem 5.1. Let S be a compactly generated triangulated category, and let T
be any triangulated category. Let F : S → T be a triangulated functor respecting
coproducts, and let G : T → S be its right adjoint, which exists by Theorem 4.1.
Let S be a generating set for S. Then G : T → S respects coproducts if and only if
for every s ∈ S, F (s) is a compact object of T .

Proof. ⇒ Suppose G preserves coproducts. Let s ∈ S be some object. Then

HomT

(
F (s),

∐
λ∈Λ

xλ

)
= HomS

(
s,G

(∐
λ∈Λ

xλ

))

= HomS

(
s,
∐
λ∈Λ

G (xλ)

)
because G commutes
with coproducts

=
∐
λ∈Λ

HomS (s,G (xλ)) because s is compact

=
∐
λ∈Λ

HomT (F (s), xλ),

and this proves that F (s) is compact in T .
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⇐ Suppose that, for all s ∈ S, F (s) is compact. Let
∐
λ∈Λ

xλ be a coproduct in

T . Then for any s ∈ S,

Hom

(
s,G

(∐
λ∈Λ

xλ

))
= Hom

(
F (s),

∐
λ∈Λ

xλ

)
=

∐
λ∈Λ

Hom(F (s), xλ) because F (s) is compact

=
∐
λ∈Λ

Hom(s,G(xλ))

= Hom

(
s,
∐
λ∈Λ

G(xλ)

)
because s is compact.

In other words, the natural map∐
λ∈Λ

G(xλ)→ G

(∐
λ∈Λ

xλ

)
induces a natural transformation

φ : HomS

(
− ,

∐
λ∈Λ

G(xλ)

)
→ HomS

(
− , G

(∐
λ∈Λ

xλ

))
,

and φ(s) is an isomorphism for all s ∈ S. But then in the triangle∐
λ∈Λ

G(xλ)→ G

(∐
λ∈Λ

xλ

)
→ Z → Σ

{∐
λ∈Λ

G(xλ)

}
the object Z must satisfy Hom(S, Z) = 0. But as S generates, Z = 0 and∐

λ∈Λ

G(xλ)→ G

(∐
λ∈Λ

xλ

)
is an isomorphism.

Example 5.2. Let f : X → Y be a pseudo–coherent proper morphism of sepa-
rated, quasi–compact schemes. Suppose that f is of finite Tor-dimension. Then
Rf∗ : D(qc/X)→ D(qc/Y ) takes perfect complexes to perfect complexes, by [9].

It follows that it takes a set of generators of D(qc/X) to a set of compact objects
of D(qc/Y ). Hence f ! commutes with coproducts. What makes this interesting is
Theorem 5.4 which follows. But in the theorem we appeal to the projection formula,
and since I do not know a reference which proves it in the generality we want, the
following is the sketch of a proof.

Proposition 5.3. Let f : X → Y be a morphism of separated, quasi–compact
schemes. Let D(X) be the derived category of all OX–modules, D(Y ) the derived
category of all OY –modules. Let y be an object of D(Y ), x an object of D(X).
Then there is a natural map, in D(Y ),

yL⊗Rf∗x→ Rf∗
{
Lf∗yL⊗x

}
.

If y is in D(qc/Y ) ⊂ D(Y ) and x is in D(qc/X) ⊂ D(X), this natural map is an
isomorphism.
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Proof. The existence and naturality of the map really comes from the definition of
Rf∗, Lf

∗ and the derived tensor product. To define Rf∗ of an object in D(X), one
expresses the derived category D(X) as a quotient of the the homotopy category
K(X) by the acyclic complexes E(X), and notes that the subcategory L(X) of
Bousfield local objects inK(X) with respect to E(X) maps isomorphically toD(X).
Here, L(X) consists of the special complexes of injectives of Spaltenstein’s [15]. Rf∗
is just f∗ on L(X).

The tensor product, and Lf∗, depend for their construction on the fact that
D(X) is also isomorphic to the subcategory of Bousfield colocal objects, denoted

here L̃(X). Concretely, these are complexes of objects j!OU , where j : U → X is
the inclusion of an open affine, and j! is extension by zero.

Replacing y by a colocal object on Y and x by a local object on X , the tensor
products become the natural ones and we have an isomorphism

y ⊗ f∗x ' f∗ {f∗y ⊗ x} .
The left-hand side identifies immediately with yL⊗Rf∗x, by definition of the derived
tensor product andRf∗. On the right, the part in brackets identifies with Lf∗yL⊗x,
again by definition. Hence a natural isomorphism

yL⊗Rf∗x ' f∗
{
Lf∗yL⊗x

}
.

The problem is that, in general, Lf∗yL⊗x is not Bousfield local (=a complex of
injectives), and hence f∗ of it is not the same as Rf∗. But for any complex x, there
is a natural map f∗x→ Rf∗x, and this gives the natural map

yL⊗Rf∗x→ Rf∗
{
Lf∗yL⊗x

}
.

It remains to show that the restriction of this map to the subcategories of complexes
of quasi–coherents is an isomorphism.

Fix x ∈ D(qc/X); we have a natural transformation of functors in y ∈ D(qc/Y ).
First, the problem is now local in Y and we may therefore assume Y affine. Secondly,
on the category D(qc/X), Rf∗ respects coproducts by Lemma 1.4. Tensor product
and Lf∗ always respect sums, so the map is a natural transformation of two functors
in y respecting coproducts. For each y ∈ D(qc/Y ), let φ(y) be the map

yL⊗Rf∗x→ Rf∗
{
Lf∗yL⊗x

}
.

Let R ⊂ D(qc/Y ) be the full subcategory of all y’s such that φ(Σny) is an isomor-
phism for all n. The category R is closed with respect to triangles and coproducts.
It clearly contains OY . Since Y is affine, OY is ample and generates D(qc/Y ) by
Example 1.10. By Lemma 3.2, it follows that R is all of D(qc/Y ).

Theorem 5.4. Let f : X → Y be a morphism of schemes. Suppose Rf∗ has a
right adjoint f ! which commutes with coproducts. Suppose Y is quasi-compact and
separated. Then there is a natural isomorphism of functors D(qc/Y )→ D(qc/X),
which on objects gives

f !(y) ' (Lf∗y)⊗OX (f !OY ).

Conversely, if f ! is naturally isomorphic to the functor on the right, it respects
coproducts.

Proof. ⇐ Suppose we have a natural isomorphism of functors in y

f !(y) ' (Lf∗y)⊗OY (f !OY ).
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Since Lf∗ has a right adjoint, it respects coproducts. Tensor products respect
coproducts, so we deduce that f ! respects coproducts.
⇒ We will show that there is a natural map

(Lf∗y)⊗OX (f !OY )→ f !(y)

and that this map is an isomorphism whenever y is compact. Then, if f ! respects
coproducts, it will easily follow that this natural map is an isomorphism for all y.

Let us prove a slightly more general fact. We will actually show that, for any y′

in D(qc/Y ), there is a natural map

(Lf∗y)⊗OX (f !y′)→ f !(y ⊗OY y′)
which is an isomorphism if y is compact. The case y′ = OY is then the above.

In any case, there is a natural map

µ : Rf∗f
!y′ → y′,

the counit of adjunction. For every y ∈ D(qc/Y ),

Rf∗
[
(Lf∗y)⊗OX f !y′

]
= y ⊗OY Rf∗f !y′

by the projection formula. Hence there is a natural map

Rf∗
[
Lf∗(y)⊗OX f !y′

]
= y ⊗OY Rf∗f !y′

↓ 1y ⊗ µ

y ⊗OY y′.
By adjunction, we have a map

Lf∗(y)⊗OX f !y′ → f ! (y ⊗OY y′) .
This is our natural map. We need to show that for compact y it is an isomorphism.

Let y be compact, and let x be an arbitrary complex in D(qc/X). It suf-
fices to show that the natural map above induces an isomorphism after applying
Hom(x,−). Let us therefore reflect what Hom(x,−) does. To begin with, put
ŷ = RHomOY (y,OY ). Then Lf∗ŷ = RHomOX (Lf∗y,OX), and since y and Lf∗y
are perfect complexes, there are natural isomorphisms

HomX(−⊗ Lf∗ŷ , −) = HomX(− , Lf∗y ⊗−)

and

HomY (−⊗ ŷ , −) = HomY (− , y ⊗−).

Now, the map

Lf∗(y)⊗OX f !y′ → f ! (y ⊗OY y′)
induces a map after applying Hom(x,−). By definition, this takes a map
γ ∈ Hom

(
x , Lf∗(y)⊗OX f !y′

)
to a map x → f !(y ⊗OY y′). By the adjunction,

this map corresponds to a map γ′ : Rf∗x→ y ⊗OY y′. But we know what γ′ is; it
is the composite of Rf∗γ with the natural counit

Rf∗
[
Lf∗(y)⊗OX f !y′

]
= y ⊗OY Rf∗f !y′

↓ 1y ⊗ µ

y ⊗OY y′.
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We need to show this correspondence is an isomorphism. But

HomOX
(
x , Lf∗y ⊗OX f !y′

)
= HomOX

(
x⊗ Lf∗ŷ , f !y′

)
= HomOY (Rf∗{x⊗ Lf∗ŷ} , y′)
= HomOY (Rf∗(x)⊗ ŷ , y′)
= HomOY (Rf∗(x) , y ⊗OY y′) ,

where the third equality is the projection formula. This isomorphism is easily
identified with Hom(x,−) applied to the map

φ : Lf∗(y)⊗OX f !y′ → f ! (y ⊗OY y′) .
We therefore know that φ is an isomorphism if y is compact.

Now assume that f ! respects coproducts. For fixed y′, the functor

y 7→ (Lf∗y)⊗OX f !y′

is a triangulated functor in y; Lf∗ is, as is tensor product. The functor f ! is the
adjoint of a triangulated functor, hence triangulated; see [12], Lemma 3.9. Thus φ is
a natural transformation of triangulated functors, both of which respect coproducts.
Let S ⊂ D(qc/Y ) be the full subcategory

S = {y ∈ Ob [D(qc/Y )] | φ(Σny) is an isomorphism for all n ∈ Z} .
Then S contains the generating set of compact objects, is triangulated and closed
with respect to D(qc/Y )-coproducts. Thus S = D(qc/Y ). Hence, φ is a natural
isomorphism. The theorem is the special case y′ = OY of the above.

Remark 5.5. In the traditional literature on the subject, f !OY is called the dualizing
complex, and plays a key role in the theory.

6. A sheaf version

The traditional way to state Grothendieck’s duality theorem comes in a sheaf
version. Let f : X → Y be a proper morphism of noetherian, separated schemes.
One would like to deduce that f !, the adjoint we have for Rf∗, gives an isomorphism
in the category of sheaf homomorphisms

RHom(Rf∗x, y) ' Rf∗RHom(x, f !y).

Note that the counit u : Rf∗f
!y → y defines in any case a well-defined natural

transformation

φ : Rf∗RHom(x, f !y)→RHom(Rf∗x, y),

and the only question is whether it is an isomorphism. Once we apply the functor
H0(Y,−), it becomes an isomorphism; this is because f ! is adjoint to Rf∗. To say
that the map is an isomorphism of sheaves is to say that the derived functor of
Γ(U,−) gives an isomorphism RΓ(U, φ) for every open set U ⊂ Y . Concretely, it
says that if we take the commutative diagram

f−1U
j′

↪→ X
f ′ ↓ ↓ f
U

j
↪→ Y,

then (f ′)!j∗ and (j′)∗f ! are naturally isomorphic.
It is easy to see that j∗Rf∗ = Rf ′∗(j

′)∗. Taking right adjoints, we deduce
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Lemma 6.1. If the diagram

f−1U
j′

↪→ X
f ′ ↓ ↓ f
U

j
↪→ Y,

is given by pulling back an open immersion j : U → Y , then there is a natural
isomorphism

f !Rj∗ = Rj′∗(f
′)!.

Therefore

(j′)∗{Rj′∗(f ′)!}j∗ = (j′)∗{f !Rj∗}j∗.
Hence (f ′)!j∗ = (j′)∗f !Rj∗j

∗ because (j′)∗Rj′∗ is the identity functor. Thus we
must convince ourselves that the natural unit of adjunction 1→ Rj∗j

∗ induces an
isomorphism

(j′)∗f ! → (j′)∗f !Rj∗j
∗.

Let Z = Y −U be the (closed) complement of U ⊂ Y . There is a triangle of functors

RΓZ → 1→ Rj∗j
∗

←−
(1)

where RΓZ is Grothendieck’s local cohomology functor. Sometimes RΓZ is denoted
i∗i

!, because it is also the counit of an adjunction. But since the i! and i∗ are not the
type of map we have been considering here, the notation might lead to confusion.
Note that Z ⊂ Y is a Zariski closed subset, but we have not given it a scheme
structure. Hence the i∗ and i! of this article make no sense.

It suffices to show that

(j′)∗f !RΓZ

is the zero functor. It is enough to show this for open sets U ⊂ X which form a
basis for the topology. This is what we will do.

Proposition 6.2. Let f : X → Y be a morphism of schemes such that Rf∗ :
D(qc/X)→ D(qc/Y ) has a right adjoint f !. Suppose f ! respects coproducts. Sup-
pose U ⊂ Y is an open subset, Z = Y − U the complement. Suppose U and Y are
quasi–compact and separated. Then, in the notation above, the composite

(j′)∗f !RΓZ = 0.

Proof. We wish to show that (j′)∗f ! vanishes on any object of the form RΓZ(y).
This means concretely that if y is a complex which is acyclic away from Z, then
f !y must be shown acyclic off f−1Z. But by Theorem 5.4,

f !y = Lf∗y ⊗ f !OY .

Clearly, if y is supported on Z, then Lf∗y is supported on f−1Z, and hence so is
its tensor product with f !OY .

From the work of Verdier for the Noetherian case, Lipman in general, we know
that for the bounded–below derived category more is true. Let us state their theo-
rem, then prove it by coproduct techniques.
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Proposition 6.3. Let f : X → Y be a pseudo–coherent, proper morphism of quasi–
compact, separated schemes. Then Rf∗ : D+(qc/X) → D+(qc/Y ) has a right
adjoint f !. Furthermore, in the notation above, the composite

(j′)∗f !RΓZ = 0.

Proof. Let us begin by showing that the right adjoint of f ! : D(qc/Y )→ D(qc/X)
takes bounded–below complexes to bounded–below complexes, and is therefore also
a right adjoint to Rf∗ : D+(qc/X)→ D+(qc/Y ). Since X is quasi-compact, it may
be covered by finitely many open affines, say n of them. But since f is separated,
the open affines may be used to compute Rf∗, via the Čech complex. Since the
Čech complex has only (n + 1) terms, it follows that if x ∈ D−(qc/X) vanishes
above dimension l, then Rf∗x vanishes above dimension l + n. In the notation of

t–structure truncations, if x ∈ D(qc/X)
≤l

, then Rf∗x ∈ D(qc/Y )
≤l+n

.

Pick any x ∈ D(qc/X)
≤l

, and y ∈ D(qc/Y )
≥l+n+1

. Then

Hom(x, f !y) = Hom(Rf∗x, y) = 0

since Rf∗x ∈ D(qc/Y )≤l+n and y ∈ D(qc/Y )≥l+n+1. But x ∈ D(qc/X)≤l was

arbitrary; thus f !y ∈ D(qc/X)
≥l+1

. In other words, y ∈ D(qc/Y )
≥l

implies f !y ∈
D(qc/X)

≥l−n
. In particular, if y ∈ D+(qc/Y ), then f !y ∈ D+(qc/X).

It remains to show the vanishing of (j′)∗f !RΓZ . We need to show that if y is an
object of D+(qc/Y ), which is acyclic off Z, then f !y is acyclic off f−1Z. Let us first
make an observation. Suppose y is arbitrary, vanishing off Z. Suppose Y = V1 ∪V2

expresses Y as a union of two open sets V1 and V2. There is then a triangle

y → jV1∗jV1

∗y ⊕ jV2∗jV2

∗y → jV1∩V2∗jV1∩V2

∗y −→ Σy

where jW : W ↪→ Y is the inclusion of the open set W in Y . From the triangle, it
clearly suffices to show the vanishing of (j′)∗f ! on the complexes jW ∗jW

∗y where
W is any of V1, V2 or V1∩V2. Suppose X can be covered by n affines. If V1 is affine
and V2 the union of n − 1 affines, then each of V1, V2 and V1 ∩ V2 can be covered
by at most n − 1 affines. By induction we therefore easily show that it suffices to
prove the vanishing of (j′)∗f ! on jW ∗jW

∗y where W ⊂ X is affine; in other words,

we need to show that f !jW ∗jW
∗y vanishes off f−1Z.

Even better, we may replace y by z = jW
∗y. It will suffice to show that, given

an open affine W ⊂ Y and z ∈ D+(qc/W ) whose support is in Z ∩W , then f !jW ∗z
is supported on f−1Z. Now consider the pullback square

f−1W
jf−1W

↪→ X
f ′ ↓ ↓ f
W

jW
↪→ Y.

By Lemma 6.1 there is a natural isomorphism {jf−1W}∗{f
′}!z = f !{jW}∗z. We

need to show that this complex (either of the two isomorphic versions) is acyclic

off f−1Z. From the description as {jf−1W}∗{f
′}!z, it clearly suffices to show that

{f ′}!z is supported on f−1{Z ∩W}. In other words, we are reduced to studying
the problem for the map f : f−1W →W . Thus we may assume Y affine.

Next it is clear that if Z =
⋂
Zi, it is enough to prove the statement for each

Zi. We may therefore assume that Z is a “divisor” in W . That is, there exists a
global function γ ∈ Γ(Y,OY ), so that Z is the divisor defined by γ.
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On Y we have perfect complexes, namely the desuspensions of the mapping cones
of the maps

γk : OY → OY .
Call these perfect complexes bk. Then bk fits in a triangle

bk → OY
γk→ OY → Σbk.

There is a map bk → bk+1, given by completing the commutative square

OY
γk→ OY

1 ↓ ↓ γ
OY

γk−1

→ OY
to a map of triangles

bk → OY
γk→ OY → Σbk

↓ 1 ↓ ↓ γ ↓
bk+1 → OY

γk+1

→ OY → Σbk+1

There is furthermore a map bk → OY , which is a map from the direct system.
Applying the functor (−)⊗ z to this direct system, we get a direct system with

a map

bk ⊗ z → OY ⊗ z = z.

This induces a (non–canonical) map on homotopy colimits

hocolim (bk ⊗ z)→ z

and since the cohomology of z is supported on Z, that is annihilated by some
power of γ, it is easy to show that the map is a cohomology isomorphism, hence an
isomorphism in the derived category.

Note that in the construction above, bk ⊗ z can be obtained by tensoring the
triangle

bk → OY
γk→ OY → Σbk

with the object z. There is a triangle

bk ⊗ z → z
γk→ z → Σbk ⊗ z.

We know that z ∈ D+(qc/Y ). Suppose z ∈ D(qc/Y )≥l. Then from the triangle,
bk ⊗ z also lies in D(qc/Y )≥l.

Because z is the homotopy colimit of bk ⊗ z, there is a triangle on Y⊕
k

[bk ⊗ z]→
⊕
k

[bk ⊗ z]→ z → Σ
⊕
k

[bk ⊗ z]

which expresses z as the homotopy colimit. Applying f !, we have a triangle

f !

{⊕
k

[bk ⊗ z]

}
→ f !

{⊕
k

[bk ⊗ z]

}
→ f !z → f !

{
Σ
⊕
k

[bk ⊗ z]

}
and to show that f !z is supported on f−1Z, it suffices to show that the other two
terms in the triangle are. Now note that in any case there is a natural isomorphism

f ! [bk ⊗ z] = Lf∗bk ⊗ f !z
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because bk is compact, and by the proof of Theorem 5.4. Now Lf∗bk is supported
on f−1Z, hence its tensor product with f !jW ∗z also is. It follows that f ! [bk ⊗ z]

is supported on f−1Z. We need to show that f !

{⊕
k

[bk ⊗ z]

}
is supported on

f−1Z. It will clearly suffice to show that the natural map

⊕
k

f ! [bk ⊗ z]→ f !

{⊕
k

[bk ⊗ z]

}

is an isomorphism. This we will now do.
Now let x be an arbitrary perfect complex on X . Since we are only assuming

that the map f : X → Y is proper and of finite type, we do not know that Rf∗x
is perfect. However, we do know, by [9], that locally it can be resolved by finite
dimensional vector bundles to arbitrary length. That is, Y can be covered by open
sets V , and for each V there is a triangle

q → p→ Rf∗x −→ Σq

where p is perfect and q ∈ D(qc/V )≤l−1. Since Y is affine, this can even be done
globally. Such a triangle exists on all of Y . We deduce

Hom

(
x, f !

{⊕
k

[bk ⊗ z]

})
= Hom

(
Rf∗x,

⊕
k

[bk ⊗ z]

)

= Hom

(
p,
⊕
k

[bk ⊗ z]

)
=

⊕
k

Hom (p, [bk ⊗ z])

=
⊕
k

Hom (Rf∗x, [bk ⊗ z])

=
⊕
k

Hom
(
x, f ! [bk ⊗ z]

)
= Hom

(
x,
⊕
k

f ! [bk ⊗ z]

)
.

But we have a map, defined on Y ,

⊕
k

f ! [bk ⊗ z]→ f !

{⊕
k

[bk ⊗ z]

}

and we have just shown that if we apply the functor Hom(x,−) to this map where
x ∈ D(qc/X) is compact, we get an isomorphism. But then the map

Hom

(
x,
⊕
k

f ! [bk ⊗ z]

)
→ Hom

(
x, f !

{⊕
k

[bk ⊗ z]

})
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is an isomorphism for all x in the subcategory generated by the compacts in
D(qc/X); that is, for any x ∈ D(qc/X). Thus the map

⊕
k

f ! [bk ⊗ z]→ f !

{⊕
k

[bk ⊗ z]

}
is an isomorphism in D(qc/X).

Remark 6.4. The results of Verdier apply not only to open immersions, but to
arbitrary flat maps. In other words, he proves, in Theorem 2 of [17], the following.
Suppose we have a cartesian square of noetherian schemes

X ′
g′−→ X

f ′ ↓ f↓
Y ′

g−→ Y

with f and f ′ proper, g and g′ flat. Then there is a natural isomorphism

{g′}∗f ! = {f ′}!g∗.
What interests us here is not so much the best statement possible, but the re-
lation with preserving coproducts. To illustrate this, we will give the following
counterexample.

Example 6.5. Let R be a noetherian ring (e.g. Z), and let S = R[ε]/(ε2). There
is a homomorphism S → R sending ε to 0. This gives a map of schemes from
X = Spec(R) to Y = Spec(S). This map is certainly proper, and of finite type.
Let us denote this map f : X → Y .

For affine maps, f ! is easy to describe. For any S–module N and R–module M ,
we can view M as an S–module via the homomorphism S → R. This is the functor

f∗ : {R−mod} → {S−mod}.

There is a canonical isomorphism

HomS (M,N) = HomR (M,HomS(R,N)) .

This allows us to view f ! as the derived Hom,

f !N = RHomS(R,N),

for any N ∈ D(qc/Y ) = D(S). One way to get the derived functor of Hom is
to take projective resolutions in the first variable. There is an obvious projective
resolution for R as an S–module; the chain complex

· · · ε→ S
ε→ S → R→ 0

is exact. Let N be R, viewed as an S–module. Then

f !R = RHomS(R,R) =
∞∏
i=0

Σ−iR

is the complex which is R in every positive dimension, with differential zero.
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Now consider the complex

N =
∞∏
k=0

ΣkR;

that is, the complex with zero differential which is R in every negative dimen-
sion, viewed as a complex of S–modules. Because f ! is a right adjoint, it respects
products. Thus,

f !N = f !

{ ∞∏
k=0

ΣkR

}

=
∞∏
k=0

f !
{

ΣkR
}

=
∞∏
k=0

∞∏
i=0

Σk−iR.

Choose an element γ ∈ R ⊂ S = R[ε]/(ε2). If we restrict to the open subset where
γ is inverted, then f !N restricts to

{j′}∗f !N =
{
f !N

}
⊗R R

[
1

γ

]
.

On the other hand, if we first restrict to the open subset, note that we are in exactly

the same situation; S
[

1
γ

]
= R

[
1
γ

]
[ε]/(ε2). The complex N restricts to

j∗N =
∞∏
k=0

ΣkR

[
1

γ

]
.

If this is not clear, note that because the R’s are placed in different dimensions, the
coproduct agrees with the product. The natural map

∞⊕
k=0

ΣkR→
∞∏
k=0

ΣkR = N

is a homology isomorphism. But j∗, being a left adjoint, respects coproducts; hence

j∗

( ∞⊕
k=0

ΣkR

)
=
∞⊕
k=0

j∗ΣkR =
∞⊕
k=0

ΣkR

[
1

γ

]
and, once again, the natural map

∞⊕
k=0

ΣkR

[
1

γ

]
→

∞∏
k=0

ΣkR

[
1

γ

]
is a homology isomorphism. We can therefore use our last computation, replacing

R by R
[

1
γ

]
, to deduce that

{f ′}!j∗N =
∞∏
k=0

∞∏
i=0

Σk−iR

[
1

γ

]
.
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In other words, we have just computed everything. It remains to check whether

the natural map is an isomorphism {j′}∗f !N → {f ′}!j∗N . The map is just{ ∞∏
k=0

∞∏
i=0

Σk−iR

}
⊗R R

[
1

γ

]
→

∞∏
k=0

∞∏
i=0

Σk−iR

[
1

γ

]
.

If we just look at the induced map on H0, the product is over all k = i. The map
on H0 is therefore { ∞∏

i=0

R

}
⊗R R

[
1

γ

]
→
∞∏
i=0

R

[
1

γ

]
.

This map clearly is not an isomorphism in general. If γ is neither nilpotent nor
invertible in R, then the element

∞∏
i=0

1

γi

is a well–defined member of the right-hand side, but not the image of something on
the left.
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Abstract. Grothendieck proved that if f : X −→ Y is a proper morphism of
nice schemes, then Rf∗ has a right adjoint, which is given as tensor product
with the relative canonical bundle. The original proof was by patching local
data. Deligne proved the existence of the adjoint by a global argument, and
Verdier showed that this global adjoint may be computed locally.

In this article we show that the existence of the adjoint is an immediate
consequence of Brown’s representability theorem. 1It follows almost as imme-
diately, by “smashing” arguments, that the adjoint is given by tensor product
with a dualising complex. Verdier’s base change theorem is an easy conse-
quence.
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