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Abstract Let K0(Vark) be the Grothendieck ring of algebraic varieties over a field k. Let
X, Y be two algebraic varieties over k which are piecewise isomorphic (i.e. X and Y admit
finite partitions X1, . . . , Xn, Y1, . . . , Yn into locally closed subvarieties such that Xi is iso-
morphic to Yi for all i ≤ n), then [X ] = [Y ] in K0(Vark). Larsen and Lunts ask whether the
converse is true. For characteristic zero and algebraically closed field k, we answer positively
this question when dim X ≤ 1 or X is a smooth connected projective surface or if X contains
only finitely many rational curves.

1 Introduction

The main topic of this article is to study the Grothendieck ring of algebraic varieties K0(Vark)

over a field k. Appeared in a letter of Grothendieck to Serre ([5], letter of 16 Aug. 1964),
this ring has been deeply used for developing the theorie(s) of motivic integration. But we
know very little about this ring. For example, Poonen ([33], Theorem 1) and Kollár ([21],
Example 6) show that this ring is not a domain when k has characteristic zero (see also
Corollary 9), and Niko Naumann ([29], Theorem 22) provides zero divisors for K0(Vark)

over finite fields k. On the opposite, one can construct infinite family of classes in K0(Vark)

which are algebraically independent over Z (see references in Remark 8).
Let X, Y be algebraic varieties over k with same class [X ] = [Y ] in K0(Vark). The aim

of this work is to try to derive some consequences of this identity. It is clear by construction
that if X and Y are piecewise isomorphic (i.e. X and Y admit finite partitions X1, . . . , Xn,
Y1, . . . , Yn into locally closed subvarieties such that Xi is isomorphic to Yi for all i ≤ n.
See Definition 2 and Proposition 2), then [X ] = [Y ]. Conversely, the following question is
raised by Larsen and Lunts [25], 1.2:

Q. Liu · J. Sebag (B)
Institut de Mathématiques de Bordeaux, Université Bordeaux 1,
33405 Talence Cedex, France
e-mail: Julien.Sebag@math.u-bordeaux1.fr

123



322 Q. Liu, J. Sebag

Assertion 1 Let k be a field. Let X, Y be k-varieties such that [X ] = [Y ] in K0(Vark). Then
X and Y are piecewise isomorphic.

Over an algebraically closed field k of characteristic zero, we will prove this assertion
in the following situations: (1) dim X ≤ 1 (Propositions 5 and 6); (2) X is a smooth con-
nected projective surface (Theorem 4); (3) X contains only finitely many rational curves
(Theorem 5). In the general case, we are quickly faced to the problem of zero divisors in
K0(Vark), the motivic cancelation problem (i.e. is L a zero divisor ?) and the classification
of varieties in higher dimensions. In positive characteristic, the answer does not seem to be
obvious even for zero-dimensional varieties (see Sect. 5.1).

Convention Let k be a field. We denote by k̄ an algebraic closure of k. An algebraic k-variety
(or k-variety) is a separated reduced scheme of finite type over k. Any locally closed subset
of a variety is endowed with the structure of reduced subvariety. A k-curve is a k-variety of
pure dimension one. A k-surface is a k-variety of pure dimension two.

2 Preliminaries

2.1 Definitions and notations

Constructible topology. Let X be a scheme. The open subsets of X for the constructible
topology are the ind-constructible subsets of X ([13], IV.1.9.13). When X is noetherian, the
ind-constructible subsets of X are exactly the unions of locally closed subsets of X (op. cit.,
IV.1.9.6), and the family of locally closed subsets of X form a basis of this topology.

Cohomology theories. See for example [1, Sect. 3.4]. Let k be a field (of arbitrary character-
istic) and let X be a k-variety.

• Étale cohomology. Let � be a prime number different from the characteristic exponent of
k. We define the étale (�-adic) cohomology with compact support H∗

c (Xét ) of X to be the
direct sum of the Q�-vector spaces H i

c(Xk,Q�). We denote by bi(X) := dimQ� H i
c(Xét )

the ith Betti number of X .
• Singular cohomology. If k ⊂ C, we denote by H∗(X) := H∗(X an,Q) the singular

cohomology of X an (the analytic space associated to X ), with coefficients in Q.
• De Rham cohomology. Let k be a field of characteristic zero. We denote by H∗

dR(X) the
algebraic de Rham cohomology. Let X be a proper smooth k-variety. Then dimk Hn

dR(X)=∑
i+ j=n dimk H i(X,Ω j

X/k) (Hodge’s decomposition theorem) for all n. The integer

h p,q(X) := dimk Hq(X,Ω p
X/k) is called the (p, q)-Hodge number of X .

Besides, if k ⊆ C, by Grothendieck’s results ([12], Theorem 1’), we know that the canon-
ical map H∗

dR(X)⊗k C � H∗(X)⊗Q C is an isomorphism.

Plurigenus and Kodaira dimension. Let k be a field, and let X be a projective connected
smooth k-variety of dimension d . Let M = (m1, . . . ,mn) ∈ N

n and let

TM (X) := (Ω1
X/k)

⊗m1 ⊗ · · · ⊗ (Ωn
X/k)

⊗mn .

Note that if m j >0 for some j>d , then TM (X)=0. Besides, if M̃ =(m1, . . . ,md , 0, . . . , 0),
then TM̃ (X) = TM (X). The M-plurigenus of X is the integer pM := dimk H0(X, TM (X)).
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The Grothendieck ring of varieties and piecewise isomorphisms 323

Let m ∈ N. The m-plurigenus of X is the integer pm(X) := pM (X), with M =(0, . . . , 0,m) ∈
N

d . The Kodaira dimension of X is defined by

κ(X) = dim
(
⊕+∞

m=0 H0(X, (Ωd
X/k)

⊗m)
)

− 1

if the right-hand side is non-negative and −∞ otherwise. Note that κ(X) is a birational
invariant, and that the condition κ(X) ≥ 0 is equivalent to the existence of an integer m ∈ N

∗
such that pm(X) ≥ 1.

2.2 The Grothendieck ring of varieties

2.2.1 The usual definition

Definition 1 Let Z[Vark] be the free abelian group generated by the isomorphism classes of
k-varieties. The Grothendieck ring of varieties K0(Vark) is the quotient of Z[Vark] by the
following relations : whenever X is a k-variety, and Z is a closed subvariety of X , we impose
that

[X ] = [Z ] + [X \Z ]. (1)

We denote by L the class of A
1
k , and by I the class of Spec k. The multiplication on K0(Vark)

is defined by

[X ] · [Y ] := [(X ×k Y )red].
for any pair of k-varieties X , Y . As the canonical homomorphism Z → K0(Vark), n �→ n · I,
is injective (to see this property, just apply topological Euler characteristic, see Sect. 4.1), we
will write n instead of n · I when no confusion is possible.

Remark 1 It is equivalent to define K0(Vark) by starting from the k-schemes of finite type
and imposing the same above relations. More generally, if S is an arbitrary scheme, one can
also define a Grothendieck ring of S-schemes of finite type, by adapting these definitions to
the relative setting (see [3, Sect. 5]).

Remark 2 Consider X := A
1
k 
 Spec k (disjoint union). Then X and P

1
k have the same class

L + 1 in K0(Vark). They are not isomorphic, and even not birational. But they are piecewise
isomorphic (see Sect. 2.2.2).

Example 1 Let X be a projective k-variety, let Y be the affine cone of X , we have

[Y ] = (L − 1)[X ] + 1

in K0(Vark). Consider a projective bundle P(E) of rank r over a projective k-variety Y . Then

P(E) = [Y ][Pr−1] = [Y ] ·
r−1∑

i=0

L
i

in K0(Vark).

Lemma 1 Suppose char(k) = 0. Let X be a k-variety of dimension d. Let F1, . . . , Fn be the
irreducible components of dimension d of X. Then there exist smooth connected projective
k-varieties X1, . . . , Xn, and C1, . . . ,Cm such that in K0(Vark), we have
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[X ] =
∑

i

[Xi] +
∑

j

ε j [C j ],

with Xi birational to Fi, and dim C j < dim X, ε j = ±1.

Proof This results from Hironaka’s desingularization theorem, and from an induction on d .

2.2.2 The definition via the piecewise algebraic geometry

Let Sch be the category of schemes, and let Sch0 be the full subcategory of schemes whose
local rings are fields (or equivalently, zero-dimensional reduced schemes).

Proposition 1 ([31,32]) The canonical functor i : Sch0 → Sch has a right adjoint, denoted
by ·cons.

The existence of X cons as an object of Sch0 is announced in [13], IV.1.9.16. Let us sketch
briefly the construction of X cons as done in [31,32], Appendice.

First suppose X = Spec A is an affine scheme. Let

T (A) = A[Ta]a∈A/(a
2Ta − a, aT 2

a − Ta)a∈A.

Then T (A) is the unique A-algebra satisfying the following universal property:

1. For every a ∈ A, there exists an element ta ∈ T (A) such that at2
a = ta and a2ta = a.

Notice that such an element ta (called a punctual inverse of a) is automatically unique.
2. Let B be an A-algebra such that a has a punctual inverse in B for all a ∈ A, then there

exists a unique homomorphism of A-algebra T (A) → B.

Lemma 2 Let X = Spec T (A) and let π : X → X be the canonical morphism. Then the
following properties are true:

1. For all x ∈ X, the canonical homomorphism OX,π(x) → OX,x induces an isomorphism
k(π(x)) → OX,x . In particular, X is reduced of dimension 0.

2. The map π : X → X is bijective;
3. The continuous map π is a homeomorphism from X to X when the latter is endowed with

the constructible topology (i.e. here the topology generated by the sets V (a) and D(a)
for all a ∈ A). In particular, X is a compact topological space, totally disconnected.

4. For every reduced zero-dimensional scheme Z, the canonical map

Mor(Z ,X) → Mor(Z , X)

is a bijection. Therefore X cons exists and is isomorphic to X.

Proof First we notice that by the uniqueness of the punctual inverses, tata′ = taa′ in T (A)
for all a, a′ ∈ A. In particular, any b ∈ T (A) can be written (in a non unique way) as
b = ∑

i∈I αitai , with αi, ai ∈ A, for all i ∈ I .
Let p ∈ X be a fixed prime ideal. Then for any b ∈ T (A), there exist a′ ∈ A\p, a′′ ∈ A

and β ∈ pT (A) such that

a′b = a′′ + β.

This comes from the fact that ta ∈ pT (A) if a ∈ p and a2ta = a ∈ A if a /∈ p.

(1) Let q be a prime ideal of T (A) and let p = A ∩ q. If a ∈ p, then ata − 1 /∈ q, so
ata − 1 ∈ (T (A)q)∗ and a = ta = 0 in T (A)q. Therefore a′b = a′′ in T (A)q. So b is
either zero or invertible in T (A)q. Thus T (A)q is a field, isomorphic to k(p).
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The Grothendieck ring of varieties and piecewise isomorphisms 325

(2) Let p ∈ X . The universal property gives a homomorphism of A-algebras πp : T (A) →
k(p). Let q = ker πp. Then q ∩ A = p, and any prime ideal q′ of T (A) lying over p is
contained in q. As dim T (A) = 0, we have q′ = q. So π is bijective.

(3) From now on we identify X to X (as sets) via π . Let us first show that locally closed
subsets F of X are open in X. It is enough to consider the case F = VX (a) (principal
closed subset of X associated to a) for some a ∈ A. We have aT (A) = ata T (A). As
ata is idempotent, VX(ata) is open in X. So F is open in X.

Conversely, let DX(b) be a principal open subset of X. Let p ∈ X belonging to DX(b).
Write a′b = a′′ +α as above with a′ ∈ A\p, a′′ ∈ A, α ∈ pT (A) and α = ∑

1≤i≤n aibi

with ai ∈ p and bi ∈ T (A). Then

p ∈ DX (a
′) ∩ DX (a

′′) ∩ (∩1≤i≤nVX (ai)) ⊆ DX(b).

Thus every open subset of X is a union of locally closed subsets of X . The last part is a
direct consequence of [13], IV.1.9.15, (i) and (ii).

(4) We can suppose that Z = Spec B is affine. Let A → B be a ring homomorphism. We
have to prove that it factorizes into A → T (A) → B. By the above, this comes down
to show that any element b ∈ B has a punctual inverse in B. The latter can be seen to
be equivalent to bB = b2 B (if b = b2x , then bx2 is the punctual inverse of b). Now b
is either invertible or 0 in every local ring of Z . Therefore bB/b2 B equals to 0 locally
at every point of Spec B and we have bB = b2 B.

For any open subset U of X = Spec A, the canonical morphism π : X cons → X induces
a bijection Mor(Z , π−1(U )) → Mor(Z ,U ). So π−1(U ) = U cons. This then allows us to
define X cons in general case by glueing.

By construction, the topological space X cons can be identified with X endowed with the
constructible topology, and OXcons is the unique sheaf on X cons such that, for all x ∈ X , the
local ring OXcons,x is exactly the residue field k(x) of (the scheme) X at x .

Example 2 If X is reduced, zero-dimensional and noetherian, then X cons = X . This holds
in particular when X = Spec k, with k a field.

Remark 3 As X cons is a zero-dimensional scheme, all points x ∈ X are closed in X cons. On
the other hand, if X is noetherian and if x ∈ X is open in X cons, then x is open in {x} for the
topology induced by that of X , and it is easy to see that {x} then has only finitely many points
([13], IV.1.9.6). Note also that for any reduced zero-dimensional scheme Z (e.g. X cons), the
identity map Z → Z factorizes into Z → Z cons followed by the canonical map Z cons → Z .
The latter is thus an isomorphism.

Lemma 3 Let X be a noetherian scheme. Then we have the following properties.

1. (Xred)
cons � X cons.

2. X cons �(X\Y )cons
Y cons (where 
 stands for disjoint union) for any subscheme Y of X.

Proof (1) This comes from the fact that Mor(Z , Xred) = Mor(Z , X) for any scheme Z in
Sch0.

(2) As Y is constructible (because X is noetherian), hence open in X cons, the canonical
morphism

(X \Y )cons 
 Y cons → X cons

is clearly homeomorphic. It is an isomorphism of schemes because the homomorphism
on the local ring at every point is an isomorphism.
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Let k be a field. As (Spec k)cons = Spec k, the functor .cons can be restricted to the category
of k-schemes. Let X be a k-variety, X cons is a k-scheme which is not locally noetherian when
dim X ≥ 1. Let X, Y be k-varieties. The canonical map

Mork(X, Y ) → Mork(X
cons, Y cons) � Mork(X

cons, Y )

is in general not injective nor surjective.

Lemma 4 Let X, Y be k-varieties.

1. Let Z be a reduced k-scheme of dimension 0, let z0 ∈ Z. Then the canonical map

lim−→
U

Mork(U, Y cons) → Mork(Spec OZ ,z0 , Y cons),

where U runs the open neighborhoods of z0, is bijective.
2. Let π : X cons → Y cons be a morphism of k-schemes. Then there exists a stratification

X = 
i Xi of X into locally closed subsets such that π |Xcons
i

is induced by a morphism
of k-varieties Xi → Y .

Proof (1) The property is true if we replace Y cons by Y because the latter is of finite type
over k. Now we can go back to Y cons because the canonical map Mork(W, Y cons) →
Mork(W, Y ) is bijective for all zero-dimensional reduced k-schemes W .

(2) Let ξ ∈ X be a generic point. Then the set of U cons, for open neighborhoods U of ξ in
X , is cofinal in the set of open neighborhoods of ξ in X cons. Applying (1) to Z = X cons,
we see that there exists an open neighborhood U of ξ in X such that π |U cons is induced
by a morphism U → Y . We can continue by noetherian induction using Lemma 3.2.

Definition 2 Let X , Y be k-varieties. We say that they are piecewise isomorphic if X cons is
isomorphic to Y cons as k-schemes.

Notice that if f : X → Y induces an isomorphism f cons : X cons → Y cons, f is not neces-
sarily an isomorphism. For instance, if f is the normalization of an irreducible unibranched
curve Y over algebraically closed field k, then f cons is an isomorphism.

Proposition 2 Let k be a field. Let X and Y be k-varieties. Then X is piecewise isomorphic
to Y if and only if there is a stratification of X into locally closed subsets (Xi)i∈I and a
stratification of Y into locally closed subsets (Yi)i∈I , such that (Xi)red � (Yi)red for all
i ∈ I .

Proof The if part comes from Lemma 3.2. Conversely, suppose that we have an k-isomor-
phism of schemes π : X cons → Y cons. According to Lemma 4.2, π |U cons is induced by a
morphism f : U → Y for some dense open subset U of X . Similarly we get a morphism
g : V → X inducing π−1|V cons . Applying Lemma 4.1 to g ◦ f and f ◦ g (over suitable
open subsets of X and Y ), we see that f is an isomorphism U ′ → V ′ between dense open
subsets of X and Y . Moreover, f cons = π |U ′cons . Therefore, π induces an isomorphism
(X \U ′)cons → (Y \V ′)cons (Lemma 3.2). As X, Y are noetherian, we can deduce the result
by a noetherian induction.

Remark 4 Let X, Y be k-varieties. Then we have a canonical morphism

(X ×k Y )cons → X cons ×k Y cons

coming from the projections (X ×k Y )cons to X cons and Y cons. One should be aware that this
morphism is not an isomorphism in general, for the right-hand side is not zero-dimensional
when dim X, dim Y ≥ 1.
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The Grothendieck ring of varieties and piecewise isomorphisms 327

Consider the free abelian group Z[Varcons
k ] generated by the isomorphism classes of

k-schemes X cons when X runs the k-varieties. Let K cons
0 (Vark) be the quotient of Z[Varcons

k ]
by the subgroup generated by the relations [(X 
 Y )cons] = [X cons] + [Y cons], whenever X
and Y are two k-varieties. By Lemma 3.2, we have a canonical surjective homomorphism of
groups

θ : K0(Vark) → K cons
0 (Vark), [X ] �→ [X cons].

Proposition 3 The homomorphism θ is an isomorphism of groups.

Proof By Proposition 2, the map Z[Varcons
k ] → K0(Vark)which send the isomorphism class

of X cons to [X ] is well defined. Clearly this map induces a map K cons
0 (Vark) → K0(Vark)

which is the inverse of θ .

Notice that this isomorphism defines a ring structure on K cons
0 (Vark), and the product is

given by

[X cons] · [Y cons] = [(X ×k Y )cons].

3 Birational geometry and cancelation problem

The classical cancelation problem is the following. Let k be a field and let X, Y be inte-
gral k-varieties of the same dimension such that there are integral k-varieties W, Z and an
isomorphism

f : X ×k W � Y ×k Z .

Under which conditions (on X , Y , W and Z ) does f induce an isomorphism X � Y ? Here
we consider a slightly different problem. Suppose that W, Z are geometrically integral and
that there is a birational map

f : X ×k W���Y ×k Z .

We will establish below some sufficient conditions on X , Y , W and Z for f to induce a
birational map X���Y .

Definition 3 We will say that an integral k-variety X is uniruled if there exists an integral
algebraic k-variety Y and a dominant, generically finite rational map Y ×k P

1
k ��� X .

It is easy to see that X is uniruled if and only if all irreducible components of Xk are
uniruled.

Theorem 2 Let k be a field, let X, Y be integral k-varieties of the same dimension. Assume
that there are geometrically integral k-varieties W, Z such that one of the following condi-
tions is satisfied:

1. X or Y is non-uniruled, and W, Z are rationally chain connected;
2. char(k) = 0, X, Y,W, Z are projective, smooth and

κ(X) ≥ 0 or κ(Y ) ≥ 0, and κ(W ) = κ(Z) = −∞,
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and that there exists a birational map

f : X ×k W���Y ×k Z .

Then there exists a unique birational map g : X ��� Y making the diagram

X ×k W
f �����

p1

��

Y ×k Z

q1

��
X

g ������� Y

commutative (where the vertical arrows are the projections).

Proof We use the method of [19, Sect. 3] that we will refine in the birational context. We
can suppose that Y is non-uniruled in (1) and κ(Y ) ≥ 0 in (2). Let us first notice that the
uniqueness of g is obvious because p1 is faithfully flat.

Suppose that the existence of g is proved for separable closed base field. Let k be an
arbitrary field and let ks be a separable closure of k. Then Xks and Yks are disjoint unions of
integral varieties, and it is easy to see that fks induces a birational map gs : Xks ��� Yks . As
gs is unique, we see by Galois descent that gs is defined over k.

So suppose that k is separably closed. LetΩ be a dense open subset of X ×k W such that
f is defined onΩ and induces an isomorphism fromΩ to its image. Then p1(Ω) is a dense
open subset of X . We first show that there exists a set-theoretical map g : p1(Ω) → Y such
that g ◦ p1 = q1 ◦ f on Ω . Let x0 ∈ p1(Ω) be a closed point. We have to show that the set
q1 ◦ f (Ω ∩ ({x0} ×k W )) is reduced to one point y0 ∈ Y (which will necessarily be g(x0)).
Let C be an irreducible Weil divisor on X containing x0. We have a morphism

φC : Ω ∩ (C ×k W ) ⊆ Ω
f→ Y ×k Z

q1→ Y,

which can be viewed as a rational map C ×k W ��� Y because C ×k W is integral and
Ω ∩ (C ×k W ) is dense in C ×k W . We claim that φC is not dominant. Indeed under Condi-
tion (1), as dim C < dim Y , φC is not dominant by Lemma 5. Under the second condition, if
φC were dominant, then Y would have negative Kodaira dimension (Lemma 7). Let E be the
Zariski closure of the image of φC . It is an irreducible subvariety of Y , of codimension ≥ 1.
By construction, f (Ω∩(C ×k W )) ⊆ E ×k Z . As dim W = dim Z , and f is an isomorphism
on Ω , we get dim C = dim E and

f (Ω ∩ (C ×k W )) = f (Ω) ∩ (E ×k Z).

Let C1, . . . ,Cn be irreducible Weil divisors on X containing x0 such that, for some open
neighborhood U0 of x0 in p1(Ω),

U0 ∩ (C1 ∩ C2 ∩ . . .Cn) = {x0}.
For every 1 ≤ i ≤ n, the above construction provides an irreducible Weil divisor Ei on Y ,
such that f (Ω ∩ (Ci ×k W )) = f (Ω)∩ (Ei ×k Z). Taking the intersection for all i ≤ n, we
get

f (Ω ∩ ({x0} ×k W )) = f (Ω ∩ p−1
1 (U0)) ∩ ((∩1≤i≤nEi)×k Z).

We can decompose ∩1≤i≤nEi as union of its irreducible components. As the left-hand side
is irreducible, we see that the right-hand side must be f (Ω ∩ p−1

1 (U0)) ∩ (Y0 ×k Z) for
some irreducible component Y0 with dim Y0 = dim W − dim Z = 0. So Y0 consists just in
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a closed point y0, and we have q1 ◦ f (Ω ∩ ({x0} ×k W )) = {y0}. This implies the existence
of the map g as desired, sending x0 to y0.

It remains to show that g is a birational morphism. Letw0 ∈ W (k) be such that (x0, w0) ∈
Ω (here we use the assumption k separably closed and W geometrically reduced). Then
x0 ∈ V0 := p1(Ω∩(X ×k {w0})) and the rational pointw0 defines a section s0 : X → X ×k Y
which induces a morphism q1 ◦ f ◦ s0 : V0 → Y . Set-theoretically, g|V0 = q1 ◦ f ◦ s0|V0 and
g is a morphism on V0. This is enough to defined the rational map g : X ��� Y . However,
since X is reduced and Y is separated, the morphisms on various V0 glue together, and g
is defined on p1(Ω). Since g is clearly dominant, X is non-uniruled in case (1) and has
κ(X) ≥ 0 in case (2). By the uniqueness of g (as rational map) and by the symmetry of the
statement, we conclude that g is birational.

Remark 5 Under the hypothesis of the theorem, W is birational to Z over a finite extension
of k. Actually, let x0 ∈ X be a general closed point, let k0 = k(x0). Then

h(x0, .) : Wk0 ��� Zk0

is birational.

Lemma 5 Let X be an integral k-variety. Suppose that there exists a rational dominant map

f : S ×k W ��� X

with integral k-variety S of dimension dim S < dim X, and geometrically integral k-variety
W which is rationally chain connected. Then X is uniruled.

Proof Extending the base field to k, the condition is satisfied for all irreducible compo-
nents of Xk . Therefore we are reduced to the case when k is algebraically closed. More-
over, now we can suppose that k is uncountable [6, Sect. 4.1, Remark 4.2 (5)] and W is
proper. Let (s, w) ∈ S ×k W be a general closed point. Then f induces a rational map
fs : {s} ×k W ��� X . If fs were constant, then we would have a dominant rational map
S ��� X , which is impossible because dim S < dim X . Let (s, w′) ∈ {y} ×k W be a point
with image different from f (s, w), let L be a connected curve in W with rational irreducible
components and containingw andw′ ([22], Corollary IV.3.5.1). Then f (s, L) is a connected
curve (because f (s, L) is not a point) passing through f (s, w) with rational irreducible
components. In particular, f (s, w) belongs to a rational curve in X . As f is dominant, this
implies that X is uniruled (op. cit. Sect. 4.1, Remark 4.2 (4)).

Lemma 6 Let k be a field of characteristic zero. Let X, Y be connected smooth projective
k-varieties of dimension n and r respectively. Let m ∈ N. Then

P(0,...,0,m,0...,0)(X ×k Y ) = P(0,...,0,m)(X)+ P(1,0,...,0)(Y ) · P(0,...,0,1,m−1)(X)+ · · ·,
where m is the nth entry of (0, . . . , 0,m, 0, . . . , 0) ∈ N

n+r .

Proof We have

Ωs
X×k Y/k = ⊕s

i=0 p∗Ω i
X/k ⊗ q∗Ωs−i

Y/k,

where p, q : X ×k Y → X , Y are the canonical projections. Then
(
Ωs

X×k Y/k

)⊗m

=
(

p∗OX ⊗ q∗ (
Ωs

Y/k

)⊗m
)

⊕
(

p∗Ω1
X/k ⊗ q∗ (

Ωs
Y/k

)⊗(m−1) ⊗ q∗Ωs−1
Y/k

)

⊕ · · · .
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Using the projection formula, we can prove that H0(X×kY, p∗F⊗OX×k Y q∗G)�H0(X,F)⊗k

H0(Y,G) for every locally free OX -module F , and every locally free OY -module G. We
deduce the result.

Lemma 7 Let k be a field of characteristic zero. Let X, S,W be projective smooth k-vari-
eties with X, S integral and W geometrically integral. Suppose that there exists a rational
dominant map

f : S ×k W ��� X

and dim S < dim X, κ(W ) = −∞. Then κ(X) = −∞. In particular, uniruled smooth
projective k-varieties have Kodaira dimension κ = −∞.

Proof Indeed, for any m ≥ 1, as f is a rational map between smooth projective k-varieties,
the formulas of plurigenera (see Lemma 6, and [20, §5.4, Proposition 5.5 and Theorem 5.3])
imply that

0 = P(0,...,m,0...,0)(S ×k W ) ≥ Pm(X).

Remark 6 In Theorem 2, if Condition (1) is satisfied and if char(k) = 0, the result can be
proved using maximal rationally connected (MRC) fibrations. As the question is birational,
we can suppose that all varieties are projective and smooth. Let

π : X ��� R(X), θ : Y ��� R(Y )

be respectively the maximal rationally connected (MRC) fibrations of X and Y ([22], IV.5).
Then the MRC fibrations of X ×k W and Y ×k Z are respectively X ×k W → X ��� R(X) and
Y ×k Z → Y ��� R(Y ). As the MRC fibration is functorial with respect to dominant rational
maps ([22], IV.5.5), f induces a birational map g′ : R(X) ��� R(Y ). Now as X, Y are not
uniruled, π : X ��� R(X) and θ : Y ��� R(Y ) are birational. We can take g = θ−1 ◦ g′ ◦ π .

Corollary 1 Let X, Y be integral k-varieties of same dimension. Suppose that they are stably
birational (i.e. X ×k P

n
k is birational to Y ×k P

n
k for some integer n ≥ 1). Then the following

properties are true.

1. X is uniruled if and only if Y is uniruled. Moreover, if X is non-uniruled, then X is
birational to Y .

2. If char(k) = 0 and X, Y are projective smooth. Then κ(X) = κ(Y ).

Proof We have a birational map X ×k P
n
k ��� Y ×k P

n
k . If X is uniruled, then X is rationally

dominated by some product S ×k P
1
k with dim S = dim X − 1. Then Y is rationally domi-

nated by S ×k (P
1
k ×k P

n
k ). As W := P

1
k ×k P

n
k is rationally chain connected, Y is uniruled

by Lemma 5. If X is non-uniruled, then X is birational to Y by Theorem 2. This proves (1).
For (2), one can suppose for instance that κ(Y ) ≥ 0. Applying Lemma 6 or using Theorem

2 we get κ(Y ) = κ(X).

Remark 7 After this paper is submitted, we found [18], Lemma 13.5 and the final Remark
that state similar results with slightly different methods.

The following lemma is well known.

Lemma 8 Let k be a perfect field, and let X be a projective regular connected k-variety.

1. If dim X = 1, then X is uniruled if and only if X isomorphic to P
1
k′ or a conic over k′,

where k′ = H0(X,OX ).
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2. If dim X = 2, and k is algebraically closed and of characteristic zero, then X is uniruled
if and only if X is ruled, i.e. birational to C ×k P

1
k , for some smooth connected projective

k-curve C.

Proof (1) Suppose X uniruled. Then there exists a dominant morphism P
1
k′′ → X for some

finite extension k′′/k. Thus H1(X,OX ) = 0. By Lüroth’s Theorem (see for instance [26],
Corollary 7.4.23), X is isomorphic to P

1
k′ or a conic over k′. (2) We can suppose that X is

projective and smooth. If X is uniruled, then κ(X) = −∞ by Lemma 7. Now apply the
classification of surfaces ([15], Theorem V.6.1).

4 Additive invariants and the equality of classes in K0(Vark)

4.1 Additive invariants

For details, see, for example, [7].

Definition 4 Let k be a field, and let A be a commutative ring. An A-additive invariant

λ : Vark → A

assigns to X ∈ Vark an element λ(X) ∈ A such that

1. λ(X) = λ(Y ), if X is k-isomorphic to Y ,
2. λ(X) = λ(Y )+ λ(X\Y ), if Y is a closed subvariety of X ,
3. λ(X ×k Y ) = λ(X)λ(Y ), for every pair of k-varieties X , Y .

It is clear that such an additive invariant defines, in a unique way, a ring homomorphism

λ : K0(Vark) → A.

There are many examples of such additive invariants. For instance, recall that :

Euler characteristics are Z-additive invariants. Let k be a field. The assignment of (topolog-
ical) Euler characteristics

X �→ χtop(X) :=
2 dim X∑

i=0

(−1)ibi(X)

defines a Z-additive invariant.

Hodge polynomials are Z[u, v]-additive invariants. Let k be a field of characteristic zero. By
the theory of Deligne’s mixed Hodge theory, the assignment of Hodge polynomials X �→
HX (u, v) defines a unique Z[u, v]-additive invariant (see [35], Theorem 1.1). Recall that, if
X is a projective and smooth k-variety, its Hodge polynomial is defined as

HX (u, v) :=
∑

p,q≥0

h p,q(X)u pvq .

Poincaré polynomials are Z[u]-additive invariants. Let k be a field of characteristic zero. We
call Poincaré polynomial of X the polynomial PX ∈ Z[u], defined by PX (u) := HX (u, u).
This assignment defines a Z[u]-additive invariant and PX (u) = ∑2 dim X

n=0 dimk Hn
dR(X)u

n
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if X is smooth and projective. In this case, the topological Euler characteristic of X is also
given by the integer χtop(X) := PX (−1).

Counting points. Let k be a finite field. Then the map Nk , which associates to a k-variety X
its number of rational points, gives rise to a Z-additive invariant.

4.2 The work of Larsen–Lunts and of Bittner

In [25], Larsen and Lunts have obtained the following very strong result (we give here a
slightly different presentation). They work over C. The statement for any field of character-
istic 0 is an immediate consequence of Bittner [3], Theorem 3.1. However, as Kollár already
observed in [21], top of page 28, Z[SB] is non longer a monoid ring because the product of
two irreducible varieties need not be irreducible. So the statement must be adjusted.

Theorem 3 (Larsen and Lunts [25], Bittner [3]) Let k be a field of characteristic zero. Let
M be the monoid of isomorphism classes of smooth (non-necessarily connected) projective
k-varieties, and let ψ : M → A be a multiplicative map to a commutative ring such that:

1. ψ({X
∐

Y }) = ψ({X})+ ψ({Y }), where {Z} denotes the isomorphism class of Z ;
2. if X and Y are birationally equivalent smooth connected projective varieties over k, then

ψ({X}) = ψ({Y });
3. ψ({P1

k}) = 1.

Then there exists a unique ring homomorphism

Ψ : K0(Vark) → A

such that Ψ ([X ]) = ψ({X}) whenever X is a smooth projective k-variety.

Now let us show some known corollaries.

• Let Z[SB] be the free abelian group generated by the equivalence classes of smooth con-
nected projective k-varieties under stably birational equivalence. If X is a smooth con-
nected projective k-variety, we denote by SB(X) the stably birational class of X . Then
Z[SB] is a commutative ring with the multiplication SB(X) · SB(Y ) = ∑

1≤i≤d SB(Zi)

if Z1, . . . , Zd are the connected components of X ×k Y .
• Suppose further that k is algebraically closed. Let AV be the monoid of isomorphism

classes of abelian varieties over k. Let Alb be the functor from the category of smooth
connected projective k-varieties to the category of abelian varieties, which associates to
a smooth connected projective k-variety X its Albanese Alb(X).

Corollary 2 Let k be a field of characteristic zero.

1. The assignment X �→ SB(X) for smooth connected projective varieties induces a Z[SB]-
additive invariant.

2. If k is algebraically closed, the assignment X �→ Alb(X) for smooth connected projective
varieties defines a Z[AV]-additive invariant.

Proof See [33, Sect. 4] for (2). This property is a key point in the proof of [33], Theorem 1.

Corollary 3 Let k be a field of characteristic zero. Let A1, . . . , An be a family of abelian
varieties over k such that Ai, A j have no common isogeny factor for all i �= j . Then the
classes [A1], . . . , [An] in K0(Vark) are algebraically independent over Z.
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Proof Otherwise, there exist (r1, . . . , rn) �= (s1, . . . , sn)with ri, si ≥ 0 such that SB(Ar1
1 ×k

· · · ×k Arn
n ) = SB(As1

1 ×k · · · ×k Asn
n ), thus Ar1

1 ×k · · · ×k Arn
n is birational (Theorem 2)

hence isomorphic to As1
1 ×k · · ·×k Asn

n (if k is algebraically closed, we can just apply Alb(.)).
Therefore at least two Ai’s have a common isogeny factor. Contradiction.

Remark 8 This statement is proved in [29], Theorem 13 for elliptic curves over number fields.
See also [23], Corollary 5.8. Over finite fields [23], Theorem 5.7 shows similar results for
elliptic curves; [29], Theorem 12 exhibits curves whose classes in K0(Vark) are algebraically
independent over Z.

Corollary 4 Let k be a field of characteristic zero. Then the ring K0(Vark) is not noetherian.

Proof Let (Cn)n≥1 be a sequence of projective smooth and geometrically connected curves
over k such that the genus g(Cn) ≥ n. If the ideal generated by the [Cn]’s is generated by
{[Ci]}i≤m , then the same is true in Z[SB], and for any n � m, SB(Cn) = SB(Ci × Xn) for
some i ≤ m and for some projective smooth connected variety Xn. Using Theorem 2.(2),
we see that κ(Xn) < 0 and Cn is birational, hence isomorphic, to Ci. Contradiction.

4.3 First consequences of the equality of classes in K0(Vark)

Corollary 5 Let k be a field of characteristic zero. Let X and Y be k-varieties such that
[X ] = [Y ].
1. Suppose X and Y are smooth, connected and projective. Then they are stably birational;

they have the same Hodge polynomial, the same Hodge numbers and the same Betti
numbers. If κ(X) ≥ 0, then X is birational to Y . Over k̄, they have isomorphic Albanese
varieties and isomorphic fundamental groups.

2. We have dim X = dim Y ;
3. The varieties Xk̄ and Yk̄ have the same number of irreducible components of maximal

dimension;

Proof (1) If κ(X) ≥ 0, the assertion is a direct application of Theorem 2/(2). The middle
part comes directly from the additivity of the Hodge polynomials and Corollary 2. See [14],
Exposé X/Corollaire 3.4, and Exposé XI/Proposition 1.1 for assertion on the fundamental
groups.

For any smooth connected projective k-variety X , the Poincaré polynomial HX has degree
2 dim X , and the leading term is the number of geometric irreducible components of dimen-
sion dim X of X . This implies (2) and (3) by using Lemma 1.

Remark 9 In [2], Beauville, Colliot-Thélène, Sansuc and Swinnerton-Dyer have exhibited
projective smooth varieties stably rational, but not rational (in dimension two over non alge-
braically closed field and in dimension three over C). These examples are counterexamples to
the generalization of Theorem 2/(2) to the case of varieties with negative Kodaira dimension,
but, a priori, they do not constitute counterexamples to Larsen and Lunts’ question, in so far
as it is not clear that the class of such examples in the Grothendieck ring of varieties is equal
(or not) to the class of a rational variety.

Recall that the index δ(X/k) of an algebraic variety X over k is the gcd of the degrees
over k of the closed points of X . The integer ν(X/k) is the minimum of the degrees over k
of the closed points of X . We denote by CH0(X) the Chow group of 0-cycles on X modulo
rational equivalence relation.
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Corollary 6 Let X, Y be smooth projective varieties over a field k of characteristic 0. If
[X ] = [Y ], then

CH0(X) � CH0(Y ), δ(X/k) = δ(Y/k), ν(X/k) = ν(Y/k).

In particular, X has a rational point (or, equivalently, ν(X/k) = 1) if and only if Y has a
rational point.

Proof First notice that CH0, δ and ν are inchanged if we replace X with X × P
n
k . Thus we

can suppose that X and Y are birational. A birational map f : X ��� Y induces an iso-
morphism CH0(X) � CH0(Y ) (cf. [4], Proposition 6.3 or [8], Example 16.1.11 where the
hypothesis k algebraically closed is not necessary) compatible with the degree maps (hence
δ(X/k) = δ(Y/k)). Let x0 ∈ X be a closed point, let X̃ → X be the blowing-up of X along
{x0} with exceptional divisor E � P

d
k(x0)

. Then f extends to a rational map f ′ : X̃ ��� Y ,
which is defined in a neighborhood of the generic point of E by the valuative criterion of
properness. As k is infinite, the neighborhood contains a point rational over k(x0), and its
image in Y is a point of degree ≤ deg x0. Hence ν(X/k) ≥ ν(Y/k), and the equality holds
by symmetry.

Remark 10 Let X and Y be smooth and projective varieties over an algebraically closed field
k of characteristic zero. As remarked by Göttsche in [10, Conjecture 2.5], under the validity
of a conjecture of Beilinson and Murre, if the class of the effective motives of X and Y are
equal in the Grothendieck ring of effective Chow motives K0(Mk), then they have the same
Chow groups (with rational coefficients). Assume that [X ] = [Y ] in K0(Vark). Thanks to
the existence of a ring morphism K0(Vark) → K0(Mk) which send the class of a smooth
projective variety to its motive (see [10, Theorem 2.1] for example), we conclude that, under
the validity of this conjecture of Beilinson and Murre, the Chow groups C H∗(X) of X are
isomorphic to the Chow groups C H∗(Y ) of Y .

Over a field k of characteristic p > 0, we are much less armed to work with K0(Vark).
However, part of Corollary 5 still hold. The idea is, as Antoine Chambert-Loir suggested,
to use the method of reduction à la Miyaoka-Mori [28] to reduce to finite base fields. The
following proposition is also obtained by Johannes Nicaise using Poincaré polynomials over
arbitrary fields ([30, Sect. 8 Appendix, Proposition 8.7]).

Proposition 4 Let k be a field of characteristic p > 0. Let X, Y be k-varieties such that
[X ] = [Y ] in K0(Vark). Then dim X = dim Y , and Xk̄ and Yk̄ have the same number of
irreducible components of maximal dimension.

Proof First remark that, by [13], Proposition IV.8.9.1, there exist a sub-Fp-algebra A of k of
finite type, and reduced A-schemes X , Y separated and of finite type, such that X ⊗A k � X ,
Y ⊗A k � Y . Moreover, [X ] = [Y] in K0(VarA) if A is big enough. This implies that
[Xs] = [Ys] in K0(Vark(s)) for all s ∈ Spec A. In particular, if s is a closed point, then Xs

and Ys have the same number of rational points in any finite extension F of k(s).
Let η be the generic point of Spec A. Shrinking Spec A if necessary, Xs has the same

dimension and the same number of geometric irreducible components of maximal dimen-
sion than Xη for all s ∈ Spec A ([13], combine Corollaire IV.9.5.6 and Proposition IV.9.7.8).
Denote this number by m. Let s ∈ Spec A is a closed point. According to Lang-Weil estimate
([24], Corollary 2), for finite extensions F of k(s),

Card(Xs(F))Card(F)− dim Xs − m → 0
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as [F : k(s)] tends to infinity. As Card(Xs(F)) = Card(Ys(F)), we conclude that Xη and
Yη have the same dimension and the same number of geometric irreducible components of
maximal dimension. The same is true for X � (Xη)k and Y � (Yη)k .

Remark 11 As dim X depends only on the class [X ] ∈ K0(Vark), we have a filtration (actu-
ally a graduation) on K0(Vark) by dimension. This fact is stated in [5], letter of 16 Aug.
1964.

We have the following funny consequences:

Corollary 7 Let k be a field of characteristic zero and let X be a smooth projective con-
nected k-variety. Assume that there exists a ∈ K0(Vark) and a smooth projective connected
k-variety Y , with dim Y < dim X, such that [X ] = [Y ] + aL. Then κ(X) = −∞.

Proof Assume that κ(X) ≥ 0. Then SB(X) = SB(Y ×k P
dim X−dim Y
k ) and, by Theorem 2,

X is birational to Y ×k P
dim X−dim Y
k . This is a contradiction.

Corollary 8 Let f : X → Y be a proper birational morphism of normal irreducible schemes
of finite type over a field k. If [X ] = [Y ] (e.g. X = Y ), then f is an isomorphism.

Proof There exists a closed subset F of Y such that f −1(Y \F) → Y \F is an isomorphism
and f −1(F) → F has connected fibers of positive dimensions. In particular dim f −1(F) >
dim F . As [X ] = [Y ], we have

[X \ f −1(F)] + [ f −1(F)] = [Y \F] + [F].
Hence [ f −1(F)] = [F] and dim f −1(F) = dim F by Proposition 4 and Corollary 5, there-
fore F = ∅ and f is an isomorphism.

5 Applications

We prove Assertion 1 in some cases. The base field k has characteristic zero except in Prop-
osition 5.

5.1 Zero-dimensional varieties

Proposition 5 Let X, Y be zero-dimensional k-varieties such that [X ] = [Y ] in K0(Vark). If
k has characteristic zero, or is a finite field, or is algebraically closed, then X is isomorphic
to Y .

Proof (1) Suppose that char(k) = 0. Let x be point of X . By Corollary 2, Spec k(x) is
stably birational to Spec k(y) for some point y ∈ Y . This implies that k(x) � k(y). So
X � Y by induction on the cardinality of X .

(2) When k is finite, our assertion is an immediate consequence of [29], Theorem 25 (see
especially the first line of the proof).

(3) When k is algebraically closed, the isomorphism class of X is determined by its car-
dinality Card(X). As Card(X) can be computed using Euler characteristic of X , the
assertion follows.
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5.2 The case of curves

Proposition 6 Let k be an algebraically closed field of characteristic zero. Let X and Y be
k-varieties such that dim X ≤ 1 and [X ] = [Y ] in K0(Vark). Then X is piecewise isomorphic
to Y .

Proof We can suppose that X (and hence Y ) have dimension 1. Lemma 1 implies

[X ] =
n∑

i=0

[Xi] + a and [Y ] =
m∑

j=0

[Y j ] + b,

where Xi, Y j are smooth connected projective k-curves, birational to the irreducible compo-
nents of dimension 1 of X and Y respectively, and a, b ∈ Z. By Corollary 5.3, n = m. By
Corollary 2, SB(X1) is equal to a SB(Y j ) or SB(Spec k). If X1 is not rational, SB(X1) �=
SB(Spec k), so SB(X1) = SB(Y j ) for some j ≤ n, and then X1 � Y j by Corollary 1.1. After
removing all non-rational Xi’s, we can suppose that the Xi’s (hence all Y j ’s by symmetry)
are rational. Therefore there exist open subsets U ⊆ X , V ⊆ Y such that U � V and X \U ,
Y \V are zero-dimensional. By Proposition 5, X\U � Y \V , and X is piecewise isomorphic
to Y .

Remark 12 If k is not necessarily algebraically closed, and if X, Y are k-varieties of dimen-
sion 1 with [X ] = [Y ], then one can show that there exist open subsets U, V of X, Y
respectively, such that U � V , X \U is the disjoint union

P
1
k1


 · · · 
 P
1
kn


 Spec k′
1 
 · · · 
 Spec k′

m,

and Y \V is the disjoint union

P
1
k′

1

 · · · 
 P

1
k′

m

 Spec k1 
 · · · 
 Spec kn,

where ki, k′
j are finite extensions of k. Furthermore, we have

∑
i[ki : k] = ∑

j [k′
j : k]. If

Assertion 1 is true here, then we must have n = m and, up to re-numbering, ki � k′
i. The

proof is similar to the algebraically closed case, and we use [16], Theorem 1.2 to deal with
the conics.

Remark 13 Let k be a field of characteristic zero. Let X be a k-variety. Let f : X ��� X be
a birational map. Is it true that f can be extended in a piecewise isomorphism? Of course, if
Larsen and Lunts’ question admits a positive answer, this question admits a positive answer.
Besides, if k is algebraically closed and if the dimension of X is less or equal to 2, then, by
Proposition 6, this question admits a positive answer.

Remark 14 In [5], letter of 16 Aug. 1964, Grothendieck sketched the construction of a homo-
morphism from K0(Vark) to the Grothendieck ring of Chow motives with rational coefficients
K0(Mk) (see [9], Theorem 4 when k has characteristic zero, or [3], Corollary 4.3), and he
asked whether it is far from being bijective. For k of haracteristic zero, it is known that this
homomorphism is not injective (take two isogeneous but not isomorphic abelian k-varieties
A, B, then they have the same image in K0(Mk), but [A] �= [B] by Corollary 2.2). Using the
above remark, we can construct similar examples with curves. Let X, Y be two non-isomor-
phic, projective smooth and geometrically connected curves over k, with isomorphic jacobian
varieties (see for instance [17]). Then they have the same class in K0(Mk). But [X ] �= [Y ]
in K0(Vark).
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Proposition 7 Let k be an algebraically closed field of characteristic zero. Let X be a
k-variety of dimension at most one. Then X is rational (i.e. the irreducible components of X
are rational) if and only if there exist α, β ∈ Z such that, in K0(Vark)

[X ] = αL + β.

In particular, if X is smooth and projective, then α is the number of connected components
of dimension 1.

Proof Applying SB and using Lemma 1, it is clear, by Corollary 1, that, if [X ] = αL + β,
then X is rational. Conversely, as [P1

k] = L + 1 in K0(Vark), applying Lemma 1, we obtain
the result.

5.3 The case of surfaces

Lemma 9 Let k be an algebraically closed field of characteristic zero. Let X, Y be smooth
connected projective k-surfaces. If X is stably birational to Y , then it is birational to Y .

Proof If X is non-uniruled, then X is birational to Y by Corollary 1.1. Suppose now that
X , hence Y , are uniruled. Then they are birational respectively to C ×k P

1
k and D ×k P

1
k for

some connected smooth projective k-curves C , D (Lemma 8). We have SB(C) = SB(D). If
C is non-uniruled, then C is birational to D, hence X is birational to Y . Otherwise C = P

1
k

and D is uniruled, hence isomorphic to P
1
k . So in this case X, Y are both rational.

Theorem 4 Let k be an algebraically closed field of characteristic zero. Let X and Y be
smooth projective k-varieties of dimension two. Suppose that their one-dimensional con-
nected components are rational curves. If [X ]=[Y ], then X is piecewise isomorphic to Y.

Proof It is sufficient to prove that the irreducible components of dimension 2 of X and Y
are pairwise birational because we then are reduced to the case of curves, which is done in
Proposition 6. We have

[X ] =
∑

1≤i≤n

[Xi] +
∑

1≤ j≤m

[C j ], [Y ] =
∑

1≤i≤n

[Yi] +
∑

1≤ j≤m′
[D j ],

where the Xi’s (resp. Yi’s) are the irreducible components of X (resp. Y ) of dimension 2
(Corollary 5.3), and the C j , D j ’s are projective lines or Spec k. It comes that in the free
abelian group Z[SB], we have

∑

1≤i≤n

SB(Xi)+ aSB(Spec k) =
∑

1≤i≤n

SB(Yi)+ bSB(Spec k)

for some integers a, b ∈ Z. So a = b and
∑

i∈I SB(Xi) = ∑
i∈I SB(Yi). Up to renumbering,

we have SB(Xi) = SB(Yi), hence Xi is birational to Yi (Lemma 9) for all i.

Remark 15 (Uniruled normal surfaces) Let k be a field of characteristic zero. Let C be a
projective connected smooth k-curve of genus g(C) > 0. Let us construct a singular normal
k-surface XC as follows. First blow-up C ×k P

1
k along a rational point of C0 = C × {0} ⊂

C ×k P
1
k ; then contract in the new surface the strict transform of C0. Denote by XC the normal

singular projective k-surface obtained in this way. It is uniruled and we have

[XC ] = [C ×k P
1
k] − [C].
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Now pick another projective smooth connected k-curve D and consider the surface X D . Sup-
pose that [XC ] = [X D]. Then g(C) = g(D) by using Poincaré polynomials. On the other
hand, Larsen–Lunts’s theorem is helpless here because XC and X D have the same (trivial)
image in Z[SB].
Remark 16 Let k be as in Theorem 4. Suppose that L is not zero divisor in K0(Vark), then
Assertion 1 is true for varieties of dimension 2. Indeed, we can write

[X ] =
∑

1≤i≤n

[Xi] +
∑

1≤ j≤m

±[C j ]

as in Lemma 1, with moreover Xi non-uniruled or isomorphic to Ei×k P
1
k for some projective

smooth connected k-curve Ei. Similarly write

[Y ] =
∑

1≤i≤n

[Yi] +
∑

1≤ j≤m′
±[C ′

j ]

with Yi non-uniruled or isomorphic to Fi ×k P
1
k . After removing components in X (resp. Y )

which are birational to an irreducible component of Y (resp. X ) and after adding the necessary
counterpart in the C j ,C ′

j ’s, we can suppose that Xi is not birational to Yi′ for all i, i′ ≤ n.
Then

0 =
∑

i

([Ei ×k P
1
k] − [Fi ×k P

1
k])+

∑

j

±[D j ] + aL

with a ∈ Z, D j smooth, connected and projective of dimension 1 (replace Spec k by [P1
k]−L).

Applying SB, we see that every Ei and Fi is isomorphic to some D j . As SB(D j ) = SB(D j ′)
implies [D j ] = [D j ′ ], we finally get

0 =
(

a +
∑

i

([Ei] − [Fi])
)

L.

So if L does not divide zero, then a + ∑
i([Ei] − [Fi]) = 0. Proposition 6 implies that 
iEi

is birational to 
iFi. Contradiction.

5.4 The non-uniruled case

Theorem 5 Let k be a field of characteristic zero. Let X be a k-variety of dimension d ≥ 0.
Suppose that

1. either k is algebraically closed and X contains only finitely many rational curves, or,
2. Xk̄ does not contain any irreducible rational curve (e.g. if X is a subvariety of an abelian

variety).

Let Y be a k-variety such that [X ] = [Y ] in K0(Vark). Then X is piecewise isomorphic to Y .

Proof We proceed by induction on d . The case d ≤ 1 is done in Propositions 5, 6 and
Remark 12. Suppose d ≥ 2. Write [X ]=∑

1≤i≤n[Xi]+∑
j ε j [C j ] and [Y ]=∑

1≤q≤n[Yq ]+
∑
� ε

′
j [D�] as in Lemma 1. Then Xi is non-uniruled, hence not stably birational to any D�.

Applying SB we see that, up to renumbering, each Xi is stably birational, hence birational
(Corollary 1), to one Yi. Consequently, there are open subsets U, V in X, Y respectively such
that U � V and X \U has dimension at most d − 1. As [X \U ] = [Y \V ], by induction
hypothesis, X \U is piecewise isomorphic to Y \V , hence X is piecewise isomorphic to Y .
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Corollary 9 Let A be an abelian variety over a field k of characteristic zero. Suppose that
there exists a non-trivial torsor X under A. Then [A] is a zero divisor in K0(Vark).

Proof By definition, there exists an isomorphism A ×k A � A ×k X . Therefore [A]([A] −
[X ]) = 0. It remains to show that [A] �= [X ]. Otherwise A would be birational to X . As
A is an abelian variety, we have a birational morphism f : X → A. The inverse rational
map A ��� X is a morphism over k̄ because Xk̄ has a structure of abelian variety. Therefore
fk̄ : Xk̄ → Ak̄ is an isomorphism, hence f is an isomorphism. Contradiction.

5.5 Some final computations in the Grothendieck ring

We can also reinterpret, via the Grothendieck ring of varieties, some classical results of
the classification of surfaces. Denote by K X the canonical divisor on X and by χ(OX ) the
coherent Euler characteristic of the structural sheaf OX .

Lemma 10 Let k be a field of characteristic zero. Let X and Y be smooth connected projec-
tive k-surfaces such that [X ] = [Y ]. Then (K 2

X ) = (K 2
Y ) and χ(OX ) = χ(OY ).

Proof The result comes from the following formulas for X :

χ(OX ) = 1

12

(
χtop(X)+ (K 2

X )
)
,

(K 2
X ) = 10 − 8h0,1(X)+ 12h0,2(X)− b2(X)

and for Y .

Lemma 11 Let k be an algebraically closed field of characteristic zero. Let X be an irratio-
nal smooth and projective k-surface. Assume that X is ruled over a smooth projective k-curve
C. Then X is relatively minimal if and only if [X ] = (L + 1)[C] in K0(Vark).

Proof If X is relatively minimal, then it is a projective bundle P(E) over C , where E is a
locally free sheaf on C of rank two. So [X ] = (L + 1)[C] (see Example 1).

Conversely, let Y be any smooth connected projective k-surface. Let Y ′ → Y be the
blowing-up of Y along a point. Then [Y ′] = [Y ] + L. As X is obtained by successive
blowing-ups of points from the relatively minimal model X0 of X , we have [X ] = [X0]+mL,
where m is the number of blowing-ups. As [X0] = (L + 1)[C] = [X ], we have mL = 0, so
m = 0 by computing the Poincaré polynomials. Therefore X → X0 is an isomorphism.

Lemma 12 Let k be an algebraically closed field of characteristic zero. Let X be a k-surface.
If

[X ] = αL
2 + βL + γ ∈ Z[L],

then X is rational (i.e. all irreducible components of X are rational). The converse holds if X
is smooth and projective. Moreover, in this case, γ = α = b4(X) is the number of irreducible
components of X, and β = b2(X).

Proof Write a decomposition

[X ] =
∑

1≤i≤n

[Xi] +
∑

1≤ j≤m

ε j [C j ]
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as in Lemma 1. We have
∑

1≤i≤n

[Xi] = αL
2 + βL + γ −

∑

j

ε j [C j ].

Applying SB, we see that for all i ≤ n, we have either SB(Xi) = SB(Spec k) and Xk is
rational, or, SB(Xi) is equal to a SB(Cσ(i)) with dim Cσ(i) = 1. Computing the Poincaré
polynomials in the relation above, we see that b3(Xi) = 0, and by duality, b1(Xi) = 0. It
follows that Cσ(i) has genus 0, thus Xi is again rational.

Now let X be a smooth projective rational surface. Then each connected component Xi of
X is birational to P

2
k . The factorization theorem for birational maps of surfaces implies that

[Xi] = [P2
k] + aL = L

2 + (a + 1)L + 1, a ∈ Z.

Thus [X ] = ∑
1≤i≤n[Xi] = αL

2 + βL + α. The last assertion comes directly from a
computation of Poncaré polynomials.

More generally:

Lemma 13 Let k be a field of characteristic zero. Let X be a smooth projective connected
k-variety of dimension d ≥ 2, ruled over a smooth projective connected variety D of dimen-
sion d − 1. Then there exists a finite number of smooth projective connected k-varieties Ci,
i ∈ I , of dimension at most d − 2 such that

[X ] = L
d + L([D] +

∑

i∈I

εi[Ci])+ [D],

with εi ∈ {−1, 1}.
Proof By assumption, X is birational to D×k P

1
k . The formula comes from a direct application

of the weak factorization theorem (see [3, Sect. 2]).

Lemma 14 Let k be a field of characteristic zero. Let X be a connected smooth k-curve such
that [X ] = L in K0(Vark). Then X is isomorphic to A

1
k .

Proof Consider a smooth completion X̃ of X . Let Y = X̃ \X = {y1, . . . , yn}. We have
∑

1≤i≤n

[Spec k(yi)] + [P1
k] = [X̃ ] + 1.

Applying SB, we conclude first that n = 1, so Y = Spec k(y). Secondly, we have either
SB(Spec k(y)) = SB(Spec k) or SB(Spec k(y)) = SB(X̃). In the first case, k(y) = k,
X̃ � P

1
k and X � A

1
k . In the second case, X̃ � P

1
k(y) and

[Spec k(y)] + [P1
k] = [P1

k(y)] + 1.

Over k̄, we have

[k(y) : k] + [P1
k̄
] = [k(y) : k][P1

k̄
] + 1,

which implies that k(y) = k.

Acknowledgments We would like to thank Dennis Eriksson for pointing out ideas to treat dimension 1 case,
Johannes Nicaise and Hélène Esnault for useful conversations and Antoine Chambert-Loir for indicating us
the general arguments for Proposition 4.

123



The Grothendieck ring of varieties and piecewise isomorphisms 341

References

1. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses,
vol. 17. Société Mathématique de France, Paris (2004)

2. Beauville, A., Colliot-Thélène, J.-L., Sansuc, J.-J., Swinnerton-Dyer, P.: Variétés stablement rationnelles
non rationnelles. Ann. Math. (2) 121(2), 283–318 (1985)

3. Bittner, F.: The universal Euler characteristic for varieties of characteristic zero. Compos. Math. 140(4),
1011–1032 (2004)

4. Colliot-Thélène, J.-L., Coray, D.: L’équivalence rationnelle sur les points fermés des surfaces rationnelles
fibrées en coniques. Compos. Math. 39, 301–332 (1979)

5. Colmez, P., Serre, J.-P. (eds.): Correspondance Grothendieck-Serre. Documents Mathématiques (Paris),
vol. 2, p. 288. Sociét´ Mathématique de France, Paris (2001)

6. Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext, pp. xiv+233. Springer, New York
(2001)

7. Denef, J., Loeser, F.: It on Some Rational Generating Series Occurring in Arithmetic Geometry. Geometric
Aspects of Dwork Theory, vol. I, II, pp. 509–526. Walter de Gruyter GmbH, Berlin (2004)

8. Fulton, W.: Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, vol. 2, 2nd
edn. Springer, Berlin (1998)

9. Gillet, H., Soulé, C.: Descent, motives and K -theory. J. Reine Angew. Math. 478, 127–176 (1996)
10. Göttsche, L.: On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett. 8(5–6), 613–627

(2001)
11. Graber, T., Harris, J., Starr, J.: Families of rationally connected varieties. J. Am. Math. Soc. 16, 57–67

(2003)
12. Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ.

Math. 29, 95–103 (1966)
13. Grothendieck, A., Dieudonné, J.: Éléments de Géométrie Algébrique. (EGA) Publ. Math. IHES, 4, 8, 11,

17, 20, 24, 28, 32 (1960–1967)
14. Grothendieck, A.: Revêtements étales et groupe fondamental. (SGA 1) Enlarged by two reports of

M. Raynaud Documents Mathématiques (Paris), vol. 3, xviii, p. 325. Société Mathématique de France,
Paris (2003)

15. Hartshorne, R.: Algebraic Geometry. Grad. Texts in Math., vol. 52. Springer, Berlin (1977)
16. Hodagi, A.: Products of Brauer Severi Surfaces. Preprint (arXiv:0706.3447)
17. Howe, E.W.: Infinite families of pairs of curves over Q with isomorphic Jacobians. J. Lond. Math. Soc.

(2) 72, 327–350 (2005)
18. Hrushovski, E., Kazhdan, D.: Integration in valued fields. In: Algebraic Geometry and Number Theory.

Progr. Math., vol. 253, pp. 261–405. Birkäuser Boston, Boston (2006)
19. Iitaka, S., Fujita, T.: Cancellation theorem for algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math.

24, 123–127 (1977)
20. Iitaka, S.: Algebraic Geometry, an Introduction to Birational Geometry of Algebraic Varieties. Graduate

Texts in Mathematics, vol. 76. Springer, Berlin (1982)
21. Kollár, J.: Conics in the Grothendieck ring. Adv. Math. 198(1), 27–35 (2005)
22. Kollár, J.: Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete 3.

Folge, vol. 32, pp. viii+320. Springer, Berlin (1996)
23. Krajícek, J., Scanlon, T.: Combinatorics with definable sets: Euler characteristics and Grothendieck

rings. Bull. Symb. Log. 6, 311–330 (2000)
24. Lang, S., Weil, A.: Number of points of varieties in finite fields. Am. J. Math. 76, 819–827 (1954)
25. Larsen, M., Lunts, V.: Motivic measures and stable birational geometry. Mosc. Math. J. 3(1), 85–95 (2003)
26. Liu, Q.: Algebraic Geometry and Arithmetic curves. Oxford Grad. Texts in Math., vol. 6. Oxford Uni-

versity Press, Oxford (paperback edition) (2006)
27. Miyanishi, M.: Open Algebraic Surfaces. CRM Monograph Series, vol. 12. American Mathematical

Society, Providence (2001)
28. Miyaoka, Y., Mori, S.: A numerical criterion for uniruledness. Ann. Math. 124, 65–69 (1986)
29. Naumann, N.: Algebraic independence in the Grothendieck ring of varieties. Trans. Am. Math. Soc.

359(4), 1653–1683 (2007)
30. Nicaise, J.: A trace formula for varieties over a discretely valued field (2008). http://arxiv.org/pdf/0805.

1323
31. Olivier, J.-P.: Anneaux absolument plats universels et épimorphismes à buts réduits. Séminaire Samuel.

Algèbre commutative, vol. 2 (1967–1968), Exposé No. 6. Secrétariat mathématique, Paris (1967–1968)
32. Olivier, J.-P.: Le foncteur T −∞. Globalisation du foncteur T . Séminaire Samuel. Algèbre commutative,

vol. 2 (1967–1968), Exposé No 9. Secrétariat mathématique, Paris (1967–1968)

123

http://arxiv.org/pdf/0805.1323
http://arxiv.org/pdf/0805.1323


342 Q. Liu, J. Sebag

33. Poonen, B.: The Grothendieck ring of varieties is not a domain. Math. Res. Lett. 9(4), 493–497 (2002)
34. Rökaeus, K.: The computation of the classes of some tori in the Grothendieck ring of varieties. Preprint

(arXiv:0708.4396)
35. Srinivas, V.: The Hodge characteristic. Preprint (2002)

123


	The Grothendieck ring of varieties and piecewise isomorphisms
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Definitions and notations
	2.2 The Grothendieck ring of varieties
	2.2.1 The usual definition
	2.2.2 The definition via the piecewise algebraic geometry


	3 Birational geometry and cancelation problem
	4 Additive invariants and the equality of classes in K0(Vark)
	4.1 Additive invariants
	4.2 The work of Larsen--Lunts and of Bittner
	4.3 First consequences of the equality of classes in K0(Vark)

	5 Applications
	5.1 Zero-dimensional varieties
	5.2 The case of curves
	5.3 The case of surfaces
	5.4 The non-uniruled case
	5.5 Some final computations in the Grothendieck ring

	Acknowledgments
	References


