
RESEARCH ARTICLE

The Group B Streptococcal surface antigen I/II
protein, BspC, interacts with host vimentin to
promote adherence to brain endothelium and
inflammation during the pathogenesis of
meningitis

Liwen DengID
1,2, Brady L. Spencer2, Joshua A. HolmesID

2, RongMuID
1, Sara Rego3,

Thomas A. WestonID
1, Yoonsung Hu4, Glenda F. SanchesID

2,5, Sunghyun Yoon6,

Nogi Park6, Prescilla E. NagaoID
5, Howard F. JenkinsonID

3, Justin A. Thornton4, Keun

Seok SeoID
6, Angela H. NobbsID

3, Kelly S. Doran1,2*

1 Department of Biology, San Diego State University, San Diego, CA, United States of America,
2 Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO,

United States of America, 3 Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, United
Kingdom, 4 Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United
States of America, 5 Laboratory of Molecular Biology and Physiology of Streptococci, Instituto de Biologia

Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil, 6 Department of Basic
Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States

of America

* kelly.doran@ucdenver.edu

Abstract

Streptococcus agalactiae (Group B Streptococcus, GBS) normally colonizes healthy adults

but can cause invasive disease, such as meningitis, in the newborn. To gain access to the

central nervous system, GBSmust interact with and penetrate brain or meningeal blood

vessels; however, the exact mechanisms are still being elucidated. Here, we investigate the

contribution of BspC, an antigen I/II family adhesin, to the pathogenesis of GBSmeningitis.

Disruption of the bspC gene reduced GBS adherence to human cerebral microvascular

endothelial cells (hCMEC), while heterologous expression of BspC in non-adherent Lacto-

coccus lactis conferred bacterial attachment. In a murine model of hematogenous meningi-

tis, mice infected with ΔbspCmutants exhibited lower mortality as well as decreased brain

bacterial counts and inflammatory infiltrate compared to mice infected with WT GBS strains.

Further, BspC was both necessary and sufficient to induce neutrophil chemokine expres-

sion. We determined that BspC interacts with the host cytoskeleton component vimentin

and confirmed this interaction using a bacterial two-hybrid assay, microscale thermophor-

esis, immunofluorescent staining, and imaging flow cytometry. Vimentin null mice were pro-

tected fromWTGBS infection and also exhibited less inflammatory cytokine production in

brain tissue. These results suggest that BspC and the vimentin interaction is critical for the

pathogenesis of GBS meningitis.
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Author summary

Group B Streptococcus (GBS) typically colonizes healthy adults but can cause severe dis-

ease in immune-compromised individuals, including newborns. Despite wide-spread

intrapartum antibiotic prophylaxis given to pregnant women, GBS remains a leading

cause of neonatal meningitis. To cause meningitis, GBS must interact with and penetrate

the blood-brain barrier (BBB), which separates bacteria and immune cells in the blood

from the brain. In order to develop targeted therapies to treat GBS meningitis, it is impor-

tant to understand the mechanisms of BBB crossing. Here, we describe the role of the GBS

surface factor, BspC, in promoting meningitis and discover the host ligand for BspC,

vimentin, which is an intermediate filament protein that is constitutively expressed by

endothelial cells. We determined that BspC interacts with the C-terminal domain of cell-

surface vimentin to promote bacterial attachment to brain endothelial cells and that puri-

fied BspC protein can induce immune signaling pathways. In a mouse model of hematog-

enous meningitis, we observed that a GBS mutant lacking BspC was less virulent

compared to WT GBS and resulted in less inflammatory disease. We also observed that

mice lacking vimentin were protected from GBS infection. These results reveal the impor-

tance of the BspC-vimentin interaction in the progression of GBS meningitis disease.

Introduction

Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen that

asymptomatically colonizes the vaginal tract of up to 30% of healthy women. However, GBS

possesses a variety of virulence factors and can cause severe disease when transmitted to sus-

ceptible hosts such as the newborn. Despite widespread intrapartum antibiotic administration

to colonized mothers, GBS remains a leading cause of pneumonia, sepsis, and meningitis in

neonates [1, 2]. Bacterial meningitis is a life-threatening infection of the central nervous sys-

tem (CNS) and is marked by transit of the bacterium across endothelial barriers, such as the

blood-brain barrier (BBB) or the meningeal blood-cerebral spinal fluid barrier (mBCSFB).

Both consist of a single layer of specialized endothelial cells that serve to maintain brain

homeostasis and generally prevent pathogen entry into the CNS [3–5]. Symptoms of bacterial

meningitis may be due to the combined effect of bacterial adherence and brain penetration,

direct cellular injury caused by bacterial cytotoxins, and/or activation of host inflammatory

pathways that can disrupt brain barrier integrity and damage underlying nervous tissue. [6–8]

Bacterial meningitis typically develops as a result of the pathogen spreading from the blood

to the meninges. In order to disseminate from the blood into the brain, GBS must first interact

with barrier endothelial cells [9]. A number of surface-associated factors that contribute to

GBS-brain endothelium interactions have been described such as lipoteichoic acid (LTA) [10],

pili [11], serine-rich repeat proteins (Srr) [12], and streptococcal fibronectin-binding protein

(SfbA) [13]. Pili, the Srr proteins, and SfbA have been shown to interact with extracellular

matrix (ECM) components, which may help to bridge to host receptors such as integrins or

other ECM receptors. However, a direct interaction between a GBS adhesin and an endothelial

cell receptor has not been described.

Antigen I/II family (AgI/II) proteins are multifunctional adhesins that have been well char-

acterized as colonization determinants of oral streptococci [14]. These proteins mediate

attachment of Streptococcus mutans and Streptococcus gordonii to tooth surfaces and can stim-

ulate an immune response from the colonized host [14]. Genes encoding AgI/II polypeptides

are found in streptococcal species indigenous to the human mouth as well as other pathogenic
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streptococci such as GBS, S. pyogenes (Group A Streptococcus, GAS), and S. suis [14, 15].

Intriguingly, the GAS AgI/II protein AspA (Group A Streptococcus surface protein) is absent

in many GAS M serotypes and is found predominantly among M serotypes implicated in

puerperal sepsis and neonatal infections, including M2, M4, and M28. The gene encoding

AspA is located within an integrative and conjugative element designated region of difference

2 (RD2), which likely originated in GBS and was acquired by invasive GAS serotypes through

horizontal gene transfer (Fig 1A). It has been proposed that genes carried within RD2 may

contribute to pathogenicity of both GAS and GBS in pregnant women and newborns [16, 17].

Supporting this, AspA has been shown to facilitate GAS biofilm formation and virulence in a

murine model of GAS respiratory infection [18]. Recently, in silico analysis has revealed four

AgI/II gene homologs in GBS, designated Group B Streptococcus surface proteins (BspA-D),

that are distributed among GBS of different capsular serotypes and sequence types [15, 19, 20].

Previous work has shown that BspA and BspB, which share 90% sequence identity, are

found in GBS strain NEM316. BspA has been demonstrated to be important in biofilm forma-

tion as well as adherence to epithelial cells and may play a role in facilitating colonization

through its ability to bind to vaginal epithelium as well as interact with the hyphal filaments of

Candida albicans [15, 20], a frequent fungal colonizer of the lower female reproductive tract.

Other GBS strains contain the homolog BspC, or in some cases BspD, which is over 99% iden-

tical to BspC, with the major difference being that BspD is missing the leader peptide for tar-

geting to the cell surface by the Sec translocation machinery. While most of the variability

between Bsp proteins is in the alanine-rich and proline-rich repeats, the V domain shares 96 to

100% identity across all Bsp homologs [15, 20]. To date, there have not been any studies exam-

ining the impact of the AgI/II proteins on GBS invasive disease. A previous study by Chuzeville

et al. identified 75 GBS genomes which contain an antigen I/II homolog. Of those 75 CDS,

only 40 were associated with transcription and translation signals and out of those, 36 were

2952 base pairs in size encoding the full length BspC protein [19]. Therefore, we chose to

investigate the importance of the BspC antigen I/II homolog in the pathogenesis of meningitis.

Using targeted mutagenesis, we show that BspC promotes adherence of bacteria to human

cerebral microvascular endothelial cells (hCMEC) and interacts with the host cytoskeleton

component, vimentin. Additionally, we found that BspC and vimentin contribute to the devel-

opment of GBS meningitis in a mouse infection model. Lastly, we observe that BspC stimulates

inflammatory signaling from brain endothelial cells in vitro and in vivo and that this immune

signaling involves the NF-κB pathway.

Results

Analysis of BspC domain architecture and construction of a bspC deletion
strain

BspC contains all six domains characteristic of the AgI/II protein family and shares high

homology with other streptococcal AgI/II proteins, especially GAS AspA (Fig 1B). The pro-

posed domain organization of streptococcal AgI/II polypeptides comprises a stalk consisting

of the α-helical A (alanine-rich repeats) domain and the polyproline II (PPII) helical P domain,

separating the V (variable) domain and the C-terminal domain, which contains the LPXTG

motif required for cell wall anchorage [14]. While the GBS BspC structure is not known, the

structure of several regions of the GBS homolog, BspA, has been solved [15]. We generated a

hypothetical model of full length BspC using PyMOL (The PyMOLMolecular Graphics Sys-

tem, Version 2.1 Schrödinger, LLC) for the purpose of showing the overall domain structure

(Fig 1C). Structures of individual BspC domains were generated using Phyre2 server [21]. The

V- and C-domains were modeled on the V- and C-domains of BspA (PDB entries 5DZ8 and
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5DZA, respectively) [15], and approximately two-thirds of the A-domain sequence was mod-

eled on human fibrinogen (PDB entry 3GHG) [22]. It was not possible to generate models for

the N- and P-domains, so the N-domain is shown as a sphere and the P-domain shown is a

mirror image of the A-domain.

We performed precise in-frame allelic replacement to generate a ΔbspCmutant in GBS

strain COH1, a hypervirulent GBS clinical isolate that is highly associated with meningitis

(sequence type [ST]-17, serotype III) [23, 24], using a method described previously [10]. We

further determined the expression of surface BspC in the WT and complemented strains

Fig 1. Analysis of BspC domain architecture (A) Diagram of MGAS6180 region of difference 2 (RD2). M2, M4, and M28 strains of Group A Streptococcus contain
RD2, which was likely acquired from Group B Streptococcus through horizontal gene transfer and is absent in other common disease causing GAS emm-types. Open
reading frames encoding LPXTG cell wall anchor domain-containing proteins are indicated with green arrows. Proteins AspA and R28 in GAS and their respective
homologs in GBS, Bsp and Rib, have been previously described. The other two cell wall anchor domain-containing proteins have not been characterized. (B) Schematic
of sequence homologies across antigen I/II family proteins from select Streptococcus species. Six structural regions are shown: N, N-terminal region; A, alanine-rich
repeats; V, variable region; P, proline-rich repeats; C, C-terminal region; and the cell-wall anchor-containing region. Numbers indicate percentage amino acid residue
identities to BspC from S. agalactiae strain COH1 (NCBI Ref. Seq.: WP_000277676.1). The proteins depicted are the antigen I/II proteins AspA from S. pyogenes strain
M28 (WP_011285012.1), Pas from S. intermedius (WP_049476098.1), SspB from S. gordonii (WP_011999747), and SpaP from S.mutans (WP_024781655.1). (C)
Hypothetical model of BspC generated using PyMOL.

https://doi.org/10.1371/journal.ppat.1007848.g001
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compared to the ΔbspCmutant by flow cytometry and immunofluorescent staining with spe-

cific BspC antibodies (S1A–S1G Fig). Growth curve analysis demonstrated that the ΔbspC
mutant grew similarly to the WT parental strain under the conditions used here (S1H Fig).

Similarly, we observed no differences in hemolytic activity or capsule abundance between the

WT and mutant strains (S1I–S1L Fig). High-magnification scanning electron microscopy

(SEM) images of COH1 strains showed that the ΔbspC deletion strain exhibits similar surface

morphology to the isogenic wild type (Fig 2A and 2B). However, lower-magnification SEM

revealed that the ΔbspCmutant appeared to exhibit decreased interaction between neighboring

cells (Fig 2C and 2D).

BspC promotes bacterial adherence to endothelial cells in vitro

Since AgI/II proteins are known to demonstrate adhesive properties in other streptococci [14],

we hypothesized that BspC would contribute to GBS interaction with brain endothelium.

Thus, we characterized the ability of the ΔbspCmutant to attach to and invade hCMEC using

our established adherence and invasion assays [10, 25]. The ΔbspCmutant exhibited a signifi-

cant decrease in adherence to hCMEC compared to WT GBS, and this defect was comple-

mented when BspC was expressed in the ΔbspCmutant strain (Fig 2E). This resulted in less

recovery of intracellular ΔbspCmutant (Fig 2F), but together these results indicate that BspC

contributes primarily to bacterial attachment to hCMEC. To determine if BspC was sufficient

to confer adhesion, we heterologously expressed the GBS bspC gene in the non-adherent, non-

pathogenic bacterium Lactococcus lactis. Flow cytometric analysis of L. lactis confirmed surface

expression of BspC protein in the strain containing the pMSP.bspC plasmid (S2 Fig). BspC

expression resulted in a significant increase in L. lactis adherence to hCMEC compared to

Fig 2. BspC bacterial adherence to endothelial cells in vitro. (A-D) Scanning electron microscopy images of WT (A and C) and ΔbspCmutant (B and D) GBS.
Scale bar in high magnification images (A and B) is 1 μM. Scale bar in low magnification images (C and D) is 50 μM. (E) Adherence of WT GBS, the ΔbspCmutant,
and the ΔbspCpDC.bspC complemented strain to hCMEC was assessed after a 30 min incubation. Total cell-associated bacteria are shown. (F) Invasion of WT GBS,
the ΔbspCmutant, and the ΔbspCpDC.bspC strain was quantified after a 2 h infection. (G) Adherence and (H) invasion of Lactococcus lactis containing the pMSP
empty vector or pMSP.bspC to hCMEC were quantified. Data indicates the percentage of the initial inoculum that was recovered. Experiments were performed
three times with each condition in triplicate. Data from one representative experiment are shown and error bars represent the standard deviation. Statistical
analysis: (E and F) One-way ANOVA with Tukey’s multiple comparisons test. (G and H) Unpaired t test. �, P< 0.05.

https://doi.org/10.1371/journal.ppat.1007848.g002
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L. lactis containing the control vector, while invasion was not affected (Fig 2G and 2H). These

results demonstrate that BspC is both necessary and sufficient to confer bacterial adherence to

hCMEC.

BspC contributes to pathogenesis of GBS meningitis in vivo

Our results thus far suggest a primary role for BspC in GBS adherence to brain endothelium.

We hypothesized that these in vitro phenotypes would translate into a diminished ability to

penetrate the BBB and produce meningitis in vivo. Using our standard model of GBS hematog-

enous meningitis [10, 26, 27], mice were challenged with either WT GBS or the ΔbspCmutant

as described in the Methods. The WT GBS strain caused significantly higher mortality than

the isogenic ΔbspCmutant strain (Fig 3A). By 48 hours, 80% of mice infected with WT COH1

had succumbed to death, while all of the mice infected with the ΔbspCmutant survived up to

or past the experimental endpoint. In a subsequent experiment mice were infected with a

lower dose of either WT GBS or the ΔbspCmutant and were sacrificed at a defined endpoint

(72 hrs) to determine bacterial loads in blood, lung, and brain tissue. We recovered similar

numbers of the ΔbspCmutant strain from mouse blood and lung compared to WT; however,

we observed a significant decrease in the amounts of the ΔbspCmutant recovered from the

brain tissue (Fig 3B). To confirm these results using other GBS strains, we constructed bspC

gene deletions as described in the Methods in two other GBS strains: GBS 515 (ST-23, serotype

Ia) and meningeal isolate 90356 (ST-17, serotype III). Mice infected with these mutant strains

were also less susceptible to infection and exhibited decreased bacterial loads in the brain com-

pared to the isogenic parental WT strains (S2 Fig). Interestingly, the ΔbspCmutant in the 515

GBS background, which is a different sequence type and serotype from the other two strains,

appeared to also exhibit diminished infiltration into the mouse lungs.

As excessive inflammation is associated with CNS injury during meningitis, we performed

histological analysis of brains from infected animals. In WT infected mice, we observed leuko-

cyte infiltration and meningeal thickening characteristic of meningitis that was absent in the

mice infected with the ΔbspCmutant strain (Fig 3C and 3D). Representative images from 8

mice, 4 infected with WT (Fig 3C) and 4 infected with the ΔbspCmutant (Fig 3D) are shown

where the major areas of inflammation were observed. In subsequent experiments to quantify

the total inflammatory infiltrate, whole brains from uninfected mice and mice infected with

either WT GBS or ΔbspCmutant GBS were processed and analyzed by flow cytometry as

described in the Methods. There was no significant difference in the numbers of CD45 positive

cells between the groups of mice, however within the CD11b positive population we observed

higher numbers of Ly6C positive and Ly6G positive cells in the brains of animals infected with

WT GBS compared to uninfected mice and mice infected with the ΔbspCmutant strain (Fig

3E and 3F), indicating an increased population of monocytes and neutrophils. Consistent with

these results, we further observed that mice challenged with WT GBS had significantly more of

the neutrophil chemokine, KC, as well as the proinflammatory cytokine, IL-1β, in brain

homogenates than ΔbspCmutant infected animals. (Fig 3G and 3H)

BspC is necessary and sufficient to induce neutrophil chemokine signaling

To further characterize the role of BspC in stimulating immune signaling pathways we infected

hCMEC with WT GBS, the ΔbspCmutant, or the complemented strain. After four hours of

infection, we collected cells and isolated RNA for RT-qPCR analysis to quantify IL-8 and

CXCL-1 transcripts. We focused on the neutrophil chemokines IL-8 and CXCL-1 as these

cytokines are highly induced during bacterial meningitis [28] and we observed an increase in

neutrophilic infiltrate in brain tissue during the development of GBS meningitis in our mouse
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Fig 3. BspC contributes to pathogenesis of GBS meningitis in vivo. (A) A Kaplan-Meier plot showing survival of CD-1 mice infected with 109 CFU of either WT
GBS or the ΔbspCmutant. (B) 72 h after infection with 108 CFU of either WT GBS or the ΔbspCmutant, mice were euthanized and bacterial loads in brain, lung,
and blood were quantified. Lines indicate statistical median. (C and D) H&E images showing the leptomeninges on the surface of brains from CD-1 mice infected
with either WT GBS (C) or the ΔbspCmutant (D). Arrows indicate areas of meningeal thickening and leukocyte infiltration. Scale bar is 100 μM. (E and F)
Quantification of infiltrating immune cells in the brains of mice infected with WT GBS or the ΔbspCmutant. The presence CD45+, CD11b+, Ly6C+ (E), and CD45
+, CD11b+, Ly6G+ (F) cells was determined using flow cytometry. (G and H) ELISA was performed on mouse brain tissue homogenates to assess cytokine protein
levels. KC (G) and IL-1β (H) were quantified for brains frommice challenged with either WT GBS or the ΔbspCmutant. Statistical analysis: (A) Log-rank test. (B)
Two-way ANOVA with Sidak’s multiple comparisons test. (E and F) One-way ANOVA with Sidak’s multiple comparisons test. (G and H) Mann-Whitney test. �,
P< 0.0005; ��, P< 0.005; ���, P< 0.0005; ����, P< 0.00005.

https://doi.org/10.1371/journal.ppat.1007848.g003
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model. Cells infected with WT GBS had significant increases of both transcripts compared to

cells infected with the ΔbspCmutant. Complementation of the bspCmutation restored the

ability of the bacteria to stimulate the expression of IL-8 and CXCL-1 (Fig 4A and 4B). Addi-

tionally, treatment of hCMEC with purified BspC protein resulted in increased transcript

abundance (Fig 4C and 4D) and protein secretion (Fig 4E and 4F) for both IL-8 and CXCL-1

compared to untreated cells or treatment with control protein, CshA from Streptococcus gordo-

nii, that was similarly purified from E. coli.

Nuclear factor-κB (NF-κB) represents a family of inducible transcription factors, which

regulates a large array of genes involved in different processes of the immune and inflamma-

tory responses, including IL-8, CXCL-1 and IL-1 [29]. To assess whether the NF-κB pathway

is activated by BspC, we utilized the Hela-57A NF- κB luciferase reporter cell line as described

previously [30]. Cells infected with WT GBS had significantly higher luciferase activity than

uninfected and ΔbspCmutant GBS infected cells, indicating that BspC contributes to NF- κB
activation (Fig 4G). Additionally, immunofluorescent staining of hCMEC revealed an increase

in p65 expression, an indicator of NF-κB activation, during infection with WT GBS but not in

response to infection with ΔbspCmutant GBS (Fig 4H–4J).

BspC interacts with the host endothelial cytoskeletal component vimentin

We next sought to identify the host protein receptor on brain endothelial cells that interacts

with BspC. Membrane proteins of hCMEC were separated by 2-dimensional electrophoresis

(2-DE), then blotted to a PVDF membrane. Following incubation with biotinylated BspC pro-

tein, the PVDF membrane was incubated with a streptavidin antibody conjugated to HRP.

While many proteins were detected on the Coomassie stained gel, biotinylated BspC protein

specifically interacted predominately with one spot in the PVDF membrane with molecular

mass around 50–55 kDa and isoelectric point (pI) around 5 (Fig 5A and 5B). The correspond-

ing spot from the Coomassie-stained 2-DE gel was excised and digested with trypsin (Fig 5C).

Resulting peptides were analyzed by liquid chromatography-tandem mass spectrometry. The

spectra from the spot yielded 158 peptide sequences which matched to human vimentin. The

molecular weight, 53.6 kDa, and calculated pI, 5.12, of vimentin match the values for the spot

on the 2-DE gels. This procedure was repeated for membrane proteins from another human

brain endothelial cell line (hBMEC) that has been used previously to study GBS interactions

[31]. Mass spectrometry analysis also determined that BspC interacted with human vimentin

(S3A–S3C). The control far Western blot with the streptavidin antibody conjugated to HRP

did not show any hybridization (S3D Fig).

To confirm these protein-protein interactions in vivo, we employed a bacterial two-hybrid

system (BACTH, "Bacterial Adenylate Cyclase-Based Two-Hybrid") [32]. This system is based

on the interaction-mediated reconstitution of a cyclic adenosine monophosphate (cAMP) sig-

naling cascade in Escherichia coli, and has been used successfully to detect and analyze the

interactions between a number of different proteins from both prokaryotes and eukaryotes

[33]. Using a commercially available kit (Euromedex) according to manufacturer’s directions

Fig 4. BspC is necessary and sufficient to induce neutrophil chemokine signaling. (A and B) RT-qPCR to assess IL-8 (A) and CXCL-1 (B) transcript levels in
uninfected hCMEC or hCMEC infected withWT GBS, the ΔbspCmutant, or the complemented strain. (C and D) RT-qPCR analysis quantifying IL-8 (C) and CXCL-1
(D) transcripts in hCMEC treated with purified BspC protein or the S. gordonii CshA protein. (E and F) ELISA to measure IL-8 (E) and CXCL-1 (F) protein secretion
by hCMEC treated with BspC or CshA. (G) Luciferase activity of uninfected Hela-57A cells and cells infected with WT GBS or the ΔbspCmutant was assessed.
Experiments were performed at least three times with each condition in triplicate. Data from representative experiments are shown and error bars represent the
standard deviation of the mean for one experiment. Data were analyzed with One-way ANOVA with Sidak’s multiple comparisons test. (H-J) Immunofluorescent
staining showing p65 localization in uninfected hCMEC (H), hCMEC infected withWT GBS (I), and hCMEC infected with the ΔbspCmutant (J). Following infection,
cells were fixed with formaldehyde and incubated with a rabbit antibody to p65. Nuclei were labelled with DAPI. Scale bar is 50 μM. �, P< 0.05; ��, P< 0.005; ���,
P< 0.0005; ����, P< 0.00005.

https://doi.org/10.1371/journal.ppat.1007848.g004
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and as described previously [34], vimentin was cloned and fused to the T25 fragment as a N-

terminal fusion (T25-Vimentin), using the pKT25 plasmid, and bspC was cloned as a C-termi-

nal fusion (BspC-T18) using the pUT18 plasmid. To test for interaction, these plasmids were

transformed into an E. coli strain lacking adenylate cyclase (cyaA). We observed blue colonies

Fig 5. BspC interacts with the host endothelial cytoskeletal component vimentin. (A) FarWestern blot analysis of hCMECmembrane proteins probed
with biotinylated BspC. Membrane proteins were extracted from hCMEC and separated by 2-DE in duplicate. One gel was transferred to a PVDFmembrane
and probed with biotinylated BspC. The specific interaction of BspC was detected by a streptavidin antibody conjugated to HRP and visualized by x-ray film
exposure. The other gel was stained with Coomassie blue. The spot identified from the x-ray film was aligned to the Coomassie stained gel and the
corresponding spot was excised and digested with trypsin. (B) Electrospray ionization-tandemmass spectrometry analysis identifies the protein vimentin.
(C) Amino acid sequence of human vimentin. Underscored and bolded are the peptide sequences identified fromMS analysis. (D-F) Bacterial two-hybrid
assay using E. coli containing empty vector controls (D), the BspC and vimentin vectors (E), and the positive control vectors (F). (G) β-galactosidase activity
of E. coli was quantified using a Miller assay. The Miller assay was performed three times with each condition in five replicates. Data from one representative
experiment is shown, error bars represent the standard deviation of the mean. Data were analyzed using one-way ANOVA with Dunnett’s multiple
comparisons test. ����, P< 0.00005.

https://doi.org/10.1371/journal.ppat.1007848.g005
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when grown on LB agar plates containing X-gal, indicating β-galactosidase activity and a posi-
tive interaction between Vimentin and BspC compared to the empty vector control (Fig 5D

and 5E). A leucine zipper that is fused to the T25 and T18 fragments served as the positive con-

trol for the system (Fig 5F). To quantify β-galactosidase activity, cells grown to log phase were

permeabilized with 0.1% SDS and toluene and enzymatic activity measured by adding ONPG

as described previously [34]. The E. coli strain containing both vimentin and BspC expressing

plasmids exhibited increased β-galactosidase activity (Miller units) compared to the empty

vector control strain (Fig 5G). We also quantified the interaction between BspC and vimentin

by performing microscale thermophoresis (MST) [35] as described in Methods. The dissocia-

tion constant (Kd) was 3.39μM as calculated from the fitted curve that plots normalized fluo-

rescence against concentration of vimentin (S4E Fig). These results demonstrate a direct

interaction between BspC and vimentin.

GBS co-localization with cell-surface vimentin is dependent on BspC

To visualize the localization of WT GBS and vimentin in brain endothelial cells we performed

imaging flow cytometry of uninfected andWT GBS infected hCMEC. Cells were fixed, permea-

bilized, and incubated with antibodies to vimentin and GBS. We observed that vimentin protein

was present throughout the cytoplasm of uninfected hCMEC (Fig 6A and 6B), but during infec-

tion GBS co-localized with vimentin near the surface of infected cells (Fig 6C and 6D). To fur-

ther characterize the localization of GBS and vimentin, we performed immunofluorescent

staining of hCMEC infected with either WT GBS or the ΔbspCmutant. Following infection,

cells were fixed but not permeabilized to permit labeling of only extracellular bacteria and sur-

face expressed vimentin. We observed that surface vimentin of hCMEC co-localized with WT

GBS bacteria, while this was not seen for hCMEC infected with the ΔbspCmutant (Fig 6E–6H).

To quantify co-localization of GBS with vimentin, the number of bacteria that overlapped with

the vimentin signal was divided by the total number of bacteria in each field of view (Fig 6I). No

staining of either GBS or vimentin was observed in IgG controls (Fig 6J–6L).

BspC and vimentin promote GBS attachment to cells in vitro

To first determine if BspC-mediated attachment to cells is dependent on vimentin, we infected

HEK293T cells with lentiviruses containing either the vimentin expression plasmid pLenti-

VIM or the vector control pLenti-mock. Immunofluorescent staining reveals that HEK293T

pLenti-mock cells do not express vimentin while the HEK203T pLenti-VIM clone exhibits

strong vimentin labelling (Fig 7A and 7B). WT GBS was significantly more adherent to

HEK293T cells that express vimentin while the ΔbspCmutant showed no difference in attach-

ment to either cell line (Fig 7C). Next, we assessed the effect of blocking the vimentin-GBS

interaction by treating hCMEC with anti-vimentin antibodies prior to infection with GBS (Fig

7D). Treatment with a vimentin antibody that recognizes the N-terminal epitope (AA31-80),

as well as with IgG isotype controls did not alter adherence of the WT or ΔbspCmutant strains;

however, pre-incubation with the mouse V9 antibody [36, 37], which reacts with the C-termi-

nal of vimentin (AA405-466), reduced WT GBS adherence to levels comparable to the adher-

ence of the ΔbspCmutant (Fig 7E and 7F). These results indicate that the interaction between

BspC and cell-surface vimentin is dependent on the C-terminus of vimentin.

Vimentin contributes to the pathogenesis of meningitis in vivo

We obtained WT 129 and 129 vimentin KOmice and confirmed the absence of vimentin in

the brain endothelium of the KO animals by immunofluorescent staining (S5A and S5B Fig).

To determine the necessity of vimentin in GBS meningitis disease progression, we infected
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WT and vimentin KOmice with WT GBS and observed that they were less susceptible to GBS

infection and exhibited increased survival compared to WT animals (Fig 8A). Further, signifi-

cantly less bacteria were recovered from the tissues of KO mice compared to the tissues of WT

mice (Fig 8B). WT and vimentin KOmice infected with ΔbspCmutant GBS showed no differ-

ence in survival and tissue bacterial counts (S6 Fig). Additionally, for animals infected with

WT GBS, we detected significantly less KC and IL-1β in brain tissues of vimentin KO com-

pared to WTmice, suggesting that vimentin contributes to the initiation of immune signaling

pathways during GBS infection (Fig 8C and 8D). Taken together these results indicate the

importance of vimentin in GBS dissemination into the brain and meningitis disease

progression.

Discussion

Our studies reveal a unique requirement for the Group B streptococcal antigen I/II protein,

BspC, to brain penetration by GBS, the leading agent of neonatal bacterial meningitis. A

decreased ability by the GBS ΔbspCmutant to attach to brain endothelium and induce neutro-

phil chemoattractants in vitro was correlated with a reduced risk for development of meningi-

tis and markedly diminished lethality in vivo. We identified that BspC interacts directly with

host vimentin and that blocking this interaction abrogated BspC-mediated attachment to

hCMEC. Further, vimentin deficient mice infected with GBS exhibited decreased mortality,

bacterial brain loads, and cytokine production in brain tissue. These results corroborate the

growing evidence that this intermediate filament protein plays important roles in the patho-

genesis of bacterial infections [38], and provide new evidence for the pivotal role of the BspC

adhesin in GBS CNS disease (Fig 9).

The oral streptococcal AgI/II adhesins range in composition from 1310–1653 amino acid

(AA) residues, while GBS AgI/II proteins are smaller (826–932 AA residues) [39]. The primary

sequences of AgI/II proteins are comprised of six distinct regions (Fig 1B), several of which

have been shown to mediate the interaction to various host substrates. The S.mutans protein

SpaP as well as the S. gordonii proteins SspA and SspB have been demonstrated to interact spe-

cifically with the innate immunity scavenger protein gp-340. [40] Recently, the GAS AgI/II

protein AspA, as well as BspA, the AgI/II homolog expressed mainly by the GBS strain

NEM316, have also been shown to bind to immobilized gp-340 [15, 18]. Gp-340 proteins are

involved in various host innate defenses and are present in mucosal secretions, including saliva

in the oral cavity and bronchial alveolar fluid in the lung. They can form complexes with other

mucosal components such as mucins and function to trap microbes for clearance. However,

when gp-340 is immobilized, it can be used by bacteria as a receptor for adherence to the host

surface. [15, 41–44]. There is evidence that the Variable (V) regions of SspB, SpaP, AspA and

BspA facilitate gp340-binding activity [15, 45–47]. AgI/II family adhesins have also been

shown to interact with other host factors including fibronectin, collagen, and β1 integrins to
promote host colonization [14, 48–50], demonstrating the multifactorial nature of these adhe-

sins. It is unknown if GBS BspC interactions with other host factors are similar to those of the

Fig 6. GBS co-localization with cell-surface vimentin is dependent on BspC. (A-D) Imaging flow cytometry showing vimentin localization in uninfected hCMEC (A
and B) and hCMEC infected withWT GBS (C-D). Cells were fixed and permeabilized prior to staining with antibodies to vimentin and the group B carbohydrate
antigen to label cell-associated GBS. (E-H) Immunofluorescent staining of hCMECmonolayers infected withWT GBS (E-F) or the ΔbspCmutant (G-H). Following a
one-hour infection, hCMEC were washed to remove nonadherent bacteria then fixed and labelled with antibodies to vimentin and GBS. Nuclei were labelled with
DAPI. Magnified images of the areas highlighted in (E) and (G) are shown in (F) and (H). Scale bar in (E) is 50 μm. Scale bare in (F) is 10 μm. Arrows indicate GBS co-
localizing with vimentin. (I) Quantification of co-localization of GBS and vimentin was performed by dividing the number of GBS that co-localize with vimentin by the
total number of GBS. Error bars represent the median. Statistical analysis was performed using and unpaired t test. �, P< 0.05. (J-L) Negative staining controls of
hCMECmonolayers infected withWT GBS.

https://doi.org/10.1371/journal.ppat.1007848.g006
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Fig 7. GBS adherence to cells is dependent on vimentin. (A and B) Immunofluorescent staining to show vimentin expression of
HEK293T pLenti-Mock (A) and HEK293T pLenti-VIM (B) cells. Scale bar is 200 μm. (C) Adherence of WT GBS, the ΔbspCmutant, and
the complemented strain to transfected HEK293T cells. Data from two independent experiments with each condition in 8 replicates is
combined. (D) Schematic showing regions of vimentin recognized by the monoclonal antibodies. (E and F) hCMEC were pre-incubated
with antibodies to the N-terminal (E) or the C-terminal (F) of vimentin or with an IgG control prior to a 30 min infection with either WT
GBS or the ΔbspCmutant. Experiments were performed three times with each condition in triplicate and data from one representative
experiment are shown. Error bars represent the standard deviation of the mean. Statistical analysis was performed using a two-way
ANOVAwith Sidak’s multiple comparisons test. ��, P< 0.005; ���, P< 0.0005; ����, P< 0.00005.

https://doi.org/10.1371/journal.ppat.1007848.g007

Fig 8. Vimentin contributes to the pathogenesis of GBS infection. (A) Kaplan-Meier plot showing survival of WT
129 and 129 Vim-/-mice infected with 108 CFU ofWT GBS. (B) Tissue bacterial counts for WT 129 and 129 Vim-/-

mice infected withWT GBS. (C and D) ELISA to quantify KC (C) and IL-1β (D) protein in brain tissue homogenates.
Statistical analysis: (A) Log-rank test. (B-D) Mann-Whitney test. ��, P< 0.005; ���, P< 0.0005; ����, P< 0.00005.

https://doi.org/10.1371/journal.ppat.1007848.g008
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Fig 9. Summary of the role of the BspC-vimentin interaction in promoting meningitis. BspC interacts with vimentin on the surface of CMEC to promote
GBS attachment and the production of the neutrophil recruiting cytokines IL-8 and CXCL-1 through the NF-κB pathway.

https://doi.org/10.1371/journal.ppat.1007848.g009
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AgI/II proteins from other streptococci, particularly since the respective V-domains of these

homologs are distant enough to suggest different binding partners. Previous work by Chuze-

ville et al. suggests that the integrative and conjugative element which contains the bspC gene

can contribute to bacterial adherence to fibrinogen [19]. Our MST experiments reveal the Kd

for the interaction between BspC and vimentin to be 3.39 μM. This binding affinity is very

similar to that observed for other multifunctional bacterial adhesins and their various host

ligands. For example, the Kd for the interaction between fibronectin-binding protein B of

Staphylococcus aureus and fibrinogen, elastin, and fibronectin has been demonstrated to be

2 μM, 3.2 μM, and 2.5 μM, respectively [51]. Whether BspC can promote adherence to other

host factors requires further investigation as these interactions may be critical to GBS coloniza-

tion of mucosal surfaces such as the gut and the vaginal tract.

Here we show that GBS BspC interacts with host vimentin, an important cytoskeletal pro-

tein belonging to class III intermediate filaments. Vimentin is located in the cytoplasm and

functions as an intracellular scaffolding protein that maintains structural and mechanical cell

integrity [52]. However, vimentin is also found on the surface of numerous cells such as T

cells, platelets, neutrophils, activated macrophages, vascular endothelial cells, skeletal muscle

cells, and brain microvascular endothelial cells [53–60]. Vimentin also mediates a variety of

cellular processes including cell adhesion, immune signaling, and autophagy [55, 61, 62]. Fur-

ther, the role of cell surface vimentin as an attachment receptor facilitating bacterial or viral

entry has been previously documented for other pathogens [38, 63–65]. The BspC domain that

mediates the vimentin interaction is currently under investigation. As the V domain is likely

projected from the cell surface and has been implicated in host interactions for other strepto-

cocci, we hypothesize that this may be a critical domain for this interaction. Additionally, as

the V-domain of other Bsp homologs share 96–100% identity with the V-domain of BspC, we

predict that the other Bsp proteins might also interact with vimentin, but this would be a topic

for future investigation.

There is a growing body of evidence that various bacteria can interact with vimentin to pro-

mote their pathogenesis, including Escherichia coli K1, Salmonella enterica, Streptococcus pyo-

genes, and Listeria monocytogenes. Thus, vimentin has been shown to be important in

experimental models of infection at body sites other than the brain [38, 57, 60, 66, 67]. Interest-

ingly, previous studies on the meningeal pathogen E. coli K1 have demonstrated that the bacte-

rial surface factor, IbeA, interacts with vimentin to promote bacterial uptake into brain

endothelial cells [60, 68]. Similarly, while our study was underway, it was reported that another

bacterium capable of causing meningitis, L.monocytogenes, uses InlF to interact with vimentin

to promote brain invasion [67]. Along with our results presented here, this may suggest a com-

mon mechanism for meningeal bacterial pathogens to penetrate the BBB and cause CNS dis-

ease. However, our analysis of these three bacteria proteins showed no homology or predicted

regions that might commonly interact with vimentin. Furthermore, the interaction between

the E. coli receptor IbeA and the L.monocytogenes receptor InlF with cell-surface vimentin can

be blocked by an antibody to the N-terminal region of vimentin [60, 67], while we demonstrate

that the interaction between BspC and cell-surface vimentin can be blocked with an antibody

to the C-terminal of vimentin. The implications of this unique interaction between a bacterial

receptor and the C-terminal of vimentin remain to be explored.

Neuronal injury during bacterial meningitis involves both microbial and host factors, and

subsequent to attachment to the brain endothelium and penetration of the BBB, GBS stimula-

tion of host immune pathways is the next important step in the progression of meningitis. The

release of inflammatory factors by brain endothelial cells, microglia, astrocytes, and infiltrating

immune cells can exacerbate neuronal injury [9]. Our data suggest that, like other streptococ-

cal AgI/II family polypeptides, BspC plays a role in immune stimulation. AgI/II family proteins
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contain two antigenic regions (the antigens I/II and II) [69] and this ability to elicit an inflam-

matory response makes SpaP, the S.mutans AgI/II protein, an attractive candidate for vaccine

development to prevent dental caries [14, 70]. In this study we found that BspC can stimulate

NF-κB activation and the release of the proinflammatory cytokines IL-8 and CXCL-1 from

hCMEC. Both of these chemokines are major neutrophil recruiting chemoattractants and are

the most highly induced during GBS infection [27, 71]. We observed that mice infected with

GBS mutants that lack BspC exhibited lower brain bacterial loads and less meningeal inflam-

mation compared to animals challenged with WT GBS. Interestingly, WT and ΔbspCmutant

bacterial loads were similar in the blood, indicating that BspC may not influence GBS survival

and proliferation in the blood; however, further investigation is warranted.

This study demonstrates for the first time the importance of a streptococcal AgI/II protein,

BspC, in the progression of bacterial meningitis. Our data demonstrate that BspC, likely in

concert with other GBS surface determinants mentioned above (pili, Srr1/2, SfbA), contributes

to the critical first step of GBS attachment to brain endothelium. As the other described GBS

surface factors have been shown to interact with ECM components, BspC may mediate a more

direct interaction with the host cell as it facilitates interaction with vimentin. We have

observed a unique requirement for vimentin to the pathogenesis of CNS disease; vimentin KO

mice were markedly less susceptible to GBS infection and exhibited reduced bacterial tissue

load and inflammatory signaling. Vimentin is also known to act as a scaffold for important sig-

naling molecules and mediates the activation of a variety of signaling pathways including

NOD2 (nucleotide-binding oligomerization domain-containing protein 2) and NLRP3 (nucle-

otide-binding domain, leucine-rich-containing family pyrin domain-containing-3) that recog-

nize bacterial peptidoglycan and activate inflammatory response via NF-κB signaling [68, 72,

73]. Thus, continued investigation into the mechanisms of how BspC-vimentin interactions

dually promote bacterial attachment and immune responses, as well as how BspC expression

may be regulated and whether known GBS two-component systems are involved, is warranted.

These studies will provide important information that may inform future therapeutic strategies

to limit GBS disease progression.

Materials andmethods

Ethics statement

Animal experiments were approved by the committee on the use and care of animals at San

Diego State University (SDSU) protocol #16-10-021D and at University of Colorado School of

Medicine protocol #00316 and performed using accepted veterinary standards. San Diego

State University and the University of Colorado School of Medicine are AAALAC accredited;

and the facilities meet and adhere to the standards in the “Guide for the Care and Use of Labo-

ratory Animals.”

Bacterial strains, growth conditions, proteins, and antibodies

GBS clinical isolate COH1 (serotype III) [74], 515 (serotype Ia) [20], the recent meningitis iso-

late 90356 (serotype III) [75] and their isogenic ΔbspCmutants were used for the experiments.

GBS strains were grown in THB (Hardy Diagnostics) at 37˚C, and growth was monitored by

measuring the optical density at 600 nm (OD600). Lactococcus lactis strains were grown in M17

medium (BD Biosciences) supplemented with 0.5% glucose at 30˚C. For antibiotic selection,

2 μg/mL chloramphenicol (Sigma) and 5 μg/mL erythromycin (Sigma) were incorporated into

the growth medium. BspC and CshA recombinant proteins, and the BspC antibody were puri-

fied as described previously [15, 76]. The anti-BspC polyclonal antibody was further adsorbed

(as described in [77]) against COH1ΔbspC bacteria to remove natural rabbit antibodies that
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react with bacterial surface antigens. Briefly, anti-BspC antibody was diluted to 2.28 mg/mL in

PBS and incubated with COH1ΔbspC bacteria overnight at 4˚C, with rotation. Bacteria were

pelleted by centrifugation and the supernatant was collected and filtered using 0.22 μM cellu-

lose acetate SpinX centrifuge tube filters (Costar). A normal rabbit IgG antibody (Invitrogen)

was adsorbed as described above, and utilized as a negative isotype control.

Targeted mutagenesis and complementation vector construction

The ΔbspCmutant was generated in COH1 and 90356 by in-frame allelic replacement with a

chloramphenicol resistance cassette by homologous recombination using a method previously

described [10]. A knockout construct was generated by amplifying up- and down-flanking

regions of the bspC gene from COH1 genomic DNA using primer pairs of 5’flank-F (GCAGA

CACCGATTGCACAAGC)/R (GAAGGCGATCTTGCCCTCAA) and 3’flank-F (GTCAGC

TATCGGTTTAGCAGG)/R(CTATACACGCCTACAGGTGTC). The chloramphenicol resis-

tance (cat) cassette was amplified with primers Cat-F (GAGGGCAAGATCGCCTTCATGGA

GAAAAAAATCACTGGAT) and Cat-R (CTGCTAAACCGATAGCTGACTTACGCCCC

GCCCTGCCACT). Then the construct of two flanks along with the cat cassette was amplified

with a pair of nest primers, Nest-xhoI (CCFCTCGAGGATGCTCAAGATGCACTCAC) and

Nest-xbaI (GCTCTAGACGAGCCAAATTACCCCTCCT), which was then cloned into the

pHY304 vector [78] and propagated in E. coli strain DH5α [79] prior to isolation and transfor-

mation to COH1 and 90356 GBS. A ΔbspCmutant had been generated previously in 515 [20].

The complemented strain of ΔbspCmutant in COH1 was generated by cloning bspC into

pDCerm, an E. coli-GBS shuttle expression vector. Gene bspC was amplified from GBS 515

genomic DNA using primers pDC.bspC.F (TGGGTACCAGGAGAAAATATGTATAAAAAT

CAAAC) and pDC.bspC.R (CCGGGAGCTCGCAGGTCCAGCTTCAAATC), designed to

encode a KpnI and SacI restriction site at its termini respectively. This bspC amplicon was then

cloned into pDCerm and propagated in E. coli strain Stellar (ClonTech), prior to isolation and

transformation into COH1 GBS. A L. lactis strain expressing BspC had been generated previ-

ously [20].

Hemolysis assay

GBS strains were grown to an OD600 of 0.4, harvested by centrifugation, and resuspended in

PBS. A total of 1 x 108 CFU was added to fresh sheep blood (VWR) in V-bottom 96-well plates

(Corning). The plates were sealed and incubated at 37˚C with agitation for 1 h. The plates

were centrifuged at 200 x g for 10 min, and 100 μl of the supernatant was transferred to a flat-

bottom 96-well plate. The absorbance at 541nm (A541) was read, and percent hemolysis was

calculated by comparing the A541 values for GBS-treated wells to the A541 values for the wells

with blood incubated with water.

GBS BspC and capsule flow cytometry

Flow cytometry to determine BspC and capsule expression was performed as described in

[80]. Briefly, bacterial stocks were washed in sterile PBS containing 0.5% bovine serum albu-

min (BSA) (VWR) then incubated with a purified monoclonal anti-serotype III antibody or a

purified monoclonal anti-serotype Ia isotype control at a 1:10,000 dilution, washed via centri-

fugation, and labeled with a donkey anti-mouse IgM conjugated to AlexaFluor647 (Invitrogen)

at a 1:2,000 dilution. All incubations were performed at 4˚C with shaking. Samples were

washed again then resuspended and read on a FACScalibur flow cytometer (BD Biosciences),

and analyzed using FlowJo (v10) software. The monoclonal antibodies were provided by John

Kearney at the University of Alabama at Birmingham.
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To stain for surface BspC expression, GBS were grown to OD600 of 0.25 in EndoGRO-MV

culture medium (Millipore) in order to mimic host infection conditions, pelleted by centrifu-

gation, resuspended in PBS and frozen L. lactis strain stocks were thawed and washed in

buffer. Approximately, 1 x 106 CFU of each strain was incubated with either adsorbed anti-

BspC antibody or adsorbed anti-rabbit IgG at a 1:50 dilution at 4˚C, overnight, with rotation.

The next day, bacteria were washed via centrifugation, and labeled with a donkey anti-rabbit

IgG conjugated to AlexaFluor488 (Invitrogen) at a 1:2,000 dilution for 45 minutes at room

temperature with rotation. Samples were washed again then resuspended and read on a FACS-

calibur flow cytometer (BD Biosciences), and analyzed using FlowJo (v10) software.

Immunofluorescent staining of GBS

Bacteria were grown to an OD600 of 0.25 in EndoGRO-MV culture medium (Millipore), the

bacteria suspension was smeared on charged glass slides (Fisher), and the slides were fixed

with 4% paraformaldehyde for 30 min at room temperature. The slides were blocked with 3%

BSA for 1 hour, then incubated with rabbit antibodies to BspC or IgG at a 1:50 dilution fol-

lowed by donkey anti-rabbit conjugated to AlexaFluor488 (Invitrogen). Bacteria were imaged

using a BZ-X710 fluorescent microscope (Keyence).

Scanning electron microscopy

Bacteria were grown to log phase and were then fixed for 10 min using a one-step method with

2.5% glutaraldehyde, 1% osmium tetraoxide, 0.1M sodium cacodylate. Bacteria were collected

on 0.4 μM polycarbonate filters by passing the solution through a swinnex device outfitted on

a 10 mL syringe. The filters were dehydrated through a series of increasing ethanol concentra-

tions and then dried in a Tousimis SAMRI-790 critical point drying machine. The dried filters

were mounted on SEM sample stubs with double-sided carbon tape, coated with 6nm plati-

num using a Quorom Q150ts high-resolution coater and imaged with a FEI FEG450 scanning

electron microscope.

Cell lines and infection assays

Cells of the well-characterized human cerebral microvascular endothelial cell line (hCMEC/

D3), referred to here as hCMEC were obtained fromMillipore and were maintained in an

EndoGRO-MV complete medium kit supplemented with 1 ng/ml fibroblast growth factor-2

(FGF-2; Millipore) [81–84]. Hela57A were provided by Marijke Keestra-Gounder at the Uni-

versity of Colorado, Anschutz Medical Campus and cultured in DMEM (Corning Cellgro)

containing 10% fetal bovine serum (Atlanta Biologicals). HEK293T cells were obtained from

Origene and cultured in DMEM containing 10% fetal bovine serum and 2mM L-glutamine

(Thermo Fisher). The lentiviral expression plasmid pLenti-C-Myc-DDK harboring the human

vimentin gene (NM_003380, pLenti-VIM) was obtained from Origene. To generate lentivi-

ruses, HEK293T cells were transfected with the pLenti-VIM plasmid in combinations with the

packaging plasmid psPAX2 and the envelope plasmid pMD2.G (Addgene) using TransIT_293

transfection reagent (Mirus). After an 18 h incubation, the culture supernatant containing len-

tiviruses was harvested and filtered through a 0.45 μm syringe filter to remove cellular debris.

The viral titer was 106 to 107 transduction units (TU) per mL. 105 fresh HEK293T cells were

infected with lentiviruses at a MOI of 5 for 24 h in the presence of 10 μg/mL polybrene

(Sigma). The empty lentiviral expression plasmid pLenti-mock was used as a vector control.

Assays to determine the total number of cell surface-adherent or intracellular bacteria were

performed as describe previously [10]. Briefly, bacteria were grown to mid-log phase to infect

cell monolayers (1 × 105 CFU, at a multiplicity of infection [MOI] of 1). Total cell-associated
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GBS and L. lactis were recovered following a 30 min incubation, while intracellular GBS were

recovered after 2 h infection and 2 h incubation with 100 μg gentamicin (Sigma) and 5 μg pen-

icillin (Sigma) to kill all extracellular bacteria. Cells were detached with 0.1 ml of 0.25% tryp-

sin-EDTA solution and lysed with addition of 0.4 ml of 0.025% Triton X-100 by vigorous

pipetting. The lysates were then serially diluted and plated on THB agar to enumerate bacterial

CFU. For antibody pre-treatment assays, hCMEC were incubated with 0.3 μg/ml antibodies

for 30 min prior to infection with GBS. The mouse monoclonal antibody to vimentin, clone

V9 (Abcam), the rabbit polyclonal antibody to N-terminal vimentin (Sigma), and the isotype

controls (VWR) were used. Total cell-associated GBS were recovered following a 1h incuba-

tion. For luciferase assays, Hela57A cells were infected with 1 x 106 CFU (MOI, 10) GBS for 90

min. Cells were then lysed and luciferase activity quantified using a luciferase assay system

(Promega) according to manufacturer’s instructions.

Mouse model of hematogenous GBS meningitis

We utilized a mouse GBS infection model as described previously [10, 26, 27]. Briefly, 8-week

old male CD-1 mice (Charles River), 129S WT, or 129S-Vimtm1Cba/MesDmarkJ (Vimentin

KO) (Jackson Laboratory) were injected intravenously with 1 × 109 CFU of wild-type GBS or

the isogenic ΔbspCmutant for a high dose challenge, or 1 × 108 CFU for a low dose challenge.

At the experimental endpoint mice were euthanized and blood, lung, and brain tissue were

collected. The tissue was homogenized, and the brain homogenates and lung homogenates as

well as blood were plated on THB agar for enumeration of bacterial CFU.

Histology

Mouse brain tissue was frozen in OCT compound (Sakura) and sectioned using a CM1950

cryostat (Leica). Sections were stained using hematoxylin and eosin (Sigma) and images were

taken using a BZ-X710 microscope (Keyence).

Brain flow cytometry

At 48 h post-infection with 1 × 108 CFU of GBS, mice were euthanized then perfused to

replace blood with PBS. The entire mouse brain was harvested from each animal and the tissue

was processed with the Multi-Tissue Dissociation kit #1 following the Adult brain dissociation

protocol (Miltenyi Biotec). Cells were resuspended in MACS buffer (Miltenyi Biotec) and

incubated with antibodies to Ly6C conjugated to BV421, CD45 conjugated to PE, CD11b con-

jugated to FITC, and Ly6G conjugated to APC (Invitrogen) at 1:200 dilution, UltraLeaf anti-

mouse CD16/CD32 Fc block (Biolegend) at 1:400 dilution, and fixable viability dye conjugated

to eFLuor506 (eBioscience) at 1:1000 dilution for 1 h, then fixed (eBioscience). Cells were

counted using a Countess automated cell counter (Invitrogen), read on a Fortessa X-20 flow

cytometer (BD Biosciences), and analyzed using FlowJo (v10) software. Gates were drawn

according to fluorescence minus one (FMO) controls.

RT-qPCR and ELISA

GBS were grown to mid-log phase and 1 × 106 CFU (MOI, 10) were added to hCMEC mono-

layers and incubated at 37˚C with 5% CO2 for 4 h. Cell supernatants were collected, the cells

were then lysed, total RNA was extracted (Machery-Nagel), and cDNA was synthesized

(Quanta Biosciences) according to the manufacturers’ instructions. Primers and primer effi-

ciencies for IL-8, CXCL-1, and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) were

utilized as previously described [85]. IL-8 and CXCL-1 from hCMEC supernatants, and KC
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and IL-1β from mouse brain homogenates were detected by enzyme-linked immunosorbent

assay according to the manufacturer’s instructions (R&D systems).

Immunofluorescent staining of hCMEC and HEK293T cells

hCMEC were grown to confluency on collagenized coverslips (Fisher). Following a 1 h infec-

tion, cells were washed with PBS to remove non-adherent bacteria and fixed with 4% parafor-

maldehyde (Sigma) for 30 min. For Fig 4, cells were incubated with 1% BSA in PBS with 0.01%

Tween-20 (Research Products International) to block non-specific binding for 15 min, then

incubated with a rabbit antibody to p65 (Sigma) at a 1:200 dilution overnight at 4˚C. Cover-

slips were then washed with PBS and incubated with donkey anti-rabbit conjugated to Cy3

(Jackson Immunoresearch) at a 1:500 dilution for 1 h at room temperature. For Fig 6, cells

were incubated with 1% BSA in PBS for 15 min, then with antibodies to vimentin (Abcam)

and GBS (Genetex) at a 1:200 dilution overnight at 4˚C. Following washes with PBS and an

incubation with donkey anti-mouse conjugated to Cy3 and donkey anti-rabbit conjugated to

488 secondary antibodies (ThermoFisher) at a 1:500 dilution for 1 h at room temperature, cov-

erslips were washed with PBS and mounted onto glass microscopy slides (Fisher) with VEC-

TASHIELD mounting medium containing DAPI (Vector Labs). Cells were imaged using a

BZ-X710 fluorescent microscope (Keyence). Quantification of GBS and vimentin co-localiza-

tion was performed by counting the number of GBS that co-localized with vimentin and divid-

ing by the total number of GBS in each field. For Fig 7, HEK293T cells were incubated with

the antibody to vimentin followed by a FITC-conjugated secondary antibody. Cells were

imaged using a Cytation 5 fluorescent microplate reader (BioTek).

2-dimensional electrophoresis (2-DE), far western blot, and mass
spectrometry analysis

Membrane proteins of hCMEC cells were enriched using a FOCUS membrane protein kit (G

Biosciences, St. Louis, MO), dissolved in rehydration buffer (7M urea, 2M thiolurea, 1% TBP,

and 0.2% ampholytes 3–10 NL), and quantified using 2D Quant kit (GE Healthcare, Piscat-

away, NJ). Proteins (100μg) were loaded on 7-cm long immobilized pH gradient (IPG) strips

with non-linear (NL) 3–10 pH gradient (GE Healthcare). Isoelectric focusing was carried out

in Multiphor II electrophoresis system (GE Healthcare) in three running phases (phase 1:

250V/0.01h, phase 2: 3500V/1.5h, and phase 3: 3500V/ 4.5h). The second dimension

SDS-PAGE was carried out using 12.5% acrylamide gels in duplicate. One gel was stained with

Coomassie Blue G250 (Bio-Rad, Hercules, CA) for mass spectrometry analysis. The other gel

was transferred to a PVDF membrane for far Western blot analysis.

The PVDF membrane was denaturated and renaturated as described in [86], followed by

incubation in a blocking solution (5% skim milk in PBS) for 1 h. Recombinant BspC was bioti-

nylated using a EZ-Link Sulfo-NHS-Biotin kit (ThermoFisher Scientific, Waltham, MA). The

PVDF membrane was probed with the biotinylated BspC (100μg) in a blocking solution over-

night at 4˚C. After washing three times with a washing buffer (PBS, 0.05% Tween-20), the

PVDFmembrane was incubated with an antibody conjugated to streptavidin-horse radish per-

oxidase (HRP). Interacting proteins were detected by adding enhanced chemiluminescence

(ECL) reagents (ThermoFisher Scientific) and visualized by x-ray film exposure. The protein

spots from far Western blot were aligned to the corresponding protein spots in the Coomassie

stained gel. The identified spots were excised and digested in gel with trypsin (Worthington,

Lakewood, NJ). Peptide mass spectra were collected on MALDI-TOF/TOF, (ABI 4700, AB

Systems, Foster City, CA) and protein identification was performed using the automated result
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dependent analysis (RDA) of ABI GPS Explorer softwareV3.5. Spectra were analyzed by the

Mascot search engine using the Swiss protein database.

Bacterial two-hybrid assay

A bacterial adenylate cyclase two-hybrid assay was performed as in [32] and following manu-

facturer’s instructions (Euromedex). Briefly, plasmids containing T25-Vimentin and

BspC-T18 were transformed into E. coli lacking cyaA and E. coli were plated on LB plates con-

taining X-gal (Sigma). To measure β -galactosidase activity, Miller assays were performed

according to standard protocols [87]. Briefly, E. coli were grown in 0.5mM IPTG (Sigma), then

permeabilized with 0.1% SDS (Sigma) and toluene (Sigma). ONPG (Research Products Inter-

national) was added and absorbance was measured at 600, 550, and 420nm.

Microscale thermophoresis

Three independent MST experiments were performed with His-tagged BspC labelled using

the Monolith His-Tag Labeling Kit RED-tris-NTA 2nd Generation (NanoTemper Technolo-

gies) according to manufacturer’s instructions. The concentration of labelled BspC was kept

constant at 10nM. Vimentin was purchased from Novus Biologicals and titrated in 1:1 dilu-

tions to obtain a series of 16 titrations ranging in concentration from 20 μM to 0 μM.Measure-

ments were performed in standard capillaries with a Monolith NT.115 Pico system at 20%

excitation power and 40%MST power (NanoTemper Technologies).

Imaging flow cytometry

Following a 1 h infection with GBS, hCMEC were washed with PBS to remove non-adherent

GBS. Cells were collected using a cell scraper (VWR) and resuspended in PBS containing 10%

FBS and 1% sodium azide (Sigma). Cells were incubated with primary antibodies to vimentin

(Abcam) and GBS (Genetex) at 1:500 dilution for 1 h at 4˚C followed by donkey anti-mouse

conjugated to Cy3 and donkey anti-rabbit conjugated to 488 (ThermoFisher) secondary anti-

bodies. Cells were then fixed (eBioscience) and analyzed using an ImageStream X imaging

flow cytometer (Amnis).

Data analysis

GraphPad Prism version 7.0 was used for statistical analysis and statistical significance was

accepted at P values of<0.05. (�, P< 0.05; ��, P< 0.005; ���, P< 0.0005; ����, P< 0.00005).

Specific tests are indicated in figure legends.

Supporting information

S1 Fig. (A-C) Flow cytometry using a polyclonal rabbit antibody to BspC to show expression

of BspC inWT COH1 (A), ΔbspCmutant (B), and the complemented (C) GBS strains. (D-G)

Immunofluorescent staining of WT COH1 (D), ΔbspCmutant (E), and the complemented (F)

GBS strains using the BspC antibody to show surface localization of BspC protein. (G) Nega-

tive staining control. Scale bar is 5 μm. (H) Growth curves for WT GBS and the ΔbspCmutant

in THB. (I) Hemolysis assay comparing hemolysis of sheep blood byWT GBS and the ΔbspC
mutant. Representative data of one of at least three independent experiments are shown. Error

bars represent the standard deviation of mean in one experiment. Data were analyzed using an

unpaired t test. (J and K) Flow cytometry using a monoclonal antibody to the serotype III cap-

sule to determine the presence of capsule in WT GBS (J) and the ΔbspCmutant (K) and a

monoclonal antibody to the serotype Ia capsule as an isotype control. (L) Quantification of
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capsule flow cytometry data shown in (J) and (K).

(TIFF)

S2 Fig. Flow cytometry to show BspC surface expression in L. lactis containing the pMSP

empty plasmid (A) and L. lactis containing the pMSP.bspC vector (B).

(TIFF)

S3 Fig. (A) Kaplan-Meier plot showing survival of mice challenged with either WT 515 GBS

or the isogenic ΔbspCmutant. (B-D) Tissue bacterial counts for mice infected with WT 515

and 90356 GBS and the isogenic ΔbspCmutants. 48h post-infection, mice were sacrificed and

bacterial loads in brain (B), lung (C), and blood (D) were quantified. Statistical analysis: (A)

Log-rank test. (B-D) Two-way ANOVA with Sidak’s multiple comparisons test. �, P< 0.0005;
��, P< 0.005.

(TIFF)

S4 Fig. (A) Far western blot analysis of hBMEC membrane proteins using biotinylated BspC

protein. Two spots (I and II) were identified on the x-ray film and aligned to the Coomassie

stained gel. (B) Electrospray ionization-tandem mass spectrometry identifies spots I and II as

vimentin. (C) The amino acid sequence of human vimentin, with the peptide sequences identi-

fied in the MS analysis underscored and bolded. (D) Control Far Western blot with the strep-

tavidin antibody conjugated to HRP only. (E) Representative MST dose response curve

quantifying the dissociation constant for the interaction between BspC and vimentin.

(TIFF)

S5 Fig. Immunofluorescent staining of WT 129 (A) and 129 Vim-/- (B) brain tissue sections

with an antibody to vimentin and with tomato lectin to label blood vessels. Nuclei were

labelled with DAPI. Scale bar is 50 μm.

(TIFF)

S6 Fig. (A) Kaplan-Meier plot showing survival of WT 129 mice or 129 Vim-/- mice chal-

lenged with GBS ΔbspCmutant. (B) 48h post-infection, mice were sacrificed and bacterial

loads in brain, lung, and blood were quantified.

(TIFF)
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