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We present some inverses and group inverses results for linear combinations of two idempotents and their products.

1. Introduction

Let H be a complex Hilbert space. Denote by B(H) the
Banach algebra of all bounded linear operators on H. R(𝑇)

and N(𝑇) represent the range and the null space of 𝑇,
respectively. The identity onto a Hilbert space H is denoted
by 𝐼H or 𝐼 if there does not exist confusion. For 𝑇 ∈ B(H),
the group inverse [1] of 𝑇 is the unique element 𝑇#

∈ B(H)

such that

𝑇𝑇
#
= 𝑇

#
𝑇, 𝑇

#
𝑇𝑇

#
= 𝑇

#
, 𝑇 = 𝑇𝑇

#
𝑇. (1)

𝑇# exists if and only if 𝑇 has finite ascent and descent such
that 𝑖(𝑇) = asc(𝑇) = desc(𝑇) ≤ 1 [2]. When ind(𝑇) = 0, the
group inverse reduces to the standard inverse; that is, 𝑇# =

𝑇−1. In particular, 𝑎# = 𝑎−1 if 𝑎 ̸= 0 and 𝑎# = 0 if 𝑎 = 0 for
a scalar 𝑎. One of the most important applications of group
inverses is to derive some closed-form formulas for general
solutions to operator equations. An operator 𝑃 ∈ B(H) is
said to be idempotent if 𝑃2 = 𝑃. If 𝑇 is group invertible, then
R(𝑇) is closed and the spectral idempotent 𝑇𝜋 is given by
𝑇𝜋 = 𝐼 − 𝑇𝑇#. The operator matrix form of 𝑇 with respect to
the space decomposition H = N(𝑇𝜋) ⊕ R(𝑇𝜋) is given by
𝑇 = 𝑇

1

⊕ 0, where 𝑇
1

is invertible onN(𝑇𝜋) [1].
Idempotents are a type of simplest operators. Various

expressions or equalities consisting of idempotents occur in
operator theory and its applications. Some previous work
on linear combinations of idempotents in statistics can be

found in [3]. There have been several papers devoted to the
invertibility of a linear combination of two idempotent oper-
ators in a Hilbert space or in a 𝐶∗-algebra. In [4], Buckholtz
studied the idempotency of the difference of two operators
in a Hilbert space. Du and Li in [5] had established the
spectral characterization of generalized projections. In [6],
the invertibility of the difference of two orthogonal projectors
in a 𝐶∗-algebra was studied. Li in [7] had investigated how to
express Moore-Penrose inverses of products and differences.
In [8], J. K. Baksalary and O. M. Baksalary discussed the
invertibility of a linear combination of idempotent matrices.
This paper was improved by Koliha and Rakočević [9] by
showing that the rank of a linear combination of two idem-
potents is constant. Du et al. [10] extended the conclusion on
an infinite-dimensional Hilbert space.

The purpose of this note is to characterize the
invertibility and the group invertibility of the linear
combinations of idempotents 𝑃,𝑄 and their products
𝑃𝑄,𝑄𝑃, 𝑃𝑄𝑃,𝑄𝑃𝑄, (𝑃𝑄)

2, and (𝑄𝑃)
2. These linear

combinations were studied by some authors in recent
years [2, 4, 6–9, 11–18]. Some formulas for the group inverse
of a sum of two bounded operators under some conditions
were given (see [7, 11, 14, 19, 20]). Here, we will find group
invertibility for a linear combination of two idempotents
under the condition (𝑃𝑄)2 = 𝑃(𝑄𝑃)

2. A previous study of
the group invertibility of two idempotents was made under
the conditions (𝑃𝑄)2 = (𝑄𝑃)2 or 𝑃𝑄 = 𝑄𝑃 or 𝑃𝑄𝑃 = 𝑄𝑃𝑄
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or (𝑃𝑄)2 = 0. It is clear that these conditions are special cases
of our results.

2. Main Results and Proofs

We start by discussing some lemmas. Let 𝑃 and 𝑄 be two
idempotents. Now, we consider the invertibility of 𝑃−𝑄.This
problem is the subject of Buckholtz’s papers [4] and Koliha
and Rakočević’s paper [12].

Lemma 1 (see [12]). Let 𝑃 and 𝑄 be two idempotents.

(i) 𝑃−𝑄 is invertible if and only if 𝐼−𝑃𝑄 and 𝑃+𝑄−𝑃𝑄
are invertible.

(ii) If 𝑃−𝑄 is group invertible, then 𝐼−𝑃𝑄 and 𝑃+𝑄−𝑃𝑄
are group invertible.

Proof. Since the properties in the lemma are similarly invari-
ant, without loss of generality, we can assume that 𝑃 is an
orthogonal projection. In this case,𝑃 and𝑄 have the operator
matrix representations as follows

𝑃 = (
𝐼 0

0 0
) , 𝑄 = (

𝑄
1

𝑄
2

𝑄
3

𝑄
4

) (2)

with respect to the space decompositionH =R(𝑃) ⊕N(𝑃),
respectively. Since 𝑄2 = 𝑄,

(
𝑄2
1

+ 𝑄
2

𝑄
3

𝑄
1

𝑄
2

+ 𝑄
2

𝑄
4

𝑄
3

𝑄
1

+ 𝑄
4

𝑄
3

𝑄
3

𝑄
2

+ 𝑄2
4

) = (
𝑄
1

𝑄
2

𝑄
3

𝑄
4

) . (3)

So

𝐼 − 𝑃𝑄 = (
𝐼 − 𝑄
1

−𝑄
2

0 𝐼
) ,

𝑃 + 𝑄 − 𝑃𝑄 = (
𝐼 0

𝑄
3

𝑄
4

) , (𝑃 − 𝑄)
2

= (
𝐼 − 𝑄
1

0

0 𝑄
4

) .

(4)

It is clear that item (i) holds, and if 𝑃 − 𝑄 is group invertible,
then (𝑃 − 𝑄)2 is group invertible, which implies that 𝐼 − 𝑄

1

and 𝑄
4

are group invertible.

As for 𝑛-idempotents, we have the following decomposi-
tion.

Lemma 2 (see [21,Theorem 2.3]). Let𝐴 ∈B(H). Then𝐴𝑛 =
𝐴 if and only if

(i) 𝜎(𝐴) ⊆ {0, 𝑒𝑖(2𝑘𝜋/(𝑛−1)) : 0 ≤ 𝑘 ≤ 𝑛 − 2};
(ii) there exists a resolution set {𝐸

𝜆

: 𝜆 ∈ 𝜎(𝐴)} of the
identity 𝐼 and an invertible operator 𝑆 such that

𝑆𝐴𝑆
−1

= ∑
𝜆∈𝜎(𝐴)

⊕ 𝜆𝐸
𝜆

, (5)

where ⊕ denotes the orthogonal direct sum,𝐸
𝜆

is an orthogonal
projection with ∑

𝜆∈𝜎(𝐴)

𝐸
𝜆

= 𝐼, and 𝐸
𝜆

𝐸
𝜇

= 𝐸
𝜇

𝐸
𝜆

= 0 if 𝜆,
𝜇 ∈ 𝜎(𝐴), 𝜆 ̸= 𝜇.

Lemma 3. Let𝑀 = ( 𝐴 𝐵
𝐶 𝐷

) ∈ B(H ⊕K) be such that 𝐴 ∈

B(H) is invertible.Then𝑀 is invertible if and only if the Schur
complement 𝑆 = 𝐷 − 𝐶𝐴−1𝐵 is invertible.

Lemma 4 (see [1,Theorem 7.7.3]). Let𝑀 = ( 𝐴 𝐶
0 𝐷

) ∈B(H⊕

K) be such that 𝐴# exists. Then 𝑀# exists if and only if 𝐷#

exists and 𝐴𝜋𝐶𝐷𝜋 = 0. In this case,

(
𝐴 𝐶

0 𝐷
)

#
= (

𝐴# 𝑌

0 𝐷#) , (6)

where 𝑌 = (𝐴#)
2

𝐶𝐷𝜋 + 𝐴𝜋𝐶(𝐷#)
2

− 𝐴#𝐶𝐷#.

Lemma 5 (see [19, Theorem 3.1]). Let𝑀 = ( 𝐴 𝐵
𝐶 𝐷

) ∈ B(H ⊕

K) be such that 𝐴 ∈ B(H) is invertible and the Schur
complement 𝑆 = 𝐷 − 𝐶𝐴

−1𝐵 is group invertible. Then 𝑀 is
group invertible if and only if 𝑅 = 𝐴2 + 𝐵𝑆𝜋𝐶 is invertible.

As we know, an operator 𝐴 ∈ B(H) is said to be
involutory if 𝐴2 = 𝐼, to be anti-idempotent if 𝐴2 = −𝐴, and
to be tripotent if 𝐴3 = 𝐴. Obviously, involutory, idempotent,
and anti-idempotent are special cases of tripotent. For linear
combinations of two commutative tripotents and their prod-
ucts, we have the following result.

Theorem 6. Let 𝑃,𝑄 satisfy 𝑃3 = 𝑃, 𝑄3 = 𝑄, and 𝑃𝑄 = 𝑄𝑃.
For any scalar 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, and 𝑖, let

Φ = 𝑎𝐼 + 𝑏𝑃 + 𝑐𝑄 + 𝑑𝑃
2

+ 𝑒𝑄
2

+ 𝑓𝑃𝑄 + 𝑔𝑃
2

𝑄 + ℎ𝑃𝑄
2

+ 𝑖(𝑃𝑄)
2

.

(7)

(i) If 𝜆
1

⋅ ⋅ ⋅ 𝜆
9

̸= 0, thenΦ is invertible. In this case,Φ−1 =
∑
9

𝑖=1

𝜆−1
𝑖

𝐸
𝑖

.
(ii) Φ is always group invertible and Φ# = ∑

9

𝑖=1

𝜆#
𝑖

𝐸
𝑖

.
The 𝐸

𝑖

and 𝜆
𝑖

, 𝑖 = 1, 2, . . . , 9, in items (𝑖) and (𝑖𝑖) are
defined as

𝐸
1

=
1

4
(𝑃 + 𝑃

2

) (𝑄 + 𝑄
2

) ,

𝐸
2

= −
1

4
(𝑃 + 𝑃

2

) (𝑄 − 𝑄
2

) ,

𝐸
3

=
1

2
(𝑃 + 𝑃

2

) (𝐼 − 𝑄
2

) ,

𝐸
4

= −
1

4
(𝑃 − 𝑃

2

) (𝑄 + 𝑄
2

) ,

𝐸
5

=
1

4
(𝑃 − 𝑃

2

) (𝑄 − 𝑄
2

) ,

𝐸
6

= −
1

2
(𝑃 − 𝑃

2

) (𝐼 − 𝑄
2

) ,

𝐸
7

=
1

2
(𝐼 − 𝑃

2

) (𝑄 + 𝑄
2

) ,

𝐸
8

= −
1

2
(𝐼 − 𝑃

2

) (𝑄 − 𝑄
2

) ,
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𝐸
9

= (𝐼 − 𝑃
2

) (𝐼 − 𝑄
2

) ,

𝜆
1

= 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ + 𝑖,

𝜆
2

= 𝑎 + 𝑏 − 𝑐 + 𝑑 + 𝑒 − 𝑓 − 𝑔 + ℎ + 𝑖,

𝜆
4

= 𝑎 − 𝑏 + 𝑐 + 𝑑 + 𝑒 − 𝑓 + 𝑔 − ℎ + 𝑖,

𝜆
5

= 𝑎 − 𝑏 − 𝑐 + 𝑑 + 𝑒 + 𝑓 − 𝑔 − ℎ + 𝑖,

𝜆
3

= 𝑎 + 𝑏 + 𝑑, 𝜆
6

= 𝑎 − 𝑏 + 𝑑,

𝜆
7

= 𝑎 + 𝑐 + 𝑒, 𝜆
8

= 𝑎 − 𝑐 + 𝑒, 𝜆
9

= 𝑎.

(8)

Proof. Since𝑃3 = 𝑃, by Lemma 2, 𝜎(𝑃) ⊆ {0, 1, −1} and there
exists an invertible operator 𝑆

0

such that𝑃 = 𝑆−1
0

[𝐼⊕−𝐼⊕0]𝑆
0

.
We consider a partition 𝑄 conforming with 𝑃. Since 𝑃𝑄 =

𝑄𝑃,𝑄 can be written as𝑄 = 𝑆−1
0

[𝑄
1

⊕𝑄
2

⊕𝑄
3

]𝑆
0

, where𝑄3
𝑖

=

𝑄
𝑖

, 𝑖 = 1, 2, 3. In a similar way, 𝑄
𝑖

, 𝑖 = 1, 2, 3, can be written
as 𝑄
𝑖

= 𝑆−1
𝑖

[𝐼 ⊕ −𝐼 ⊕ 0]𝑆
𝑖

, 𝑖 = 1, 2, 3. Let 𝑆 = (𝑆
1

⊕ 𝑆
2

⊕ 𝑆
3

)𝑆
0

.
Now, we get

𝑃 = 𝑆
−1

[𝐼 ⊕ 𝐼 ⊕ 𝐼 ⊕ −𝐼 ⊕ −𝐼 ⊕ −𝐼 ⊕ 0 ⊕ 0 ⊕ 0] 𝑆,

𝑄 = 𝑆
−1

[𝐼 ⊕ −𝐼 ⊕ 0 ⊕ 𝐼 ⊕ −𝐼 ⊕ 0 ⊕ 𝐼 ⊕ −𝐼 ⊕ 0] 𝑆.

(9)

Let 𝐸
𝑖

and 𝜆
𝑖

, 𝑖 = 1, 2, . . . , 9, be defined as in (8). By (9),
𝑆𝐸
𝑖

𝑆−1 is a diagonal block matrix such that the 𝑖th diagonal
element is the identity 𝐼 and the remaining diagonal elements
are 0, 𝑖 = 1, 2, . . . , 9. Moreover, ∑9

𝑖=1

𝐸
𝑖

= 𝐼, 𝐸2
𝑖

= 𝐸
𝑖

, and
𝐸
𝑖

𝐸
𝑗

= 𝐸
𝑗

𝐸
𝑖

= 0, 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 9.We getΦ = 𝑎𝐼+𝑏𝑃+

𝑐𝑄 + 𝑑𝑃2 + 𝑒𝑄2 +𝑓𝑃𝑄+𝑔𝑃2𝑄+ ℎ𝑃𝑄2 + 𝑖(𝑃𝑄)
2

= ∑
9

𝑖=1

𝜆
𝑖

𝐸
𝑖

.
Hence, if 𝜆

1

⋅ ⋅ ⋅ 𝜆
9

̸= 0,Φ is invertible andΦ−1 = ∑9
𝑖=1

𝜆−1
𝑖

𝐸
𝑖

. If
𝜆
1

⋅ ⋅ ⋅ 𝜆
9

= 0, Φ is group invertible and Φ# = ∑
9

𝑖=1

𝜆#
𝑖

𝐸
𝑖

.

The matrix case of Theorem 6 was first investigated by
Tian [17].The commutative relations ensure that idempotents
(or tripotents) have simple blockmatrix forms. It is natural to
ask whether this kind of combinational properties still hold
when a pair of idempotents 𝑃, 𝑄 ∈ B(H) is noncommuta-
tive. Next, let 𝑃2 = 𝑃,𝑄2 = 𝑄, and (𝑃𝑄)2 = 𝑃(𝑄𝑃)2. It is easy
to verify that this condition includes some specific cases:

(i) 𝑃𝑄𝑃 = 0,

(ii) (𝑃𝑄)2 = 0 (see [14]),

(iii) 𝑃𝑄𝑃 = 𝑄,

(iv) 𝑃𝑄𝑃 = 𝑃𝑄,

(v) 𝑃𝑄𝑃 = 𝑄𝑃𝑄,

(vi) 𝑃𝑄 = 𝑄𝑃 (see [17]),

(vii) (𝑃𝑄)2 = (𝑄𝑃)2 (see [14]).

Applying Lemmas 3 and 4, we get the following main result.

Theorem 7. Let 𝑃 and 𝑄 be two idempotents such that
(𝑃𝑄)
2

= 𝑃(𝑄𝑃)
2. For any scalar 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 and ℎ with

𝑎 ̸= 0, 𝑏 ̸= 0, and 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ ̸= 0, let

Γ = 𝑎𝑃 + 𝑏𝑄 + 𝑐𝑃𝑄 + 𝑑𝑄𝑃 + 𝑒𝑃𝑄𝑃

+ 𝑓𝑄𝑃𝑄 + 𝑔(𝑃𝑄)
2

+ ℎ(𝑄𝑃)
2

.

(10)

(i) Γ is invertible if and only if 𝑃 + 𝑄 − 𝑃𝑄 is invertible.

(ii) Γ is always group invertible.

Proof. Let 𝑃 and 𝑄 have the forms as in (2). Then

(𝑃𝑄)
2

= [(
𝐼 0

0 0
)(

𝑄
1

𝑄
2

𝑄
3

𝑄
4

)]

2

= (
𝑄2
1

𝑄
1

𝑄
2

0 0
) ,

(𝑄𝑃)
2

= [(
𝑄
1

𝑄
2

𝑄
3

𝑄
4

)(
𝐼 0

0 0
)]

2

= (
𝑄2
1

0

𝑄
3

𝑄
1

0
) .

(11)

If (𝑃𝑄)2 = 𝑃(𝑄𝑃)2, then𝑄
1

𝑄
2

= 0. Moreover, by (3),𝑄
2

𝑄
4

=

𝑄
2

and 𝑄
3

𝑄
2

+ 𝑄2
4

= 𝑄
4

. These imply thatR(𝑄
2

) ⊂ N(𝑄
1

),
R(𝐼 −𝑄

4

) ⊂N(𝑄
2

), and𝑄
3

R(𝑄
2

) ⊂R(𝐼 −𝑄
4

). So 𝑃 and𝑄
can be rewritten as 4 × 4 block matrix forms as

𝑃 =(

𝐼 0 0 0

0 𝐼 0 0

0 0 0 0

0 0 0 0

), 𝑄 =(

0 𝑄
11

0 𝑄
21

0 𝑄
12

0 0

𝑄
31

𝑄
32

𝑄
41

𝑄
42

0 𝑄
33

0 𝐼

)

(12)

with respect to the space decomposition H = R(𝑄
2

) ⊕

[R(𝑃) ⊖ R(𝑄
2

)] ⊕ R(𝐼 − 𝑄
4

) ⊕ [N(𝑃) ⊖ R(𝐼 − 𝑄
4

)],
respectively. From 𝑄2 = 𝑄, by (12), we deduce that

𝑄
2

12

= 𝑄
12

, 𝑄
2

41

= 𝑄
41

, 𝑄
41

𝑄
31

= 𝑄
31

,

𝑄
11

𝑄
12

+ 𝑄
21

𝑄
33

= 𝑄
11

, 𝑄
33

𝑄
12

= 0,

𝑄
31

𝑄
11

+ 𝑄
32

𝑄
12

+ 𝑄
41

𝑄
32

+ 𝑄
42

𝑄
33

= 𝑄
32

,

𝑄
41

𝑄
42

+ 𝑄
31

𝑄
21

= 0.

(13)

By (2) and (12) we get Γ as an operator onR(𝑄
2

) ⊕ (R(𝑃) ⊖

R(𝑄
2

)) ⊕ R(𝐼 − 𝑄
4

) ⊕ (N(𝑃) ⊖ R(𝐼 − 𝑄
4

)) which can be
represented as 4 × 4 operator matrix form:
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Γ = 𝑎𝑃 + 𝑏𝑄 + 𝑐𝑃𝑄 + 𝑑𝑄𝑃 + 𝑒𝑃𝑄𝑃 + 𝑓𝑄𝑃𝑄 + 𝑔(𝑃𝑄)
2

+ ℎ(𝑄𝑃)
2

= (
𝑎𝐼 + (𝑏 + 𝑐 + 𝑑 + 𝑒)𝑄

1

+ (𝑓 + 𝑔 + ℎ)𝑄2
1

(𝑏 + 𝑐)𝑄
2

(𝑏 + 𝑑)𝑄
3

+ (𝑓 + ℎ)𝑄
3

𝑄
1

𝑏𝑄
4

+ 𝑓𝑄
3

𝑄
2

)

= (

𝑎𝐼 (𝑏 + 𝑐 + 𝑑 + 𝑒)𝑄
11

+ (𝑓 + 𝑔 + ℎ)𝑄
11

𝑄
12

0 (𝑏 + 𝑐)𝑄
21

0 𝑎𝐼 + (𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ)𝑄
12

0 0

(𝑏 + 𝑑)𝑄
31

(𝑏 + 𝑑)𝑄
32

+ (𝑓 + ℎ) (𝑄
31

𝑄
11

+ 𝑄
32

𝑄
12

) 𝑏𝑄
41

𝑏𝑄
42

+ 𝑓𝑄
31

𝑄
21

0 (𝑏 + 𝑑)𝑄
33

0 𝑏𝐼

) .

(14)

Denote

𝐴
1

= (
𝑎𝐼 (𝑏 + 𝑐 + 𝑑 + 𝑒)𝑄

11

+ (𝑓 + 𝑔 + ℎ)𝑄
11

𝑄
12

0 𝑎𝐼 + (𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ)𝑄
12

) ,

𝐵
1

= (
0 (𝑏 + 𝑐)𝑄

21

0 0
) ,

𝐶
1

= (
(𝑏 + 𝑑)𝑄

31

(𝑏 + 𝑑)𝑄
32

+ (𝑓 + ℎ) (𝑄
31

𝑄
11

+ 𝑄
32

𝑄
12

)

0 (𝑏 + 𝑑)𝑄
33

) ,

𝐷
1

= (
𝑏𝑄
41

𝑏𝑄
42

+ 𝑓𝑄
31

𝑄
21

0 𝑏𝐼
) .

(15)

Since 𝑎+ 𝑏+ 𝑐 +𝑑+ 𝑒+𝑓+𝑔+ℎ ̸= 0, then 𝑎𝐼 + (𝑏 + 𝑐 +𝑑+ 𝑒+
𝑓 + 𝑔 + ℎ)𝑄

12

and 𝐴
1

are invertible. The Schur complement
has the form

𝑆 = 𝐷
1

− 𝐶
1

𝐴
−1

1

𝐵
1

= (
𝑏𝑄
41

𝑏𝑄
42

+ [𝑓 − 𝑎
−1

(𝑏 + 𝑐) (𝑏 + 𝑑)]𝑄
31

𝑄
21

0 𝑏𝐼
) .

(16)

Hence, by Lemma 3, Γ is invertible if and only if𝑄
41

(see (12))
is invertible if and only if 𝑄

4

(see (2)) is invertible, which is
equivalent to that

𝑃 + 𝑄 − 𝑃𝑄 = (
𝐼 0

𝑄
3

𝑄
4

) (17)

is invertible.
If the idempotent operator 𝑄

41

is not invertible, by
Lemma 4, 𝑆 is group invertible:

𝑆
#
= (

𝑏−1𝑄
41

∗

0 𝑏−1𝐼
) ,

𝑆
𝜋

= (
𝐼 − 𝑄
41

∗

0 0
) ,

(18)

where the omitted element ∗ can be got by Lemma 4. Note
that 𝐵

1

𝑆𝜋 = 0 and 𝐴2
1

+ 𝐵
1

𝑆𝜋𝐶
1

are invertible. By Lemma 5, Γ
is group invertible.

If 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ = 0, we get the following
main result.

Theorem 8. Let 𝑃 and 𝑄 be two idempotents such that
(𝑃𝑄)
2

= 𝑃(𝑄𝑃)
2. For any scalar 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, and ℎ with

𝑎 ̸= 0, 𝑏 ̸= 0, and 𝑎+𝑏+𝑐+𝑑+𝑒+𝑓+𝑔+ℎ = 0, let Γ be defined
as in (10). Then

(i) Γ is invertible if and only if 𝑃 − 𝑄 is invertible;

(ii) if any one of 𝐼 − 𝑃𝑄 and 𝑃 +𝑄−𝑃𝑄 is invertible, then
Γ is always group invertible.

Proof. We use the notations from the proof ofTheorem 7. By
(14), if 𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ = 0, then the upper
left submatrix 𝐴

1

fails to be invertible. Perturb it a little. Γ as
an operator onR(𝑄

2

) ⊕ (N(𝑃) ⊖R(𝐼 − 𝑄
4

)) ⊕R(𝐼 − 𝑄
4

) ⊕

(R(𝑃) ⊖R(𝑄
2

)) can be written as

Γ = (

𝑎𝐼 (𝑏 + 𝑐)𝑄
21

0 (𝑏 + 𝑐 + 𝑑 + 𝑒)𝑄
11

+ (𝑓 + 𝑔 + ℎ)𝑄
11

𝑄
12

0 𝑏𝐼 0 (𝑏 + 𝑑)𝑄
33

(𝑏 + 𝑑)𝑄
31

𝑏𝑄
42

+ 𝑓𝑄
31

𝑄
21

𝑏𝑄
41

(𝑏 + 𝑑)𝑄
32

+ (𝑓 + ℎ) (𝑄
31

𝑄
11

+ 𝑄
32

𝑄
12

)

0 0 0 𝑎 (𝐼 − 𝑄
12

)

) . (19)
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Denote

𝐴
0

= (
𝑎𝐼 (𝑏 + 𝑐)𝑄

21

0 𝑏𝐼
) ,

𝐵
0

= (
0 (𝑏 + 𝑐 + 𝑑 + 𝑒)𝑄

11

+ (𝑓 + 𝑔 + ℎ)𝑄
11

𝑄
12

0 (𝑏 + 𝑑)𝑄
33

) ,

𝐶
0

= (
(𝑏 + 𝑑)𝑄

31

𝑏𝑄
42

+ 𝑓𝑄
31

𝑄
21

0 0
) ,

𝐷
0

= (
𝑏𝑄
41

(𝑏 + 𝑑)𝑄
32

+ (𝑓 + ℎ) (𝑄
31

𝑄
11

+ 𝑄
32

𝑄
12

)

0 𝑎 (𝐼 − 𝑄
12

)
) .

(20)

The Schur complement of 𝐴
0

in (19) has the structure

𝑆
0

= 𝐷
0

− 𝐶
0

𝐴
−1

0

𝐵
0

= (
𝑏𝑄
41

∗

0 𝑎 (𝐼 − 𝑄
12

)
) . (21)

Hence, by Lemma 3, Γ is invertible if and only if idempotents
𝑄
41

and 𝐼 − 𝑄
12

(see (12)) are invertible if and only if
idempotents𝑄

4

and 𝐼 −𝑄
1

are invertible, which is equivalent
to the fact that 𝑃 − 𝑄 (or (𝑃 − 𝑄)2; see (4)) is invertible by
Lemma 1.

If 𝐼 − 𝑃𝑄 is invertible, then 𝐼 − 𝑄
12

is invertible by (12).
Since 𝐼 − 𝑄

12

is idempotent, then 𝑄
12

= 0. By Lemma 4, 𝑆
0

is
group invertible:

𝑆
#
0

= (
𝑏−1𝑄
41

∗

0 𝑎−1𝐼
) ,

𝑆
𝜋

0

= 𝐼 − 𝑆
0

𝑆
#
0

= (
𝐼 − 𝑄
41

∗

0 0
) .

(22)

If 𝑃+𝑄−𝑃𝑄 is invertible, then𝑄
41

is invertible by (12). Since
𝑄
41

is idempotent, then 𝑄
41

= 𝐼. By Lemma 4, 𝑆
0

is group
invertible:

𝑆
#
0

= (
𝑏−1𝐼 ∗

0 𝑎−1 (𝐼 − 𝑄
12

)
) , (23)

S𝜋
0

= 𝐼 − 𝑆
0

𝑆
#
0

= (
0 ∗

0 𝑄
12

) . (24)

So, if any one of 𝐼 − 𝑃𝑄 and 𝑃 + 𝑄 − 𝑃𝑄 is invertible, then
𝐵
0

𝑆𝜋
0

𝐶
0

= 0. By Lemma 5, 𝐴2
0

+ 𝐵
0

𝑆𝜋
0

𝐶
0

= 𝐴2
0

is invertible.
Hence Γ is group invertible.

3. Concluding Remarks

In Theorems 7 and 8, the inverse and the group inverse
formulae can be obtained by using the results in Lemma 3 and
[19,Theorem 3.1], respectively.This is a trivial and redundant

work. If 𝑃 − 𝑄 is group invertible and 𝑎, 𝑏 ̸= 0, by definition
(1), it is also trivial to check

(𝑎𝑃 + 𝑏𝑄 + 𝑐𝑃𝑄)
#

= 𝑏
−1

(𝑃 − 𝑄)
#
(𝑃 − 𝑄) − 𝑏

−1

𝑃(𝑃 − 𝑄)
#

−
𝑎 + 𝑐

𝑎𝑏
(𝑃 − 𝑄)

#
𝑃 + (𝑎 + 𝑏 + 𝑐)

#
𝑃(𝑃 − 𝑄)

𝜋

+
𝑎 + 𝑏 + 𝑐

𝑎𝑏
(𝑃 − 𝑄)

#
𝑃(𝑃 − 𝑄)

#
.

(25)

Hence, 𝑎𝑃+𝑏𝑄+𝑐𝑃𝑄 is always group invertible. In particular,
if 𝑃 − 𝑄 is invertible (see [18, Theorem 3.1]), then

(𝑎𝑃 + 𝑏𝑄 + 𝑐𝑃𝑄)
−1

= −
1

𝑏
𝑄(𝑃 − 𝑄)

−1

−
𝑎 + 𝑐

𝑎𝑏
(𝑃 − 𝑄)

−1

𝑃

+
𝑎 + 𝑏 + 𝑐

𝑎𝑏
(𝑃 − 𝑄)

−1

𝑃(𝑃 − 𝑄)
−1

.

(26)

From Theorems 7 and 8 we know that Γ in (10) is always
group invertible if (𝑃𝑄)2 = 𝑃(𝑄𝑃)2. It seems very difficult to
find the minimum requirements that guarantee that Γ in (10)
is group invertible, which could be the topic of some future
research. Hence, we suggest the following question: what are
the minimum requirements that guarantee that Γ in (10) is
group invertible?
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