
Georgia Southern University

From the SelectedWorks of Stefan Müller

November, 2008

The Group of Hamiltonian
Homeomorphisms in the L∞-Norm
Stefan Müller, Korea Institute for Advanced Study

Available at: https://works.bepress.com/stefan-muller/7/

http://www.georgiasouthern.edu
https://works.bepress.com/stefan-muller/
https://works.bepress.com/stefan-muller/7/


J. Korean Math. Soc. 45 (2008), No. 6, pp. 1769–1784

THE GROUP OF HAMILTONIAN HOMEOMORPHISMS IN

THE L
∞-NORM

Stefan Müller

Reprinted from the

Journal of the Korean Mathematical Society

Vol. 45, No. 6, November 2008

c⃝2008 The Korean Mathematical Society



J. Korean Math. Soc. 45 (2008), No. 6, pp. 1769–1784

THE GROUP OF HAMILTONIAN HOMEOMORPHISMS IN

THE L
∞-NORM
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Abstract. The group Hameo (M, ω) of Hamiltonian homeomorphisms
of a connected symplectic manifold (M, ω) was defined and studied in

[7] and further in [6]. In these papers, the authors consistently used

the L(1,∞)-Hofer norm (and not the L∞-Hofer norm) on the space of

Hamiltonian paths (see below for the definitions). A justification for this
choice was given in [7]. In this article we study the L∞-case. In view of
the fact that the Hofer norm on the group Ham (M, ω) of Hamiltonian

diffeomorphisms does not depend on the choice of the L(1,∞)-norm vs.
the L∞-norm [9], Y.-G. Oh and D. McDuff (private communications)
asked whether the two notions of Hamiltonian homeomorphisms arising
from the different norms coincide. We will give an affirmative answer to

this question in this paper.

1. Introduction

Let (M,ω) denote a closed connected symplectic manifold. In Section 2 we
present a foundational study of the group of Hamiltonian homeomorphisms of
(M,ω), which in the L(1,∞)-case appeared in [7] and [6]. See these papers for
a more detailed study. Most of the theory goes through the same way, and in
fact the proofs are often easier in the L∞-case, so we will frequently refer to
these papers for details. We will compare the two norms and point out some
of their advantages and disadvantages, again also see the papers cited above.

Finally in Section 3 we will give the proof of the main theorem, which states

Theorem 1.1. Hameo∞ (M,ω) = Hameo(1,∞) (M,ω).

For the precise definitions of these objects, see Section 2. Remark that
the equality in the above theorem is between topological groups, where both
sets are equipped with the C0-topology (see Section 2 for the definition) as
subgroups of Homeo (M), the group of homeomorphisms of M . In view of this
theorem we may drop the subscripts.
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1770 STEFAN MÜLLER

In the following, we will mainly use the notation from [7]. Denote by
C∞([0, 1] × M) the vector space of smooth time-dependent Hamiltonian func-
tions H : [0, 1] × M → R. Often we view H as a family of smooth functions
Ht : M → R. Each Hamiltonian H ∈ C∞([0, 1] × M) generates a smooth
family of diffeomorphisms ϕt

H of M , 0 ≤ t ≤ 1, with ϕ0
H = id, where ϕt

H(x) is
the flow of the Hamiltonian vector field XH associated to the Hamiltonian H

defined by

ω(XH(t), ·) = dHt for all t ∈ [0, 1].

That is, ϕt
H(x) solves Hamilton’s equation ẋ(t) = XH(t, x(t)). We will always

denote by ϕH the corresponding smooth Hamiltonian path t ∈ [0, 1] 7→ ϕt
H ,

and by Pham(Symp (M,ω), id) the set of all such Hamiltonian paths. Here
Symp (M,ω) denotes the group of symplectic diffeomorphisms. The set of time-
one maps of all such Hamiltonian paths is as usual denoted by Ham (M,ω),
the group of Hamiltonian diffeomorphisms.

Let H ∈ C∞([0, 1] × M). Denote by

osc (Ht) = max
x∈M

Ht(x) − min
x∈M

Ht(x), t ∈ [0, 1],

the oscillation of Ht. Then define

∥H∥(1,∞) =

∫ 1

0

osc (Ht) dt

the mean oscillation and

∥H∥∞ = max
t∈[0,1]

osc (Ht)

the maximum oscillation of H on the interval [0, 1]. We call ∥ ·∥(1,∞) and ∥ ·∥∞
the L(1,∞)-(Hofer) norm and the L∞-(Hofer) norm on the space of smooth time-
dependent Hamiltonians respectively (see below for a more precise statement).
Clearly ∥ · ∥(1,∞) ≤ ∥ · ∥∞, but the two norms are not equivalent. It is easy
to see that there are sequences Hi of Hamiltonians such that ∥Hi∥(1,∞) =
1 for all i, but ∥Hi∥∞ → ∞ as i → ∞. In fact, one can take any time-
independent Hamiltonian H with ∥H∥∞ = ∥H∥(1,∞) = 1, and define a sequence
of reparameterizations (in time) of H so that the constructed sequence has the
property above.

We will consistently use the subscripts (or superscripts) (1,∞) and ∞ to
distinguish the two cases, and use them to denote any object defined using
the one or the other norm. We will omit them and write for example ∥ · ∥ to
denote either one of the two cases. That is, when we omit the subscripts (or
superscripts), the particular statement is true in both the L(1,∞)-case and the
L∞-case.

For ϕ ∈ Ham(M,ω) we can then define the Hofer norm

(1) ∥ϕ∥ = inf
H 7→ϕ

∥H∥,



THE GROUP OF HAMILTONIAN HOMEOMORPHISMS 1771

where H 7→ ϕ means that H generates ϕ in the sense that ϕ = ϕ1
H . It is

a highly non-trivial fact that this indeed gives a norm on Ham (M,ω), see
[1], [8], [2]. The above inequality immediately implies ∥ϕ∥(1,∞) ≤ ∥ϕ∥∞ for
ϕ ∈ Ham(M,ω). In view of our remark concerning the equivalence of the two
norms in the case of functions H ∈ C∞([0, 1] × M), the following fact seems
rather surprising. It is due to Polterovich.

Lemma 1.2 (Lemma 5.1.C, [9]). ∥ϕ∥(1,∞) = ∥ϕ∥∞ for each ϕ ∈ Ham(M,ω).

Polterovich’s proof is constructive. Since his arguments will be used in the
proof of Theorem 1.1, the proof will be given in Section 3.

We call a Hamiltonian H normalized if
∫

M

Ht ωn = 0 for all t ∈ [0, 1].

Note that both norms ∥ · ∥ on C∞([0, 1]×M) are invariant under adding func-
tions that depend only on time t, so that normalizing a Hamiltonian does not
change ∥ · ∥. When restricted to the vector space C∞

m ([0, 1] × M) of normal-
ized smooth time-dependent Hamiltonian functions, where m stands for ‘mean
zero’, ∥ · ∥ indeed defines a norm (otherwise it is only a pseudo-norm, since
∥ · ∥ vanishes for each function that depends only on time). Also note that a
normalized Hamiltonian satisfies

max
x∈M

Ht(x) ≥ 0, − min
x∈M

Ht(x) ≥ 0 for all t ∈ [0, 1],

and therefore

max
x∈M

Ht(x) ≤ osc (Ht), − min
x∈M

Ht(x) ≤ osc (Ht) for all t ∈ [0, 1].

As a consequence, if we denote for all t ∈ [0, 1]

∥Ht∥C0 = max
x∈M

|Ht(x)|, ∥H∥C0 = max
(t,x)

|H(t, x)|,

then any normalized Hamiltonian satisfies

∥Ht∥C0 ≤ osc (Ht) for all t ∈ [0, 1], ∥H∥C0 ≤ ∥H∥∞.

It is easy to see that two Hamiltonians generate the same Hamiltonian path
if and only if they differ by a function that depends only on time. Hence there
is a one-one correspondence between smooth Hamiltonian paths and generat-
ing normalized smooth Hamiltonian functions. We therefore frequently con-
sider the Hofer norm as a norm on the space Pham(Symp (M,ω), id) of smooth
Hamiltonian paths.

2. The group of Hamiltonian homeomorphisms

Define a metric on the set Pham(Symp (M,ω), id) of smooth Hamiltonian
paths by

dham(ϕH , ϕF ) =
∥

∥H#F
∥

∥ + d(ϕH , ϕF ) = ∥H − F∥ + d(ϕH , ϕF )
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for any two Hamiltonian paths ϕH and ϕF . Here H#F denotes the (normal-
ized) Hamiltonian generating the path (ϕH)−1 ◦ ϕF , see e.g. [7]. Note that we
use the above one-one correspondence between smooth Hamiltonian paths and
smooth normalized Hamiltonian functions. On the other hand,

d(λ, µ) = max
t∈[0,1]

d(λ(t), µ(t))

denotes the C0-distance of any two paths λ, µ, where on the group Homeo (M)
of homeomorphisms of M , d is the metric defined by

d(ϕ, ψ) = max
(

dC0(ϕ, ψ), dC0(ϕ−1, ψ−1)
)

,

and where

dC0(ϕ, ψ) = max
x∈M

d (ϕ(x), ψ(x))

denotes the standard distance of two maps with respect to the distance d in-
duced by a given Riemannian metric on M . Since M is compact, the topology
induced by d, which we call the C0-topology, agrees with the compact-open
topology on Homeo (M). In particular, this topology is independent of the
choice of Riemannian metric on M . Note that we use the notation d for both
the distance of maps as well as the distance of paths. We call the topology in-
duced by the metric dham the Hamiltonian topology on Pham(Symp (M,ω), id),
or also the L(1,∞)-Hamiltonian topology or L∞-Hamiltonian topology when we
need to specify the choice of norm. Also see [7] for two different descriptions
of the Hamiltonian topology and a detailed discussion of this definition.

From [7] recall the unfolding map

(ιham, Dev) : Pham(Symp (M,ω), id) → P(Symp (M,ω), id) × C∞
m ([0, 1] × M),

λ = ϕH 7→ (λ,H),

where the topology on the target is the one induced by the product metric
of the C0-metric d on the set P(Symp (M,ω), id) of smooth paths λ : [0, 1] →
Symp (M,ω) with λ(0) = id, and the metric induced by ∥·∥ on C∞

m ([0, 1]×M).
This product embeds into

P(Symp (M,ω), id)×C∞
m ([0, 1]×M) →֒ P(Homeo (M), id)×L(1,∞)

m ([0, 1]×M)

in the L(1,∞)-case and into

P(Symp (M,ω), id) × C∞
m ([0, 1] × M) →֒ P(Homeo (M), id) × C0

m([0, 1] × M)

in the L∞-case, where P(Homeo (M), id) denotes the set of continuous paths λ :

[0, 1] → Homeo (M) with λ(0) = id, L
(1,∞)
m ([0, 1] × M) denotes the completion

of C∞
m ([0, 1] × M) with respect to the ∥ · ∥(1,∞)-norm, and C0

m([0, 1] × M)
denotes the vector space of normalized (uniformly) continuous functions H :
[0, 1] × M → R. The targets of these embeddings are complete metric spaces
in the product metrics described above.

Denote by Q(1,∞) and Q∞ the images of the unfolding maps in the L(1,∞)-
case and L∞-case respectively, with the induced subspace topologies, which
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we as well call the Hamiltonian topologies (see [Remark 3.17 (2) in 7] for
an explanation of this terminology). Denote by Q(1,∞) and Q∞ their metric
completions respectively. That is, a pair (λ,H), where λ : [0, 1] → Homeo (M)
is a continuous path with λ(0) = id and H : [0, 1] × M → R is an L(1,∞)-
function (in the L(1,∞)-case) or a continuous function (in the L∞-case), lies in
Q(1,∞) or Q∞ respectively, if and only if there is a sequence (ϕHi

,Hi), where
the Hi are smooth normalized Hamiltonians and the ϕHi

are the corresponding
smooth Hamiltonian paths, such that the sequence Hi converges to H in the
Hofer norm ∥ · ∥ and the sequence ϕHi

converges to λ in the C0-metric.
Note that given a sequence (ϕHi

,Hi) as above, any subsequence has the
same limit (λ,H). In particular, given any (decreasing) sequence ϵi > 0 of
positive numbers with ϵi → 0 as i → ∞, by passing to a subsequence we may
assume that the given sequence satisfies ∥Hj − Hk∥ < ϵi and d(ϕHj

, ϕHk
) < ϵi

for all j, k ≥ i, for all i. Similarly, we may assume that the given sequence
satisfies ∥Hj − H∥ < ϵi and d(ϕHj

, λ) < ϵi for all j ≥ i and all i, or any
combination of the two, e.g. we may assume that the given sequence satisfies
∥Hj − Hk∥ < ϵi for all j, k ≥ i and d(ϕHj

, λ) < ϵi for all j ≥ i, and for all
i. It is often convenient to consider a sequence ϵi such that

∑

ϵi converges, or
∑k

i=j ϵi → 0 as k ≥ j → ∞, for example ϵi = 1
2i .

Recall that for any sequence given as above, each Hi is normalized. In par-
ticular (see Section 1), unlike in the L(1,∞)-case, in the L∞-case Hi converges
uniformly on [0, 1]×M to a uniformly continuous function H (and therefore the
metric space considered above is indeed complete). This gives an obvious ad-
vantage for many arguments in the L∞-case. The Reparameterization Lemma
[Lemma 3.21 in 7], the Structure Theorem for topological Hamiltonians [4, or
Theorem 2.6 in 6], and similar arguments in the L(1,∞)-case were specifically
designed to make up for the lack of continuity.

The evaluation map

ev1 : Pham(Symp (M,ω), id) → Ham(M,ω), λ 7→ λ(1),

induces a well-defined evaluation map

(2) ev
Q(1,∞)

1 : Q(1,∞) → Homeo (M), λ 7→ λ(1),

see [7]. The same arguments apply to the L∞-case, so we also get an evaluation
map

(3) evQ∞

1 : Q∞ → Homeo (M), λ 7→ λ(1).

Definition 2.1 (Definition 3.14, [7]). The sets

Hameo(1,∞) (M,ω) and Hameo∞ (M,ω)

of (L(1,∞)- and L∞-)Hamiltonian homeomorphisms are defined as the images

Hameo (M,ω) = Im
(

evQ1
)

⊂ Homeo (M)
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of the above evaluation maps (2) and (3) respectively, equipped with the
subspace topology from Homeo (M), i.e., the C0-topology. By definition the
(L(1,∞)- and L∞-)Hamiltonian topology is the strongest topology on these sets
such that the evaluation maps (2) and (3) are continuous respectively. The
resulting topological spaces are denoted by

Hameo(1,∞) (M,ω) and Hameo∞ (M,ω),

respectively.

In other words, h ∈ Hameo (M,ω) if and only if there exists a Cauchy
sequence (ϕHi

,Hi) ∈ Q in the Hamiltonian topology such that ϕ1
Hi

→ h in

the C0-metric. In particular, Ham (M,ω) ⊂ Hameo (M,ω), where we recall
the convention that if we drop the subscripts the statement holds in both the
L(1,∞)-case and the L∞-case.

Theorem 2.2 (Corollary 3.25, [7]). Hameo (M,ω) ⊂ Homeo (M) is a topolog-

ical subgroup.

In the L(1,∞)-case the proof is given in [7]. The proof in the L∞-case is
essentially the same. In fact, some arguments even simplify since, as remarked
above, Cauchy sequences in the L∞-Hofer norm converge uniformly and there-
fore have uniformly continuous limits.

Denote by Sympeo (M,ω) = Symp (M,ω) ⊂ Homeo (M) the group of sym-
plectic homeomorphisms of (M,ω), where the closure is with respect to the
C0-topology. See [7] for a foundational study of Sympeo (M,ω). The following
theorems are proved in [7] in the L(1,∞)-case. Again, their proofs can easily be
adapted to the L∞-case.

Theorem 2.3 (Theorem 4.4, [7]). Hameo (M,ω) is a normal subgroup of

Sympeo (M,ω).

Theorem 2.4 (Theorem 4.5, [7]). Hameo (M,ω) and Hameo (M,ω) are path-

connected, and Hameo (M,ω) is locally path-connected.

The question of local path-connectedness of Hameo (M,ω) is open.
Recall from Section 1 that ∥·∥(1,∞) ≤ ∥·∥∞. Therefore any Cauchy sequence

in the L∞-Hamiltonian topology is also a Cauchy sequence in the L(1,∞)-
Hamiltonian topology. In particular, Hameo∞ (M,ω) ⊂ Hameo(1,∞) (M,ω).
In view of Theorem 2.3 we in fact have

Proposition 2.5. Hameo∞ (M,ω) forms a normal subgroup of

Hameo(1,∞) (M,ω).

Polterovich’s Lemma 1.2 motivates the question whether equality holds in
Proposition 2.5. Note that if the inclusion were proper, this would negatively
answer the simpleness question of Hameo(1,∞) (M,ω), which was raised in [7].
This question is also related to the nonsimpleness conjecture of the kernel of the
mass flow homomorphism on a smooth closed orientable surface, see [Section 5
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in 7]. As one therefore expects, equality indeed holds. This will be proved in
the next section.

The projections ιQham of Q(1,∞) and Q∞ onto the first factor yield the spaces

of (L(1,∞)- and L∞-)topological Hamiltonian paths, denoted by

Pham
(1,∞)(Sympeo (M,ω), id) and Pham

∞ (Sympeo (M,ω), id)

respectively. And the projections DevQ onto the second factor yield the spaces
of (normalized) (L(1,∞)- and L∞-)topological Hamiltonian functions, denoted

by H
(1,∞)
m ([0, 1]×M) and H∞

m ([0, 1]×M) respectively. It follows from the fol-
lowing statements that, at least in the L∞-case, the above one-one correspon-
dence between smooth Hamiltonian paths and normalized smooth Hamiltonian
functions extends to the topological Hamiltonian category.

Theorem 2.6 (Uniqueness Theorem, [10]). The map

ιQ∞

ham : Q∞ → Pham
∞ (Sympeo (M,ω), id)

is one-one. In other words, if (λ, H) and (λ,H ′) ∈ Q∞, then H = H ′.

Note that the normalization condition is crucial in the above statement.

Theorem 2.7 (Theorem 3.1, [6]). The map DevQ : Q → Hm([0, 1] × M) is

one-one. In other words, if (λ,H) and (λ′,H) ∈ Q, then λ = λ′.

Theorem 2.6 was proved in [10], and later more details were added in the
unpublished preprint [4], which attempts to generalize the result in [10] to the
L(1,∞)-case. A local version of Theorem 2.6 can be found in [5]. The proof
of Theorem 2.7 is given in [6] in the L(1,∞)-case, but applies to the L∞-case
without changes. This one-one correspondence allows to extend Hamiltonian
dynamics to the topological Hamiltonian category, see [6].

Note that by the argument before Proposition 2.5, we have

Proposition 2.8. H∞
m ([0, 1] × M) ⊂ H

(1,∞)
m ([0, 1] × M) and

Pham
∞ (Sympeo (M,ω), id) ⊂ Pham

(1,∞)(Sympeo (M,ω), id).

We finish this section expanding the discussion from [6] on the length or
Hofer norm of a topological Hamiltonian path and the Hofer norm of a Hamil-
tonian homeomorphism. We will assume a uniqueness result as in Theorem 2.6.
That is, the following applies to the L∞-case, but will also apply to the L(1,∞)-
case if the analog to Theorem 2.6 can be established.

Let λ ∈ Pham(Sympeo (M,ω), id) be a topological Hamiltonian path. By
definition, there is a sequence (ϕHi

,Hi) ∈ Q so that ϕHi
→ λ in the C0-metric

and Hi converges in Hofer’s norm to a topological Hamiltonian H. We then
define the length or Hofer norm of the topological Hamiltonian path λ by

(4) leng (λ) = lim
i→∞

leng (ϕHi
) = lim

i→∞
∥Hi∥ = ∥H∥.
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The Uniqueness Theorem 2.6 (and an application of the triangle inequality)
implies that this definition is well-defined. In particular, this agrees with the
usual definition leng (ϕH) = ∥H∥ of the length of a smooth Hamiltonian path.
For h ∈ Hameo (M,ω) a Hamiltonian homeomorphism, we define the Hofer
norm of h to be

(5) ∥h∥ = inf
{

leng (λ) | λ ∈ Pham(Sympeo (M,ω), id), evQ1 (λ) = h
}

.

This is obviously well-defined. It is not too hard to see that the Hofer norm
∥ · ∥ is continuous with respect to the Hamiltonian topology (Definition 2.1) on
Hameo (M,ω). Moreover, it has the same basic properties as the usual Hofer
norm on Ham (M,ω), i.e., it is symmetric, bi-invariant, satisfies the triangle
inequality and symplectic invariance, and it is nondegenerate (and therefore
indeed defines a norm) [6].

Let us denote by ∥ · ∥Ham the usual Hofer norm (1) on Ham (M,ω) defined
in the beginning and by ∥ ·∥Hameo the Hofer norm (5) on Hameo (M,ω) defined
above. Then both norms are defined on Ham (M,ω) ⊂ Hameo (M,ω). To
avoid confusion we will always use these subscripts to denote either of the
Hofer norms of a Hamiltonian diffeomorphism, but omit the subscript Hameo
when we mean the Hofer norm of a Hamiltonian homeomorphism. We clearly
have ∥ · ∥Hameo ≤ ∥ · ∥Ham. It seems likely that they are in fact equal.

Question 2.9. Is ∥ · ∥Hameo = ∥ · ∥Ham on Ham (M,ω)?

The answer to this question is not known. The difficulty is that if, for some
ϕ ∈ Ham(M,ω), λ is a topological Hamiltonian path whose length approxi-
mates ∥ϕ∥Hameo, then λ can be approximated by smooth Hamiltonian paths in
the Hamiltonian topology. However, the end points of these paths are in gen-
eral different from ϕ, and therefore these paths are not admissable to compute
the Hofer norm ∥ϕ∥Ham of ϕ. Note that there is a ‘short’ topological Hamilton-
ian path from each such end point to ϕ, but there need not be such a smooth
path. So a related question is whether we can choose above sequence of smooth
Hamiltonian paths so that the end point equals ϕ for each path. This problem
seems to lie at the heart of topological Hamiltonian geometry.

In view of Theorem 1.1 and Lemma 1.2, one can then ask whether we have
∥ · ∥∞ = ∥ · ∥(1,∞) for the Hofer norms (5) on Hameo (M,ω). Note that if the
answer to Question 2.9 were affirmative, then this together with Lemma 1.2
and the continuity of the Hofer norm with respect to the Hamiltonian topol-
ogy would immediately imply this equality. It is not too hard to show that
(still assuming uniqueness of topological Hamiltonians) equality indeed holds
by proving an analog to Lemma 3.2 in the next section for topological Hamil-
tonians.

The above would in particular imply that given h ∈ Hameo (M,ω) and
ϵ > 0, there exists a path λ which is a topological Hamiltonian path in both
the L(1,∞)-sense and the L∞-sense and such that

∥h∥∞ = ∥h∥(1,∞) ≤ leng(1,∞) (λ) ≤ leng∞ (λ) < ∥h∥∞ + ϵ.
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In other words, Theorem 1.1 states that each end point of an L(1,∞)-topolo-
gical Hamiltonian path is also the end point of some (possibly different) L∞-
topological Hamiltonian path, and if uniqueness holds in both cases (so that
the Hofer norm is well-defined), then the same statement holds for ‘short’
topological Hamiltonian paths as well.

3. Proof of the main theorem

In this section we prove the main theorem, which we restate for convenience

Theorem 3.1. Hameo∞ (M,ω) = Hameo(1,∞) (M,ω).

By Proposition 2.5 we already have the inclusion

Hameo∞ (M,ω) ⊂ Hameo(1,∞) (M,ω).

The converse is more delicate. To deduce it, we will first prove a series of
lemmas. Our proof is mainly based on Polterovich’s Lemma 1.2. In fact,
Polterovich proved the slightly stronger Lemma 3.2 below. Lemma 1.2 will be
an immediate consequence of this more technical result.

In the following we want to allow more general smooth Hamiltonian paths
that are not necessarily based at the identity. That is, unless explicit mention
is made to the contrary, we consider paths λ = ϕ ◦ ϕH , where ϕH is a smooth
Hamiltonian path in the previous sense with ϕ0

H = id, and ϕ ∈ Ham(M,ω).
It is easy to see that λ solves Hamilton’s equation with Hamiltonian H ◦ ϕ

and initial condition λ(0) = ϕ. We therefore call the Hamiltonian K = H ◦ ϕ

the generating Hamiltonian of λ. Note that we could also work with paths
of the form λ = ϕH ◦ ϕ, which solve Hamilton’s equation with Hamiltonian
H and initial condition λ(0) = ϕ. It turns out that the former will be more
convenient for the computations below. We will often simply write λ = ϕK . If
one path starts where another one ends, we may consider their concatenation,
and if both paths are boundary flat (see below for the definition), then that
concatenation is a smooth Hamiltonian path whose generating Hamiltonian
agrees with (a reparameterization of) the Hamiltonian of the first path for
some time and with (a reparameterization of) the Hamiltonian of the second
path for the remaining time. Of course, when computing the Hofer norm of an
element ϕ ∈ Ham(M,ω), we only allow paths ϕH with ϕ0

H = id and ϕ1
H = ϕ.

Lemma 3.2. Let H : [0, 1] × M → R be a smooth normalized Hamiltonian

function generating the smooth Hamiltonian path ϕH : t ∈ [0, 1] 7→ ϕt
H . Let

ϵ > 0 be given. Then there exists a smooth normalized Hamiltonian function

F : [0, 1] × M → R such that the following holds

(i) ϕ0
F = ϕ0

H and ϕ1
F = ϕ1

H ,

(ii) ∥F∥∞ < ∥H∥(1,∞) + ϵ, and

(iii) d(ϕF , ϕ0
H) < d(ϕH , ϕ0

H) + ϵ.

In (iii) ϕ0
H denotes the constant path t 7→ ϕ0

H .
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Recall the following reparameterization procedure (see for example [7] or
[9]). Let H : [0, 1]×M → R be a smooth Hamiltonian function generating the
smooth Hamiltonian path ϕH : t 7→ ϕt

H . For any smooth function ζ : [0, 1] →

[0, 1] the reparameterized path ϕ
ζ
H : t 7→ ϕ

ζ(t)
H is generated by the smooth

Hamiltonian function Hζ given by the formula Hζ(t, x) = ζ ′(t)H(ζ(t), x). If
ζ(0) = 0 and ζ(1) = 1, then the time-zero maps and time-one maps coincide re-

spectively, that is, ϕ0
Hζ = ϕ

ζ(0)
H = ϕ0

H and ϕ1
Hζ = ϕ

ζ(1)
H = ϕ1

H . Moreover, if H is

normalized then so is Hζ . We refer to the function ζ as the reparameterization
function.

Proof of Lemma 3.2. We first consider the path t 7→ ϕt
K = ψt ◦ ϕt

H , where
t 7→ ψt is a loop in Ham (M,ω), ψ0 = ψ1 = id. Clearly ϕ0

K = ϕ0
H and

ϕ1
K = ϕ1

H . We may choose the loop ψt such that it is arbitrarily close to the
constant loop id in the C0-metric, its generating Hamiltonian is arbitrarily
small in the ∥ · ∥(1,∞)-norm, and such that osc (Kt) ̸= 0 for all t ∈ [0, 1], see
[Section 5.2 in 9]. Therefore we may choose the Hamiltonian K such that

∥K∥(1,∞) < ∥H∥(1,∞) +
ϵ

2
, d(ϕK , ϕ0

H) < d(ϕH , ϕ0
H) + ϵ.

To see the second inequality, write

d(ϕK , ϕ0
H) ≤ d(ϕK , ϕH) + d(ϕH , ϕ0

H),

and note that the first term on the right-hand side of the inequality can be
made as small as we want since the set of continuous paths P(Homeo (M), id)
forms a topological group in the C0-topology.

We may normalize K if necessary without losing any of the above properties.
Now reparameterize K to Kζ , where ζ is the inverse of (here we use osc (Kt) ̸= 0
for all t ∈ [0, 1])

ξ : [0, 1] → [0, 1], t 7→

∫ t

0
osc (Ks) ds

∫ 1

0
osc (Ks) ds

.

Note that ζ fixes 0 and 1, so that ϕKζ has the same end points as ϕK . Then

ζ ′(t) =

∫ 1

0
osc (Ks) ds

osc Kζ(t)
.

Hence for every t

osc
(

(Kζ)t

)

= ζ ′(t) osc (Kζ(t)) =

∫ 1

0

osc (Ks) ds = ∥K∥(1,∞),

and therefore
∥

∥Kζ
∥

∥

∞
= ∥K∥(1,∞) < ∥H∥(1,∞) +

ϵ

2
.

Now ζ (and therefore Kζ and ϕKζ ) may not be smooth but only C1. So we
approximate ζ in the C1-topology by a smooth diffeomorphism ρ of [0, 1] that
also fixes 0 and 1 to obtain a smooth normalized Hamiltonian F = Kρ with
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∥F∥∞ < ∥Kζ∥∞ + ϵ
2 . Then F clearly satisfies (i) and (ii). Since ϕF is just a

reparameterization of ϕK we also have

d(ϕF , ϕ0
H) = d(ϕK , ϕ0

H) < d(ϕH , ϕ0
H) + ϵ.

That proves (iii) and hence finishes the proof. ¤

Proof of Lemma 1.2. For every Hamiltonian H we have ∥H∥(1,∞) ≤ ∥H∥∞.
So the inequality ∥ϕ∥(1,∞) ≤ ∥ϕ∥∞ is obvious. For the converse, let ϵ > 0
be arbitrary. Choose a Hamiltonian H generating ϕ such that ∥H∥(1,∞) ≤
∥ϕ∥(1,∞) + ϵ. By Lemma 3.2, we can find a Hamiltonian F generating ϕ such
that ∥F∥∞ < ∥H∥(1,∞) + ϵ ≤ ∥ϕ∥(1,∞) + 2ϵ. But then ∥ϕ∥∞ ≤ ∥F∥∞ <

∥ϕ∥(1,∞) + 2ϵ. Since ϵ > 0 was arbitrary, this implies ∥ϕ∥∞ ≤ ∥ϕ∥(1,∞). This
completes the proof. ¤

The next lemma is proved in [3] and in the form stated here in [7].

Lemma 3.3 (L(1,∞)-Approximation Lemma, Lemma 5.2, [3], Lemma A.4, [7]).
Let H : [0, 1]×M → R be a smooth normalized Hamiltonian function generating

the smooth Hamiltonian path ϕH : t 7→ ϕt
H . Then given any ϵ > 0, there exists

a smooth normalized Hamiltonian function F : [0, 1] × M → R such that

• F (and hence ϕF ) is boundary flat, that is, there exists δ > 0 such that

Ft ≡ 0 for 0 ≤ t ≤ δ and 1 − δ ≤ t ≤ 1,
• ϕ0

F = ϕ0
H and ϕ1

F = ϕ1
H ,

• ∥F − H∥(1,∞) < ϵ, and

• d(ϕF , ϕH) < ϵ.

In other words, any smooth Hamiltonian path can be approximated by a
boundary flat smooth Hamiltonian path in the L(1,∞)-Hamiltonian topology.
It is easy to see that this approximation procedure fails in the L∞-norm unless
(after normalizing) H0 ≡ H1 ≡ 0, since for any boundary flat Hamiltonian F we
have ∥F −H∥∞ ≥ max (∥F0 − H0∥C0 , ∥F1 − H1∥C0) = max(∥H0∥C0 , ∥H1∥C0).
Since for a given Cauchy sequence we cannot expect Hi,0 and Hi,1 → 0 as
i → ∞ in general, there can be no boundary flattening procedure for Cauchy
sequences in the L∞-case as for Cauchy sequences in the L(1,∞)-case. The
continuity of this boundary flattening procedure is one of the main advan-
tages of the L(1,∞)-norm. The boundary flattening procedure is important for
extending Yong-Geun Oh’s spectral invariants to the topological Hamiltonian
category, see [6], and is the main reason we adopt the L(1,∞)-norm in general.
We would also like to remark that the L(1,∞)-norm seems more natural in the
context of Floer theory and the theory of currents, see [7], [4], [6], and for the
notion of the length of a (topological) Hamiltonian path (Section 2).

However, there is a version of this reparameterization lemma in the L∞-case
that can be applied to sequences of Hamiltonians converging to zero. Its proof
is along the same lines as the proof of the L(1,∞)-Approximation Lemma.
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Lemma 3.4. Let H : [0, 1] × M → R be a smooth normalized Hamiltonian

function generating the smooth Hamiltonian path ϕH : t 7→ ϕt
H . There exists a

positive constant C that depends only on H such that, given any ϵ > 0, there

exists a smooth normalized Hamiltonian function F : [0, 1]×M → R such that

• F (and hence ϕF ) is boundary flat,

• ϕ0
F = ϕ0

H and ϕ1
F = ϕ1

H ,

• ∥F − H∥∞ ≤ 2∥H∥∞ + Cϵ, and in particular, ∥F∥∞ ≤ 3∥H∥∞ + Cϵ,

• d(ϕF , ϕH) < ϵ.

Proof. We choose a smooth reparameterization function ζ : [0, 1] → [0, 1] with
the following properties

• ζ ≡ 0 near t = 0 and ζ ≡ 1 near t = 1,
• ∥ζ − id∥C0 < ϵ, and
• 0 ≤ ζ ′(t) ≤ 2 for all t ∈ [0, 1].

Let F = Hζ . Then F satisfies the first two properties. Since H is smooth and
M is compact there exists a constant L < ∞ such that ∥Ht −Hs∥C0 < L|t− s|
for all t, s ∈ [0, 1]. Since both H and F are normalized we have for each t ∈ [0, 1]

0 ≤ max
x∈M

(

(Hζ)t − Ht

)

≤ ζ ′(t)
∥

∥Hζ(t) − Ht

∥

∥

C0 + |ζ ′(t) − 1| ∥Ht∥C0

≤ 2L∥ζ − id∥C0 + osc (Ht)

< 2Lϵ + ∥H∥∞.

The same estimate holds for −minx∈M

(

(Hζ)t − Ht

)

. Therefore, ∥F −H∥∞ <

4Lϵ + 2∥H∥∞. That shows that the third property holds. The last statement
is proved in the same way as in the L(1,∞)-Approximation Lemma. ¤

Before completing the proof of Theorem 3.1, we wish to consider another
way of reparameterizing a Hamiltonian H. Given 0 ≤ a < b ≤ 1, and a smooth
Hamiltonian function H defined on [0, 1]×M , we denote by ζa,b : [a, b] → [0, 1]
the unique linear function with ζ(a) = 0 and ζ(b) = 1, and by Hζa,b the
reparameterized smooth Hamiltonian defined on [a, b] × M . Of course if H is
normalized then so is Hζa,b , and if H is boundary flat then again so is Hζa,b .
Obviously, ∥Hζa,b∥(1,∞) = ∥H∥(1,∞) and ∥Hζa,b∥∞ = 1

b−a
∥H∥∞.

It only remains to show the inclusion Hameo(1,∞)(M,ω) ⊂ Hameo∞ (M,ω).
Let h ∈ Hameo(1,∞) (M,ω). By definition, there exists a sequence (ϕHi

,Hi) of
smooth normalized Hamiltonian functions Hi generating the smooth Hamilton-
ian paths ϕHi

such that (ϕHi
,Hi) converges in the L(1,∞)-Hamiltonian topology

and ϕ1
Hi

→ h in the C0-metric. As remarked in Section 1, we cannot expect the
sequence Hi to be Cauchy in the L∞-norm in general. Our goal is to modify
the sequence (ϕHi

,Hi) to a sequence which is Cauchy in the L∞-Hamiltonian
topology. Our strategy will be as follows. The given sequence gives a ‘short’
path from the end point ϕi of the path ϕHi

to the end point ϕi+1 of the path
ϕHi+1 for all i. We will construct a sequence ϕFi

of Hamiltonian paths so
that ϕFi+1 coincides with its predecessor ϕFi

for some time, followed by the
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path from ϕi to ϕi+1. We will have to apply Lemma 3.2 to pass from the
L(1,∞)-norm to the L∞-norm, and we have to make the pieces that we paste
together boundary flat so that the elements of the constructed sequence are
smooth. Along the way, we will have to keep track of the closeness of the paths
and of their Hamiltonians in the Hamiltonian topology. Note that the image in
Homeo (M) of the limit path of the modified sequence is very different from the
image of the limit path of the original sequence. We cannot apply Lemma 3.2
directly to the sequence Hi and expect these Hamiltonians and the paths they
generate to be Cauchy in the L∞-Hamiltonian topology in general.

Proof of Theorem 3.1. As remarked before it only remains to show the inclu-
sion Hameo(1,∞) (M,ω) ⊂ Hameo∞ (M,ω). Let h ∈ Hameo(1,∞) (M,ω). By
definition, there exists a sequence (ϕHi

,Hi) of smooth normalized Hamiltonian
functions Hi generating the smooth Hamiltonian paths ϕHi

(with ϕ0
Hi

= id)
such that

• d(ϕHi
, ϕHj

) → 0, as i, j → ∞,

•
∥

∥Hi#Hj

∥

∥

(1,∞)
= ∥Hj − Hi∥(1,∞) → 0, as i, j → ∞, and

• d(ϕ1
Hi

, h) → 0 as i → ∞.

Denote by λ the C0-limit of the sequence of paths ϕHi
.

Let ϵi > 0 be a decreasing sequence of real numbers such that ϵi → 0 as
i → ∞. Since h is uniformly continuous, there exists a sequence δi > 0 such
that for all i, d(h(x), h(y)) < ϵi for all x, y ∈ M with d(x, y) < δi. Without loss
of generality we may assume that δi ≤ ϵi for all i. As explained in Section 2,
by passing to a subsequence if necessary we may assume that

∥

∥Hi#Hi+1

∥

∥

(1,∞)
< δi ≤ ϵi, d(ϕHi

, λ) < δi for all i.

Assume this is done. We will specify the sequence ϵi later in the proof.
For convenience denote by H0 the Hamiltonian H0 = 0, which generates the

constant loop id. Define the sequence of smooth Hamiltonians Ki by Ki =
(

Hi−1#Hi

)

◦ ϕi−1 for all i > 1. Since the Hamiltonians Hi are normalized for
all i, the Ki are normalized as well, and the Hamiltonian paths they generate

can be chosen to be the paths ϕKi
= ϕi−1 ◦

(

ϕHi−1

)−1
◦ϕHi

from ϕi−1 to ϕi for

all i > 1. Here and in the following we denote by ϕi = ϕ1
Hi

the diffeomorphism

itself or the constant path t 7→ ϕ1
Hi

, and similarly for the identity id.
By assumption, ∥Ki∥(1,∞) < ϵi−1 for all i > 1. Moreover, we claim that the

assumption on the sequence ϕHi
implies

d(ϕKi
, ϕi−1) ≤ 4ϵi−1

for all i > 1. Again recall that the set of continuous paths P(Homeo(M), id)
forms a topological group in the C0-topology. We will use a similar argument
as in the proof of this fact to see the above inequality. Namely, note that by
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definition

d(ϕKi
, ϕi−1)

= max
(

dC0 (ϕKi
, ϕi−1) , dC0

(

(ϕKi
)−1, ϕ−1

i−1

))

= max
(

dC0

(

ϕi−1 ◦
(

ϕHi−1

)−1
◦ ϕHi

, ϕi−1

)

, dC0

(

(ϕHi
)
−1

◦ ϕHi−1 ◦ ϕ−1
i−1, ϕ

−1
i−1

))

.

For the second term, we use that the metric dC0 is right-invariant to see that

dC0

(

(ϕHi
)
−1

◦ ϕHi−1 ◦ ϕ−1
i−1, ϕ

−1
i−1

)

= dC0

(

(ϕHi
)
−1

◦ ϕHi−1 , id
)

= dC0

(

(ϕHi
)
−1

,
(

ϕHi−1

)−1
)

≤ d
(

(ϕHi
)
−1

,
(

ϕHi−1

)−1
)

= d
(

ϕHi
, ϕHi−1

)

≤ d (ϕHi
, λ) + d

(

λ, ϕHi−1

)

≤ ϵi + ϵi−1 ≤ 2ϵi−1.

For the first term, note that

dC0

(

ϕi−1 ◦
(

ϕHi−1

)−1
◦ ϕHi

, ϕi−1

)

≤ dC0

(

ϕi−1 ◦
(

ϕHi−1

)−1
◦ ϕHi

, h
)

+ dC0(h, ϕi−1)

≤ dC0

(

ϕi−1 ◦
(

ϕHi−1

)−1
, h ◦ (ϕHi

)
−1

)

+ dC0(λ, ϕHi−1)

≤ dC0

(

ϕi−1 ◦
(

ϕHi−1

)−1
, h ◦

(

ϕHi−1

)−1
)

+ dC0

(

h ◦
(

ϕHi−1

)−1
, h ◦ λ−1

)

+ dC0

(

h ◦ λ−1, h ◦ (ϕHi
)
−1

)

+ ϵi−1

≤ dC0(ϕi−1, h) + ϵi−1 + ϵi + ϵi−1

≤ dC0(ϕHi−1 , λ) + 3ϵi−1

≤ 4ϵi−1.

Therefore we have

d(ϕKi
, ϕi−1) ≤ 4ϵi−1

for all i > 1 as claimed.
Now apply Lemma 3.2 to each Ki to obtain a sequence of smooth normalized

Hamiltonians Li such that ϕ0
Li

= ϕ0
Ki

= ϕi−1, ϕ1
Li

= ϕ1
Ki

= ϕi for all i, and

∥Li∥∞ < ∥Ki∥(1,∞)+ϵi−1 ≤ 2ϵi−1, d(ϕLi
, ϕi−1) < d(ϕKi

, ϕi−1)+ϵi−1 ≤ 5ϵi−1

for all i > 1.
Then using Lemma 3.4 to reparameterize each Li we obtain a smooth

normalized boundary flat Hamiltonian Mi such that ϕ0
Mi

= ϕ0
Li

= ϕi−1,

ϕ1
Mi

= ϕ1
Li

= ϕi, for all i, and

∥Mi∥∞ ≤ 3∥Li∥∞ + ϵi−1 ≤ 7ϵi−1, d(ϕMi
, ϕLi

) < ϵi−1
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for all i > 1. The last two inequalities can be achieved by choosing the ϵ in
Lemma 3.4 to be ϵ = min(ϵi−1,

ϵi−1

C
) > 0, where C is the constant in Lemma 3.4

for the Hamiltonian Li (which may be different for each i). In particular,

d(ϕMi
, ϕi−1) ≤ d(ϕMi

, ϕLi
) + d(ϕLi

, ϕi−1) < 6ϵi−1

for all i > 1.
Finally, let ti = 1− 1

2i for all i ≥ 0. In particular, 0 = t0 < t1 < t2 < · · · < 1.
Then for i ≥ 1 define the sequence Ni of smooth normalized boundary flat

Hamiltonians defined on [ti−1, ti] by Ni = M
ζti−1,ti

i . As remarked above, we
have

∥Ni∥∞ =
1

ti − ti−1
∥Mi∥∞ = 2i∥Mi∥∞ < 7 · 2iϵi−1

for all i > 1. By choosing ϵi sufficiently small, for example ϵi−1 = 1
7

1
2i

1
2i for

i > 1, we get ∥Ni∥∞ < 1
2i , and since Mi is just a reparameterization of Ni,

d(ϕNi
, ϕi−1) = d(ϕMi

, ϕi−1) < 6ϵi−1 <
1

2i
.

The sequence Fi of smooth normalized Hamiltonians is then defined as fol-
lows. Let F1 = N1 on [0, t1] and F1 = 0 on [t1, 1], and for i > 1, define

Fi = Fi−1 on [0, ti−1],

Fi = Ni on [ti−1, ti], and

Fi = 0 on [ti, 1].

The Hamiltonians Fi are indeed smooth due to boundary flatness of the Ni.
We see that ∥Fi − Fi−1∥∞ = ∥Ni∥∞ < 1

2i . In particular, ∥Fi − Fj∥∞ → 0 as
i, j → ∞.

It follows from the definition that F1 generates a reparameterization of the
path ϕH1 , and for i > 1, the path generated by Fi is equal to the one generated
by Fi−1 on the interval [0, ti−1], equal to the path ϕNi

on the interval [ti−1, ti],
and is constant on the remaining interval [ti, 1]. In particular, the paths ϕFi

are continuous, and due to the boundary flatness of the Ni in fact smooth.
Moreover, the paths ϕFi−1 and ϕFi

agree everywhere except on the interval
[ti−1, 1]. Since both paths are constant on the interval [ti, 1], their maximum
distance is achieved on the interval [ti−1, ti]. On that interval, ϕFi−1 is just the
constant path ϕi−1, while ϕFi

is the path ϕNi
from ϕi−1 to ϕi. By the above

this implies that

d(ϕFi−1 , ϕFi
) = d(ϕNi

, ϕi−1) <
1

2i
.

In particular, d(ϕFi
, ϕFj

) → 0 as i, j → ∞.
That is, the sequence (ϕFi

, Fi) is a Cauchy sequence in Q∞, i.e., in the
L∞-Hamiltonian topology. Since ϕ1

Fi
= ϕi → h as i → ∞, we conclude that

h ∈ Hameo∞ (M,ω). Hence Hameo(1,∞) (M,ω) ⊂ Hameo∞ (M,ω). The other
inclusion was proved above, and hence we have completed the proof of Theo-
rem 3.1 or Theorem 1.1. ¤
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