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0. Introduction.

The set Eq(X) of homotopy classes of self-homotopy equivalences of a based
space X forms a group under the composition of maps, and it is called the group
of self-homotopy equivalences of X. The group FEq(X) has been studied by
several authors since the paper of W.D. Barcus and M. G. Barratt [1] appeared.

However, we have not yet obtained an effective method for calculating it
except classical ones, and its structure also has not been clarified sufficiently.
Furthermore, very little is known about this group even when X is a simply
connected CW complex with three cells which is not a H-space. In particular,
when X is a total space of S™-bundles over S”, the group E¢(X) was already
considred for X=S"xS" in [7], [8], [17], for a principal S®-bundle over S*
in [9], [13], [16], and for the real and complex Stiefel manifolds W, , and V, ,
in [10]. Recently, S. Sasao studied the group Eq¢(X) in [15] for the total space
of S™bundles over S® under the stable range, 3<m-+1<n<2m—2.

On the othe hand, it seems to be very difficult to investigate it under the
unstable range. However, we would like to consider it when X is simply con-
nected and the total space of S™-bundles over S™ for a small pair of integers
(m, n). Since X is simply connected, #n, m=2 and the cases (m, n)=(2, 2) or
(2, 3) were already considered by P.J. Kahn [7] and N. Sawashita [8].

Then the purpose of this paper is to study the group Eg¢(X) for the case
(m, n)=(2, 4) and we will treat its application in the subsequent paper in [22].

1. Notations and Results.

All spaces have base points, and all maps and homotopies preserve base
points throughout this note. We denote by [ X, Y] the set of based homotopy
classes of maps from X to Y, and we will not distinguish between a map and
its homotopy class. Let Z{x} (resp. Z,{x}) be the infinite cyclic group (resp.
the cyclic group of order m) generated by the element x. Let RP" (resp. CP™")
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and SO, be the n-dimensional real (resp. complex) projective space and the n-th
rotation group, respectively. We denote by the map p: S*>RP?*=S0; the double
covering projection, and it is trivial to see 7,(SOy)=Z{p}. In the exact sequence
A—B—-(C—1, we write the group composition in the group A as addition, and
the compositions in the groups B and C as multiplication. Then our main
results are stated as follows:

THEOREM 1.1. For each integer m, let X, be the total space of S*-bundle
over S* with its characteristic class X(Xn)=mpEms(SO,).
If m is a non-zero integer, the sequence

o X
ﬂG(Xm) E(](Xm) ¢ Gm - l
is exact, where
{Z2 if (m, 2)=1
N z.xz,  if m, 2)=2
and
0 if (m, 6)=1
T Xm)=y Zs if (m, 6)=3

ZBZ yo,my if m=2m’' for some integer m’
Here we denote by (m, n) the greatest common measure of tntegers m and n.
COROLLARY 1.2. If (m, 6)=1, then E¢(X,)=Z,.

PrOPOSITION 1.3. If (m, 6)=3, then the group Eq(Xy) s isomorphic to Z,
or Zs and Im[ Y : Eq(X )~ Eq 2 X,)]=Z,, where X denotes the suspension homo-
movrphism.

Remark 1.4. (1) If m=0, X,=S2xS* and the group Eq(X, was already
well-known. In fact, the following sequence is split exact [17]:

0—> Z,DZs —> Eq(Xy) —> ZyX ZyX Zy —> 1

(2) If m=2m’=0, the homomorphism A:7ny(X,)—>Eq(X,) is not trivial. In
fact, Im4 contains the subgroup isomorphic to Z,.

This paper is organized as follows:

In section 2, we will determine the homotopy groups mx(L,) and z«(X L),
and in section 3, we will calculate Eq(L,) and Eq(XL,). In section 4, we will
study the image of the homomorphism ¢X¢, and in section 5, we will give the
proof of our main results.

2. Homotopy Groups m.(L,) and 7(2L,).

Let ¢, be the oriented generator of x,(S™) and 7,=7,(S5?% be the Hopf map.
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We put 7,=E™%p;, 92=9n°%nu a0d Pi=9n°Nns1°Nns for n>1, where E"-?
denotes the iterated suspension homomorphism. Let wer(S?®) be the Blackey-
Massey element, and p: S*—»RP?*=S0, be the double covering projection. Then
the following is well-known :

LEmMMA 2.1. (H. Toda, [197)
1) m(SM=Z{e,} and =(S™M)=0 for i<n.
(2) mpiSM=2Z:{n,} for n>2 and w(SDH=Z{n,}.
Q) waro(SM)=Zo{ni} for n>1.
(@) w(S=Z,{n3} and = (S)=Zn{0}.
6) Jlp)==w,
where J: my(SO)=Z{p}>n(S? denotes the J-homomorphism.
(6) ni=1{2ts, 75, 2t} modulo zero,

where {,,} denotes the Toda bracket.

Let L, be the CW complex formed by attaching the 4-cell ¢* to S* with the
map mN,Exy(S?), and a,,: (D¢, S*)—(Ln, S?) be the characteristic map of the 4-
cell in L,, and X, be the total space of S%bundle over S* with its characteristic
element X X,)=mpen,(SO;=Z{p} for an integer m. We denote by the map
p:580,—~50,/50,=5? the natural projection map, and by the map 7:S5%—L,
(resp. ¢;: Lp—(Ln, S%) the inclusion map. Then we have

LEeMMA 2.2. (1) pulp)=7..

2) To(Lm, SZ):Z{am}-

B) w(Lm, SO=Z{[an, 6.1} Dansms(D*, S%),

where [, ], denotes the relative Whitehead product.

Proof. The statements (1) and (2) are obvious, and the statement (3) follows
from (3.1) in [3]. Q.E.D.

Since py(X(Xn))=mn,, we also have

LemMA 2.3. (I.M. James and J. H. C. Whitehead, [5], [6])
(1) The space Xn has the CW-decomposition Xp=Ln\Js e* for some element
bpoen(Ly), and

2) il*(bm):[am: 52]1

where i1+ denotes the induced homomorphism



THE GROUP OF SELF-HOMOTOPY EQUIVALENCES 311
tyg : T5(L ) —> w5(Ln, S?).

Proof. The above statements follow from (3.3) in [5] and (5.1) in [6].
Q.E.D.

LEMmA 24. (1) #(Ln)=0 and = (Ln)=Z{i}.
@) mLnp)=Znlion.}.
0 if m=1 (mod2)
(B) wLn)=3 Z,{i-n}} if m=0 (mod2) and m=0
Z{1}PZ{in3} if m=0,
where the map i,: S*—>S®V S*=L, denotes the inclusion map to the second factor.

Proof. Without loss of generalities, we may suppose m=0 and it suffices
only to show the statement (3). Consider the homotopy exact sequence of the
pair (L, S¥:

5 Ix L1k 4
(L, §) —> wy(8%) —> a(Ln) —> 7Ly, S*) —> 7(S*) —> 75(Ln) —> 0.

Since 0.(an)=m7,, it follows from (2.2) that the homomorphism 1z, is epimorphic.
By using the equation [, ¢,]1=0, 0s([an, t.1;)=—[0.(an), ¢:]=0. Similarly,

05(@mumo(D*, S*)=(m7,)sm (S*)
{ 7(S?) if m=1 (mod2)
0 if m=0 (mod?2).

Hence the assertion (3) easily follows from (2.2). Q. E.D.

COROLLARY 2.5. If m=0, then
s(L o, S?) if m=0 (mod2)
Ker [0 : w5(Ly, S*) —> m(SP)]=
Z{lan, t21:} if m=1 (mod2).
LEMMA 2.6. If m=0, then
75(S?) if m=1 (mod?2)
Im [0;: m (L, S*) —> m5(S%)]=
if m=0 (mod2).
Proof. First, we suppose that m is an odd integer. Since dy(@nx7s(D?, S)
=(mN2)x7s(S%)=02475(S*)=m;(S?), the boundary homomorphism @, is epimorphic.
Next, we assume that m is a non-zero even integer. Consider the commut-
ative diagram
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s
n(Lm, SH—> 7(SH=2Z,{n3}

l p IAG

7o Xm §%) > 2o(SY=Zo{ 3}

where A, denotes the boundary homomorphism induced from the fibration

Pm

S?—s X, ——> 8%, A, wo(SY) —> 7w, (5.
Since X(X,)=mp, we have
2.7 . A4(54):m772-

Because ni=E(n3), AdnD)=Ale)) ni=(mn,)°ni=m(n})=0. Hence A, is a trivial
homomorphism. Thus the assertion follows from the above diagram. Q.E.D.

Let ¢p: Lp—L,/S*=S* be the pinching map which pinches S? in L,, toits
base point. Then we have

LeMMA 2.8. (S. Oka)
Let m be an even integer. Then there is an element ynems(Ly,) satisfying
the following two conditions:

(1) dm°Ym="4,
and
(2) the order of Tm ts 2 1f m=0 (mod4) and 4 if m=2 (mod4).

Proof. We put m=2m’. For each positive integer n, let M, be the Moore
space of type (3, Z,), M,=S5%..,e'. Consider the following commutative
diagram :

!3 /4 ”
S ——§* —> M, ——> S*

1
]
lm’zs i
me M4 !
Sty M, —2 5t
i
N E
mye A N

S s St Ly —5 S

where three horizontal sequences are cofiber sequences. It follows from the above
diagram that there are two maps

fMy,—> M, and g: M, — L,
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satisfying the following conditions:
(2.9) G of=q", [ei"=i's(m'ty), qmog=¢q’, and goi’'=ioy,.

On the other hand, since (2¢;)°n;=1%,°(2¢,)=0, there is a coextension of 7,,

5:5°—> M,
satisfying the condition,
(2.10) ¢ =7
From Prop. 1.8 in [19],
27 =1 (2t5)

:Z'”o {213) 773; 2[4}

=i"o73  (by (6) in Lemma 2.1)
Hence we have

(2.11) 25=1"en3.
Now we put y,=gef-#. Then,
InoYn=qn°g°f 7
=q"e7  (by (2.9))

=1, (by (2.10))
Similarly,
2Tm:g°f°(277)

=geofe@on3)  (by (2.11))
=ione(mes)ons  (by (2.9))

=m'(i°93)
{@(;75) it m'=1 (mod2)
o if m'=0 (mod2)

Since the order of .(%}) is 2, the order of 7, is 4 if m=2 (mod4) and 2 if m=0
(mod4). This completes the proof. Q. E.D.

Remark. 2.12. The order of the element 7, is essentially determined by the
suspension order of S* Jn.,e’

PROPOSITION 2.13. (1) If m=1 (mod?2), then ns(Ly)=Z{bn,}.
(2) If m=0 (mod2), then

VAUSISS YRV if m=2 (mod4)

Ws(Lm):{
Z{bn)DZo A n}DZoA2oni} of m=0 (mod4)
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where we can put bn=[i,i,] and ymn=i,on, if m=0, and 2yp=i-n} 1f m=2
(mod 4).

Proof. Consider the homotopy exact sequence of the pair (L., S%),

6 * Z'1>(< 5
Tg(Lm, S?) —> ms(S%) —> #5(Ln) —> 75(Ln, S?H) —> 7w (5?).

First, we suppose that m=1 (mod2). Then it follows from (2.3), (2.5) and (2.6)
that we have n;(L.,)=Z{bn}. If m=0, then L,=5%?vS* and the assertion
clearly holds. Hence, we assume m=0 (mod2) and m=0. Then, from (2.3),
(2.5) and (2.6) we have the following results:

214 ) as(Ln)=Z{bntDTor (xs(Ln)).

(2) The sequence

7 4
0 —> 75(S?) —> Tor (Ts( L m)) —> amyres(D*, S%) —> 0

is exact. On the other hand, it follows from Theorem 2.1 in [2] that the
sequence

qm
0 —> 7(SY) —> 7ts( L, S?) —> w4(S*) —> 0

is exact, where the homomorphism @ is defined by the relative Whitehead pro-
duct, Q()=[am, ¢t].. Hence the map ¢, induces the isomorphism ¢, :

anxms(Dt, S%) —> m5(S*), and we have the following exact sequence,

I Imx*
(2.15) 0 —> 7558 —> Tor(ns(L ) —> m5(S*) — 0.
Hence it follows from (2.8) and (2.15) that we have

Z A7 m} if m=2 (mod4)
(2.16) Tor(m(Lm)):{

Zorm}PZ diondt  if m=0 (mod4).

Therefore, we obtain the desired results. Q.E.D.

In the rest of this section, we will consider the homotopy group z4(2Ln)
First, we remark that

S v §? if m=0 (mod2)
(2.17) m:{

2CP? if m=1 (mod2)

For each even integer m, let 7;:S°—2XYL,,=S°vS® denote the inclusion map to
the second factor.

LEMMA 2.18. Let m be an even integer. Then thesusp enston homomorphism
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X :Tor(mws( L) —> me(X L n)=n(S?VS%

is injective, where (S L,)=n(S*VS*)=Z{(Z0)-w}PZ;{is-n;} and we can choose
the map yn<Tor(ws(Ly)) to satisfy the condition

15°9s if m=0 (mod4)
s ={

(2.19)
isons+3(21)ew  if m=2 (mod4).

Remark 2.20. It is easy to see that there are two possibilities of the choice
Of 7m, 7m and yn+i4(n3). However, if 7, satisfies the condition (2.19), then it
is uniquely determined.

Proof. Since 2 L,=S5°v 5% we have the following commutative diagram :

0—> 7(S?) — %> Tor (zs( L)) —2% > 15(S%) —> 0

E 2 =~|E’

5
0 —— 7,(5%) (20)x

ﬂG(ZL m) Q———-"" 7o(S®) — >0
Tok

where E, E’ and 2 denote the suspension homomorphisms. Since E is monic
and E’ is isomorphic, it follows from the five Lemma that 2 is also monomorphic.
Hence the order of Xy, is 2 if m=0 (mod4) and 4 if m=2 (mod4). Then it
follows from ¢un«(7n)=7. that we have Xy, =i;-9; modulo Im(Z27),. Therefore,
there exists some integer n satisfying the condition

5 {iEom—l—n(Z'z')ny% if m=0 (mod4)
" g st 3(Ziew+n(Tiont  if m=2 (modd).
Then by using the base change y,—7n+n(-%}), it is easy to see that 7,
satisfies the condition (2.19). Q. E.D.

An easy calculation shows the following results, and we will omit the proof.

LEMMA 2.21. Let m be an odd integer. Then we have the following results
Q) m(XLn)=0 fori=1,2 or 4,

@) #a(XLn)=2Z1{3i},

3) 7(ELa)=Z{2}, and

(4) 7(3 La)=Ze{(37) w},

where we denote by 2, the coextension of 2ty which satisfies the condition (qu)°,274
22!5.
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3. The Groups E¢(L,) and Eq(ZL,).

In this section, we will determine the group structure of Eg¢(L,) and
Eq(X Ly).

DEFINITION 3.1. Let K be a CW complex with dim K<n. Let X bea CW
complex formed by attaching the n-cell ¢* to K with the map fer,-,(K),
X=K\_se". We denote by 7, ¢ and V the inclusion map, a co-action map and a
folding map, respectively. Then we define the homomorphism A:Im [/, : 7 (K)
—x,(X)]—Eqg(X) by the following :

J7 idyVieg v
Aog)=Veo(idxViog)op: X —> XV S®* ———> XVX —> X for gen,(K).

Similarly, we define two homomorphisms
¢:Eq(X) —> Eg(K) and ¢:EqX)—> Eq(S"=2Z,

by the restriction of maps and the degree of the top cell e*. (See in detail,

[121)
Secondly, we construct the elements of Eq(L,) and Eq(3L,).

DEFINITION 3.2. (1) For m=0, we define the map h, by the equation,
ho=tsV (—eg) 1 Ly=S*V St — L, =5%Vv§*.
For each even integer m, we define the map A{ by the equation
ho=6V(—ts): FLp=8VS" — 3 L,=5VS°.

Clearly, if m=0, h{=2Xh, For each odd integer m, let h{: XL ,—2 L, be one
of the maps which has a degree -+1 on S® and —1 on the cell ¢® in I'L,,.
Since n;=—17, the map hy always exists.

(2) For each integer m, let h;: L,—L, be one of the maps which has a
degree —1 on S® and a degree +1 on the cell ¢* in L,. Since

H(ﬂz):fa and [¢,, 12122772,
(—fz)°(m772):m((_l2)°772)
=m(—ny+Les, (2]-H(ps)=mn,.

Hence the map h, always exists. We define the map hAi: 2> L,—2L, by the
equation
, {(—ta)\/zf,:Z’Lm:S3vS5—»Z’Lm:S€‘v55 if m=0 (mod2)

"\ sh:SL.—3L, it m=1 (mod2).

(3) For each integer m, we define the map h, by the equation h,=A(%3).
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In particular, if m=0, then h,=id; +i-9}-pr, where pr denotes the projection
map to the second factor, pr: L,=S*VvS*—>S% For each even integer m, we
define the map hy:XL,—2L, by the equation h;=2Xh,. Then it is easy to
see that hy=idz; +(Z)eni(3pr).

THEOREM 3.3.
Zy{hi} if m=1 (mod?2)

(1) Eq(Ln)=1 Zy{h} X Z,{hs} if m=0 (mod2) and m+0
Zylho} X Zo{hid X Zo{hs}  if m=0.

Zy{hs} X Zo{hi} if m=1 (mod2)

) Eq<2Lm)={
ZAhiy X Z oA} X Zoht}  of m=0 (mod2).

(38) The suspension homomorphusm X : Eq(L,)—Eq(2 Ly) is monomorphic and
isomovphic if m=0.

Proof. First, we consider the case m=0. Since L,=S?VvS* the homotopy
set [ Lo, Lo] has a natural ring structure which is induced from the track addi-
tion and the composition of maps. It is easy to see that the ring [L,, L,] is
isomorphic to the matrix ring

I’m(SZ) m(SZ)J
mo(S*) 7w (SY)

[Z{tz} Zz{n%}}
0 Z{ey}

Hence Eq(Lo):{ihO; i/’ll, i/’l2}, where hozlg\/('_l,;)-_—[é *’01]’
-1 0 1 %}
h1:(“‘!2)\/54:|: and hzzidLo—Hm%opr:[ .
0 1 0 1
Since hnehn=1dr, and Aneh,=h,°h, for 0=n, k=2, we have
Eq(LO):ZZ{hO}XZZ{hI}><Z2{h2}-

A similar argument shows Eqg(X Lo)=2Z,{hs} X Z,{h{} X Z,{h}}, and it follows from
hn=2X2h, that the suspension homomorphism X : Eq(L,)—Eqg(2 L,) is isomorphic.

Next, we consider the case m=0. It follows from the Barcus-Barratt theorem
(2] and Theorem 3.13 in [12] that we obtain the following commutative diagram :

A
Im [y : 7S —> (L n)] ——> Eq(Ln) ? > £q(S?) -1

B E B
2 pXP . S
0= Im [(Z0)y: mo(SH—> (L )] —Eq(XY L) —— Eq(S*) X Eq(S®) —> 1
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where X, 3, and Y, denote the suspension homomorphisms, and two horizontal
sequences are exact.

Now we suppose that m is an odd integer. Since #,(L,)=Im(37),=0 and
Y, is monomorphic, Eq(Ln)=Z,{h,}, EqXL,)=Z,{hi}XZ,{hi} and X is a
monomorphism.

Finally we assume that m is a non-zero even integer. Since YL,=S%Vv S5,
we obtain

3.5)  EqXLn)=Zsthot XZthi} X Zoths}, and Im(20)«=2Z,{(27)-nf}.

Hence 2, is an isomorphism and the homomorphism A:Imiy=2Z,{ien}}—>Eq(Ln)

is a monomorphism. Because 2, is monic, according to the Five Lemma, X is

a monomorphism. Therefore, it follows from (3.5) that Eq¢(L,)=Z,{h} X Z,{h,}.
Q.E.D.

4. The Image of the Homomorphism ¢x¢.

The purpose of this section is to determine the image of ¢X¢,
4.1) Gn=Im[@X¢: E¢(Xn) —> Eq(L )X Eq(S%)].
According to Lemma 2.2 in [12], if we identify Eg¢(S®)=Z,={=+1},

LEMMA 4.2. Gun={(h, ) Eq(Ln)X{£l}: hebp=¢chn}.

Thus it suffices only to determine the action of Eq(L,) to the homotopy group
ws(L ) which is induced from the composition of maps,

(4.3) Eq(Ln) X7 Lm) —> ws(Ln).

Let j/: L,—L,VvS* and j”:S*->L,VS* denote the inclusion maps to the first
factor and second factor, respectively. Let p:L,—L,VS* be a co-action map.
First, we note the following

LEMMA 4.4. (I.M. James, [3])
(D) pxlbm)=j"bn+T[i, ;1.

@ palym)=7">rnt7 7.

@) pxla(nD)=7"1x(nD).

Proof. Let 3’ be the generator of m;(D*, S*)=Z,. According to (2.3), (2.8)
and (2.13), 41x(bn)=Lam, t21r, 11x(yn)=anx(n") and 7,x(x(93))=0. Then the above
results follow from Lemma 5.4 in [3]. Q. E.D.

Lemma 4.5. (I.M. James, [4]) 2b,=m((27)-w).

Proof. Since J(Xn))=J(mp)=-+mw, the assertion follows from (3.1) in [4].
Q.E.D.
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Then the action (4.3) is described as follows:

THEOREM 4.6. (1) If m=1 (mod2), then hy°b,=—by.
(2) If m=0 (mod2), then
(a) h1°bm:_bm;
(b) h2°bm:bm;
Tntix(n3) if m=2 (mod4),
(C) h1°rm: i
Tm if m=0 (mod4),

(d) hz"Tm:Tm"_i*(ng);
and

(€) hioix(nD)=hyeis(n})=1x(n}) if m=0 (mod4).
(3) In particular, if m=0, then

(@) hocby=—b,,

(b)  he°re=T7o,
and

(€) hoois(nD)=is(n}).

Proof. According to the cellular aproximation theorem, we may assume
h(SHCS% Hence h,°i;=i,h,. Therefore,

Lise(Ryobm) =h1oi14(bm)
=hx([am, =17 (by (2.3)
=[hiean, (h,|S)-t.],

=Lanm, —t:1s
=—[an, 1
=—71(bn)"
Thus, we have
4.7 hicbp=—b,  modulo 74my(S%).

(1) First, we suppose m=1 (mod2),
According to (2.13), i47s(S?)=0 and we have h,°b,=—by.

(2) Next, we assume m=0 (mod 2).

(a) Since 747m;5(S?) is contained in Tor (zs(L,)), there exists some element
yeTor(ws(L ) such that hyebp,=—b,+y. Then
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Zr=2(hyobn+bn)
=(Fhy)e Zby+2by,
=hiem(Zicw)+m(Zrew)  (by (4.5))
=—m(Zi-w)+m(Zi-)
=0.

Therefore, according to (2.18), y=0. Hence h,ob,=—"by.
(b) Since [z, 721=0,

haobm=A(03)bn
=Ve(idy, Viens)e psx(bn)
=Ve(idy, Viend)e(j <bn+li, ;")  (by (4.4)
=buticles, 78]
=bp.
(¢) If m=2 (mod4), then
Zhopm)=hieZyn
=((—ta)Ve5)o(isons+3(220w))  (by (2.19)
=—(s295+3(31°0))
=—27m
=2 (7 n+ix(n3).

Hence, according to (2.18), we have A;7n=7n+7«(93). If m=0 (mod4), then it
follows from (2.19) that Xy, =isc%; Hence, a similar calculation shows A;e7.,=7p.

(d) heerm=A08)Tn
=Ve(idy, Vienh)e prx(yn)
=Ve(idr, Vo) (J o rmti"on)  (by (4.4)
=Tntex(n).
()  2(hiorx(pD))=hi(27)o9}
=((~ts)V5)e(27)o 7}
=—2e7}
=2(-73).



THE GROUP OF SELF-HOMOTOPY EQUIVALENCES 321
Hence, according to (2.18), we have h,eiy(nd)=i(9]).
heolx(pD=Vo(id  Viens)o ps(is(pd)
=Ve(idr, Viend)es ix(n3)

:i*(ﬂg)-
Thus,

hyots(nD=haoix(nD)=is(nD).

(3) If m=0, then it follows from (2.13) -and (3.2) that h,=¢,V(—¢y), by=
[7,4,] and y,=t,°%, Therefore, it is easy to see the assertion (3) and we omit
the proof. Q.E.D.

In particular, it follows from (4.2) that we obtain the following

COROLLARY 4.8.
Z, if m=1 (mod2)

CGu={ Z,XZ, of m=0 (mod2) and m=x0
ZoXZyXZy  1f m=0.

5. The Proof of the Main Results.

In this section, we will prove (1.1) and (1.3).
Let j: L,—X, be an inclusion map and b}, ExyXn, L) denote the charac-
teristic map of the top cell ¢° in X,. Consider the homotopy exact sequence

2 L) Lo 2(X) —> T Xoms L) =Z B} 2 7 Lo)=Z (b} BTor (sl L)
Since 7o(Xpm, Ln)=2Z{by} and 9(b},)=b,, we have
LEMMA 5.1. Im t]'* twy(Ly) —> ne(Xm):[:n:G(Xm).
Hence, according to the Barcus-Barratt Theorem and (4.8), we obtain

LEMMA 5.2. The sequence

A
ES(XM> — Eq(Xm) —> Gm —> l
is exact.

Therefore, to prove (1.1), it suffices only to show the following

ProposITION 5.3.
0 of (m, 6)=1

ﬂs(Xm);! Z of (m, 6)=3
tzz@ztm,mw if m=2m’%0,.
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Jot P
Consider the homotopy exact sequence of the fibration &,:5*— X, ——"-;S‘,

(5.4) 7(S*) i (8% —> wo(Xn) ?—ﬁ mo(SY) —é: 75(S?%).
Here, according to [19], we note
(5.5) 7(SD=Z:{n3}, w(SN=Zninc0}, #(S)=Z.{ni},
and w(SH=Z{v}DZ | Ew}.

Then we have

LEMMA 5.6.
73 if m=1 (mod2)
@® Ae(n§)=m(7)%)={ )
0 if m=0 (mod2).
2) A(Ew)=m(n;-w).
3) Avi=(m(m—1)/2)(n: w).
Proof. (1) Since ni=E(%3), according to (2.7),
A =Ae) ni=(mny)oni=m(xn}).

(2) Similarly, since [¢g, £,1=0, A(Ew)=A(¢)) w=(mn,)-0=m(n, ).
(3) Consider the induced fibration v¥é,,:

£S5t —>X, ...?ﬂ.,sd

B

v, Se—a X — 5
Then we have the commutative diagram

7‘!’-,(5‘)""9"_‘> 7(S?) —('_Z")'*" o(Xm)

o

2o S7) ———> 7,(S?) > 75(X)

Z{tz}

Hemce
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6.7 A (v) =D (vas(6:))=A7(e,) .

Since p:S*—RP*=S0; is a double covering projection, the induced map Bp : HP~
=BS*->BSO0, is a fibration with its fiber BZ,=K(Z,, 1). Then, if n>2, we
have the composite of isomorphisms

Bp* ad
(58) nn(HPw):”n(BSS) _— 7[,,(3503) —_— 77.'7,-1(503),
where ad denotes the adjoint isomorphism. Since 7,(SO;)=Z{p}, there exists a
map p’sx,(HP>) such that,
5.9) ad-Bp«(p)=p and = (HP=)=Z{p'}.
Furthermore, according to the celluar approximation theorem, we have
(5.10) p'=JseJ1,

where the maps j,:S*—>HP*=S*),¢* and j,: HP*-HP> denote the natural
inclusion maps. Let ¢(&,)en,(BS0O,) and c(v*¥¢,)=r,(BS0O;) denote the charac-
teristic classes of the S:-bundles &, and vi,. We put p”=DBp.(p)=n,(BSO,).
Since X(X,)=mp, according to (5.8) and (5.9), we have

(5.11) c§n)=m(Bps(p")=mp".
Since [¢4, ¢4 ]=2v,+Ew and H(y,)=¢,,
cWin)=vic(m)

=c(Em)ovy
=(mp”)ev,
=m(p”oy)+(mm—1)/2)[p”", p"1H(c,)
=m(p” ovy)+(mim—1)/2)p" (¢4, t:]°¢;
=m(p” oy )+(m(m—1)/2)p" (2v,+ Ew)
=m*p" ev,)E(m(im—1)/2)(p" - Ew).

Because HP? is a mapping cone of v, j,°v,=0. Hence p”ey,=(Bpep’)ev,=
BP°(].2°].1)°”4:0; and

cWin)=£(m(m—1)/2)(p" « Ew)=£(m(m—1)/2)Bps(p’)- Ew.
Thus, according to (5.8) and (5.9), we obtain
(5.12) UX)==+(mm—1)/2)p-w,

where U X)ern(BSO,) denotes the characteristic element of v}§,. Then, if
p:S50,—S0,/S0O,=S*? is a natural projection map, p«(p)=7. and
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A(v)=A47(er) (by (5.7))
=p(X(X))
=x(m(m—1)/2)px(p)°w (by (5.12))
=4(m(m—1)/2)(n:°).
This completes the proof. Q.E.D.

Proof of Proposition 5.3. Consider the homotopy exact sequence (5.4). First,
we suppose m=1 (mod2). Then according to (5.6), we have

0 if (m, 3)=1

ﬁe(Xm):Z(lz.m){(.7."7.)*(772”1))}:Z<m,a){(]'°Z‘>*(772°w>} E{ Z, it (m, 3)=3.

Now, we assume that m=2m’>0 for some integer m’. According to (5.6),
the following is exact: .
(Fo0)x Dmx
(5.13) 0 —> Z o, my {92o0} 7o(Xm) To(S*) — 0.

Since (mn,)-ni=m(n3)=0, there exists a coextension of 7}, 5§==n(L,) such that,
(5.14) Gnofi=ni.

Furthermore, because z4(L,) is a finite group, the order of # is 2. Hence it
follows from p,|L.,=q, that the sequence (5.13) is split exact. Hence =y(X,)
=Z(12,m') {(]'°l‘)*(772°0))}@22{77} %'Zuz,m')@zz- Q.E.D.

Proof of Theorem 1.1.
The assertion easily follows from (4.8), (5.2) and (5.3). Q.E.D.

Proof of Proposition 1.3.

Let m be an integer which satisfies the condition (n, 6)=3. Then it follows
from the proof of (5.3) that 7o(Xn)=Z:{(jeD)sx(ns°w)}. According to [19], =,(S?)
=Zplw} =2 {v}DZ{a,(3)}. Hence (Jor)u(n.e@)={(j0)x(n:°,(3)). Thus, it follows
from (1.1) that the group E¢(X,) is generated by two elements,

(5.15) 0= *D)x(gz0a,(3))) and 0,
where @, denotes the map in [X,,, X1 which satisfies the conditions,
(5.16) #(0)=h,€Eq(Lp)=Z,{h,} and (0,)=1eEq(S")=Z,={x1}.

According to (3.3), the suspension homomorphism 2 :Eq(L,)—»E¢XL,) is
monomorphic. Therefore

(5.17) 20,%idsy,, and (26,)(20,)=idsy, .
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Since E(7,°a:(3))=%s°Ea,(3)=0, according to the naturality of the Barcus-Barratt
operation 4, we have

20, =2 (702> :(3)))
=2 (j D)l E(ngoar(3))))
=(0)

:ZdXXm-

Then it follows from (5.15) and (5.17) that we obtain

Im[2: Eg(Xn) —> B2 Xn)1=2,{20,}=Z,.

Thjs completes the proof. Q.E.D
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