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Summary. A solution is found for the seismic radiation from an arbitrarily 
growing spherical source in an inhomogeneously prestressed elastic medium. 
The general problem of the growing seismic source in a prestressed medium is 
formulated as a boundary value problem. For the special case of the growing 
spherical source, an expansion in vector spherical harmonics reduces the 
problem to a set of one-dimensional Volterra integral equations. The equa- 
tions can be easily formed through the use of Bessel function recursion rela- 
tions. The integral equations for a growing spherical cavity are solved 
numerically. Waveforms are then computed for homogeneous and inhomo- 
geneous stress fields for several growth histories. The resulting waveforms are 
similar to the waveforms of the corresponding instantaneous problem, but 
stretched out in time and reduced in amplitude. The effects of diffraction and 
the overshoot of equilibrium are reduced with a reduction in growth rate. The 
effects caused by inhomogeneity of the stress field are quite strong for the 
growing as well as for the instantaneous seismic source. 

1 Introduction 

Spherical sources have been used a number of times in the past as models for earthquakes 
and for the tectonic release from explosions. The spherical source problem can be solved 
under a very wide range of conditions, so it forms an important canonical problem for the 
general seismic source problem. Nearly all exact solutions to spherical problems have been 
for an instantaneous change in material properties. Hirasawa & Sat0 (1963) computed the 
seismic radiation from the sudden creation of a spherical cavity in a uniform shear stress 
field. Koyama, Horiuchi & Hirasawa (1973) computed the seismic radiation from a region 
which suddenly changes to a fluid in a uniform shear field. Stevens (1980a) computed the 
seismic radiation from the sudden creation of a spherical cavity in an arbitrarily prestressed 
medium and studied the effects of local stress concentrations. The instantaneous problems 
are relatively simple since the problems can be solved by applying Fourier or Laplace trans- 
form techniques. Time-dependent problems are more difficult since they must be solved in 
the time domain. 
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122 J. L. Stevens 
It is important to consider the effects of finite growth rate, since for earthquakes the 

rupture growth must always be subsonic. Even for nuclear explosions, some time will be 
required for the creation of the cavity and the growth rate may be subsonic. Stevens (1980a) 
found a number of anomalous effects which appear when failure occurs instantaneously in 
an inhomogeneously prestressed medium. Observation of these effects could lead to the 
identification of stress concentrations in the Earth, but they might be masked by growth 
effects. One purpose of this paper is to study the effect of a finite growth rate in addition to 
an inhomogeneous prestress field. 

A major advantage of the spherical geometry is that the vector elastic equations separate 
in spherical coordinates. Even for time-dependent problems, the equations can be reduced 
to a set of one-dimensional differential or integral equations. The only previous solutions to 
growing source problems are for a uniformly growing cavity (Burridge & Alterman 1972) 
and for a uniformly growing cavity which suddenly stops (Burridge 1975). Both of these 
solutions are valid only for a uniform shear field. In principle these solutions Can be 
extended to the general case (arbitrary growth rates and arbitrary stress fields), but this 
involves a great deal of tedious algebra and requires solving a number of sets of high order 
differential equations (Stevens 1980b). 

Archambeau (1972), Minster & Suteau (1 977), and Minster (1979) have used an approxi- 
mate solution for a growing spherical source in a uniform shear stress field as a model for the 
tectonic release from explosions. This ‘transparent source approximation’ uses an infinite 
space Green’s function to propagate the effect of the change in prestress caused by the 
material transformation, but neglects the effect of the surface itself. In this paper we avoid the 
problems which occur with the approximate solutions by satisfying boundary conditions on 
the growing surface. 

By expanding the unknown displacement field in vector spherical harmonics the growing 
source problem can be reduced to a set of one-dimensional integral equations which can be 
solved numerically. The amount of algebra required is greatly reduced through the use of 
Bessel function recursion relations. Formulation of the integral equations is then straight- 
forward even for complex prestress fields. 

2 Formulation of the problem 

We need to solve the elastic equations in a prestressed medium subject to the boundary con- 
dition of conservation of momentum on the growing boundary. The elastic operator is 
defined by 

The initial displacement field uo (referenced to a state with no prestress) satisfies 

where fi represents the static body force density. We define the total displacement ut and 
the dynamic displacement u by 

Ut = uo + u. 
The total displacement satisfies 

(2.3) 
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The growing spherical seismic source 123 

assuming there are no time-dependent body forces (p is the density). The dynamic displace- 
ment field therefore satisfies 

The displacement field u is zero initially and becomes non-zero after the formation of the 
failure zone. It satisfies the elastic equations with inhomogeneous boundary conditions. 
Conservation of momentum across the moving boundary is given by (Archambeau & Minster 
1978): 

where T is the stress operator defined by 

and U is the rupture velocity. The brackets [[ ] indicate the change in the quantity across the 
boundary. If the material inside the source region becomes very weak, then c i j k ,  = 0 inside. 
Using this condition and equation (2.3) we find the boundary condition for the dynamic 
displacement field u to be: 

In general the jump in velocity (and density) across the boundary is not known, however, 
Burridge (1976) has shown that if the density remains constant across the boundary (as 
required by the linear theory) and the energy of transformation at the boundary is dissi- 
pated as heat, then 

= o  (2.9) 

and the second term in (2.8) vanishes. We will usually assume this condition, but will con- 
sider the effect of this extra term later on. Under this condition the boundary condition 
becomes: 

T(u) . i = - T(uo) . i (2.10) 

so the problem is equivalent to a stress pulse equal to minus the initial prestress applied to 
the (growing) cavity surface. 

The assumption that Cijkz = 0 inside is of course an over-simplification of the problem. 
Within the limits of linear theory, however, we cannot consider density changes or convec- 
tion, nor a material which may be strong in compression but very weak in tension. It is 
possible to extend the problem to include a linear material inside by using internal eigen- 
vectors for this material and requiring continuity of normal (and tangential for a solid) 
displacements across the surface (Koyama et al. 1973; Stevens 1980b), but this is a much 
more restrictive condition than is likely to result from the crushed and cracked material in 
a real physical process. In addition to this, it is not clear what initial conditions to place on 
the transformed material without a detailed study of the failure process. For these reasons, 
the stress free boundary condition (equation 2.8) seems to be the best idealization of the 
seismic source without including non-linear effects. 
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124 J. L. Stevens 

3 Separation of the differential equations - spherical eigenvectors 

The elastic equations separate in spherical coordinates by introducing vector spherical 
harmonics. The orthogonal vectors PI,, B I ,  and Cl ,  as defined by Ben-Menahem & Singh 
(1968) are: 

PI, =e^,ybn(e,@) 

where YI,  is the spherical harmonic defined by 

Y ,  (e,@) = P,,,, (cos 0 )  exp (in@) 

and the associated Legendre function is defined by 

As shown in the Appendix, these vectors are equivalent to the generalized spherical harmonics 
defined by Burridge (1969) and used by Burridge & Alterman (1972) to solve a similar 
problem. 

A general solution to the elastic equations at any point in the medium external to the 
cavity can be written in the frequency domain in the form: 

These represent toroidal, spheroidal shear and spheroidal compressional waves respectively. 
The functions gf are defined by Stevens (1980a) and are linear combinations of spherical 
Hankel functions similar to the time domain equivalents which will be defined by equation 
(3.15). 

The method of solution to the problem of the growing spherical cavity is to transform 
equation (3.3) and the associated tractions to the time domain and match the boundary 
condition (equation 2.8) as a function of time on the growing boundary. The coefficients 
df, in the time domain will be the solution to the problem. 

The next step is to define the function 

This function will appear with n = 0 for the displacements and n = 1 for the tractions and 
velocities. The spherical Hankel function hj2 )  can be written in the form 
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l%e growing spherical seismic source 125 

where the P1 are polynomials with coefficients which can be determined from the recursion 
relations for spherical Bessel functions. 

We define 
1 + 1  1 

~ ' ( w x )  = 2 af - 
s=1  

For any Bessel function Z,(x), a recursion relation is 

So the coefficients in (3.7) are determined by: 

4 = (21 - 1 )  as111 - as-, 

with the first coefficient given by ah = i. Useful special cases are: 

al' = i" 

ui = i(21 -I)!! 

u1+I 1 = -(21-l)!!. 

We can now rewrite (3.5) in the form (letting x = r/u): 
a ; i s - n -  - exp [ io( t -x )]  

(iw)" - 
H L = I  ; ' I  dw 

s=1  x 2n - m  

Evaluating the time domain function: 

The displacements in the time domain can now be written in the form: 

u = p  

u = p  

u = p  

(3.7) 

(3 -8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

u = a. 
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126 J. L. Stevens 

The associated velocities are the inverse transforms of the same functions multiplied by 
iw.  Thus the velocities corresponding t o g f -  have the same form except for a factor of i and 
the index n = 1 .  

Similarly, the associated tractions are given by 
rn 

T(u) . ii = d~ [ [ d b  ( T )  [T(LI,) ( t  - T)] + d & ( ~ )  [T(NI,) (t - T)] J- rn 

(3.16) 

(3.17) 

(3.18) 

[ 2 ( Z 2 - l ) ( 2 1 + 3 ) H 1 _ 2 , , - 3 ( 2 1 + l ) H I T 1  
h:- ='1 Jm) i'+l 

(21 -1) (21 +1) (21 +3) 

[(1-1)(21+3)Hi-2,1 - (21tl)HI;l 
- 5 -  - p  2 J K )  i'+' 
hi -- 

a! (21 -1) (21 t 1) (21 t 3 )  

- (1 + 2) (21 - 1) H;+ 2 , l l  

C Y z  - 2p2 

2P2 
212t21-1 t- (21-1)(21+3)]. (3.18) 

For p = 0, the only surviving term is 

Factors of i', i" have been introduced so that the functionsg:-, hj- are always real. 

4 The coupled integral equations in the time domain 

The problem is now reduced to solving the set of coupled integral equations (3.16) subject 
to the boundary condition (2.10) or (2.8). The apparent traction due to the prestress 
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The growing spherical seismic source 127 

T(uo) -n^  can always be expanded in vector spherical harmonics. For simplicity, we consider 
only subsonic growth starting at time t = 0. The integral equations can then be written in the 
compact form: 

Here di are the functions to be determined, Ti are the apparent tractions -T(uo), vj is 
the velocity appropriate for the vector harmonic associated with di and r is the position of 
the cavity surface. The functiong, is defined by: 

The summation limit J is two for the coupled P-SV case and one for the uncoupled (toroidal 
or spherically symmetric) cases. The elements K $  are constants and are linear combinations 
of the us from equation (3.12) determined by the expression for the tractions (equation 
3.18). For example, for 1 = 0, the element K!: is the coefficient of the delta function occur- 
ing in h:- which from (3.18) and (3.12) is: 

K!: =- [-4(o) Q,!, - 2 U i ] .  

To find any given K $ ?  find the coefficient o f g n ( t  -x) / r"  + *  in equation (3.12) for 1, 1-2 
and 1 + 2 and form the linear combinations of (3.18). For the coupled P-SV case use: 

(4.3) 
2@ 
-3 

Similarly, for the toroidal case the only non-vanishing term is Kh' which is found using hf -. 
For the coupled P-SV case the i index refers to the PI, or Bl, components while the j 
index refers to the L,, or N,, eigenvectors. The upper limit N is the largest non-vanishing 
value of s in the af coefficients, which will be equal to I + 3 for the coupled P-SV case and 
1 + 2 for the toroidal case. 

The next step is the numerical solution of equation (4.1). If r were not time dependent, 
a Fourier or Laplace transform could be applied to (4.1) and the solution would follow from 
the convolution theorem. Since this is not possible, we use the following direct numerical 
solution. The time interval of interest is divided into a number of subintervals. In each sub- 
interval a polynomial solution for d j  with unknown coefficients is assumed. The integral in 
(4.1) can then be evaluated analytically at selected points in the subinterval. A least squares 
inverse is used to evaluate the unknown coefficients of the polynomial and therefore the d 
at all points within the interval. Further details can be found in Stevens (1980b). 

Once the coefficients d l  have been determined, the displacements may be found at any 
position and time by evaluating equation (3.13) at the observation point. In the notation 
of this section equation (3.13) may be written for each multipole as: 

where the coefficients x$ are again linear combinations of the 4 corresponding to 
r - ( "  + l )  and determined by equation (3.14). 
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128 J. L. Stevens 

The solution given here is for a source with a very weak material inside the spherical 
source region. As mentioned before, the solution could be extended to include a liquid or 
solid material in the source region. This would require the boundary conditions for contin- 
uity of normal (liquid) and tangential (solid) displacement to be added to the integral equa- 
tion (4.1) and would increase the number of simultaneous equations to be solved to three or 
four for the coupled P-SV case. 

This solution was made possible by the separability of the vector elastic equations in 
spherical coordinates. In the usual sense, the number of separable coordinate systems is very 
limited. The vector elastic equations separate only in spherical and cylindrical coordinates. It 
would be very useful for a study of spontaneous sources such as earthquakes to be able to 
separate the equations in other coordinate systems more appropriate to the shape of the 
source. Wyss (1982) describes a generalization of the method of separation of variables 
which may make it possible to achieve separation in many more coordinate systems. This 
would allow the extension of the spherical solutions to other failure geometries. 

5 Numerical results 

The mathematical technique of the last section may be performed for each multipole inde- 
pendent of the stress field. In order to compute waveforms, it is necessary to specify the pre- 
stress (expanded in vector spherical harmonics) and take the corresponding linear combi- 
nation of multipoles at each angle. The simplest prestress field is uniform compression which 
can be written 

T(u0) . f i  ‘ A m  Po0 (5.1) 
so only the monopole is involved. 

field : 
A uniform shear stress field can also be written simply using only an 1 = 2 quadrupole 

where the coefficientsAzm depend on the orientation of the prestress field (Stevens 1980a). 
The computations of the last section require specification of the growth rate. We consider 

two types of growth - growth which is linear until it suddenly stops and growth which starts 
at a prescribed velocity and decreases quadratically to zero. This growth history is described 
by 

where V, is the initial velocity and Rma, is the ultimate radius which is formed at time 

I = -  2Rmax 

VO 

We first want to compare this numerical solution with the only analytic solution avail- 
able. Fig. 1 shows the P and S waveforms for a cavity which grows linearly with a velocity of 
/3/2 in a uniform shear field. The observation point is at 20Rm,,. The figures have been 
scaled to match the figures in Burridge (1975). The waveforms are a very close match to 
those of Burridge. There is some inaccuracy in the shear wave caused by the abrupt stop of 
cavity growth which causes an abrupt change in the shear wave coefficient &(T)  making it 
difficult to match with a polynomial. 
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Figure 1. Radial (solid) and tangential (dotted) waveforms for an expanding spherical cavity in a uniform 
shear field which grows at a velocity of 0.5p and suddenly stops, observed at a distance of 20R,,,. The 
waveforms are scaled for comparison with the analytic solution of Burridge (1975). 

Figure 2. The boundary conditions for a growing cavity depend on the particle velocity within the cavity. 
'Cavity', as used here, means a region in which all material strength is lost. The solid line shows the radial 
displacement for vanishing velocities inside, the dotted for continuous velocities. The resulting differences 
are quite small. 

Fig. 2 shows the effect of the extra term in the boundary condition (equation 2.8) for the 
same growth conditions as the previous example. The solid line shows the P waveform for 
vanishing velocities inside so that the boundary condition becomes: 

au 
a t  

T(u) . i + p - U . iZ = - T(u') . i .  (5 *4) 

The dotted line shows the P waveform for continuous velocities. Clearly, the difference is 
very small. The amplitude of the wave is slightly larger for zero velocities inside, since the 
momentum is transferred to the exterior region. Nevertheless, neglect of this term (which 
will usually be undetermined) is not likely to cause a significant error. 

5 
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130 J. L. Stevens 

The following examples are all for a quadratic growth history with different starting velo- 
cities, with cavity radius RmaX = 1, and Q! = 3.5, 0 = 2. Tic marks on the figures indicate 
seconds. All examples are far-field waveforms. 

Fig. 3 shows the waveforms from an expanding cavity in a uniform compressive stress 
field at growth rates of /3/2 (solid) and 0/20 (dashed). The two curves in the top figure are 
drawn to scale. It is clear that the primary effect of growth is to cause the waveform to be 
lower in amplitude and longer in duration. In the lower figure the amplitude and time-scales 
are changed to show the relative shapes of the waveforms. The shapes are very much alike. 
The main difference is a reduction in the size of the ‘overshoot’ at the end of the waveform. 
Note the gradual onset of the waveforms in contrast to the abrupt onset observed in instan- 
taneous problems (e.g. Stevens 1980a). 

Fig. 4 shows the P and S waveforms for a uniform shear field with a starting velocity of 
0.50. Again we have a reduction in overshoot - especially in the P-wave and a reduction in 
the effects of diffraction in the P-wave compared to the instantaneous problem. Fig. 5 
shows the P and 5’ waveforms for a slow growth rate of 0.1 0. Now the P- and S-waves have 
almost the same duration (approximately the total growth time) and the effects of diffrac- 
tion and overshoot are almost eliminated. 

Stevens (1980a) found a number of effects which result from failure in an inhomo- 
geneously prestressed medium. The techniques of this section can be used to see if these 

UNIFORM COMPRESSION 

= I  aa 
E aa 

Time (seconds) 

u) 

5 

I 

EXPANDED SCALE 
Figure 3. Far-field waveforms for a quadratically expanding spherical cavity in a uniform compressive 
stress field at two different growth rates. In the solid line, growth starts at a velocity of p / 2 ;  in the dashed 
line, at p/20. In the bottom figure, the time-scale is increased by a factor of six for the rapid growth rate, 
and the amplitude is increased by a factor of 10 for the slow growth rate to show the relative shapes. The 
shapes of the two waveforms are similar, but the slower growth rate causes a decrease in amplitude and an 
increase in duration. The area under the pulse remains constant. 
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Figure 4. P (solid) and S (dashed) far-field waveforms from a quadratically expanding spherical cavity in 
a uniform shear field with a starting velocity of 0.5p.  

, UNIFORM SHEAR- SLOW GROWTH 
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I ' I  ;' \ 
1 
\ 

Time ( seconds) I 
Figure 5. Waveforms for the same conditions as Fig. 4 ,  but with an initial velocity of  0.10. The overshoot 
is reduced and the P- and S-waves have almost the same duration. 

effects persist with a finite rupture velocity. The stress field due to a centre of compression 
at a distance L from the cavity centre can be written: 

for the coordinates shown in Fig. 6. 
The most obvious and most sensitive effect of an inhomogeneous stress field is the varia- 

tion in waveform shape with angle. Fig. 7 shows the far-field pulses from a growing cavity 
(quadratic growth with initial velocity of B/2) located at L = 2Rma, away from a centre of 
compression. The waveforms are shown for several angles (0 = 0 is the direction of the stress 
concentration). Fig. 8 shows the pulses for an instantaneously created cavity at the same 
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/ 
/ 

,,Observation 
1 Direction 
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/ 

Stress 
Concentrat ion 

Figure 6. Coordinates for growing spherical cavity with a stress concentration nearby. 

GROWING CAVITY NEAR STRESS CONCENTRATION 

A 
P 

Figure 7. Seismic radiation from a spherical cavity with a quadratic growth history with a centre of com- 
pression located two radii from the cavity centre. The P-wave is on the left and the S-wave is on the right 
(normalized separately). Comparison with Fig. 8 shows that the first parts of the waveforms are more 
emergent than in the instantaneous case, but the complexity of the waveforms and the variation of shape 
with angle still remains. The initial rupture velocity is 0.5 p. 
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Figure 8. Seismic radiation from the sudden creation of a spherical cavity with a centre of compression 
two radii from the cavity centre. Notice the variation of pulse shape and arrival time with angle. 

location for comparison. Both figures show a pronounced change in waveform shape with 
angle. In particular, there is a pronounced broadening of the waveform and a delay in arrival 
time with increasing angle. Near the ‘node’ at 0 = 90°, the shear wave is double sided. The 
main effect of growth is on the first part of the waveform. The onset of the waveform is 
more gradual. Also, the effect of diffraction in the last part of the P-wave is reduced. The 
waveforms are longer in duration than the instantaneous waveforms but have much the same 
shape. The increased complexity of the waveform caused by the inhomogeneous stress field 
still exists. 

6 Conclusions 

We have derived a method of solution for the seismic radiation from an arbitrarily growing 
spherical cavity in an arbitrarily prestressed elastic medium. The problem is formulated as a 
set of coupled Volterra integral equations. The integral equations are easy to generate and 
can be used for more general problems than previous formulations in terms of coupled 
differential equations. 

The numerical solution of these equations has been used to compute waveforms for 
several stress fields and growth rates and has been compared with waveforms from 
instantaneous cavity formation in the same prestress field. The main effect of the finite 
growth rate is that the waveforms are spread out over a longer period of time with a 
corresponding reduction in amplitude but with constant moment. The diffraction which is 
very evident in far-field P-waveforms in the instantaneous problem is reduced. The effects 
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134 J. L. Stevens 

produced by an in homogeneous stress field, however, are strongly evident for the growing 
as well as for the instantaneous spherical source. In particular, the shape of the waveforms 
changes considerably with observation angle around the source. In the direction of a stress 
concentration, the waveforms are narrower and arrive earlier than waveforms observed at 
other angles. 
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Appendix: equivalence of vector harmonics and generalized harmonics 

Burridge (1969) defines the generalized spherical harmonics by 

rym(e, 4) = P ~ ~ ( C O S  e) exp(im4) 

U 

x- (1 -p ) l -N  (1 tp)'+N. 
d p ' - m  

For N = 0 this reduces to the scalar harmonic Y ,  . The vector harmonic PLn is defined by: 
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Blm t iClm = [& - id,] P;'" (cos 0 )  exp(im$) 

Blm - iCh = - [ke + id,] Pf" (cos 0 )  exp(im$). 
I 

135 

We make use of the recursion relations 

N c o s e - m  
sin 0 a pN - ( c ~ ~  e )  + aN+ , pp + l I m  (COS e )  = 4 ~ f "  (cas e )  N l  

where 

d(Z +N) (I-N + 1) 
= 

2 
Combining, we get 

+- P ; ~ ( c o s ~ )  d(I t N) ( I  - N + 1) PY-lim (cos 0 )  = "cose-m sin 0 
d0 d l  

and 
N c o s e - m  

- z] p p y c o s  e). 
sin 6 dB 

d(I t N t 1) (I - N) Pfv' ," (cos 0 )  = 

SettingN = 0 we get 

d m  piirn (cos e )  = - t - ppm (COS e) 

d m  pfm ( c o ~  e )  = - - - ppm (COS e). 

[:*B :I 
[inme d: 1 

We compare this with Ben-Menahem & Singh's definition: 

Conversely 

1 

2 

1 - p-im +pim 
2 

1 

2i 

1 

2 

B I , = -  do (P;'" -Pi") exp(im$) 

--ef$l( 1 I )exp(im@) 

clm = - do (P;'" +Pfm) exp(im4) 

- - 6, (piim - Pi") exp(im$). 
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