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SUMMARY 

 

Small Heat-Shock Proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in 

cell biology. sHPSs are key components of the cellular protein quality control system, acting as a first 

line of defence against conditions that affect protein homeostasis and proteome stability, from bacteria 

to plants and humans. Due to their ability to bind to a large subset of client proteins, maintaining them 

in a state competent for refolding or clearance, with the assistance of the HSP70 machinery, sHSPs 

participate to a number of biological processes, from cell cycle, to cell differentiation, from adaptation 

to a stress, to apoptosis, and even in the transformation of a cell into a malignant state. As a 

consequence, their malfunction has been implicated in various disorders e.g. abnormal placental 

development and pre-term deliveries, the prognosis of several types of cancer, and the development of 

neurological diseases. Moreover, mutations in the genes encoding for several mammalian sHSPs 

result, in humans, in neurological, muscular and/or cardiac age-related diseases. In contrast, 

considering that loss of protein homeostasis due to protein aggregation is typical of many age-related 

neurodegenerative and neuromuscular diseases, and in light of the role of sHSPs in the clearance of 

un/misfolded aggregation-prone clients, pharmacological modulation of sHSP expression or function, 

and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformational 

diseases. Here, we report the latest news and views on sHSPs that were discussed by many of the 

world’s experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, Centro 

Residenziale Universitario Bertinoro/CEUB, 12-15 October 2016). 
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INTRODUCTION 

 

Small Heat Shock Proteins (sHSPs) belong to the superfamily of HSPs and are expressed in all three 

domains (viruses, archaea, bacteria and eukaryota) (Bult et al. 1996; Caspers et al. 1995; Eyles and 

Gierasch 2010; Richter et al. 2010). sHSPs are characterized by a small molecular subunit mass, 

ranging from ca. 15-40 kDa and by a highly conserved central domain, called the alpha-crystallin 

domain (ACD) that represents their identification label. sHSPs exist as monomers and dimers, which 

can also assemble into large multimeric complexes that vary in size and can contain up to 24-40 

subunits (Candido 2002; Hilton et al. 2012; Kim et al. 1998; McDonald et al. 2012; van Montfort et 

al. 2001). Association of monomers into large complexes, as well as dissociation of large oligomers 

into dimers and monomers, is modulated by post-translational modification, including 

phosphorylation, which in turn, regulates sHSP functions. sHSP functions are very diverse and 

include molecular chaperone-like activities and modulation of cytoskeleton stability (Aquilina et al. 

2004; Arrigo 2013; Bryantsev et al. 2002; den Engelsman et al. 2005; Ecroyd et al. 2007; Gaestel 

2002; Lambert et al. 1999; Lavoie et al. 1995; Mehlen et al. 1997; Morrison et al. 2003; Morrow et al. 

2015; Rogalla et al. 1999; Rouse et al. 1994; Theriault et al. 2004; Webster 2003).  

As a consequence of their role as chaperones towards diverse clients, which influences client fate 

(refolding or degradation) and due to their role as stabilizing agents of the cytoskeleton, sHSPs 

indirectly participate in the regulation of complex processes such as the response and adaptation to 

cell stress, including thermotolerance, cell differentiation, cell death and development (Arrigo 2000; 

Arrigo and Ducasse 2002; Arrigo and Gibert 2014; Balogi et al. 2008; Benjamin et al. 1997; Bruey et 

al. 2000; Haslbeck et al. 2016; Hong and Vierling 2000; Kamradt et al. 2002; Kamradt et al. 2005; 

Lavoie et al. 1993; Lavoie et al. 1995; Litt et al. 1998; Nicholl and Quinlan 1994; Parcellier et al. 

2006; Park et al.; Perng et al. 1999a; Perng et al. 1999b; Qian et al. 2009; Quinlan and Van Den Ijssel 

1999; Takayama et al. 2003; Tanguay and Hightower 2015; Webster 2003). Thus, malfunction of 

sHSPs can have adverse effects and these have been found to be causative of a wide range of 

pathologies including cardiomyopathy, myofibrillar myopathy, motor neuron diseases and cataracts 

(Evgrafov et al. 2004; Ghaoui et al. 2016; Irobi et al. 2004; Kolb et al. 2010; Perng et al. 1999b; 
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Vicart et al. 1998). Understanding how sHSP function is regulated and elucidating how, 

mechanistically, their malfunction is linked to disease will a have strong impact on cell biology and 

disease and will help in the identification of potential drug targets. 

In this review, we summarize the latest news and views concerning the structural and functional 

properties of sHSP that were presented and discussed by 29 international experts during the Second 

International Workshop of Cell Stress Society International (CSSI) on sHSPs, entitled “The small 

HSP World” that was held in Centro Residenziale Universitario di Bertinoro, Italy (12-15 October 

2016). This meeting followed up on the first Workshop held in Québec, Canada (Tanguay & 

Hightower, 2014). 

 

New insights into the structure of sHSPs and their interaction with clients 

As mentioned above, sHSPs have a dynamic structure that spans from monomers/dimers to large 

oligomers (Hilton et al. 2012; van Montfort et al. 2001). Oligomerization and dynamics affect their 

binding affinity to specific subsets of clients and, therefore, sHSP functions (Delbecq and Klevit 

2013; Delbecq et al. 2015; Ecroyd et al. 2007; Giese et al. 2005; Giese and Vierling 2002; McDonald 

et al. 2012; McHaourab et al. 2002; Stromer et al. 2004). Thus, understanding how sHSPs 

oligomerize, identifying their preferred oligomerization state (in resting conditions or upon stress), 

what regulates their transition from small oligomers into large oligomers and how this influences their 

binding to clients is crucial to pinpoint sHSP function (Mainz et al. 2015). This information will also 

help in designing strategies and drugs that may stabilize one conformation, thereby modulating 

specific sHSP functions, with potential application in cell stress response, apoptosis and disease.  

 

sHSPs are composed of a N-terminal domain (NTD), a C-terminal domain (CTD) and a middle highly 

conserved region, called the alpha-crystallin domain (ACD) (van Montfort et al. 2001). In contrast to 

the alpha-crystallin domain, the C-terminal and the N-terminal domains of sHSPs are poorly 

conserved amongst the various members and across the various species. However, structural and 

functional studies have demonstrated that all these three domains play important role in sHSP 

oligomerization and function (Mainz et al. 2015; McDonald et al. 2012; van Montfort et al. 2001).  
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Cecilia Emanuelsson (Sweden) presented data on Hsp21, the chloroplast-localized sHSP, and 

suggested a role for the N-terminal and C-terminal tails in the stabilization of oligomers and in the 

accessibility for interaction of the oligomer itself with clients (Ahrman et al. 2007a; Ahrman et al. 

2007b; Lambert et al. 2011). In particular, a structural model of Hsp21, obtained after homology 

modelling and fitting to cryo-EM, shows two hexameric discs rotated by 30 degrees and separated 

further by 35 Å compared to the crystal structure of the cytosolic homologue Hsp16.9. This model 

suggests that the Hsp21 dodecamer is stabilized by the C-terminal tails, which are shorter than in 

Hsp16.9 and human HSPB5, and with the IXI-motif extended to IXVXI. The flexible N-terminal 

arms, unusually long and with functionally important and conserved methionines, appear on the 

outside of the dodecamer, as supported by limited proteolysis, difference density maps and NMR. 

Thus, even without subunit dissociation, they may be accessible for transient interaction with client 

proteins. 

The theme of combining structural and biophysical methods to elucidate structural details on sHSPs 

was continued by Justin Benesch (UK). With native mass spectrometry experiments acting as a 

thread, he presented new data from a collaboration with Elizabeth Vierling that explained how 

different evolutionary classes of sHSPs from plants that are found in the same cellular compartment 

manage to avoid co-assembly (Basha et al. 2010; Painter et al. 2008; Sobott et al. 2002). This 

presentation highlighted how rich and complex the self- and co-assembly processes of sHSPs are, and 

the bewildering heterogeneity of the complexes resulting from chaperone activity (Stengel et al. 2012; 

Stengel et al. 2010).  

Regulation of sHSP homo- and hetero-oligomerization is indeed one way of regulating the binding 

affinity of sHSPs for a given client (Delbecq et al. 2015; Rajagopal et al. 2015). In line with this 

concept, Rachel Klevit (USA) presented studies aimed at defining how HSPB5 interacts with a 

destabilized client protein. Klevit’s group compared three mutant forms of HSPB5 that each mimic a 

different mode of activation to “unactivated” (wild-type) HSPB5. Interactions between destabilized α-

lactalbumin and HSPB5 were analyzed in four different biochemical/biophysical assays that allow 

detection of species at different stages along the aggregation pathway. Based on the presented results, 

Dr. Klevit suggested a model in which unactivated HSPB5 interacts transiently with very early 
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species, while activated forms of HSPB5 can also interact with client species that are further along the 

aggregation pathway, providing them with additional capability to delay the onset of amorphous 

aggregates (Rajagopal et al. 2015).  

A comparative study performed by Robert M Tanguay (Canada) further highlighted the impact of the 

oligomerization state on sHsp function and chaperone-like activity. Following up on their previous in 

silico report of small Hsps in viruses of the Synechococcus cyanobacteria,  Robert Tanguay described 

the properties of the viral and bacterial sHsps protein using size-exclusion chromatography (SEC), 

native gels, dynamic light scattering (DLS) and chaperone assays (Bourrelle-Langlois et al. 2016; 

Maaroufi and Tanguay 2013). The cyanophage sHsp forms large oligomers and shows a polydisperse 

profile (in collaboration with Dr. Stephanie Finet); it exerts chaperone-like activity through the 

formation of stable and soluble hetero-oligomeric complexes (sHSP:substrate/client). In contrast, the 

host cyanobacteria sHsp formed a small dimer and tetramer and showed no chaperone-like activity in 

the assays tested (malate dehydrogenase/MDH, citrate synthase/CS, luciferase/Luc) (Bourrelle-

Langlois et al. 2016).  

The regulation of the oligomerization state of sHSPs can be influenced by several factors, including 

post-translational modifications, but also oxidation and crowding agents (Haslbeck et al. 2016). 

Indeed, on behalf of Sevil Weinkauf´s lab, Martin Haslbeck (Germany) presented the oligomer 

structures of human αA-crystallin (HSPB4) obtained by cryo-electron microscopy (Peschek et al. 

2009). The oligomers form barrel-like structures consisting of tetrameric units. As seen in the pseudo-

atomic model, the tetramers assemble mainly via N-terminal interactions while the C-terminal tails 

exist in 3D non-domain swapped and domain swapped configurations. The oxidation of HSPB4, i.e. 

the formation of an intra-molecular disulfide bond as observed in vivo, seems to be coupled with 

conformational changes involving C-terminal domain swapping. They concluded that the oxidized 

protein shows enhanced subunit dynamics and increased ability in suppressing the aggregation of 

model substrates. 

Next, John Carver (Australia) presented recent work relating to the principal eye lens proteins, 

HSPB4 and αB-crystallin (HSPB5) (Cox et al. 2014; Cox et al. 2016; Hochberg et al. 2014). Firstly, 
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he described structural and functional studies of Q147E HSPB4, a major site of deamidation in age-

related cataract which leads to a slight reduction in chaperone ability, enhanced temperature stability 

and a small increase in oligomeric mass. Similar observations for other deamidated crystallins may 

reflect a general evolutionary adjustment to crystallins with age to counter the extensive post-

translational modifications that potentially affect lens transparency (Ray et al., submitted for 

publication). Secondly, he presented small-angle neutron scattering analysis of deuterated HSPB5 in 

the presence of crowding agents at high concentration comparable to that of crystallins in the centre of 

the lens. It was concluded that these conditions lead to destabilisation, unfolding and aggregation of 

HSPB5. This study further highlights the dynamic nature of sHSPs and how external factors are 

important to regulate their structure (and in turn, function), with consequences on cell viability and 

fitness (Treweek et al. 2015).  

The importance of structural studies for the understanding of sHSP binding to clients and, as a 

consequence, function, has been further highlighted by Sergei Strelkov (Belgium), who reported on 

structural studies of human HSPB6, which is predominantly dimeric in isolation (Heirbaut et al. 2014; 

Weeks et al. 2014). Phosphorylation of HSPB6 within its intrinsically disordered N-terminal domain 

(NTD) results in a complex formation with the universal signalling hub 14-3-3 protein (Sluchanko et 

al. 2011), a process that can trigger smooth muscle relaxation. In collaboration with Nikolai Gusev 

and Nikolai Sluchanko, the Strelkov lab has succeeded in determining the crystal structure of the 

entire 14-3-3/pHSPB6 heterotetrameric complex (Sluchanko et al. 2017). As a result, the first-ever 

atomic resolution snapshot of a mammalian small HSP in a functional state has been obtained. 

Interestingly, formation of the complex results in partial ordering of the NTD. In addition, the 

formation of the HSPB1/HSPB6 hetero-oligomer formation, which turns out to be driven by specific 

sequences within the NTD of HSPB6, was discussed (Heirbaut et al. 2014; Sluchanko et al. 2011). 

Finally, André-Patrick Arrigo (France) further stressed the importance of changes in the 

phosphorylation, oligomerization state and native molecular size in the regulation of sHSP interaction 

with clients (Arrigo 2013). He summarized the modifications that occur in HSPB1 

phosphorylation/oligomerization and native state in cells undergoing changes in their physiology or 

being exposed to environmental stressors. It was concluded that the changes in HSPB1 organization 
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are highly condition-specific and phosphorylation and oligomerization, which dynamically react to 

different cell conditions, were suggested as key factors involved in the generation of HSPB1 

platforms that can recognize specific clients, such as F-actin or damaged proteins. In particular, in 

response to heat shock, damaged polypeptides are stored in HSPB1 large structures that have a 

phosphorylation specific signature: P-Ser15, P-Ser82. Another important point that was discussed is 

that these conformational changes are very transient, and, thereby, they likely trigger signals, through 

transient and specific interaction with selected clients; such changes in the HSPB1-client partnerships 

would allow cells to react and adapt (Arrigo 2000; Arrigo 2007; Arrigo and Gibert 2012).  

 

Combined, these works further illustrate the complexity of sHSP structure/function, with some sHSPs 

stabilizing oligomeric structures to favour binding to specific clients and other sHSPs avoiding co-

assembly to bind to other subsets of clients (or other conformations/aggregation states of the same 

client); the level of complexity of the relation between sHSP configuration and its binding to a given 

substrate is further increased when considering that these structural and functional aspects can all be 

influenced by post-translational modifications or oxidation of the sHSP itself and by crowding 

conditions of the neighbouring environment. As pointed out by André-Patrick Arrigo, cell-cell contact 

also may play a role in the regulation of sHSP structure, further increasing the level of complexity.  

 

From the technical point of view, the main methods employed to study sHSP structure include e.g. 

mass spectrometry, electron microscopy, NMR and cryo-EM (Baldwin et al. 2012; Benesch et al. 

2006; Kondrat et al. 2015; Lambert et al. 2011; Mainz et al. 2015; Shi et al. 2012). Kathryn 

McMenimen (USA) presented data using HspB1 N-terminal region peptides conjugated to gold 

nanoparticles and showed that these peptides exhibited concentration-dependent chaperone activity 

toward citrate synthase (CS) and malate dehydrogenase (MDH). These studies seek to understand the 

role of oligomerization in chaperone activity and how substrate/client specificity is determined for 

sHsps, with the use of gold nanoparticles. In addition, the use of different scattering techniques is also 

beneficial to characterize the structural and functional properties of various sHSPs, as discussed by 

Stephanie Finet (France). She presented data concerning nuclear Hsp27 from Drosophila 
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melanogaster, obtained in collaboration with Robert Tanguay’s group (Michaud et al. 2008; 

Moutaoufik et al. 2016). The use of these techniques demonstrated that the major population of 

DmHsp27 obtained after a two-step chromatography purification was monodisperse and compatible 

with globular oligomers constituted by 18-20 SU, similar to the smallest population previously 

produced with a His-tag construct. The effects of mutations of the arginine residues in the ACD of the 

nuclear Hsp27 of Drosophila were also evaluated by Robert M Tanguay (Canada) in collaboration 

with Stephanie Finet. While 2 forms of the WT were seen in native gels and in SEC, mutants of 

R122G, R131G and R135G showed only one peak. The mutants also had the same chaperone-like 

activity. Finally, the use of the tags and their influence of sHSP structure and oligomerization were 

also discussed and the general consensus is that comparison between untagged and tagged sHSP 

forms must be performed, especially in test-tube assays, to avoid possible misinterpretations due to 

the tag.  

 

From the methodological point of view, a new method that may become useful to study the dynamic 

oligomerization of sHSPs has been proposed by Wilbert Boelens (The Netherlands). In particular, he 

presented a method by which the interaction of monomers and dimers with HSPB5 complexes can be 

analyzed using surface plasmon resonance (Bruinsma et al. 2011). HSPB5 complexes contain 

between 20 and 40 subunits, which are in equilibrium with monomers and dimers. This dynamic 

behavior is highly regulated and is crucial for the chaperoning activity. Up to now most studies have 

focused on the dynamic behavior of the multimeric complexes and not so much on the subunits. By 

analyzing how monomers and dimers interact with HSPB5 complexes more insight will be obtained 

into the dynamic behavior of HSPB5. The use of optical tweezers to study biophysical properties of 

sHSPs and their ability to partition may also represent a promising new approach to understand sHSP 

structure and function, as suggested by Simon Alberti (Germany) (Sudnitsyna et al. 2011). 

 

Lessons from in vitro studies: chaperone-like activity, cooperation with the HSP70 machine and 

fate of the sHSP-bound client 
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In contrast to HSP70, HSP90 and HSP100, sHSPs do not possess ATPase activity. Thus, while 

chaperones with ATPase activity are classified as chaperone “foldases”, sHSPs are classified as 

chaperone “holdases”, since they can recognize and bind to unfolded and/or misfolded 

substrates/clients, and “hold” them avoiding their irreversible aggregation, although this is not their 

only mechanism of chaperone action (Ecroyd 2015). This holdase-action in turn favours the 

processing of the sHSP-bound client by the downstream ATP-dependent chaperones such as e.g. 

HSP70s (De Los Rios and Goloubinoff 2016; Vos et al. 2008). Thus, sHSPs, which bind to a large 

variety of client proteins, and in doing so act as the first line of defence for the maintenance of cellular 

proteostasis (Haslbeck and Vierling 2015). In this context, Pierre Goloubinoff (Switzerland) presented 

results from quantitative proteomic studies from an E. coli knockout mutant of DnaK/J (de Marco et 

al. 2005). He showed that this mutant constitutively over-expressed massive amounts of small HSPs 

IbpA/B, Trigger factor and ATP-dependent chaperones and proteases. The strong upregulation of 

sHSPs in this mutant further supports their requirement as a first line of defence under conditions that 

favour the accumulation of proteins in the non-native state. This can occur also in resting cells, where 

labile proteins that spontaneously tend to misfold would be constantly restored and maintained in a 

metastable native state by an active network of ATP-fuelled unfoldases, assisted by small HSPs (De 

Los Rios and Goloubinoff 2016; Veinger et al. 1998). 

Intriguingly, Bernd Bukau (Germany) presented a comparative biochemical analysis of the two sHsps 

acting in the cytosol of S. cerevisiae, Hsp26 and Hsp42. The results reveal that heat denatured model 

substrates are retained in near native state and kept physically separated when complexed with either 

sHsp, while being unfolded when aggregated without sHsps. However, the fate of the sHSP bound 

substrate largely depends on its cooperation with the Hsp70/Hsp100 machineries, and on sHSP ability 

to act in conjunction with this machinery in disaggregation (Ungelenk et al. 2016). In fact, it was 

discussed that Hsp26, which lacks disaggregase function, is superior in facilitating Hsp70/Hsp100-

dependent post-stress refolding. Instead, Hsp42 forms with misfolded proteins light scattering 

aggregates in vitro and microscopically visible large assemblies in the yeast cytosol; formation of 

these aggregates specifically ensures cellular fitness during repeated heat stress (Ungelenk et al. 

2016). The presented findings indicate that the sHSPs of a cell functionally diversify in stress defence, 
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but share the working principle to promote sequestration of misfolding proteins for storage in native-

like conformation. They also further highlight the requirement to cooperate with the Hsp70/Hsp100 

machineries to ensure client refolding.  

Krzysztof Liberek (Poland) presented recent advance in the understanding of how bacterial sHSPs 

cooperate with the HSP70 machinery (Strozecka et al. 2012). Under heat stress conditions sHSPs 

form assemblies with misfolded proteins, preventing them from further aggregation and keeping them 

in a refoldable state that facilitates subsequent solubilisation and refolding by ATP-dependent Hsp70 

and Hsp100 chaperones. The refolding of substrates from sHsp-substrate assemblies requires the 

disruption of sHSP association with trapped misfolded proteins. This process depends on Hsp70. 

Hsp70 acts in a passive manner by outcompeting sHSP molecules that dynamically interact with the 

surface of sHSP-substrate assemblies. Hsp70 binding to assemblies preserves their architecture 

following dissociation of sHSPs and allows for superior substrate solubilisation and refolding upon 

Hsp100 recruitment (Żwirowski S. et al. 2017). 

 

Functional studies of sHSPs: from in vitro assays to combined in vitro/cell assays to understand 

sHSP cellular activities   

In vitro assays with pure recombinant sHSPs are fundamental to understand the structural properties 

of sHSPs, their oligomerizaton state and how post-translational modifications or disease-linked 

mutations affect them. Test-tube studies are also required to test and compare the chaperone-like 

activity of the various sHSPs towards a specific subset of client proteins, allowing how structural 

differences in sHSPs result in different chaperone efficacy to be highlighted. In particular, Johannes 

Buchner (Germany) reported the first comparative analysis of 8 human sHSPs with a view to 

determine their relative chaperone properties (Mymrikov et al. 2016). Amorphous aggregation assays 

using several model substrate proteins under standard conditions revealed differences between assays 

and sHSPs. Generally, the large oligomeric sHSPs (HSPB1, HSPB4 and HSPB5) and also HSPB3 

proved to be promiscuous chaperones suppressing the aggregation of various substrate proteins. Then, 

he combined pure recombinant proteins to cell lysates to test and compare the activity of the pure 

sHSPs to prevent heat-induced protein aggregation in the context of a whole cell lysate. A different 
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picture emerged in this cell lysate aggregation assays. Here, all sHSPs tested, except HSPB7, were 

active. These different properties between sHSPs were dependent on, of course, the structural 

organization and oligomerization of the various sHSPs, as well as their ability to bind with different 

affinities to a large number of clients, properties that are, to some extent, linked. In line, substrate 

spectra of the sHSPs determined after immunoprecipitation by mass spectrometry identified a large 

number of interactors, which revealed general properties and functional classes amongst the 8 human 

sHSPs compared (Mymrikov et al. 2016).  

Similarly, Nikolai Gusev (Russia) compared the interaction of mammalian HSPBs with the light 

component of neurofilaments (NFL), further highlighting similarities but also differences. HSPB1, 

HSPB5, HSPB6 and HSPB8 were equally effective in preventing NFL bundling and decreased the 

quantity of filaments pelleted after low speed centrifugation (Nefedova et al. 2016). HSPB1 and 

HSPB5 affected kinetics of NFL polymerization and decreased NFL pelleting after high speed 

centrifugation, probably by affecting hydrodynamic properties of filaments. HSPB8 and especially 

HSPB6 weakly interacted with NFL but were less effective in modulation of NFL polymerization. 

Interestingly, sHSPs did not interact with NFL tetramers; however they influenced transition from 

tetramers to mature filaments, hydrodynamic properties of filaments and their bundling (Nefedova et 

al. 2016). 

 

Once a client is identified by co-immunoprecipitation and interaction studies, more thorough analysis 

can be done to understand in detail the biophysical nature of such interaction. In fact, Justin Benesch 

(UK) showed how to successfully use mass spectrometry and other biophysical methods to elucidate 

the structure, and quantify the underpinning thermodynamics and kinetics, of sHSP interactions with 

target proteins. He first revealed a molecular mechanism by which HSPB5 interacts with titin, the 

giant muscle protein, and modulates the stiffness of heart tissue (Zhu et al. 2009).  

 

Thus, a combination of in vitro and combined in vitro/cell assays have proven to be extremely useful 

approaches to provide detailed insights in sHSP structure and interaction with clients, with the 
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identification of the functional significance of such interaction (HSP70-assisted refolding, holding or 

assembly formation).  

The information obtained from these approaches will help in the interpretation and understanding of 

functional studies in more complex systems such as endogenous or exogenous expression of a given 

sHSP in prokaryotic or eukaryotic cells, where post-translational modification of sHSPs or mutation 

play a role in their regulation or even in whole organisms. 

 

Functional studies of sHSPs in cells and organisms: dissecting their role in keeping the balance 

and beyond 

Although some sHSPs are constitutively expressed, their levels can be increased upon diverse stress 

conditions, supporting their implication in the cell and organismal stress response. Elizabeth Vierling 

(USA) presented data concerning higher plants, which express 11 or more distinct gene families of 

sHSPs, including multiple cytosolic proteins and proteins targeted to every cellular organelle. Vierling 

used RNAi in transgenic Arabidopsis plants to suppress expression of either cytosolic Class I or II 

sHSPs, which are the most abundant sHSPs produced during heat stress (McLoughlin et al. 2016). 

The transgenic plants are sensitive to severe heat stress, consistent with a non-redundant function of 

these sHSPs. CI and CII proteins also showed distinct biochemical behavior in vitro and in vivo. 

Thirty six proteins that were specifically associated with affinity-tagged CI sHSPs during heat stress 

in vivo were identified by mass spectrometry. Of these, twelve are involved in translation and have 

previously been identified as components of heat stress granules in yeast. These data support the 

hypothesis that CI sHSPs are involved in recovery of translation after heat stress (McLoughlin et al. 

2016). 

A similar question (the role of sHSPs in stress response) was addressed from a different perspective 

and using a different model by Melinda Toth (Hungary), who, in collaboration with Miklós Sántha’s 

and László Vígh’s groups studied the role of HSPB1 in the regulation of neuroinflammation (Toth et 

al. 2010; Toth et al. 2014). As a model system they used a HSPB1 overexpressing transgenic mouse 

strain. In their latest studies, neuronal damage was induced by a single day of ethanol treatment in 7 

day-old mice. Expression levels of inflammatory cytokines and markers of astrocyte and microglia 
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activation were doubled in the wild-type animals 24 hours after the ethanol treatment, while some of 

them showed a much higher increase in the ethanol treated transgenic mice, suggesting that HSPB1 

can promote cytokine response in the brain in vivo, under acute brain injury. This implies that sHSPs 

might play a specific function at the neuronal level, an area that has been addressed by Nikola 

Golenhofen and Britta Bartelt-Kirbach (Germany), who showed that HSPB5 possesses powerful 

neuroprotective capacity in the brain (Bartelt-Kirbach et al. 2016; Golenhofen and Bartelt-Kirbach 

2016; Schmidt et al. 2016). They overexpressed HSPB5 in hippocampal neurons to get insights into 

its function particularly in neurons. Whereas axon length and synapse density were not affected, 

HSPB5 increased significantly the complexity of the dendritic tree. This stimulating effect of HSPB5 

on dendritic branching might become especially relevant during neurodegenerative diseases in 

dysfunctional neurons with reduced dendritic complexity. Based on their results, Golenhofen’s group 

hypothesized that endogenous upregulation of HSPB5 may serve to maintain dendritic structure and 

neuronal connectivity (Bartelt-Kirbach et al. 2016). 

Further evidence for a protective role of HSPBs in neuronal cells comes from the work presented by 

Angelo Poletti (Italy), who found a specific upregulation of HSPB8 in motor neurons that survive at 

end stage of disease in the spinal cord of mice carrying a mutation in the SOD1 gene linked with 

amyotrophic lateral sclerosis (ALS) (Crippa et al. 2010). Mechanistic studies in cell models 

expressing a variety of disease associated mutant proteins (mutant SOD1, TDP-43, ARpolyQ) (Crippa 

et al. 2010; Rusmini et al. 2013) or dipeptides generated by abnormal translation of the C9ORF72 

gene product showed that HSPB8 overexpression counteracts their accumulation. This HSPB8 

activity is likely mediated by the facilitation of the autophagic system and by enhancing the routing of 

these various misfolded proteins to the autophagosomes (Cristofani et al, Autophagy 2017 in press). 

Heath Ecroyd (Australia) extended this protective effect of HSPBs in yet another neurodegenerative 

disease model, Parkinson’s disease, which is characterized by the accumulation of alpha-synuclein 

into amyloid fibrils. Previous work already demonstrated that the protein deposits associated with 

diseases such as Parkinson’s disease and other motor neuron diseases contain high levels of e.g. 

HSPB1 and HSPB5 (Cox et al. 2014; Ecroyd and Carver 2009). Heath Ecroyd presented data 

demonstrating that HSPB1 and HSPB5 bind stably to amyloid fibrils formed by alpha-synuclein and, 
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in doing so, prevent the cytotoxicity associated with the fibril. Moreover, HSPB1 and HSPB5 can 

prevent the aggregation of alpha-synuclein in cells (Cox et al. 2014; Cox et al. 2016). Interestingly, 

Ecroyd proposed that these sHSPs should not be considered generic inhibitors of protein aggregation 

in cells, but rather act in cells on specific intermediate states or substrates; in support of this he 

reported that HSPB1 and HSPB5 had no effect on the intracellular aggregation of the substrate firefly 

luciferase. 

Finally, Hassane Mchaourab (USA) presented data concerning the use of zebrafish as model to study 

the properties and functions of sHSPs. In particular, he reported on the utility to use zebrafish as 

model to study cataract and identify key players of the proteostasis network that are required to 

maintaing lens transparency (Wu et al. 2016). 

 

sHSP in cardiac and muscular diseases  

The family of mammalian sHSPs (HSPBs) includes 10 members (HSPB1-HSPB10). While some 

members are widely expressed, such as e.g. HSPB1, HSPB5 and HSPB8 other members show a very 

restricted expression pattern; for example, HSPB4 is mainly expressed in the lens, although it was 

recently also found in pancreatic cells, where it negatively regulates tumorigenesis (Kappe et al. 2003; 

Liu et al. 2016). HSPB2 and HSPB3 are specifically expressed in differentiating and mature cardiac 

and muscle cells, while HSPB9 and HSPB10 are testis specific (Fontaine et al. 2003; Kappe et al. 

2003; Sugiyama et al. 2000; Suzuki et al. 1998; Verschuure et al. 2003). Cardiac and skeletal muscle 

cells express the largest variety of sHSPs: HSPB1, HSPB2, HSPB3, HSPB6, HSPB7 and HSPB8. 

Evidence exists supporting their important role for the viability and function of myocardium, skeletal 

muscles and neuromuscular systems. Moreover, mutations in HSPB1, HSPB3, HSPB5 and HSPB8 

have been directly associated with myofibrillar myopathy or motor neuron disease, providing further 

evidence for the importance of these sHSPs in muscle and motor neuron maintenance (Boncoraglio et 

al. 2012). sHSPs mutations could lead to disease both via a loss of function or gain of toxic function 

mechanisms, or both. During this meeting, Harm H Kampinga (The Netherlands) showed data about 

mutations in HSPB5 related to dominantly inherited (cardio)myopathies (Bova et al. 1999; Hishiya et 

al. 2010; Perng et al. 1999b; Rajasekaran et al. 2007; Simon et al. 2007; Treweek et al. 2005; Vicart et 
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al. 1998). Expression of these mutants in cardiomyocytes leads to the accumulation of HSPB5 

aggregates that are positive for ubiquitin and are associated with contractile dysfunction. Aggregation 

reverted upon introduction of second mutations in the IXI motif or hydrophobic pocket in the alpha-

crystallin domain. This suggests that the mutants act via a dominant negative effect on hetero-

oligomeric complexe dynamics, which can be alleviated by weakening their inter-dimer interactions 

(Vonk et al., in preparation). This is in line with published findings that aggregation of mutant HSPB5 

forms can be alleviated by increasing the levels of those other HSPB members that hetero-oligomerize 

with HSPB5, including wildtype HSPB5 itself (Hussein et al. 2015). Ivor J. Benjamin (United States) 

discussed the disease modelling of early childhood myofibrillar myopathy caused by a homozygous 

recessive mutation in HSPB5, 343delT (Mitzelfelt et al. 2016). Both standard cell culture systems and 

induced pluripotent stem cells (iPSCs), derived from the 343delT patient (343delT/343delT), were 

used to characterize HSPB5 343delT protein dynamics in skeletal myotubes (iSKMs) and 

cardiomyocytes (iCMs). The truncated protein found in the patient was extremely insoluble under 

basal conditions and was only observed after HSPB5 343delT overexpression with induction of a 

cellular stress response. HSPB5 343delT is a classic loss of function mutation; the additional findings 

that the solubilization of 343delT by WT could explain the absence of symptoms in carrier individuals 

(Mitzelfelt et al. 2016). Serena Carra (Italy) reported the identification of two novel mutations in the 

HSPB3 gene in patients affected by myopathy (Carra unpublished). The two mutations of HSPB3 

identified by Carra’s group lead to protein aggregation or truncation and destabilization, respectively. 

Interestingly, both mutations, directly or indirectly, abrogate HSPB2-HSPB3 complex formation, 

leading to an exceeding free pool of HSPB2 that tends to mislocalize inside the cells (Carra 

unpublished). Dr. Carra discussed the possibility that deregulated HSPB2-HSPB3 interaction would 

lead to deregulation of HSPB2, with potential consequences on myoblast function and viability.  

Combined these studies highlight that imbalances in the expression levels and solubility of specific 

sHSPs, due to aggregation propensity and deregulated association with other sHSPs or other clients, 

could be the basis of complex diseases such as myopathies and neuromuscular diseases. 

Conversely, upregulation of specific sHSPs may protect against cardiac and muscular cell dysfunction 

and atrophy. Bianca Brundel (The Netherlands) presented work demonstrating the implication of 
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specific HSPBs in atrial fibrillation (AF) (Ke et al. 2011). AF is the most common sustained clinical 

tachyarrhythmia. AF is a progressive condition as demonstrated by the finding that maintenance of 

normal rhythm and contractile function becomes more difficult the longer AF exists (de Groot et al. 

2010; Hoogstra-Berends et al. 2012). Recent investigations reveal that HSPB1, HSPB6, HSPB7 and 

HSPB8 attenuate the promotion of AF in both cellular and Drosophila melanogaster experimental 

models (Hoogstra-Berends et al. 2012; Ke et al. 2011). Furthermore, studies in humans suggest a 

protective role for sHSPs against progression from paroxysmal AF to chronic, persistent AF (Brundel 

et al. 2006). Therefore, manipulation of the HSP system may offer novel therapeutic approaches for 

the prevention of atrial remodelling.   

 

In addition, the cross-talk between specific sHSPs and the intermediate filaments of the cytoskeleton 

and its implication in disease was discussed. Roy Quinlan (UK) highlighted the fact that mutations in 

sHSPs cause cataract, myopathies and neuropathies and these are phenocopied by mutations in 

intermediate filament proteins (Toivola et al. 2010). The histopathological aggregates that typify such 

diseases always contain both intermediate filaments and sHSPs. Nevertheless the bigger picture is that 

HSPs, like intermediate filaments, are stress responsive and together the chaperones and cytoskeleton 

integrate every aspect of cell biology. Mutations subvert this role and diseases ensue (Perng et al. 

1999a; Perng et al. 2016; Perng et al. 1999b; Perng et al. 2004). Thus, Roy Quinlan proposed that 

sHSPs, like other chaperones, are evolutionary capacitors given their role in cell proliferation, cell 

death, shape and function, redox potential and ATP levels. However, they should not only be looked 

at as factors that prevent and control protein misfolding and/or their subsequent aggregation; sHSPs 

cooperate with the intermediate filament cytoskeleton to act as a transcellular network that not only 

partitions efficiently the intracellular space of individual cells, but also integrates the individual cell 

into the context of the tissue, with far more complex implication in (cardiac and muscle) tissue 

maintenance/function. 

 

Conclusions and future perspectives 
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The purpose of the Bertinoro workshop was to bring together investigators representing core 

laboratories in the sHSP field in order to identify and discuss current and future trends in sHSP 

research. The workshop was successful in that new trends were featured including characterizations of 

a rapidly expanding repertoire of binding partners, association with a variety of diseases, elaboration 

of the roles of sHSPs as stability sensors, development of drugs to induce sHSPs, creating protected 

pre-surgical states and post-surgical therapies in humans, expanding the concept of sHSPs as 

polydisperse dynamic oligomers, to name several but not all.  

 

Another example of the growing interest in this field is the recent establishment of a database 

(sHSPdb) for analyses of sHSPs by Jaspard and Hunault (Jaspard and Hunault 2016). To 

accommodate the increased research efforts on sHSPs, the third in this meeting series will be held in 

Québec, Canada, in 2018. It will be expanded from a workshop into a CSSI symposium of about 100 

participants, principally organized by Robert M. Tanguay.   
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