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Axon outgrowth and guidance to the proper target requires the coordination of filamentous
(F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape
change and locomotion. Over the past two decades, our knowledge of the many guidance
cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and
guidance has increased dramatically. Less is known, however, about how those cascades
of information converge and direct appropriate remodeling and interaction of cytoskeletal
polymers, the ultimate effectors of movement and guidance. During development, much
of the communication that occurs between environmental guidance cues and the cytoskele-
ton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on
this topic focus on the “input” to the growth cone, themyriad of receptor types, and their cor-
responding cognate ligands. Others investigate the signaling cascades initiated by receptors
and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases).
Ultimately, this plethora of information converges on proteins that associate directly with
the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins,
aswell as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.

A
s evidenced by other articles on this topic,
our understanding of the cues, receptors,

and signaling events underlying axon out-

growth and guidance has grown dramatically
in recent years. Here, we focus on recent re-

search involving cytoskeletal dynamics down-

stream of guidance receptor signaling that has
begun to unravel the mechanisms underlying

guided growth conemovement during develop-

ment. We begin by covering how growth cone
morphology changes during outgrowth and

guidance. Since cytoskeletal dynamics underlie
changes in growth conemorphology, we discuss

where different cytoskeletal polymers reside in

the growth cone and what forms of dynamic
reorganization they undergo. We then present

a description of selected actin- and micro-

tubule-associated proteins that have been iden-
tified in developing neurons and discuss how

they may function in axon outgrowth and guid-

ance. Finally, we present a working model of
how growth cones integrate multiple signaling
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cascades to produce functionally useful output,

and highlight some of the outstanding ques-

tions and challenges that face the field of growth
cone cytoskeletal biology.

GROWTH CONE FORM AND FUNCTION

The axonal growth cone is the highly dynamic

“fan-shaped” distal tip of the axon. Growth

cones assumemany shapes and sizes and appear
to probe their environment constantly by ex-

tending and retracting membrane protrusions

(Dent and Gertler 2003; Lowery and Van Vactor
2009). These protrusions take the form of

tapered finger-like projections, called filopodia,

and flat sheet-like protrusions called lamellipo-

dia or veils (Fig. 1). When viewed in time-lapse
microscopy,filopodiaand lamellipodia areoften

extremely dynamic: They can form, extend, or

withdraw within seconds to minutes. Filopodia
and lamellipodia comprise the peripheral re-

gions of the growth cone. This dynamic periph-

ery transitions to a more stable central region of
the growth cone. Although the central region

exhibits less plasma membrane dynamics than

the periphery, there is substantial molecular
motion within this region, including the con-

stant shuttling of organelles and vesicles. The

Figure 1. F-actin and microtubule distribution in a hippocampal growth cone. (A) In this typical mouse hippo-
campal growth cone, labeled with fluorescent phalloidin, the F-actin is concentrated in filopodia (bundled
F-actin) and lamellipodia (meshwork of F-actin), with relatively little F-actin in the axon shaft. (B) Micro-
tubules, labeled with an antibody to tyrosinated tubulin, are concentrated as a bundle in the axon shaft but
also splay apart in the growth cone, extending into distal peripheral regions. (C) A false-color overlay of images
in A and B. Microtubules are in red and F-actin is in green. (D) Amagnified view of the boxed region in C. Note
the close apposition of an F-actin bundle (closed arrowheads) at the base of a filopodium and an individual
microtubule (open arrowheads). At this magnification, the dendritic (D) actinmeshwork can also be discerned.
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central region of the growth cone then transi-

tions into the cylindrical axon shaft.

In a still micrograph, these regions of the
distal axon can be identified, but it is important

to realize that these domains are transient. As

a consequence of outgrowth, the growth cone
constantly undergoes dynamic changes in its

structure, allowing it to lay down new regions

of axon along the path to its target as it moves.
Axon outgrowth results from progress through

three stages: protrusion, engorgement, and con-

solidation. Protrusion is the extension of new
membrane at the edges of the growth cone, driv-

en by filamentous actin (F-actin) polymeriza-

tion. Engorgement results from microtubule
(MT)-driven transport of membranous organ-

elles and vesicles into the otherwise actin-domi-

nated peripheral regions. Consolidation results
from the contraction and stabilization of the

proximal growth cone into a cylindrical axon

shaft, accompanied by the bidirectional move-
ment of organelles and vesicles. These stages

were first described at the morphological level

using differential interference contrast (DIC)

microscopy (Goldberg and Burmeister 1986).
However, as we describe below, these stages

result from specific cytoskeletal changes that

occur in discrete locations within the growth
cone. In addition to these stages of outgrowth,

growth cones also undergo cycles of pausing

and retraction that engage other cytoskeletal
changes. Throughout this article, we discuss

how these changes in output are triggered by

guidance cues received at the growth cone or
along the axon shaft.

ACTIN DYNAMICS IN GROWTH CONE
PROTRUSION

Growth cone protrusion and motility is driven
primarily by the cyclical polymerization and

depolymerization of actin filaments (Fig. 2).

Actin dynamics are necessary for directed axo-
nal outgrowth, but not necessarily for growth
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Figure 2. Structural characteristics of F-actin and actin-associated proteins. (A) Actin filaments are polar poly-
mers composed of a barbed end, where the bulk of actin monomer addition occurs, and a pointed end, where
dissociation of actin monomers occur. The nucleotide state of the actin changes as the filaments age
(ATP!ADPpi!ADP). (B) F-actin in a filopodium forms bundles due to the action of bundling proteins. Actin
monomers add onto existing filaments at the tip of the filopodium through the action of barbed-end binding
proteins. Actin filaments are constantly undergoing retrograde flow (large vertical arrows) and are disassembled
near their pointed ends by severing proteins. Motor proteins use the bundled F-actin to transport cargo both
anterogradely and retrogradely. In contrast, F-actin in the lamellipodium forms a dendritic network through
the action of dendritic nucleator proteins and capping proteins. Addition of actin monomers also occurs
near the membrane, and disassembly occurs more proximally in the growth cone.
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cone translocation, per se.Many studies, both in

culture (Marsh and Letourneau 1984; Lafont

et al. 1993; Dent and Kalil 2001) and with-
in model organisms (Bentley and Toroian-

Raymond 1986; Chien et al. 1993; Kaufmann

et al. 1998), have shown that neurons treated
with agents that depolymerize F-actin are still

capable of elongation. Such neurons, however,

generally cannot respond to guidance cues
and become misrouted in vivo or form axonal

loops in culture, presumably because they can-

not change direction once they start turning.
Importantly, F-actin dynamics appear to be

particularly important for growth cone explora-

tion of the environment.
As in other cell types, G-actin is added onto

the free barbed ends of filaments located at the

tips of filopodia (Mallavarapu and Mitchison
1999) and lamellipodia (Symons andMitchison

1991). By labeling actin filaments within living

growth cones, either with fluorescent mono-
mer (EGFP-actin or by microinjecting G-actin

coupled to a dye) or fluorescently labeled phal-

loidin, F-actin is found to be in a steady retro-
grade flow from the leading edge to the center

of the growth cone. Elegant studies from the

Forscher lab have shown that this retrograde F-
actin flow is a result of both myosin-II-driven

actin transport and a pushing force that actin

exerts on the peripheral membrane as it is poly-
merizing (Lin et al. 1996; Zhang et al. 2003;

Medeiros et al. 2006). The balance between

the rate of polymerization and retrograde flow
determines if the growth cone extends or

withdraws protrusions: If the polymerization

rate exceeds retrograde flow (which averages
3–6mm/min), then the growth cone protrudes.

If the polymerization rate is balanced with the

velocity of retrograde flow, then the membrane
remains stationary. Thus, it would be expected

that if myosin activity is decreased, retrograde

flow would decrease and protrusion would
increase. To a certain extent this does happen,

but the protrusions tend to be unstable and

random (Medeiros et al. 2006). Importantly,
when connection to the underlying substratum

is increased by tighter coupling between the

actin cytoskeleton and transmembrane adhe-
sion receptors, retrograde flow slows and the

balance shifts to polymerization-driven protru-

sion (Suter and Forscher 2001). Thus, retro-

grade actin flow tends to act as a background
activity upon which other factors can act.

Interestingly, the motor protein myosin-II

has also been shown to be important for sever-
ing actin filaments in the proximal “transition

zone” of the growth cone that demarcates the

border between the growth cone’s actin-rich
periphery and the MT-rich central region

(Medeiros et al. 2006). Myosin-II does not sever

actin filaments directly, but rather exerts con-
tractile forces on anti-parallel F-actin that con-

tracts the actin meshwork to a point that it

breaks the filaments into smaller pieces; these
undergo rapid depolymerization in the transi-

tion zone. There are also a number of known

actin-severing proteins that likely have impor-
tant roles in severing actin filaments in the

transition zone (Fig. 2), but the potential re-

quirements for two prominent severing pro-
teins found in this region, gelsolin (Lu et al.

1997) and cofilin (Pak et al. 2008), have yet to

be demonstrated.
Driven by dynamic remodeling of the actin

cytoskeleton, lamellipodial and filopodial pro-

trusions underlie growth cone motility and
guidance. It is widely assumed that repulsive

growth cone turning arises from disruption and

loss of F-actin superstructures and actomyosin
contraction, while attractive growth cone turn-

ing entails asymmetrical incorporation of actin

on the side of the growth cone closest to the che-
moattractant. In support of the aforementioned

model for growth cone chemoattraction, Mar-

sick and colleagues recently reported that appli-
cation of chemoattractive guidance cuesNGFor

netrin1 to dorsal root ganglia (DRG) induced

increased protrusion, F-actin accumulation,
and increased barbed end density on the side

of the growth cone nearest the source of the

gradient (Marsick et al. 2010). It is important,
however, to note that there are relatively few

detailed, high-resolution studies of cytoskeletal

and morphological dynamics of growth cones
turning toward or away from guidance cues

(e.g., Dent et al. 2004; Suter et al. 2004; Brown

and Bridgman 2009; Brown et al. 2009; Marsick
et al. 2010). Therefore, it remains unclear
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whether all attractive and repulsive events in-

volve analogous cytoskeletal and shape changes.

An additional level of complexity in under-
standing the function of cytoskeletal machinery

during guidance is that individual components

likely act in a context-dependent fashion, influ-
enced by the signaling status in the growth cone,

the repertoire of cytoskeletal proteins present

in the growth cone, and adhesive interactions.
For example, the actin severing/depolymerizing

protein cofilin is required for axon extension in

hippocampal neurons (Garvalov et al. 2007)
and dorsal root ganglia neurons (Endo et al.

2003), but likely not in cerebellar granular neu-

rons (Tahirovic et al. 2010). In addition, cofilin
activity has been implicated in both attractive

(Marsick et al. 2010) and repulsive (Wen et al.

2007) guidance responses. Moreover, in Xeno-

pus spinal neurons, the requirements for cofilin

function in response to BMP7 are thought to

change as neurons mature: In 4–8 hour neu-
rons, axons are attracted to BMP7, and cofilin

must be inactive for this response; after over-

night culture, BMP7 repels axons, and this re-
sponse requires asymmetric cofilin activity in

the portion of the growth cone exposed to the

higher BMP7 concentration (Wen et al. 2007).
Despite its role in BMP7 repulsion, growth

cone collapse induced by Sema3A requires inac-

tivation of cofilin (Aizawa et al. 2001). There-
fore, it may not be possible to extrapolate the

mechanism of turning or collapse from one cue

to another, from one neuron type to another,
or the role of particular cytoskeletal proteins

in different contexts. There may also be species-

specific differences that affect how certain cy-
toskeletal proteins are utilized (Marsick et al.

2010). Such context-dependent functions are

reminiscent of the ways in which guidance cues
and their cognate receptors can elicit distinct

responses.

In this article, we focus onhowactin dynam-
ics affect membrane protrusions and generate

structures that interact with the MT cytoskele-

ton. It is clear, however, that actin-dependent
or actin-influenced processes, such as adhesion,

membrane trafficking, and endo/exocytosis,
play equally important roles in growth cone for-
mation, motility, and guidance responses (e.g.,

Jurney et al. 2002; Suh et al. 2004; Tojima et al.

2007; Kolpak et al. 2009; Hines et al. 2010;

Tojima et al. 2010). While space constraints
preclude coverage of these topics, the reader

should bear in mind that some of the proteins

discussed below might exert their effects on
guidance by influencing adhesion dynamics

and membrane/vesicle transport.

MICROTUBULE DYNAMICS IN AXON
GUIDANCE

Although actin and actin-associated proteins
are usually the first cytoskeletal proteins that

come to mind when one considers axon guid-
ance, a number of studies implicate micro-

tubules (MTs) directly in growth cone steering.

The idea that MTs are involved in guidance
decisions was first suggested by pioneering

studies from the Kirschner laboratory, show-

ing in living neurons that fluorescently labeled
MTs were capable of exploring the growth

cone periphery, and that the orientation of

MTs often predicted the direction of outgrowth
(Sabry et al. 1991; Tanaka and Kirschner 1995).

Further work from several laboratories con-

firmed and extended these findings by showing
that the dynamic pool of MTs (identified by

a post-translational modification that adds a

c-terminal tyrosine residue—referred to as ty-
rosinated MTs) was key for either directed out-

growth toward a target or chemorepulsion at

two substrate boundaries (Lin and Forscher
1993; Lin and Forscher 1995; Williamson et al.

1996; Challacombe et al. 1997). Nevertheless,

the general perception remained that actin fila-
ments initiated that change in the direction of

growth and MTs followed their lead.

However, a more recent study showed that
simply changingMT dynamics by locally apply-

ing, or photo-uncaging, MT-specific drugs on

one side of a growth cone was sufficient to
induce growth cone turning (Buck and Zheng

2002). These results led the authors to propose

that MTs were indeed playing an instructive
role in growth cone guidance, since simply

changing MT dynamics asymmetrically was

sufficient to induce growth cone turning. Nev-
ertheless, these results do not mitigate the role
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that actin plays in growth cone turning. Indeed,

growth cone turning induced by taxol applica-

tion can be abrogated by inclusion of nano-
molar concentrations of cytochalasin D, a drug

that caps actin filaments (Buck and Zheng

2002). These results indicate that even if extracel-
lular cues signal directly to MTs, the output of

theresponse,growthconeturning, is likely topro-

ceed through changes in the actin cytoskeleton.
These studies raise an intriguing question:

Could spatially and temporally restricted pre-

sentation of guidance cues regulate MT dynam-
ics and stability directly to give rise to growth

cone turning? To answer this question, we first

have to understand what effect guidance cues
have onmicrotubule dynamics. However, quan-

tifying MT dynamics in neuronal growth cones

is difficult. MTs constantly polymerize and de-
polymerize throughout the growth cone peri-

pheral domain due to a behavior inherent in

the structure of these polymers termed “dy-
namic instability.” Growth cones occupy rela-

tively small areas and expand and contract,

making imaging MT dynamics challenging. It
is a daunting task to image these dynamics for

extended periods of time while locally applying

guidance cues. Thus, there have been no studies
to date that have imaged MT dynamics in

growth cones during local application of a guid-

ance cue. However, MT dynamics have been
imaged after bath application of several guid-

ance cues. In one study, Sema3a was bath

applied to large, paused growth cones from cul-
tured cortical neurons (Dent et al. 2004). MTs

rapidly lost their dynamic behavior and col-

lapsed back onto the central region of the
growth cone. In this study, netrin was shown

to induce opposite changes in MTs, causing

increased splaying of MTs in the growth cone
and axon shaft. However, the effect of netrin

was only documented in fixed growth cones.

A more recent study has shown that bath appli-
cation of Wnt3a induces MTs to lose direc-

tionality and polymerize perpendicular to the

direction of growth cone translocation (Purro
et al. 2008). Over time, this behavior results

in MT looping, growth cone enlargement, and

pausing. These studies indicate that MTs are
sensitive to guidance cues, but further research

is necessary to understand how MT dynamics

are directly or indirectly regulated by such cues.

Additionally, there have been a number of
studies of MT dynamics in large Aplysia growth

cones that provide insight into howMTdynam-

ics may be regulated in growth cones during
guidance decisions (Suter and Forscher 2000).

These studies by the Forscher and Suter labora-

tories include imaging of MTand actin dynam-
ics at high temporal and spatial resolution while

conducting a localized adhesion-based assay.

In this assay, a polystyrene bead is coated with
a cell adhesion molecule (apCAM) and posi-

tioned on top of an adherent and well-spread

growth cone. By restraining this bead with
a microneedle, these researchers were able to

show an ensuing stereotyped series of events

(Suter et al. 1998; Suter et al. 2004; Lee and
Suter 2008; Schaefer et al. 2008). Normally,

the actin in the growth cone undergoes constit-

utive retrograde flow. As the apCAM bead en-
gages receptors on the growth cone, an actin

scaffold begins to accumulate near the plasma

membrane underlying the bead. This actin
matrix couples to the cell adhesion complex,

engaging a “clutch” type mechanism. During

this time, termed the latency phase, exploratory
MTs polymerize and are transported anterog-

radely toward the actin matrix under the bead.

Progressive coupling of the bead to the growth
cone, forming a mature adhesion site, instigates

a loss of actin retrograde flow behind the bead

and possibly an increase in severing and/or
unbundling of the actin. Clearing of the actin

behind the bead allows for more microtubule

invasion toward the bead and potential capture
at the adhesion sight. This traction period (Lee

and Suter 2008) or growth phase (Schaefer et al.

2008) is accompanied by protrusion of lamelli-
podia and filopodia beyond the bead. Presum-

ably, this sequence of stereotyped cytoskeletal

behaviors would repeat as soon as the growth
cone made another productive adhesion in a

more distal region of the growth cone.

Using this methodology, one group stresses
that actin arcs, the actomyosin contractile net-

work in the transition region of the growth

cone, are important for guiding MTs to the
bead adhesion site (Schaefer et al. 2008). The
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other group indicates that a critical aspect

underlying the ability of MTs to target the

bead, and presumably induce a new axis of out-
growth, is the uncoupling of putative MT-actin

linker molecules (Lee and Suter 2008). This

restricted bead assay provides essential knowl-
edge about cytoskeletal interactions underlying

adhesion-based growth. However, many guid-

ance cues are not cell-adhesionmolecules. Thus,
this assay may be better defined as a neurite

growthmodel (Schaefer et al. 2008), rather than

a model for guidance (Lee and Suter 2008), per
se. An important question for future experi-

ments will be to determine if local application

of guidance cues to the growth cone induces
the same types of cytoskeletal behaviors in ac-

tively translocating growth cones, as are seen

in these large, paused, Aplysia growth cones.

ACTIN-ASSOCIATED PROTEINS IN AXON
GUIDANCE

The exquisite control of actin nucleation, elon-

gation, depolymerization, bundling, and con-
traction necessary to shape the growth cone

and enable dynamic responses to a plethora

of extracellular cues is mediated by a complex
repertoire of actin accessory proteins found in

many cell types (see Table 1 and Fig. 2). More

than 100 such accessory proteins are used by
eukaryotic cells to nucleate filaments, control

filament length, bundle or cross-link filaments,

disassemble filament networks, and maintain a
pool of actin monomers (Pollard and Cooper

2009). While an increasing number of these

actin accessory proteins have been identified
in neurons, it is likely that the abundance of var-

ious classes of actin regulators differs according

to cell type, and it is clear that the relative levels
of some key types of actin regulatory proteins

in the growth cone differ from the stoichiome-

tries found in systems that are commonly used
to analyze the regulation of actin dynamics

(Strasser et al. 2004). Thus, an exquisite balance

of actin accessory proteins likely contributes to
the distinctive morphology of growth cones.

Many actin binding proteins in the growth cone

regulate lamellipodia and filopodia dynamics,
axon guidance, or both, but how guidance cues

orchestrate cytoskeletal remodeling by the

many proteins within the growth cone to elicit

the proper response remains largely unknown.
While the list of known actin-associatedproteins

is expansive andmany are expressed in the devel-

oping nervous system, relatively few have been
implicated in axon guidance. Here, we consider

actin-associated proteins that have been specifi-

cally implicated in growth cone guidance.

Barbed-end Binding Proteins

This group of proteins associates with actin fil-
ament barbed ends. Some cap barbed ends, ter-

minating filament elongation. Other barbed-

end binding proteins protect the filament
end from polymerization-terminating capping

proteins, and in some cases alter the rate of G-

actin incorporation at the filament end. As in
other cells, most filaments within growth cones

are oriented with their barbed ends toward the

front edge of lamellipodial veils and filopodial
tips, sites where rapid responses to guidance

cues are likely essential for proper navigation

(Fig. 2).

Ena/VASP Proteins

The Ena/VASP proteins were the first examples

of barbed-end binding proteins implicated in

axon guidance (Drees and Gertler 2008). There
are three vertebrate Ena/VASP paralogs (Mena,

VASP, and EVL), whileDrosophila andC. elegans

each contain a single ortholog, Enabled (Ena)
and UNC-34, respectively. While Ena/VASP
proteins are found in many cell types, they are

highly expressed in the developing nervous
system, where they concentrate in the filopodial

tips of growth cones aswell as the leading edge of

lamellipodia (Lanier et al. 1999), two structures
rich in elongating barbed ends. The localiza-

tion of Ena/VASP proteins to these structures,

as well as interactions with signaling proteins,
is controlled in part by protein–protein inter-

actions between the conserved EVH1 (Ena/
VASP homology 1) domain and proteins that
contain EVH1-binding motifs (Niebuhr et al.

1997; Ball et al. 2002). At least two molecules

involved in axon guidance contain functional
EVH1-binding sites: Robo/Sax3 (Bashaw et al.
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Table 1. Actin Regulators.

Protein Family Guidance Assay Potential Guidance Pathways References

Barbed-end Binding Proteins

Ena/VASP I (Mm, Dm, Ce) Netrin and SLIT pathway

Dm Ce

(Bashaw et al. 2000; Gitai et al.

2003; Forsthoefel et al. 2005;

Chang et al. 2006)

DAAM I (Dm) Misrouted axons, broken

commissures

(Matusek et al. 2008)

F-actin Binding/Bundling Proteins
ERM proteins C, C-R Sema Pathway (Mintz et al. 2008)

Unc115/Ablim I (Ce) VD DD motor neurons (Lundquist et al. 1998)

GAP43 I (MR), C Retinal, callosal,

thalamocortical

(Maier et al. 1999; Zhu and Julien

1999; Shen et al. 2002)

Unc-44/Ankryin I (Ce) Netrin pathway (Colavita and Culotti 1998)

ß-Spectrin I(Dm) midline defects (Hummel et al. 1999; Williams

et al. 2004; Hulsmeier et al.

2007)

Abl I(Dm) Slit, EphrinA, and Netrin

pathway

(Wills et al. 1999a; Bashaw et al.

2000; Yu et al. 2001; Forsthoefel

et al. 2005)

Fascin I(Dm) Trajectory maintenance (De Arcangelis et al. 2004)

F-actin Severing Proteins

Cofilin I (MR, Dm), C, C-R Netrin, NGF, Semaphorin,

BMP, SLIT

(Marsick et al.; Aizawa et al. 2001;

Piper et al. 2006)

F-actin Depolymerizing Proteins

Mical I (Dm) Sema pathway (Hung et al. 2010)

Monomer Binding Proteins

CAP I (Dm) SLIT pathway (Wills et al. 2002)

Profilin I (Dm) ISNb (Wills et al. 1999b)

Arp2/31Activating Factors

WASP/WAVE I (Dm, Ce) Netrin, Semaphorin (Zallen et al. 2002)

Arp2/3 subunits I (Dm, Ce) Netrin, Semaphorin (Strasser et al. 2004; Shakir et al.

2008; Norris et al. 2009)

F-actin Motor Proteins

Myosin IIA C-R Required for Sema3A/ RGMa

collapse

(Kubo et al. 2008; Brown et al.

2009)

Myosin IIB C-R Required for Sema3A

retraction

(Brown and Bridgman 2009)

F-actin-Cytoskeletal-Linking Proteins

Short Stop/ACF7 I (Dm) Required for repulsion (Lee et al. 2007; Sanchez-Soriano

et al. 2009)

MAP1B Netrin (Del Rio et al. 2004)

POD1 I (Dm) ISN, SNa, ISNb neurons (Rothenberg et al. 2003)

Guidance Assays

(S) Substrate-Stripe, (C) Collagen Gel, (C-R) collapse/retraction, (I) In vivo, (Ce) C. elegans, (Dm) Drosophila, (Dr)

zebrafish, (Gg) chicken, (MR) mouse/rat, (Xl) Xenopus, (P) pipet assay, (M) Micro-CALI.
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2000; Yu et al. 2002) and Lamellipodin (Lpd)

(Krause et al. 2004); the significance of these

interactions is discussed below.
Ena/VASP proteins promote assembly of

long, sparsely branched actin filament net-

works. Ena/VASP increases filament length by
interacting directly with free barbed ends and

1) binding profilin:G-actin complexes and di-

rectly transferring actin monomer from profilin
to the barbed end, 2) enhancing the rate of actin

polymerization, and 3) delaying termination of

filament elongation by F-actin capping proteins
(Bear et al. 2002; Barzik et al. 2005; Chereau and

Dominguez 2006; Ferron et al. 2007; Breit-

sprecher et al. 2008; Pasic et al. 2008; Bear and
Gertler 2009). In addition to the effects on fila-

ment elongation, Ena/VASP activity reduces

Arp2/3 branching density in growing F-actin
filament networks. Depending on the cellular

context, the actin networks shaped by Ena/
VASP give rise to filopodia (when the long,
unbranched filaments are bundled) or dynamic,

protrusive lamellipodia.

Drosophila Enabled (Ena)was identified ini-
tially in a screen for dominant genetic suppres-

sors of phenotypes arising in part from loss of

the Abl tyrosine kinase homolog. Complete
loss of Ena resulted in gross defects in the organ-

ization of axonal fiber tracts in the CNS (Gertler

et al. 1990; Gertler et al. 1995). Subsequent work
established that Ena is required to guide neu-

rons in the intersegmental nerve b (ISNb) to

their proper targets, and that Ena function was
required in axons for function, ruling out the

possibility that the guidance defect arose as a

secondary consequence of defects in other cell
types (Wills et al. 1999b). Consistent with the

previously noted antagonism between Ena and

Abl activites, genetic interaction data indica-
ted that Ena and Abl have opposing functions

in ISNb guidance (Wills et al. 1999b). Though

Ena is a substrate for the tyrosine kinase activity
ofDrosophilaAbl (Gertler et al. 1995;Wills et al.

1999b), it is unclear what role Abl-mediated

phosphorylation of Ena plays in this interaction
sincemutation of all themappedAbl phosphor-

ylation sites in Ena has only a modest effect on

Ena function (Comer et al. 1998), and none of
the sites phosphorylated in Ena are conserved

in any of the vertebrate Ena/VASP proteins

(Gertler et al. 1996).

Ena/VASP has important roles in guidance
downstream of both attractive and repulsive

cues. Mutations in C. elegans unc-34 (Yu et al.

2002; Gitai et al. 2003), Drosophila Ena (Wills
et al. 2002), and deletion of Mena/VASP/EVL
in mice (Lanier et al. 1999; Menzies et al.

2004) all cause midline axon crossing defects,
in addition to other phenotypes. The pheno-

typic similarities and genetic interactions ob-

served between Ena and Robo (or unc-34 and
sax-3) mutants suggested roles for Ena/VASP
downstream of the repulsive guidance receptor

Robo (and the orthologous SAX-3 inC. elegans)
receptors (Bashaw et al. 2000; Yu et al. 2002).

The cytoplasmic tail ofmost Robo family recep-

tors contains at least one EVH1-binding site,
called “CC2” (Dickson and Gilestro 2006), that

is conserved in most members of the Robo fam-

ily, and that binds Ena/VASP proteins robustly
(Bashaw et al. 2000; Yu et al. 2002). Deletion

of CC2 in Drosophila reduces Robo function

significantly, suggesting that direct interactions
may be important for Ena/VASP to function

as a Robo effector. It is clear, however, that in

Drosophila and C. elegans, there must be other
connections between Robo and the cytoskele-

ton beyond Ena/VASP since loss of the genes

encoding the various Robo proteins lead to
phenotypes that are more severe and penetrant

than those caused by loss of Ena/VASP. Exactly
how Ena/VASP proteins, which promote actin
polymerization and filopodial/lamellipodial

protrusion, enhance repulsive axon guidance

downstream of Robo remains to be determined.
Ena/VASP also functions in response to

netrin, a guidance factor that can elicit attractive

or repulsive responses depending on receptor
subunit composition and the status of second

messenger signaling pathways (Moore et al.

2007). UNC-5, a receptor that mediates repul-
sion to netrin, induces dorsally directed axon

outgrowth when expressed ectopically in classes

ofC. elegans neurons that normally extend along
longitudinal or ventral trajectories. A screen for

genes required for UNC-5-induced dorsal guid-

ance phenotypes resulted in the isolation of a
small numberof genes including, among others,
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unc-6 (netrin), unc-40 (DCC), unc-44 (Ankyrin,

an F-actin binding protein), and unc-34 (Ena/
VASP) (Colavita and Culotti 1998). Therefore,
it is likely that Ena/VASP functions in normal

UNC-5-dependent repulsion to netrin.

In addition to their function downstream of
UNC-5, experiments in both Drosophila and

C. elegans indicate that Ena/VASP contributes

to phenotypes arising from chimeric or consti-
tutively active forms of the netrin receptor DCC

(Gitai et al. 2003; Forsthoefel et al. 2005) (DCC

orthologs are: Frazzled inDrosophila and UNC-
40 in C. elegans). Further analysis verified that

Ena/VASP mediates part of the normal chemo-

attractive response to netrin during axon guid-
ance. Understanding the nature of Ena/VASP
mutant axon guidance phenotypes in all model

systems is complicated by the dual roles of
Ena/VASP in both attraction and repulsion in

response to both netrin and Robo-mediated

repulsion. Examination of unc-34 phenotypes
in C. elegans lacking SLIT-Robo guidance pro-

vided unambiguous confirmation that Ena/
VASP is indeed required for netrin attraction
(Gitai et al. 2003).

Mutational analysis of an activated form

of UNC-40 revealed that UNC-34 functions
downstream of a conserved cytoplasmic motif

known as P1 (Gitai et al. 2003). The same study

revealed that the Rac and ablim orthologs
(mig-10 and unc-115, respectively) function

downstream of the UNC-40 P2 motif and act

in parallel to UNC-34. Subsequent genetic anal-
ysis suggested that UNC-115 function affects

filopodia formation, perhaps in parallel to

UNC-34 (Norris et al. 2009). While the role of
the conserved P1 and P2 motifs in expressing

the activated UNC-40 phenotype is clear, their

role in normal axon guidance is less clear as
the fra mutant phenotype in Drosophila can be

rescued using fra transgenes that lack P1 and

P2 (Garbe et al. 2007b). Whether UNC-34 in-
teracts directly with UNC-40, or whether adap-

tor proteins connect them via a downstream

signaling pathway, is presently unknown. Re-
gardless of how Ena/VASP proteins are linked

to UNC-40/DCC signaling, however, they are

required to elicit filopodia formation and elon-
gation after netrin stimulation in vivo (Chang

et al. 2006) and in cultured cortical neurons

(Lebrand et al. 2004).

One mechanism that may coordinate Ena/
VASP function in filopodia formation with

netrin-mediated guidance responses involves

PKA signaling (PKA; cAMP-dependent kinase).
Second messenger signaling by cAMP and

cGMP plays significant roles in axon guidance

by modulating the intensity of responses to
cues and perhaps by inducing conversion

between attractive and repulsive responses to

certain guidance cues (Bashaw and Klein
2010). Cultured neurons treated with netrin

exhibit a robust increase in filopodia formation

(Shekarabi and Kennedy 2002) that requires
Ena/VASP, among other cytoskeletal regulatory

proteins, and PKA activity (Lebrand et al.

2004); neurons treated with PKA activators
elaborate filopodia (Chen et al. 2003; Argaw

et al. 2008) in an Ena/VASP-dependent man-

ner (Lebrand et al. 2004). At present, it is
unknown whether PKA phosphorylation of

Ena/VASP is essential for netrin-elicited filopo-

dia induction.
While it seems likely that netrin elicits filo-

podia formation through a process that requires

PKA and Ena/VASP in cultured neurons, other
data preclude a simple netrin.DCC.cAMP.

PKA.Ena/VASP pathway. Treatment with net-

rin does not increase global cAMP levels or PKA
activation (Bouchard et al. 2004; Bouchard et al.

2008; Bashaw and Klein 2010), so it remains

unclear how Ena/VASP phosphorylation levels
rise uponnetrin stimulation. Furthermore, PKA

is not required for axon extension towards net-

rin in vivo, but enhances chemoattraction to
netrin, at least in part, by increasing surface

levels of DCC (Bouchard et al. 2004).

The role of both Ena/VASP and filopodia
formation in axon guidance has been ques-

tioned based on the ability of retinal axons to

navigate properly while expressing an Ena/
VASP function-blocking construct (Dwivedy

et al. 2007) that depletes and sequesters Ena/
VASP (Bear et al. 2000). This construct was
transfected into the retina of developing Xeno-

pus, and the axons expressing the construct were

monitored for filopodia formation, axon navi-
gation, and terminal arborization (Dwivedy
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et al. 2007). Despite a significant reduction in

filopodia in the axons that expressed the inhib-

itory construct, these axons made their way
to their target region but exhibited defects in

terminal branching and final target selection.

This result has been interpreted as evidence
that filopodia and Ena/VASP are not required

for accurate axon guidance (Dwivedy et al. 2007;

Lowery and Van Vactor 2009). If true, this con-
clusion would be surprising given the extensive

genetic evidence in Drosophila, C. elegans, and

mice demonstrating roles for Ena/VASP inmul-
tiple guidance pathways. Another interpretation

of these data is that a major guidance decision

made by retinal axons is whether and where to
branch in the tectum. It is important to note

that the transfection approach used is limited

in that it is not possible to be certain when the
inhibitory construct was expressed at levels suf-

ficient to block Ena/VASP. Furthermore, only a

small subset of neurons in the retinawere trans-
fected, therefore it is likely that pioneering

axons were not affected by the inhibitory

construct. Compensation for Ena/VASP could
occur during outgrowth to the target via fasci-

culation; however, branch formation in the tec-

tum occurs by interstitial axon branching after
the primary growth cone has extended beyond

the target (McLaughlin et al. 2003). Thus, topo-

graphically specific interstitial branching is a
major form of guidance in the tectum, and it

is particularly sensitive to Ena/VASP disruption

(Dwivedy et al. 2007). This hypothesis is consis-
tent with the ability of Ena/VASP to affect

branching in murine hippocampal (Lebrand

et al. 2004) and cortical (Dent and Gertler, un-
publ.) neurons, two neuronal types that branch

primarily by interstitial branching (Halloran

and Kalil 1994).

MRL Proteins

Ena/VASP are also linked to both netrin and

Slit-dependent guidance by their direct interac-

tion with MRL proteins: MIG-10 in C. elegans,
and Lamellipodin (Lpd) and RIAM in verte-

brates (Krause et al. 2004; Chang et al. 2006;

Quinn et al. 2006; Quinn et al. 2008; Michael
et al. 2010; Smith et al. 2010). In addition to

acting as downstream signaling components

of netrin and Slit guidance pathways, MIG-

10 plays a role in the initial establishment
of asymmetry in the HSN neuron. Prior to

HSN axon formation, MIG-10 accumulates on

the side of the cell oriented toward a netrin
source, the earliest known molecule to exhibit

such Netrin-dependent asymmetric localiza-

tion. MRL proteins are linked to second mes-
senger signaling by tyrosine kinases and by

binding to phosphinositides such as PI (3,4)

P2 and to Ras superfamily proteins. Consistent
with a role for PI (3,4)P2 in spatiotemporal

regulation of MRL localization, mutations in

age-1, a PI3K, impair netrin-dependent local-
ization of MIG-10, most likely because PI3K

activity is required to producePI(3,4) P2 among

other phosphoinositides. MRL proteins pro-
mote actin polymerization, membrane protru-

sion, and can regulate activation of adhesion

receptors. Genetic and cell biological evidence
indicate that while Ena/VASP is required for

full MRL function, other actin regulators act

downstream of MRL signaling. Clearly, imple-
mentation of fluorescent biosensors and devel-

opment of phospho-specific antibodies that can

be used for immunolocalizationwill be required
to examine spatiotemporal signaling to the

cytoskeleton downstream of netrin and other

guidance cues.

DAAM1

Recent work implicates another barbed-end

binding protein, disheveled-associated activa-

tor of morphogenesis (DAAM), as a regulator
of filopodia formation and axonal morphogen-

esis in Drosophila (Matusek et al. 2008). DAAM

is a member of the formin protein superfamily
that nucleates linear actin filaments, regulates

filament growth rate through processive elon-

gation (continuous attachment to the growing
end), and can block filament termination by

barbed-end capping proteins. Most formin

proteins contain three conserved domains: the
GTPase binding domain (GBD), Forminhomo-

logy 1 (FH1) domain, and Formin homology

2 (FH2) domain (Higgs 2005). Formins are
autoinhibited by head-to-tail intramolecular
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interactions that are typically relieved by bind-

ing to Rho GTPases, thereby allowing the FH1

and FH2 to bind effectors and drive actin poly-
merization (Goode and Eck 2007). The FH1 do-

main binds to profilin, while the FH2 domain

contains the core nucleating activity. Unlike
other formins, DAAM1 is activated by binding

to Dvl, a component of noncanonical Wnt sig-

naling pathways (Liu et al. 2008), raising the
interesting possibility that this molecule could

be involved in Wnt-mediated guidance.

The Drosophila DAAM1 ortholog “DAAM”
is expressed highly in the nervous system

(Matusek et al. 2008). Loss-of-function analysis

and targeted expression of activated constructs
revealed that DAAM plays significant roles in

filopodia formation on axonal growth cones:

Loss of DAAM reduces the frequency of filopo-
dia formation in primary cultures from mu-

tants, while expression of activated DAAM

increases filopodia formation. Most eukaryotes
possess multiple formin genes (Higgs 2005;

Higgs and Peterson 2005), and the cellular roles

of these proteins have recently been explored.
Mutant embryos lacking functional DAAM

exhibit a range of CNS phenotypes that are

observed in about a third of the embryos lacking
both the maternally and zygotically produced

protein. The DAAM mutants show occasion-

al gaps in longitudinal connectives and more
severely affected embryos show malformed

commissures, misrouted axons, or failures in

commissure separation (Matusek et al. 2008).
Genetic interaction studies indicate that re-

duced levels of DAAM exacerbate phenotypes

caused by loss of Rac and vice versa, showing
that these two proteins function in interde-

pendent, or perhaps parallel, pathways im-

portant for axon outgrowth and guidance.
Similarly, reduction in Ena or profilin levels exa-

cerbated the DAAM loss-of-function pheno-

type. Expression of a constitutively active form
of DAAM induced a variety of defects, includ-

ing a partial collapse of the longitudinal tracts

that could be ameliorated significantly by re-
ducing Ena levels. Therefore, it appears that

there is likely significant interplay between

DAAM and Ena function during axon out-
growth and guidance.

Coimmunoprecipitation of various formins

in different systems revealed that there are small

pools of Ena/VASP in complex with formins
(Grosse et al. 2003; Schirenbeck et al. 2006;

Homem and Peifer 2009). The distribution of

DAAM and Ena overlaps partially in growth
cone filopodia (Matusek et al. 2008), so these

two molecules may interact as well. While vari-

ous models have been proposed to explain the
function of a formin:Ena/VASP complex, none

have been tested rigorously. Regardless, it seems

likely that complexes between multiple mole-
cules that can each independently drive filo-

podia formation may exist. This offers the

growth cone exquisite flexibility to respond
rapidly to distinct guidance cues that trigger

activation of a subset of such filopodia-promot-

ing proteins. In the future, it will be interesting
to see if DAAM acts in the same guidance path-

ways as Ena. In this respect, it is curious that

mutations in genes encoding DAAM or other
formin superfamily proteins have not been

recovered in genetic screens conducted in Dro-

sophila and C. elegans for axon guidance defects
or for modifiers of guidance pathways, while

mutations in Ena/VASP genes have been iden-

tified repeatedly. Given the large number of
formin family members (Higgs 2005; Higgs

and Peterson 2005), it is likely that future stud-

ies will reveal that other formins are involved in
growth cone morphology and guidance. It will

be interesting to further define how formin

family proteins and Ena/VASP proteins cooper-
ate in filopodia formation and axon guidance.

Capping Proteins

Not all barbed-end-binding proteins facilitate

actin polymerization. Capping proteins bind
to the barbed ends of actin filaments and block

access of monomers to the barbed end, thus

halting polymerization and reducing the length
of F-actin (Xu et al. 1999). Antagonism bet-

ween filament elongation/protection factors

and capping proteins contributes to filopodial
dynamics. In fact, while filopodial formation

has been the subject of great interest, relatively

little is understood about the mechanisms
that govern filopodial withdrawal, including
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determining which of the many filament cap-

ping proteins play predominant roles in nega-

tively regulating filopodial dynamics in growth
cones.Hippocampal neurons frommice lacking

gelsolin, a protein that severs actin filaments in a

Ca2þ-dependent manner and caps the free bar-
bed ends of the severed filaments (Sun et al.

1999), have increased numbers of filopodia

that arise as a consequence of reduced retraction
(Lu et al. 1997). A role for gelsolin in axon guid-

ance has not been reported. Similarly, deletion

of the multifunctional capping protein EPS8,
which interacts with a number of signaling pro-

teins involved in Rac and Ras signaling, as well

as having actin filament capping activity, results
in increased filopodia number after treatment

of hippocampal neurons with BDNF (Menna

et al. 2009). EPS8 knockout mice do not show
any obvious axon guidance defects; however,

the expression of two EPS8-related molecules

during development may mask a possible
requirement for EPS8.

The most widely studied capping protein,

heterodimeric capping protein (CP), does in-
deed mediate growth cone morphology, axon

elongation, and possibly axon guidance. In

Drosophila, reduction in filament elongation/
anti-capping activity of Ena ameliorates abl

phenotypes, including defects in axon guidance

(Gertler et al. 1990; Gertler et al. 1995; Wills
et al. 1999b; Drees and Gertler 2008). Based on

this finding, Grevengoed and colleagues exam-

ined the effects of reducing CP levels in abl

mutants and found that such animals exhibit

more severe phenotypes than those observed

in abl mutants alone with respect to morphol-
ogy of the nervous system (the opposite of the

effect observed upon reduction of Ena levels)

(Grevengoed et al. 2003). Therefore, CP may
play a role in axon guidance through its well-

characterized ability to cap growing actin fila-

ments. Careful analysis of cp loss-of-function
mutants is required to assess the role of CP in

axon outgrowth and guidance.

Unexpectedly, CPalso appears to have a role
in controlling growth cone morphology and

axon elongation independent of its capping

activity. Loss of a CP subunit, CapzB2, resulted
in aberrant growth cone morphology and

neurite outgrowth, and also mis-localized mi-

crotubules that extended into the peripheral

domain of growth cones. Surprisingly, this phe-
notype is not a result of reduced capping, but

instead arises due to loss of a newly identified

interaction between CapzB2 and bIII tubulin.
Mutants that maintained capping activity but

lacked the ability to bind bIII tubulin could

not rescue the phenotype, while capping defi-
cient mutants that bound bIII tubulin rescued

(Davis et al. 2009). This study supports the

idea that proper localization of microtubules
in the central region of the growth cone is nec-

essary for normal growth cone morphology

and translocation. It will be challenging to
determine the relative contributions of tubulin

binding and filament capping by CP in axon

guidance. The control of filament capping dur-
ing guidance, and its functional significance to

navigation, remain outstanding questions in

the field.

F-actin Binding Proteins

ERM Proteins

Proteins that bind to the sides of actin filaments

affect the architecture of cellular F-actin net-
works and can tether the cytoskeleton to dif-

ferent locations or functional partners. Ezrin,

radixin, and moesin comprise the ERM family
of highly homologous, multifunctional F-actin

binding proteins. ERMs contain an N-termi-

nal membrane binding domain linked by an
a-helical region to a C-terminal actin-binding

domain, allowing them to tether the actin cyto-

skeleton to the plasma membrane through in-
teractions with PIP2 and L1CAM (Algrain

et al. 1993; Turunen et al. 1994; Chishti et al.

1998). They are expressed in the developing ner-
vous system and are concentrated specifically

in growth cones (Goslin et al. 1989; Gonzalez-

Agosti and Solomon 1996; Paglini et al. 1998;
Takahashi et al. 1999; Dickson et al. 2002;Mintz

et al. 2008), making them well positioned to

coordinate growth cone responses to guidance
cues. Suppression of radixin and moesin re-

sults in reduced grow cone area, disorganized F-

actin, and lamellipodial veil retraction (Paglini
et al. 1998); while these growth cones display
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increased filopodial activity, their rate of ad-

vance is significantly impaired and axonal mat-

uration is aberrant (Paglini et al. 1998). Since the
L1CAMadhesionmolecule has been reported to

form a complex with neuropilin1, the Sema3A

obligate co-receptor, a role for ERMs in the
response to Sema3A was investigated (Mintz

et al. 2008). Activated ERMs (as detected with

a phospho-specific antibody that recognizes
a phosphorylation site that induces ERMs to

change conformation into an active state) were

localized asymmetrically within growth cones
and are rapidly and transiently inactivated

by Sema3A. Expression of F-actin binding

defective ERM mutants induces defects in
axonal orientation in a slice overlay assay and

impairs Sema3A-induced growth cone collapse

(Mintz et al. 2008). Themultifunctional protein
and phosphoinositide binding FERM domain

(Tepass 2009) within ERMs regulates neuropi-

lin1 endocytosiswhenERMsare activated,while
the C-terminal ERM domain binds and caps

F-actin, suggesting that ERMs coordinatemem-

brane and actin dynamics (Mintz et al. 2008).
The potential role of ERMs in Sema3A-elicited

endocytosis is especially intriguing in light of

evidence suggesting that asymmetric endocyto-
sis is required for Sema3a-mediated repulsive

guidance (Tojima et al. 2010). Other studies

have implicated ERMs in the control of adhe-
sion and axon branching in addition to Sema3A

collapse (Schlatter et al. 2008). Consistent with

the proposed role for ERMs in axon outgrowth
and guidance, RNAi depletion of the sole ERM

ortholog in C. elegans causes mild defects in

axon outgrowth and morphology. It will be
interesting to see if loss-of-function analysis of

the ERM proteins in other systems yields results

similar to those observed by the expression of
mutant proteins.

UNC-115/Ablim

The C. elegans F-actin binding protein UNC-

115 is similar to the human protein ablim/
limatin (Struckhoff and Lundquist 2003); it

has a villin headpiece domain, found in several

other actin binding proteins, and three LIM
domains. UNC-115 function is likely involved

as an effector of multiple guidance signaling

pathways (Lundquist et al. 1998) and is known

to function downstream of activated unc-40/
DCC (Gitai et al. 2003). Genetic interaction ex-

periments place unc-115 downstream of the

GEF unc-73/TRIO. Further experiments place
UNC-115 downstream of two Rac proteins,

CED-10, a component of the UNC-40/DCC
pathway, and RAC-2/3 (Struckhoff and Lund-
quist 2003). Exactly how Rac signals to UNC-

115 remains to be determined.

Analysis of animals overexpressing unc-115
and of unc-115 loss-of-function mutants re-

vealed significant roles for UNC-115 in modu-

lating filopodia formation and growth cone
size (Yang and Lundquist 2005; Norris et al.

2009). Mutations in the Drosophila ablim/
Unc-115 homolog, Dunc-115, revealed defects
in retinal axon projection to the lamina (Garcia

et al. 2007). Mammals have three highly related

UNC-115 paralogs. Deletion of a single splice
isoform of ablim1 revealed no apparent defects

in neuronal structures that express this ablim

isoform most robustly, including photorecep-
tors, inner retinal neurons, and the retinofugal

projections, perhaps because the other ablim1

splice isoforms were still expressed in the
knockout animal (Lu et al. 2003). Ablim2 and

ablim3 are also expressed in the nervous system

and may compensate for loss of ablim1 (Bar-
rientos et al. 2007). Consistent with this idea,

when a putative dominant–negative form of

ablim lacking the F-actin binding region was
introduced into the developing chick retina, ret-

inal axons exhibited strong pathfinding and fas-

ciculation defects (Erkman et al. 2000).
How does UNC-115 function to link guid-

ance to F-actin and the regulation of filopodia

and lamellipodia? The molecular mechanisms
by which UNC-115 functions beyond binding

to F-actin and localizing to bundled F-actin

in cells are not fully understood. High levels
of UNC-115 expression in cultured cells can

induce aberrant F-actin bundles (Yang and

Lundquist 2005), consistent with a potential
bundling activity of UNC-115. UNC-115 may

also recruit additional proteins to the cytoskele-

ton. Interestingly, ablim2 and ablim3 (and most
likely ablim1) bind directly to the evolutionarily
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conserved F-actin binding protein “STARS.” Like

the ablims, STARS localizes to F-actin bundles

and F-actin-rich regions in cultured cells (Arai
et al. 2002). Interestingly, when overexpressed

STARS stimulates Rho GTPase-dependent F-

actin assembly leads to activation of the SRF
transcription factor (Arai et al. 2002).

SRF-dependent transcription is required for

proper neuronal morphology and axon guid-
ance (Knoll et al. 2006; Stern et al. 2009). Many

SRF target genes are cytoskeletal proteins or

signaling proteins that regulate cytoskeletal dy-
namics and, interestingly, SRF activity itself is

regulated by the status of the actin cytoskeleton

(Posern and Treisman 2006; Knoll and Nord-
heim 2009). Monomeric actin binds to MAL,

an SRF co-factor, and inhibits the ability of

MAL to activate SRF. Under conditions where
the F-actin:G-actin levels are high, MAL can

bind SRF, leading to transcription. Conversely,

when the amount of F-actin decreases and
G-actin levels rise, MAL is inhibited and

thereby blocks SRF activity. The ablims

enhance STARS-driven SRF activation, and
RNAi depletion of the ablims impairs STARS

activation of SRF (Barrientos et al. 2007). This

leads to an interesting question: Could altered
F-actin:G-actin ratios arising during guidance

responses mediated by UNC-115/ablim or

other cytoskeletal regulators in the growth
cone influence gene expression during guid-

ance? MAL-dependent SRF-transcription can

be modulated by synaptic activity, indicating
that F-actin:G-actin ratios can affect SRF by

long-range signaling. NGF-dependent axon

growth, branching, and target innervation
requires that SRF and NGF-stimulated DRG

neurons exhibit MAL-dependent SRF activa-

tion (Knoll and Nordheim 2009). Therefore,
the MAL-SRF pathway may be capable of

responding dynamically to outgrowth/guid-
ance factors, though this intriguing hypothesis
awaits formal proof.

Consistent with a role in signaling for

F-actin:G-actin dynamics during axon guid-
ance, conditional deletion of SRF in the hippo-

campus results in guidance defects in the mossy

fiber tracts (Knoll and Nordheim 2009). SRF-
deficient hippocampal neurons have abnormal

growth cone morphology, exhibit few or no

filopodia, do not collapse in response to ephrin

A, and develop abnormal thick looped F-actin
and MT bundles in the growth cone peri-

phery. Of course, SRF deletion and inhibition

experiments could lead to chronic changes
in gene expression that in turn might affect

guidance. Whether the ablim-STARS path-

way, or other guidance molecules that can shift
the F-actin:G-actin ratio, do actually connect

the dynamic changes in the status of the

growth cone cytoskeleton during guidance to
alteration of gene expression remains to be

determined.

Fascin

Fascin, a potent F-actin bundling protein found
in filopodia, is highly expressed in the develop-

ing nervous system of mouse (De Arcangelis

et al. 2004). Fascin cross-links and stabilizes
actin filaments, giving rise to parallel/unipolar
F-actin bundles (Sasaki et al. 1996; Aratyn

et al. 2007), and it is involved in filopodia for-
mation in multiple cell types (Vignjevic et al.

2006). In the large growth cones of the helisoma

snail, inhibition of fascin with TPA, a PKC ago-
nist, resulted in a marked loss of actin bundles

within growth cones, suggesting that fascin is

crucial for the maintenance of filopodia and
normal growth cone morphology (Cohan

et al. 2001). Loss of fascin function in Droso-

phila results in impaired neurite morphology
and a failure in proper trajectory maintenance

(De Arcangelis et al. 2004), suggesting that fas-

cin may be involved in motility or guidance.
Consistent with this idea, semaphorin-induced

growth cone collapse is associated with an in-

crease in fascin localization, which the authors
suggest increases the F-actin bundles required

formyosin-based contraction/retraction (Brown
and Bridgman 2009).

Loss-of-function analysis in Drosophila and

mice, however, has yet to reveal a significant role

for fascin in axon guidance. Gene targeted
fascin1 mutant mice revealed that loss of fas-

cin1 had only subtle effects on nervous system

development; the only potential guidance-
dependent phenotype involved a failure of the
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posterior portion of the anterior commissure to

form (Yamakita et al. 2009). Dorsal root ganglia

cultured from the fascin1 knockouts exhi-
bit fewer and shorter filopodia, though they

are able to extend axons normally (Yamakita

et al. 2009). The subtle phenotype observed in
fascin1 mutants is unlikely due to overlapping

expression with fascin paralogs, as neither of

the two other fascin genes in mice are expressed
in the developing nervous system (outside

of the retina). Other actin bundling proteins

might substitute for fascin, or alternatively,
homeostatic regulatory mechanisms might

partially compensate for fascin and allow for

normal nervous system development. It seems
likely that genetic interaction screens in

Drosophila or C. elegans may be necessary to

identify conditions that sensitize animals to a
loss of fascin function during nervous system

development.

Abl

The Ableson (Abl) nonreceptor tyrosine kinase
mediates transduction of signals from growth-

factor and adhesion receptors and regulates a

diverse array of signaling pathways, including
many involved in cytoskeletal regulation (for a

comprehensive Abl-targets and ligands review,

see Bradley and Koleske 2009). Abl and Arg
(an Abl-related gene) are the only known non-

receptor tyrosine kinases that bind the actin

cytoskeleton directly; in addition, Arg (but not
Abl) can bind MTs.Drosophila Abl contains the

actin binding, but not MT, interacting motifs;

therefore, we focus on Abl as an actin-binding
kinase. Direct interactions with actin support

F-actin bundling by Abl and Arg. Cytoskeletal

interactions may also help concentrate Abl
family proteins in close proximity to key targets

that can regulate the dynamics of membrane

protrusion. Abl proteins can also bind and/or
phosphorylate other cytoskeletal regulatory

proteins such as WAVE family proteins, Cortac-

tin, and Ena/VASP. Abl can also regulate cytos-
keletal dynamics by modulating the activity of

GEFs and GAPs for Rho family proteins. Abl

is therefore of great interest with respect to its
ability to interact directly with F-actin and for

the many genetic and biochemical interactions

that link it to cytoskeletal regulatory proteins

during axon guidance.
The evidence that implicates Abl in axon

guidance in vivo stems fromwork inDrosophila,

where functional Abl is required in concert
with various interacting genes to form axonal

connections in the embryonic nervous system

(Gertler et al. 1989); Elkins et al. 1990; Wills
et al. 1999a; Bashaw et al. 2000; Liebl et al.

2000; Wills et al. 2002; Liebl et al. 2003; Lee

et al. 2004; Forsthoefel et al. 2005; Lowery
et al. 2010). The ladder-like embryonic CNS

axon scaffold ofDrosophila is severely disrupted

if both maternal and zygotic contributions of
Abl protein are eliminated (Grevengoed et al.

2001).While the CNS is fairly normal in zygotic

Abl mutants, widespread disruption in CNS
axonal connections is observed in Abl mutant

embryos also harboring amutation in the adhe-

sion molecule fasciclin I (Elkins et al. 1990). In
addition, CNS defects are observed in Abl mu-

tant embryos that have reduced levels of the

adhesion receptor Neurotactin (Nrt) (Liebl
et al. 2003), and also in Abl mutants that lack

functional Armadillo, a Beta-catenin homolog

that is a component of the N-Cadherin cell:cell
adhesionmachinery (Loureiro and Peifer 1998).

These interactions suggest that one aspect of

Abl function in the formation of the embryonic
CNS involves modulation of cell:cell interac-

tions. Beyond CNS midline crossing, Abl also

regulates guidance of the ISNb motor axons.
In Ablmutants, ISNbmotor neurons stop short

and fail to reach their targets, while overexpres-

sion results in these motor axons proceeding
past their targets (Wills et al. 1999a). Abl func-

tion in ISNb guidance serves to antagonize

the functions of Ena and the receptor tyrosine
phosphatase DLAR in the establishment of

these axon trajectories.

The role of Abl in regulatingmidline crossing
has been investigated in several studies. Abl

appears to act inmultiple repulsive and attractive

midline guidance systems. Abl binds, and can
phosphorylate, the Robo receptor (Bashaw et al.

2000), potentially activating Robo and prevent-

ing axons from crossing the midline. Consis-
tent with this model, a Robo-like phenotype is
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caused by overexpression of Abl in the nerve

cord (Bashaw et al. 2000). Other genetic inter-

action analyses indicate that Abl collaborates
with different sets of interacting molecules

that either enhance, or dampen, midline cross-

ing (Wills et al. 2002). Consistent with this
idea, either too much or too little Abl activity

causes axons to cross the midline inappropri-

ately (Hsouna et al. 2003). Therefore, a precise
balance between Abl function and Abl interac-

tion partners is essential for proper midline

guidance.
Genetic evidence in Drosophila also impli-

cates Abl in netrin-mediated guidance. Abl mu-

tations exacerbate Fra(DCC) and netrin CNS
mutant phenotypes; Fra/Abl double mutants

show a marked reduction in commissural axons

(Forsthoefel et al. 2005). Consistent with an in
vivo role for Abl as an effector of Fra signaling,

Abl heterozygosity reduces the number of axons

that inappropriately cross themidline in embryos
expressing a chimeric Robo-Fra receptor. Fra can

be coimmunoprecipitated with Abl and may

be an Abl substrate (Forsthoefel et al. 2005).
Another guidance receptor, Dscam, which acts

in both netrin-dependent and netrin-independ-

ent guidance, exhibits a potent synthetic interac-
tion with Abl mutations that give rise to severe

midline crossing defects (Andrews et al. 2008).

Abl has been linked functionally to cytoske-
letal regulation by genetic data, indicating that

accurate axon guidance requires a precise bal-

ance between Abl signaling pathways and
cytoskeletal-binding proteins that regulate actin

dynamics. As noted previously, reduction in

Ena levels can suppress many Abl-dependent
phenotypes (Gertler et al. 1990; Gertler et al.

1995;Wills et al. 1999a). Other cytoskeletal pro-

teins have been implicated in Abl-mediated
guidance. These include: trio (a rac GEF that

functions with Abl in netrin responses [Liebl

et al. 2000; Forsthoefel et al. 2005]); Abi (an
adaptor protein that functions antagonistically

with Abl and can also bind various actin regula-

tory and signaling proteins [Lin et al. 2009]);
and cap (an actin monomer binding protein

[Wills et al. 2002]). Interestingly, Abl is also

connected to MT dynamics through potent
interactions with two proteins, orbit/CLASP

and Msps (mini spindles), both of which are

þTIPs protein (Lee et al. 2004; Lowery et al.

2010). Therefore, Abl appears poised to coordi-
nate actin and MT dynamics during guidance

responses.

In vertebrates, the role of Abl and Arg in
axon guidance is less clear than it is for Droso-

phila Abl. Abl can interact with the Ephrin-A

receptors, EphB2 and EphA4 (Yu et al. 2001),
and is necessary for proper ephrinA-induced

repulsion in cultured retinal axons (Harbott

and Nobes 2005). Surprisingly, despite a
wealth of evidence implicating Abl in multiple

guidance pathways in Drosophila, clear roles

for Abl and the related Arg kinases have yet
to be demonstrated in vivo in vertebrates.

Mice in which both Abl and Arg were deleted

specifically in the nervous system exhibit no
obvious axon guidance defects (Moresco et al.

2005; Bradley and Koleske 2009). Furthermore,

axon guidance phenotypes have not been re-
ported for mutations in the C. elegans Abl

ortholog.

There is no simple explanation for why
Drosophila Abl is involved in so many guidance

processes while similar roles for Abl in other

systems have not been evident. One possible
explanation involves the relatively poorly con-

served carboxy terminus of Abl. While the ac-

tivity of the highly conserved mammalian
Abl kinase domain can substitute for fly Abl

during this process (Henkemeyer et al. 1990;

Wills et al. 1999a), the vertebrate c-terminus is
not functional in the fly. The large c-terminal

domain of Abl family proteins is unique among

receptor tyrosine kinases and contains, among
other features, the actin-binding sites found in

all Abl proteins. Transgenic rescue experiments

revealed that while the vertebrate amino termi-
nal portion of Abl (including the SH3, SH2, and

tyrosine kinase domains) can functionally

substitute for the Drosophila Abl protein, the
c-terminus cannot (Henkemeyer et al. 1990).

Interestingly, Drosophila Abl has two EVH-1

(Ena/VASP Homology) binding motifs in its
carboxy terminus that are not conserved in

Abl family proteins found in other species; it

would be interesting to determine whether
direct binding of Ena and Abl at these sites plays
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a significant role in their genetic interactions in

Drosophila.

UNC-44

Mutations in unc-44 were identified in a screen

for suppressors of the guidance defects induced
by ectopic expression of unc-5 (Colavita and

Culotti 1998). The unc-44 gene encodes an

ankyrin-related protein (Otsuka et al. 1995)
that is likely a component of the cortical cyto-

skeleton and contributes to the ankyrin-spectrin

meshwork underlying the plasma membrane.
Ankyrin is composed of three domains: 1) a

membrane protein-binding domain containing

23 approximately 33-amino-acid repeats (anky-
rin repeats); 2) a spectrin-binding domain;

and 3) a regulatory domain. unc-44 mutants

in C. elegans exhibit aberrant axon guidance
and fasciculation with inappropriate partners

(Hedgecock et al. 1985; Zallen et al. 1999).

While UNC-44 was among the first cytoskeletal
proteins implicated in axon guidance, relatively

little is known about how it participates in axo-

nal guidance.

Spectrin

Spectrins form a multiunit integral structural

element that links molecules in the cell mem-

brane to the F-actin cytoskeleton to form the
submembranous cortical spectrin network. The

Spectrin family of F-actin binding proteins is

expressed ubiquitously during development
and organizes the protein network underlying

the plasma membrane. Spectrins are comprised

of a- and b-subunits. The a-Spectrin subunit
contains an SH3 domain, allowing it to connect

the actin cytoskeleton to numerous other pro-

teins (Nedrelow et al. 2003; Bialkowska et al.
2005), while b-Spectrin contains a PH do-

main, allowing direct binding to lipids in

the membrane (Williams et al. 2004) and an
Ankyrin-binding domain. Drosophila harbor-

ing mutations in the b-Spectrin gene exhibit

axon guidance defects that include inappropri-
ate midline crossing, while a-Spectrin does not

seem to be required for axon guidance (Garbe

et al. 2007a; Hulsmeier et al. 2007). Both
the Ankyrin-binding and PH domains are

dispensable for b-Spectrin function in guid-

ance. Genetic interactions implicate b-Spectrin

in SLIT/ROBO-mediated midline repulsion as
well (Garbe et al. 2007a).

GAP-43

GAP-43, an abundant F-actin binding protein

that localizes to the membrane when it is pal-
mitoylated, modulates the stabilization of actin

filaments in a phospho-dependent fashion

(He et al. 1997). GAP-43 knockout mice exhibit
defects in the formation and guidance of the

RGC axons, though different groups have re-

ported varied phenotypes including “axon stall-
ing” that is later corrected (Strittmatter et al.

1995), and enlargement of the optic chiasm sub-

sequent to passage of the RGC axons (Kruger
et al. 1998). Interestingly, GAP-43-deficient ani-

mals exhibitmajor defects in forebrain commis-

sures, including the corpus callosum, anterior
commissure, and hippocampal commissure

(Shen et al. 2002). Thalamocortical targeting

is also disrupted, resulting in aberrant topo-
graphical maps in cortex (Maier et al. 1999).

However, GAP-43-deficient neurons still col-

lapse in response to the midline repellent
Slit-2 (Shen et al. 2002). This may be due to

compensation by other family members such

as MARCKS and CAP-23. Surprisingly, given
that a GAP-43 deficiency results in decreased

growth cone size and F-actin concentration in

the growth cone (Aigner et al. 1995; Shen et al.
2002), GAP-43 function in other guidance cue

pathways is presently lacking.

Myosin II

Myosin II is a motor protein that causes anti-

parallel filaments to contract, driving actin ret-

rograde flow in growth cones (Lin et al. 1996).
Myosin II is likely to play a major role in force

production necessary for growth cone motility

as well as aid in actin depolymerization by
disruption of F-actin networks (Medeiros

et al. 2006). Both roles are likely important for

axon guidance. Myosin-II-based retrograde
flow also affects microtubule dynamics and
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restricts the localization of the majority of mi-

crotubules to within the central domain of the

growth cone (Burnette et al. 2008; Schaefer
et al. 2008). To achieve directional motility,

however, myosin II activity is likely regulated

spatially by signaling from guidance cues. In
Drosophila CNS neurons, expression of a con-

stitutively active Myosin Light Chain Kinase

(MLCK) causes incorrect midline crossing (Kim
et al. 2002), confirming the importance of pro-

per regulation of myosin II activity during

axon guidance. Expression of active MLCK in
conjunction with Slit or Robomutants induced

further defects in axon guidance, while acti-

vated MLCK expression decreased aberrant
guidance in the context ofCommmutants. Sim-

ilarly, the effects of active MLCK expression

were exacerbated by increased Frazzled levels
and suppressed by loss of Frazzled function

(Kim et al. 2002). Therefore, attractive and re-

pulsive guidance cues utilize myosin II activity.
Signaling from Rho family proteins can re-

gulate myosin II, and there is evidence that

Rho family proteins link myosin II regulation
to guidance receptors (Fritz and VanBerkum

2002; Gallo 2006; Loudon et al. 2006; Murray

et al. 2010).
There are three distinct isoforms of non-

muscle myosin II (A, B, and C), and these have

overlapping and distinct functions in various
aspects of motility and adhesion (Vicente-Man-

zanares et al. 2009). A high-resolution study

investigated the role of myosin II in repulsion
(Brown et al. 2009). Application of the repellent

Sema3A to mouse DRG neurons caused a redis-

tribution of myosin IIB within the growth cone
that coincided with a partial depolymerization

of the F-actin meshwork but left large F-actin

bundles intact. These bundles were proposed
to act as the substrate for myosin-II-based con-

traction, driving growth cone collapse (Brown

et al. 2009). Myosin IIA normally redistributes
to the neurite neck during retraction. Myosin

IIA overexpression blocks collapse and re-

traction of mouse DRGs (Brown et al. 2009),
leading the authors to conclude that myosin

IIA stabilizes the actin cytoskeleton to prevent

retraction. In contrast, genetic deletion of
myosin IIB or global inhibition of myosin II

activity by blebbistatin treatment blocked

retraction (Brown et al. 2009). During Sema3A

treatment,Myosin IIB redistributes fromabroad
pattern over the entire growth cone to the rear of

the growth cone and neck of the connecting

neurite. To put these findings together, a
model has been proposed in which Sema3A

treatment leads to myosin IIA removal from

the growth cone, reducing the stability of the
actin network and inducing collapse. Subse-

quently, myosin IIB is thought to associate

with the remaining actin bundles at the growth
cone neck region to drive retraction (Brown

et al. 2009).

F-actin Severing Proteins

Cofilin

Turnover and depolymerization of the actin

cytoskeleton is an integral step in growth cone
collapse and retraction, often triggering chemo-

repuslive turning. It is, however, important to

bear in mind that efficient turnover and recy-
cling of the actin cytoskeleton is essential for

efficient locomotion (Sarmiere and Bamburg

2004). The most well-studied actin severing
proteins are ADF/cofilin and gelsolin. Since

cofilin is the predominant protein of this family

in neurons, we refer to them collectively as
“cofilin.” Cofilin binds both monomeric and

F-actin, but it prefers ADP-bound forms of

actin (Maciver et al. 1998). When bound to
F-actin, cofilin alters the twisting conformation

of actin filaments, leading to filament severing

(McGough et al. 1997). Cofilin also increases
the rate constant of dissociation of monomers

from the pointed end of actin filaments, leading

to their depolymerization (Carlier et al. 1997).
These activities promote filament assembly as

cofilin reveals new polymerization-competent

barbed ends, and increases the available pool
of actin monomers (Chan et al. 2000; Ichetov-

kin et al. 2002; Ghosh et al. 2004). Cofilin

activity is negatively regulated through phos-
phorylation by LIM kinases, whereas dephos-

phorylation by the slingshot phosphatase

activates cofilin. Cofilin can also be regulated
by binding to the phosphoinositide PI(4,5)P2,
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which sequesters the protein to the plasma

membrane (Mouneimne et al. 2004).

Cofilin localizes to the growth cone and
has been implicated in various axon guidance

pathways (Aizawa et al. 2001; Piper et al. 2006;

Marsick et al. 2010). A recent study utilizing
both DRG and temporal retinal neurons from

chick supports a role for cofilin in chemoattrac-

tion toward NGF and netrin-1, respectively.
Following treatment with NGF or netrin-1,

the inactive, phosphorylated, form of cofilin

was decreased, indicating that cofilin is acti-
vated downstream of these attractive guidance

cues (Marsick et al. 2010). Strikingly, asymm-

etric application of NGF or netrin-1 gradients
induced increased levels of F-actin and free fila-

ment barbed ends oriented toward the gradient.

The NGF and netrin gradients also induced
formation of membrane protrusions directed

toward the pipet. Using a system to deliver active

cofilin directly into growth cones across the
plasma membrane, the authors demonstrated

that asymmetric cofilin activity could elicit

directed actin assembly and protrusion, similar
to what is observed following application of

NGFor netrin (Marsick et al. 2010). Global acti-

vation of cofilin within the growth cone damp-
ened actin assembly and growth cone turning

toward guidance cues. These data suggest that

asymmetric cofilin activity within a growth
cone, induced by netrin-1 or NGF, can elicit

attractive turning (Marsick et al. 2010). It is

likely that asymmetric stimulation with a guid-
ance cue induces cofilin activation adjacent to

the plasma membrane. The active cofilin can

then cleave capped actin filaments to liberate
free barbed ends for polymerization; this is

similar in principle to the role cofilin plays

in chemotactic responses in carcinoma cells
(Wang et al. 2007).

What about cofilin function during repul-

sion and growth cone collapse? Intuitively, it
would be logical to enlist cofilin activity to

depolymerize the actin cytoskeleton during

repulsion and growth cone collapse. In most
systems where cofilin has been investigated,

however, the evidence generally suggests that

inactivation of cofilin is required for collapse/
repulsion. For example, Lim-Kinase-mediated

inhibition of cofilin is required for Sema3A-

elicited growth cone collapse of DRG neurons

(Aizawa et al. 2001). In contrast, treatment of
chick DRGs with BDNF, a chemoattractive fac-

tor, induces an increase in filopodia number

through a cofilin-dependent mechanism (Chen
et al. 2006). Cofilin activity appears to be re-

quired for outgrowth, chemoattraction, and

protrusion formation, and in most instances
cofilin must be inhibited for growth cone col-

lapse or repulsion.

Only one study reports a different role for
cofilin in growth cone guidance and suggests

a biphasic role in axon guidance (Wen et al.

2007). BMP7 elicits turning responses from
Xenopus spinal axons by altering the activation

state of cofilin through LIM kinase and Sling-

shot phosphatase.Within a few hours of plating,
spinal axons were attracted to BMP7 gradients

by a LIMK-dependent mechanism. However,

after overnight culture, the axons were repelled
by BMP7 by an SSH-dependent mechanism

(Wen et al. 2007). Therefore, in this system,

BMP7 chemoattraction requires inhibition of
cofilin, while BMP7 repulsion requires active

cofilin. These findings are opposite to the afore-

mentioned studies in which cofilin activity
appears associated with chemoattraction, and

repulsion/collapse requires cofilin inhibition.

There are at least two ways the apparent differ-
ences may be reconciled: BMP7 may activate a

set of actin regulatory proteins that alter the

output of cofilin activity and are not activated
by Sema3A treatment, or Xenopus spinal axon

growth cones may differ in some fundamental

way from the types of growth cones employed
for other studies that assayed cofilin in guid-

ance responses. A cofilin biosensor that could

be used in living neurons would help clarify
the contexts in which cofilin might play posi-

tive or negative roles in growth cone guidance

responses.

Actin Depolymerizing Proteins

Mical

One of the most exciting and important contri-

butions to our understanding of how guidance
cues affect actin remodeling has been the
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identification ofMical, an F-actin depolymeriz-

ing protein, as a component of the pathway that

mediates the response to Semaphorin1a by the
Plexin A receptor (Terman et al. 2002; Hung

et al. 2010). Mical was identified as a ligand

for the conserved C2 cytoplasmic domain of
Plexin A and could be coimmunoprecipitated

with Plexin A. The Mical protein has multiple

conserved domains and motifs including: a cal-
ponin homology “CH” domain (implicated in

protein:protein interactions including F-actin

binding; a Lim domain; a proline-rich region;
a coiled-coil region similar to the one found in

ERM proteins; and an amino terminal mono-

oxygenase domain (Terman et al. 2002). Mical
binds to Plexin A through its c-terminal ERM-

like coiled-coil domain (Hung et al. 2010).

Genetic analysis in Drosophila established
that Mical functions in the Plexin A pathway

during motor axon guidance (Terman et al.

2002). Interestingly, some of the milder Mical

mutants survive and were found to exhibit

severe defects in bristle morphology (Hung

et al. 2010). Bristles are comprised of precisely
arranged actin filament bundles and are formed

by highly regulated actin assembly and cross-

linking. The identification of dramatic bristle
phenotypes inMicalmutants was an important

clue that Mical likely regulated actin dynamics.

Biochemical analyses indicated thatMical binds
F-actin and F-actin bundles and that Mical dis-

assembled both individual and bundled fila-

ments (Hung et al. 2010). Surprisingly, this
depolymerization activity required the redox

enzymatic activity contained within the Mical

monooxygenase domain aswell as the coenzyme
NADPH. Kinetic actin polymerization assays

indicated that activated Mical reduced actin

polymerization and drove F-actin depolymeri-
zation. ActivatedMical also decreases the length

and width of F-actin bundles. Mical function in

either axon guidance or in controlling bristle
morphology in vivo required the F-actin depo-

lymerizing redox domain, the CH domain, and

the c-terminal Plexin A interaction domain.
Put together, the Semaphorin-Plexin A-

Mical pathway represents one of the clearest

examples to date of how the spatiotemporal
dynamics of F-actin are coupled to an axon

guidance pathway. Mical colocalizes with F-actin

in growth cones (Hung et al. 2010) and expres-

sion of activated Mical causes growth cones to
acquire a more complex, highly branched mor-

phology. Such complexmorphologies are associ-

ated with growth cones pausing at choice points.
Thus, it will be interesting to determine if the

three vertebrate Mical orthologs also function

in axon guidance andwhether theMical proteins
function in other guidance responses.

Monomer Binding Proteins

Profilin

Unlike previously described actin-associated
proteins, profilin and cyclase associated pro-

tein (CAP) bind to actin monomers (G-actin).

Profilin is one of the most abundant proteins
within cells (Kaiser et al. 1999) and servesmulti-

ple functions. First, profilin suppresses sponta-

neous actin nucleation in cells (Pollard and
Borisy 2003; Pollard and Cooper 2009). Second,

through interactions with other monomer-

binding proteins, profilin promotes the ex-
change of ADP for ATP on monomers. Finally,

profilin-bound ATP-actin provides a pool of

polymerization-competent monomer that can
be readily added to free barbed ends to support

polymerization (Dominguez 2009). Profilin:

actin complexes can bind through a distinct
interface to polyproline-rich ligands, including

N-WASP, WAVE, DAAM (and other formin

superfamily proteins), and Ena. When com-
plexed with these actin regulatory proteins,

profilin:actin supports direct monomer

transfer onto filament barbed ends to stimulate
filament nucleation and elongation (Domi-

nguez 2009).

Mutations in chickadee (chick), aDrosophila
profilin homolog, were identified in a screen

for mutants affecting motor axon outgrowth

and navigation (Vactor et al. 1993; Wills et al.
1999a). Mutations in chick result in premature

arrest of ISNb motor axons before they reach

their targets, a phenotype similar to Abl mu-
tants (Wills et al. 1999b) and the opposite

to what is observed in Ena mutants: ISNb ax-

ons bypassing their targets. A dosage-sensitive
genetic interaction between chick and Abl was
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identified, indicating that they cooperate in

guidance. However, it is somewhat unclear

how chick cooperates with Abl since the major
known profilin-binding component of the

pathway is Ena, which acts antagonistically

to Abl. Perhaps the interaction between Ena
and profilin and their regulation by Abl is

more complex than predicted by in vitro bio-

chemical analyses. Alternatively, other profilin-
binding proteins, such as DAAM (Matusek

et al. 2008), may function in ISNb axon

guidance.

CAP

First identified in yeast, CAP proteins contain

an n-terminal domain that binds and co-

activates adenylyl cyclase (only in the yeast pro-
teins), a proline-rich region that mediates inter-

actions with SH3 domains, and a c-terminal

domain that binds G-actin. In Drosophila, CAP
is expressed in the developing nervous system

(Wills et al. 2002). Mutations in CAP exhibit a

potent transheterozygous interaction with Abl

to cause a specific axon guidance defect at the

CNS midline, one not seen in either single het-

erozygous mutant (Wills et al. 2002). CAP also
interacts genetically with SLIT during midline

crossing. CAP appears to be in a biochemical

complex with both Abl and profilin (Wills
et al. 2002), consistent with earlier findings

indicating that mammalian CAP can bind the

Abl SH3 domain (Hubberstey and Mottillo
2002). The exact role of CAP in axon guidance

and how it responds to signaling downstream

of Robo and Abl remains unclear. CAP can act
as a monomer sequestering protein (Hubber-

stey and Mottillo 2002), so it is possible that it

functions to limit actin polymerization during
some steps in axon navigation.

Actin-nucleating Proteins

In the last few years, several actin-nucleating

proteins have been identified, and a subset of
these is found in the developing brain of differ-

ent model organisms. These proteins include

the Arp2/3 complex (Shakir et al. 2008; Norris
et al. 2009), spire (Schumacher et al. 2004),

formin family proteins such as DAAM (Schu-

macher et al. 2004;Matusek et al. 2008; Hotulai-

nen et al. 2009), and cordon-bleu (Ahuja et al.
2007).

Activation of the Arp2/3 complex, which

nucleates new filaments off the sides of existing
F-actin, is accomplished primarily by WASP/
WAVE (also called “SCAR”) proteins, which

themselves are regulated by Rho GTPases and
other signaling cascades. In Drosophila, loss of

function of components in the Arp2/3 complex

or its activator SCAR result in aberrant axonal
morphology of commissural and longitudinal

axons (Zallen et al. 2002). However, these

defects may arise as a secondary consequence
of other extensive defects in actin-driven devel-

opmental processes. To overcome phenotypes

observed in the absence of Arp2/3 function,
Ng and Luo performed analysis of single cell

clones in developing mushroom body (MB)

neurons of Drosophila and found that removal
of an essential component of Arp2/3, or of

WAVE, WASP, or both, resulted in MB neurons

with no obvious axonal growth or morpholog-
ical defects (Ng and Luo 2004). In C. elegans,

removal of both WAVE and WASP, or compo-

nents of the Arp2/3 complex, result in clear
axon guidance defects, but do not affect the

ability of axons to elongate (Shakir et al. 2008;

Norris et al. 2009). Therefore, it appears that
the Arp2/3 complex is dispensable for axon

formation and outgrowth, but is required in

specific guidance pathways.
The role of the Arp2/3 complex in axon

outgrowth in mammals has been more difficult

to define. In one study, expression of an Arp2/3
inhibitory construct in cultured hippocampal

neurons caused no obvious changes in growth

cone morphology and filopodia formation,
but yielded significant increases in axon length

and impaired responses to Sema3A (Strasser

et al. 2004). A second study using both the
Arp2/3 inhibitory strategy and siRNA against

Arp2/3 subunits to remove Arp2/3 activity in

primary hippocampal neurons also found that
reduction in Arp2/3 activity caused increased

axon elongation (Pinyol et al. 2007). A third

study, however, found that RNAi-mediated
depletion of Arp2/3 in neurons resulted in
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reduced filopodial and lamellipodial protrusion

dynamics. It should be noted that while some

key experiments (e.g., growth cone protrusion
dynamics) were performed in primary hippo-

campal neurons, most of the data presented in

this study were derived from the use of differen-
tiated neuronal-like B35 cells that may or may

not reflect the properties of primary neurons

(Korobova and Svitkina 2008). It is possible
that the inhibitory strategy used by Strasser

et al. and Pinyol et al. was not fully effective in

blocking Arp2/3 activity; however, the siRNA
knockdown strategy used by Korobova and

Svitkina depleted Arp2/3 only to about 40%

of normal levels. Furthermore, Pinyol et al.
used an Arp2/3 inhibitory construct and

RNAi approaches that both yielded results con-

sistent with those of Strasser and colleagues. It is
also possible that other differences in experi-

mental design such as the length of time in

culture before and after transfection, prior to
analysis, may be responsible for these different

findings. Regardless of these differences, it

is possible to conclude that, as in Drosophila

and C. elegans, Arp2/3 is not essential for neu-
rite and subsequent axon formation and elon-

gation based on these various loss-of-function
studies. Also, as is the case from the analysis

of C. elegans Arp2/3 mutants (Norris et al.

2009), a reduction in Arp2/3 may compromise
filopodial dynamics. Ultimately, it will be nec-

essary to perform true loss-of-function anal-

ysis on Arp2/3 and its activators to evaluate
the exact role of Arp2/3 in growth cone mor-

phology and axon elongation in mammalian

neurons.
While it is unclear whether all guidance

responses involve Arp2/3-mediated nucleation,

Sema3A and netrin likely utilize this pathway of
actin assembly. Sema3A-induced growth cone

repulsion is correlated with a decrease in inten-

sity of the Arp2/3 complex and cortactin, and
an associated increase in the intensity of fascin

and myosin II (Brown and Bridgman 2009).

Furthermore, as described above, neurons ex-
pressing an Arp2/3 inhibitory construct fail to

respond properly to Sema3A (Strasser et al.

2004). Inhibition of N-WASP, an Arp2/3 activa-
tor, via expression of a dominant–negative

construct in commissural neurons blocks the

increase in filopodia and growth cone area ob-

served normally after netrin stimulation (Shek-
arabi et al. 2005), suggesting that Arp2/3 may

be required for netrin response.

It will be important to determine which
nucleating activities are required for growth

cone locomotion, axon guidance, or both. Fur-

thermore, it is unclear whether there is func-
tional overlap between the different families of

actin nucleators (Arp2/3, spire, DAAM1, and

cordon-blue). Finally, it will be interesting to
define the roles of recently discovered nuclea-

tors, such as the neuronal-specific cordon-blue

(Ahuja et al. 2007), in axon navigation.

Actin/MT Cross-linking Proteins

The coordination of actin and microtubule

dynamics is of key importance during axon

guidance. Several actin and microtubule cross-
linking proteins, such as Drosophila pod-1

(dpod1), have been implicated in axon guid-

ance. In cultured S2 cells, Dpod1 colocalizes
with lamellar actin and MTs, while in neurons

Dpod1 localizes to the tips of growing axons

(Rothenberg et al. 2003). Both loss- and over-
expression of Dpod1 cause defects in axon

targeting (Rothenberg et al. 2003). It will be

interesting to determine which guidance path-
ways utilize pod-1. MAP1B, discussed in the

following section, is also an actin-microtubule

cross-linking protein. MAP1B binds to F-actin
(Togel et al. 1998; Noiges et al. 2002) and is im-

plicated innetrin-1-mediatedguidance (DelRio

et al. 2004). Spectraplakins are another actin-
microtubule linker family implicated in devel-

opment. Expression data for the mammalian

spectraplakin, ACF7, and genetic analyses of
the Drosophila spectraplakin Shortstop (Shot),

suggest that spectraplakin plays an important

role in nervous system development (Bernier
et al. 2000; Sanchez-Soriano et al. 2009). ACF7

and Shot regulate both microtubule organiza-

tion and filopodia formation in the developing
nervous system, suggesting they may function

to coordinate the organization of both cytoske-

letal networks during axonal growth (Sanchez-
Soriano et al. 2009).
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MICROTUBULE-ASSOCIATED PROTEINS
IN AXON GUIDANCE

Another promising avenue of research, in addi-
tion to studying the intrinsic dynamics and

distribution of MTs in growth cones, is under-

standing how microtubule-associated proteins
(MAPs) are involved in axon guidance decisions

(Fig. 3). There are many types of MAPs (see

Table 2) that regulate distinct aspects of MT
function, and many have been studied in great

detail. However, there is relatively little work

on how MAPs function specifically in axon
guidance. We now touch upon recent studies

that have implicated MAPs in growth cone

turning and axon guidance decisions.

Plus-End-Tracking Proteins (þTIPs)

This set of proteins has the defining feature that
they bind to the rapidly growing (þ) ends of

MTs (Akhmanova and Steinmetz 2008). When

MTs convert from polymerizing to a depolyme-

rizing state, that is, when they undergo “catas-
trophe,” þTIP proteins dissociate from the

MT. These proteins are particularly important

because they are concentrated on the dynamic
fraction of MTs that extend into the distal re-

gions of the growth cone, and they are therefore

in close proximity to guidance cue receptors.
Thus, they may be some of the first MAPs to

integrate signaling cascades induced by guid-

ance cue receptor activation.
One of the first þTIP proteins implicated

in axon guidance is CLASP (Lee et al. 2004),

a CLIP (Cytoplasmic Linker Protein)-associ-
ated protein that is known to enhance MT

rescue (the switch from depolymerization to

polymerization) and stabilization (Galjart
2005). In a screen for interactors with Abl tyro-

sine kinase, it was discovered that Orbit/MAST

+TIP proteins
(APC/CLASP/EB3)

Motors
(Kinesin/Dynein)

Destabilizing
proteins

(Kif 2A, C/SCG10)

Stabilizing
proteins

(MAP1b/Tau/DCX)

Severing proteins
(Spastin/Katanin)

Minus end
(dimer dissociation)

Catastrophe

Rescue
GDP-
tubulin

GTP-
tubulin

β

β

α

α

Plus end
(dimer addition and dissociation)

MicrotubuleA B

Figure 3. Structural characteristics of microtubules and microtubule-associated proteins. (A) Microtubules are
polar polymers composed of a plus end, where dimer addition and dissociation occur, and a minus end where
dimer dissociation can occur. In neurons theminus end ofmicrotubules is often stabilized.Microtubule dynam-
ics occur primarily through polymerization and depolymerization at the plus end. The conversion of microtu-
bule growth to shrinkage is termed “catastrophe” and the conversion from shrinkage to growth is termed
“rescue” in this figure. The nucleotide state of tubulin also changes soon after dimer addition (GTP!GDP).
(B) As microtubules polymerize, they bind þTIP proteins at their plus ends. There are many structural micro-
tubule-associated proteins (MAPs) that usually act to stabilize the microtubule. Motor proteins, such as the
kinesin family of proteins and cytoplasmic dynein, also transport cargos along microtubules. Several proteins
aid in the depolymerization of microtubules, while others can sever microtubules.
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Table 2. Microtubule Regulators.

Protein Family Guidance Assay

Result/Potential

Guidance Pathways References P/O/B References

Plus-End-Tracking Proteins (1TIPs)

APC M (MR) Active on side of turn (Koester et al. 2007) þO/Pþ (Shi et al. 2004; Zhou et al.

2004; Purro et al. 2008)

APC2 I (Gg), S (Gg) Active on side of turn/
ephrin-A2

(Shintani et al. 2009) þO (Shintani et al. 2009)

CLASP I (Dm) Inactive on side of turn (Lee et al. 2004) 2O (Lee et al. 2004)

EB1-3 — ??? — EB1 - comp. MAP1B (Jimenez-Mateos et al.

2005)

EB3 - neuritogenesis (Geraldo et al. 2008)

Lis1 — ??? — þO (Tsai et al. 2005; Grabham

et al. 2007)

Neuron Navigator C KD shows no

preference to netrin

(Martinez-Lopez et al. 2005) ??? —

Short Stop/ACF7 I (Dm) Required for repulsion (Lee et al. 2007) þO (Sanchez-Soriano et al.

2009)

Microtubule-stabilizing Proteins

CRMP family I (Ce) Disrupted axon tracts (Hedgecock et al. 1985) þP/þO (Quinn et al. 2003;

Yoshimura et al. 2005)

Dishevelled-1 — ??? — þO (Ciani et al. 2004; Purro

et al. 2008)

Doublecortin

(anti-catastrophe)

I (MR) Disrupted axon tracts (Deuel et al. 2006) þO/2B (Koizumi et al. 2006; Bielas

et al. 2007)

mDia1/2/3 — ??? — þO (Arakawa et al. 2003)

MAP1B I (MR), M,S,C Active on side of turn/
netrin

(Mack et al. 2000) þO/2B (Gonzalez-Billault et al.

2001)

(Meixner et al. 2000) (Bouquet et al. 2004)

(Del Rio et al. 2004)

MAP2c — ??? — þO (Dehmelt et al. 2003)
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Table 2. Continued.

Protein Family Guidance Assay

Result/Potential

Guidance Pathways References P/O/B References

Tau — ??? — þO/2B (Takei et al. 2000; Dawson

et al. 2001; Qiang et al.

2009)

Microtubule-destabilizing Proteins

SCG10 — ??? — þO (Suh et al. 2004;Morii et al.

2006; Tararuk et al.

2006; Li et al. 2009)

SCLIP — ??? — 2B (Poulain and Sobel 2007)

Kinesin 13 (Kif2A, C) — ??? — 2B (Homma et al. 2003)

Microtubule-severing Proteins

Katanin — ??? — þ/2O (Karabay et al. 2004; Yu

et al. 2008)

Spastin — ??? — þO/þB (Wood et al. 2006; Yu et al.

2008; Riano et al. 2009)

Microtubule Motor Proteins

Dynein/Dynactin� I (Dm), S (MR) CNS axon guidance

defects

(Phillis et al. 1996) þO (Grabham et al. 2007;

Nadar et al. 2008)

S (MR) Substrate border

turning defects

(Myers et al. 2006)

Kinesin-5 S (MR) Inactive on side of turn (Nadar et al. 2008) 2O (Nadar et al. 2008)

Guidance Assays

(S) Substrate-Stripe, (C) Collagen Gel, (C-R) collapse/retraction, (I) In vivo, (Ce) C. elegans, (Dm) Drosophila, (Dr) zebrafish, (Gg) chicken, (MR) mouse/rat, (Xl) Xenopus, (P) pipet

assay, (M) Micro-CALI.

(�) also considered a þTIP protein.

(P/O/B) Polarity/Outgrowth/Branching.
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(the Drosophila homolog of CLASP) mutants

had ectopic CNS midline crossing defects (Lee

et al. 2004). Since midline crossing is tightly
influenced by Slit/Robo signaling through

Abl, this study placed Orbit/MAST down-

stream of this guidance cue. These Orbit/
MAST loss-of-function mutants also have de-

fects in ISNb motor neurons, causing them to

stop short and innervate incorrect muscles.
The vertebrate homolog of Orbit, CLASP, was

expressed in Xenopus spinal neurons, where it

was found to be highly enriched on dynamic
MTs within the growth cone. These MTs were

capable of extending into the peripheral regions

of the growth cone and into filopodia. Interest-
ingly, when CLASP was overexpressed, it caused

MTs to form loops within the growth cone,

resulting in growth cone pausing. This is an
intriguing study that implicates a þTIP protein

in axon guidance, but questions remain. It is

unclear why a protein implicated in MT rescue
and stabilization would be activated on the

side of the growth cone exposed to the highest

concentration of Slit, since Slit has been shown
to cause growth cone collapse and turning

when applied as a gradient (Piper et al. 2006).

However, another þTIP protein, Shot/ACF7,
is also required for proper repulsion at the

Drosophila CNSmidline, indicating that þTIPs

may function in a heretofore unknown way to
allow growth cone repulsion (Lee et al. 2007).

In contrast, recent work implicates another

þTIP protein, APC (adenomatous polyposis
coli), as a positive regulator of growth cone

turning (Koester et al. 2007). This study used

micro-CALI (chromaphore-assisted laser inac-
tivation) with two different antibodies to show

that inactivating a region of APC known to

associate with extending MTs induced turning
away from the laser-treated side. In contrast,

inactivation of another region of APC known

to be involved in b-catenin binding, induced
turning toward the laser treated side, presum-

ably by enhancing APC binding to MTs. The

authors argue that these results show that
when APC is actively associated with MTs, the

growth cone turns toward that side of the

growth cone (Koester et al. 2007). Thus, it
would be predicted that local guidance signals

change the association of APCwithMTs, result-

ing in turning either toward or away from the

signal, depending on whether the guidance
cue is attractive or repulsive. Recently, an intri-

guing study implicated APC2, the second APC

family member, in the guidance of retinotectal
neurons. Knockdown of APC2 results in guid-

ance defects in response to ephrin-A2, both in

a stripe assay and in vivo (Shintani et al.
2009). Furthermore, APC2 overexpression sta-

bilizes MTs, and guidance defects following

shRNAtreatment couldbe rescuedby stabilizing
MTs with taxol. This work suggests that APC2

plays a role in axon guidance through the sta-

bilization of MTs. Since APC2 was shown to be
preferentially expressed in the nervous system,

it may be the major form of APC that regulates

axon outgrowth and guidance (Shintani et al.
2009). However, APC2 does not contain the

region of APC implicated in MTor þTIP bind-

ing, suggesting it functions in a complex with
other MAPs.

For the rest of the þTIP protein family,

including CLIP proteins, EB proteins, Lis1,
and Neuronal Navigator 1 (mNav1), less is

known about their function in axon guidance.

However, mNav1 has been implicated in axon
guidance in response to netrin-1 (Martinez-

Lopez et al. 2005). Knocking down mNav1

with RNAi in rhombic lip explants decreased
their preferential growth toward netrin-secret-

ing explants. Thus, mNav1 may be important

for neurons to turn toward a positive guidance
cue. Generally speaking, since many þTIP pro-

teins are important for MT stabilization, either

through promotion of MT growth, anti-catas-
trophe activity, rescue activity, stabilization, or

linking MTs to the actin cytoskeleton or cortex,

their activity will likely be associated with the
attractive guidance cues, and their inactivation

with repulsive cues. However, this hypothesis

remains to be tested.

Microtubule-stabilizing Proteins
(Structural MAPs)

Given the hypothesis that axon guidance and

growth cone turning depend upon regulating
MT dynamics, it is not surprising that the few
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microtubule stabilizing proteins (MAPs) that

have been implicated in guidance decisions are

likely to be active on the side of the growth
cone towardwhich it turns. Indeed, in a number

of studies, MAP1B has been shown to play a

role in axon guidance. An earlier study of the
first MAP1B null mouse demonstrated that

MAP1B is essential for corpus callosum devel-

opment (Meixner et al. 2000). This suggests
that there is an axon guidance defect but does

not rule out that MAP1B deficiency could

slow callosal axon outgrowth, resulting in agen-
esis of the callosum. However, another study

using micro-CALI implicated MAP1B directly

in growth cone turning (Mack et al. 2000). By
using an antibody to a specific MAP1B phos-

pho-epitope, it was shown that inactivation of

phospho-MAP1B on one side of the growth
cone caused turning in the opposite direction,

presumably through destabilization of MTs on

the laser-exposed side. A more recent study
placed MAP1B in the netrin signaling cascade

by showing that MAP1B null axons were defi-

cient in their outgrowth response to netrin 1,
and that netrin addition resulted in phosphory-

lation of MAP1B through GSK3 and cdk5 (Del

Rio et al. 2004). Thus, it is likely that MAP1B
plays a prominent role in stabilizing MTs pre-

ferentially on one side of the growth cone dur-

ing chemoattractive turning. Future studies
will have to determine if it is downstream of

other guidance pathways.

In addition to MAP1B, there are other pro-
teins that specifically stabilize MTs in neurons.

Although they have been shown to function in

outgrowth, branching, and polarity of neurons,
very few studies have been undertaken to deter-

mine if these proteins function in axon guidance.

For example, the CRMP family of proteins
appears to be an important downstream com-

ponent of the Sema3A signaling pathway and is

essential for the growth cone collapse response
to bath-applied Sema3A. However, there have

been no studies in mammalian neurons that

show it is directly involved in growth cone turn-
ing, although it is known to be important for

axon outgrowth and polarity (Quinn et al.

2003; Yoshimura et al. 2005). Nevertheless, a
few early studies on Unc-33, the C. elegans

homolog of CRMP, implicated that its loss

resulted in axon guidance errors in several path-

ways (Hedgecock et al. 1985; Li et al. 1992).
Other classic MAPs, such as MAP2c and Tau,

also play important roles in axon outgrowth

but have yet to be shown to function directly in
axon guidance pathways. Doublecortin is a

MT-stabilizing protein that when knocked out

results in disrupted axon tracts (Deuel et al.
2006). However, no direct growth cone turning

or guidance assays have tested doublecortin

function downstream of specific guidance cues.

Microtubule-destabilizing and Severing
Proteins

Based on the work mentioned above that seems

to favor MT stabilization on the side of the
growth cone toward which it turns, one would

predict that MT destabilizing proteins would

be active on the opposite side of the growth
cone, or inactivated on the turning side. Un-

fortunately, there are to date no data arguing

for or against this hypothesis. Nevertheless, the
two families of MT destabilizing proteins in

neurons, the stathmin and kinesin 13 families,

have been studied in some detail, and although
their function in axon guidance has not been

defined, they do affect axon outgrowth and

branching (Homma et al. 2003; Suh et al. 2004;
Morii et al. 2006; Tararuk et al. 2006; Poulain

and Sobel 2007; Li et al. 2009). Interestingly, it

appears that their destabilizing activity must be
tightly regulated: too much and MT levels in

the neurons fall, inhibiting outgrowth; too little

and MTs grow to the tips of growth cones and
form looped structures, also resulting in less out-

growth due to growth cone pausing.

Overexpression or knockdown of MTsever-
ing proteins produces similar phenotypes to

overexpression or knockdown ofMT destabiliz-

ing proteins. If the two knownMTsevering pro-
teins in neurons, spastin and katanin, are highly

overexpressed, they result in diminished axon/
neurite outgrowth due to increased severing of
MTs in axons (Karabay et al. 2004; Riano et al.

2009). Knocking them down in neurons can

result in stunted axons as well. Interestingly,
spastin appears to play a major role not in
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axon outgrowth, but in axon branching. Over-

expression of spastin results in a prominent

increase in axonal branches (Yu et al. 2008). It
will be interesting to determine if either of these

proteins is required for axon guidance decisions

since they are present in growth cones as well as
axon shafts.

Microtubule Motor Proteins

MTmotor proteins are best known for shuttling

material either anterogradely, toward the growth

cone (kinesins), or retrogradely, toward the cell
body (dynein). However, as noted above for

the kinesin 13 family, they can also destabilize
MTs at their þends. Conversely, cytoplasmic

dynein can also act as a þTIP protein, associat-

ing with the rapidly growing ends of MTs.
Although these proteins have not been exten-

sively studied in the context of axon guidance

and growth cone turning, there are hints that
they may function in these processes. The first

observations implicating dynein in axon guid-

ance were from a study in Drosophila showing
that a dynein light chain mutant had disrupted

sensory axon projections (Phillis et al. 1996).

More recent data indicate that dynein may
be functioning antagonistically with myosin II

and kinesin 5 in growth cones (Myers et al.

2006; Nadar et al. 2008). Dynein is important
for MTs to extend into the distal-most regions

of the growth cone, including filopodia (Myers

et al. 2006; Grabham et al. 2007). To do this,
however, MTs must beat the constant myosin-

II-dependent retrograde flow of actin. Further-

more, kinesin 5 appears to be concentrated in
the transition zone of the growth cone and

when active appears to inhibit MT entry into

distal regions of the growth cone (Nadar et al.
2008). How would disruption of either dynein

or kinesin 5 activity affect growth cone turning?

Interestingly, when kinesin 5 is inhibited with
an allosteric inhibitor (monastrol), growth

cones ignore borders of laminin/poly-lysine,
which they normally respond to by turning
(Nadar et al. 2008). Dynein inhibition, via

siRNA directed against dynein heavy chain,

resulted in the decreased ability of growth cones
to turn at such borders (Myers et al. 2006).

Although both of these studies implicate dynein

and kinesin 5 in growth cone turning, it is

still unclear how dynein- or kinesin-depleted
neurons respond to attractive or repulsive guid-

ance cues presented in soluble form. Based on

these studies, it is likely that dynein, kinesin 5,
and probably other kinesins would serve impor-

tant functions in growth cone guidance.

AWORKING MODEL FOR CYTOSKELETAL
FUNCTION IN AXON GUIDANCE

Great strides have been made in recent years
elucidating the roles that the cytoskeleton plays

in axon outgrowth and guidance. Although pre-
senting a model necessarily oversimplifies the

results of the numerous studies we have

described in this review, a model provides a
template for guiding future experiments.

Thus, we present the cytoskeleton in a turning

growth cone and outline three regions where
actin and microtubule functions may be partic-

ularly important for integrating signals down-

stream of guidance cues (Fig. 4). This includes
cytoskeletal events that may be occurring in

response to a gradient of a positive guidance

cue (in gray). Such cytoskeletal events may be
reversed if the growth cone is exposed to a gra-

dient of a negative guidance cue; however, com-

plicating matters is the possibility that attractive
and repulsive guidance may involve separate

sets of cytoskeletal-associated proteins. Thus,

we postulate events that may occur during
both protrusion of the growth cone toward a

positive guidance cue, and retraction of the

growth cone on the side away from the cue.
During protrusion of the growth cone

toward the positive guidance cue (Fig. 4B), it

is likely that both actin-nucleating proteins
and barbed-end binding proteins (tip complex

proteins) are activated to coordinate actin-

based protrusion of the growth cone. As men-
tioned above, actin severing may also be

up-regulated to provide more actin filament

free ends for protrusive growth. Further back
in the growth cone, potentially in the transi-

tion zone, integration of the actin and MT

networks likely occurs (Fig. 4C). This stage
of cytoskeletal integration may be critical for
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Figure 4. Aworking model of cytoskeletal dynamics in a growth cone exposed to a gradient of a positive guid-
ance cue. (A) A schematic of a growth cone that includes actin bundles (green), an actin meshwork (blue), and
microtubules (red). The guidance cue gradient (gray) is high in the upper right of the figure, toward which the
growth cone is turning. Boxed regions of the growth cone are magnified in subsequent panels. (B) This region of
the growth cone is undergoing protrusion. Protrusion is due to activation of barbed-end binding proteins and
actin nucleators, resulting in protrusion of filopodia and lamellipodia, respectively. Actin severing can also
occur, resulting in new barbed ends for growth. (C) This region of the growth cone is where the actin andmicro-
tubule cytoskeleton coordinate their activities, resulting in directed outgrowth. F-actin bundles can guidemicro-
tubules. The increased microtubule polymerization/stabilization on one side of the growth cone may favor
polarized deliveryofmaterials, whichwould subsequently favor growth in a particular direction. (D) This region
of the growth cone is undergoing retraction. Actin bundles and dendritic networks are disassembled, potentially
through the inactivation of barbed-end binding and actin bundling proteins, increased severing of F-actin with-
out subsequent polymerization and continuedmyosin-driven retrograde actin flow.Microtubules may undergo
increased catastrophe or decreased rescue, resulting in their departure from this side of the growth cone. Impor-
tantly, several of the cytoskeletal interactions outlined in this model are suggestions based on the current liter-
ature but have yet to be documented experimentally.
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directed outgrowth because several studies

show that disrupting either MT stabilization

or interactions between MTs and F-actin can
be disruptive to growth cone turning, but not

necessarily to axon outgrowth. Disassembly of

the actin and MT cytoskeleton is also conti-
nuously taking place in an actively transloca-

ting growth cone and may be favored on the

side of the growth cone opposite a chemoat-
tractive gradient (Fig. 4D), or on the side of a

growth cone facing a chemorepulsive gradient.

Such retraction is likely to involve the in-
activation of actin barbed-end protector and

actin bundling proteins, accompanied by actin

severing without subsequent polymerization.
Furthermore, MT destabilization and cata-

strophe (and/or decreased rescue) are likely to

be favored in retracting regions of the growth
cone.

The coordination of all of these events is

required to properly guide neurons to their cor-
rect targets during development. However,

because there have been relatively few high res-

olution live-cell imaging studies of the cytoske-
leton during growth cone turning, it is still

unclear if these postulated events are necessary

or sufficient to induce turning. Furthermore,
we must remember that although direct manip-

ulation of the cytoskeleton shows us how the

growth cone “can” respond, it does not necessa-
rily show how the growth cone “does” respond

to guidance cues under natural conditions.

Therefore, it will be critical to determine how
growth cone turning occurs in response to

guidance cues known to be responsible for spe-

cific axon guidance decisions in the organism,
and ultimately to observe these events in vivo

as they unfold during neural development.
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