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Summary. Conditions are derived for the formation of bound density-
perturbations in low-density universes. A quantitative analysis has then been
carried out in the (go,0¢) plane into the resulting amplification of density
perturbations existing at the decoupling epoch. These perturbations are then
enhanced so that they become bound, and subsequently collapse into proto-
galaxies.

1 Introduction

It is well known that gravitational instability alone cannot explain the formation of the
galaxies from the big bang models admitted by the General Theory of Relativity. The work
of Lifshitz (1946) and Bonnor (1957) showed that, although there is growth, it does not
amplify statistically probable fluctuations sufficiently in the time available. In this paper we
calculate the resulting amplification of density perturbations existing at the epoch of
decoupling, which become bound within the linear regime of the gravitational instability
theory and subsequently collapse into protogalaxies. The growth of small density fluctua-
tions in zero-pressure Friedmann—Lemaitre universes has also been investigated by Tomita
(1969).

Neglecting the pressure of matter and radiation, Bonnor (1957) derived the following

differential equation governing the growth of the contrast density, A(f) =8p/p, in an
expanding universe

R%*h +2RRh — 41GpR*h =0 1)
where the cosmic scale factor, R(), satisfies the Friedmann differential equation

.. A
R’R*= gR“ —kR*+ AR )
and A is the cosmological constant, k is the curvature index and A = 87GpoR3/3. As usual
the subscript zero denotes the current epoch. The various cosmological models obtained as

solutions of equation (2) can be classified in terms of the deceleration parameter go and the
12

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snBny 0z uo 1s8nB Ad 298Z96/1 GE/E/6. | /910IME/SEIUW /WO dNO"DIWSPEDE//:SARY WO} POPEOjUMOQ


http://adsabs.harvard.edu/abs/1977MNRAS.179..351H

FI977ONRAS. 1797 “351H!

352 D. J. Heath

density parameter o, (see Stabell & Refsdal 1966), where
00=41Gpo/3H3, qo=— Ro[RoH}
and Hy= Ro/R, is the Hubble constant. It can be established from the field equations of

General Relativity that the cosmological constant and the curvature index can be expressed
in terms of these parameters, such that

3H3(00— qo) = A ®)
and ‘
H(Z)R(z)(30'0 —qdo— 1) =k (4)

2 Solution of the density perturbation equation

In order to solve the differential equation (1) the independent variable is changed from ¢
to the redshift z. This change in independent variable is given by

dz

o Ho(z + 1) P12(2), &)
where P(z) is the cubic polynomial

P(2)=200z>+ (300 +qo+1) 22 +2(1 +go) z +1. (6)
The differential equation (1) now becomes

(z+1)P() %;};l + Q(Z)Z-Zh- —300(z +1)*h(z)= 0 (7

where Q(z) is the cubic polynomial
0(z) = 0oz® + 302” + 3002 + qo. (®)

It can be verified that a particular solution of equation (7) is A°(z) = P!/%(z). Using this
particular solution the other solution is found to be

h*(z)= CP'*(z )f LADL

P3/2(u) (9)

where Cis a constant. The solution (9) is the growing solution, and in this paper it has been
evaluated by means of numerical integration.

It is of interest to investigate the nature of the roots of the cubic equation P(z) = 0.
Using Cardan’s solution the discriminant is

(00— q0)
A= —=[2763(00 — q0) — (30o — 1 — 9)3].
43203 [ (00 — o) — (300 q)°]

It is known that the nature of the roots is determined by this discriminant such that if

(a) A =o there are two identical roots,
(b) A> 0 there is only one real root,
(c) A <O there are three real roots.

It can be seen that the discriminant will vanish when either the cosmological constant is zero
(i.. 09 = qo) or when

270%(00 —qo)=(Boe—1- %)3- (10)
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The  condition (10) is satisfied in the case of model universes with A =1+ A;, where A,
denotes the critical value of the cosmological constant in the static Einstein universe. In the
case when A= A, and k = + 1, we have the Al model (Robertson 1933) which expands from
the singularity and asymptotically approaches the static Einstein state. When A = — A, and
k=—1, we have an oscillating model which expands out to a maximum radius and then
collapses back to a singular state.

It follows from the above discussion that, if either the cosmological constant is zero or
the condition (10) is satisfied, we expect that the equation P(z) =0 has three real roots,
two of which are coincident. In the case of three real roots, these are given by

z; = [(600 — 2 — 2g0) x; — (1 + go + 309)]/60¢, i=1,2,3
where

x;tx,+x3=0

and

x =cos (6/3)

satisfies the equation

cos 8 =4 cos3(6/3) — 3 cos (6/3).

When the cosmological constant is zero cos8 =1, and when A=+ A, cos § = — 1. This gives
the following expressions for P(z)

When A=0:

P(z) = 20z + 1)(z +1)2. (a1

When A=+ A;:

P(z)= — (30062 + g0 + 1)*(600z + 900 — 1 — qo). (12)
2700

The integral in the growing solution (9) can be determined when the cosmological constant
is zero and when A =t A_. These have been published elsewhere (Edwards & Heath 1976) in
terms of the development angle, 6, but these solutions are now presented in terms of z, o,
and qo.

When A=0,k=+1:
_(600z +400+1)  300,P'*(z)

K (z , 13
() 1200 — 1| |200“1|3/2 ( )
where

0oz — 0Og+1
cos 0= T for aost k=1,

0Oo(z +1)
and

0oz — O t1
cosh0=i——°—— for oo<¥%,k=—1,

00(Z+1)

and P(z) is given by the expression (11).
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When A=+ A.:
609z +30,+1+ 300,PY%(z 3(1 +go— 30
h+(Z) = 002 (1)) do _ OP ( )3/2 ( qo 0)’ (14)
[309 — 1 — qol 1300 — 1 — qol (B0ez +1+ o)

where P(z) is given by the expression (12), and

_ 300z + 900 — 2—2q,

0= = _ =_
cos (3002 + 4o +1) when A Ac k 1

and

300z +900—2—2
cosh 0= Jo2 7 7% o when A=A . k=+1
(Baoz +qot1)

3 The conditions for bound perturbations

If a perturbation is bound it will eventually collapse into a discrete system. In model
universes with a density parameter greater than or equal to the critical density, any relative
perturbation must necessarily be bound. In the particular case of A =0 cosmological models,
the critical density is that of the Einstein—de Sitter universe. Since the work of Gott et al.
(1974) suggests that an upper limit for the density parameter is 6o = 0.045 approximately,
we now investigate the conditions for the evolution of bound perturbations in low-density
universes.

Let H; denote the value of the Hubble parameter corresponding to the epoch z;. It is
found that the relationship connecting H; and H, is

H}=Hj[(z +1)*(2002; + go — 00+ 1) + (30 — q0)]- (15)
The density within the perturbation at the epoch z; will be denoted by g and the corre-

sponding external density by pe;. In terms of these, the contrast density satisfying the
differential equation (1) is defined as

h(Zi)";pi —pei. (16)
Pei
The critical density at the epoch z; is given by
_ 3H? A an
P ™ 82G ~ 8nG

and the condition for a bound perturbation is g;>p.. Using equation (15) the critical
density can be expressed as
) ,

3H2 i
PcﬁgE (z; +1)*(200z; + qo — 06 +1). (18)

Using these results the relationship between p,; and p; is

Pl 200z +1) (19)
Pei (2002 +qo— o +1)

on putting oo = g in equations (15) and (19), we recover the A = 0 relationships given by
Gunn & Gott (1972). Using the relationship between p,; and p;, the condition for the con-
trast density to be bound is

(1 +go —300)

h(z;) > .
&> @t D

(20)
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Figure 1. Each curve is terminated at the cosmic time corresponding to a redshift of 4.
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Figure 2. A contrast density of unity must be achieved at the latest by the redshift z,,. Loci of points in
the (g,, g, plane corresponding to z, = constant are shown above.
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The inequality (20) determines the minimum value of the contrast density in order that a
bound perturbation is produced at the epoch z;. This minimum value will be denoted by
o (z;).

It is of interest to note how the inequality (20) can be related back to the curvature of
the universe. It can be seen from equation (4) that if the universe is flat or spherical then
(300 — g0 —1)>0, and the right-hand side of (20) becomes negative for all values of z. Any
perturbation evolving within a flat or spherical universe must therefore necessarily be
bound. Conversely, the curvature of the universe is hyperbolic if (1 + go — 30¢) >0. In this
case the inequality (20) sets a positive value which must be exceeded in order that a bound
perturbation is produced.

In Fig. 1, hy(z;) has been plotted against cosmic time for different values of the density
and deceleration parameters. A significant feature of this diagram is the steep increase in
hy, for low-density parameters, and the appreciable variation in its value caused by changes in
qo. Fig. 2 has been constructed by putting the contrast density equal to unity in the
inequality (20), and calculating the minimum value of the redshift, z,, that satisfies it. This
gives rise to a pencil of straight lines in the (go,00) plane. Each ray has an equation
Go= (500 + 2002z, —1) and the vertex of the pencil is the point (go=—1, 0¢=0), corre-
sponding to the De Sitter universe. The significance of choosing a contrast density of unity is
that this is usually take as corresponding to the end of the linear regime for the growth of
density perturbations, and z, is the redshift of the epoch of undecelerated expansion of the
model (see Appendix 1). Once the contrast density rises above unity we pass over into the
non-linear regime, and the differential equation (1) is then no longer valid.

4 The amplification of density perturbations

In the tables presented here we have evaluated the amplification of density perturbations
existing at the epoch of decoupling. The choice of 0,=0.03 corresponds approximately to
the lower limit of the density parameter proposed by Gott et al. (1974) and o, = 0.045 to
the upper limit. With regard to the deceleration parameter, Gott et al. (1974) felt safe in
concluding only that gy <2. We assume the perturbation starts growing at the decoupling
epoch at a redshift denoted in the tables by zg4. In the analysis presented here we have taken
two values of zy, 1500 and 1000, both of which figures are commonly used for the
decoupling redshift.

In order that a bound perturbation is produced, its growth is terminated at z,. The effect
of this is that the phase of undecelerated expansion of the model is taken to coincide with
the end of the linear regime, providing the perturbation with the maximum possible time for
growth. The cosmological models chosen in Tables 1 and 2 give either z, =10 or z, =20 in
order that the inequality (20) is satisfied.

Table 1.
0, =0.045
q, zq Zy Cosmic Amplifica- Decoupling
time tion fluctuation
0.13 1000 10 0.049 59.6 0.017
0.13 1500 10 0.049 89.2 0.011
1.03 1000 20 0.018 314 0.032
1.03 1500 20 0.018 46.9 0.021

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snBny 0z uo 1s8nB Ad 298Z96/1 GE/E/6. | /910IME/SEIUW /WO dNO"DIWSPEDE//:SARY WO} POPEOjUMOQ


http://adsabs.harvard.edu/abs/1977MNRAS.179..351H

FI977ONRAS. 1797 “351H!

The growth of density perturbations 357
Table 2.
0,=0.03
q, zq Zy Cosmic Ampilifica- Decoupling
time tion fluctuation
-0.25 1000 10 0.060 59.6 0.017
-0.25 1500 10 0.060 89.2 0.011
0.35 1000 20 0.023 314 0.032
0.35 1500 20 0.023 46.9 0.021

If a perturbation starts to grow just after the end of the radiation era, Peebles (1967)
argued that the contribution of the decaying solution must be negligible. Consequently, the
amplification of a perturbation which starts growing after decoupling is

JACH)
h*(z4)

The amplification formulae corresponding to the exact solutions (13) and (14) have been
given elsewhere (Edwards & Heath 1976). In more general cases it is necessary to go back to
equation (9) and calculate the amplification via numerical integration. The fluctuations that
must be postulated at decoupling, in order to achieve a contrast density of unity by the
redshift z,,, are obtained by taking the reciprocal of the amplification factors given in the
tables.

It is seen from the tables that the amplification factors are identical to within the
accuracy quoted for points lying on the straight lines z, = constant. This is due to the fact
that each ray of the pencil of straight lines given in Fig. 2 has an equation

Go= (500 + 200z, — 1),

and the polynomial P(z) occurring in the growing mode of equation (9) becomes dependent
solely on the value assigned to the density parameter. Since o, has been given the values
corresponding to the upper and lower limits of the small range of the density parameter
proposed by Gott et al. (1974), the amplification factors are effectively identical.

5 Comments

It is seen from the tables that the amplification increases with decreasing go. The range of
fluctuations varies from 11x 1073 to 32 x 1073, depending on the values assigned to z4, z, and
the density and deceleration parameters. The effect of a non-zero cosmological constant on
the epoch z, is shown in the tables and also in Fig. 2.
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Appendix 1
The phase of undecelerated expansion

If we make the substitution 7= R/R, in equation (2) and use relationships (3) and (4) we
find that

(1"'(10_300)_‘_2(2]. AD

H*=H} [(oo—qo)+ e
. r r
At sufficiently early epochs r <1 and the main contribution to the expansion rate comes
from the term involving 73, It is seen from equation (Al) that the contributions of the
curvature and the cosmological constant terms to the expansion rate in the early universe are
virtually negligible.

A critical stage in the evolution of the universe is reached when the contributions from
the terms involving 7 2 and "3 become equal, at a redshift given by

1+go— 30
200
which marks the transition from behaviour like k=0 to undecelerated expansion. The
significance of this epoch is that, if bound density perturbations are to evolve, they must do
so at the latest by the redshift given by (A2).
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