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The GTEx Consortium atlas of genetic regulatory effects across human tissues 

The Genotype Tissue Expression Consortium 

Abstract 

The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects 

on the transcriptome across human tissues, and to link these regulatory mechanisms to trait and 

disease associations. Here, we present analyses of the v8 data, based on 17,382 RNA-sequencing 

samples from 54 tissues of 948 post-mortem donors. We comprehensively characterize genetic 

associations for gene expression and splicing in cis and trans, showing that regulatory associations 

are found for almost all genes, and describe the underlying molecular mechanisms and their 

contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large 

diversity of tissues, we provide insights into the tissue-specificity of genetic effects, and show that 

cell type composition is a key factor in understanding gene regulatory mechanisms in human 

tissues.  

Introduction 

A pressing need in human genetics remains the characterization and interpretation of the 

function of the millions of genetic variants across the human genome. This is essential for 

identifying the molecular mechanisms of genetic risk for complex traits and diseases, mainly 

driven by non-coding loci with largely unknown regulatory functions. To address this challenge, 

several projects have built comprehensive annotations of genome function across tissues and cell 

types (1, 2), and mapped the effects of regulatory variation across large numbers of individuals, 

primarily from whole blood and blood cell types (3-5). The Genotype-Tissue Expression (GTEx) 

project provides an essential intersection where variant function can be studied across a wide range 

of both tissues and individuals.  

The GTEx project was launched in 2010 with the aim of building a catalog of genetic 

effects on gene expression across a large number of human tissues in order to elucidate the 

molecular mechanisms of genetic associations with complex diseases and traits, and improve our 
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understanding of regulatory genetic variation (6). The project set out to collect biospecimens from 

~50 tissues from up to ~1000 postmortem donors, and to create standards and protocols for 

optimizing postmortem tissue collection and donor recruitment (7, 8), biospecimen processing (7), 

and data sharing (www.gtexportal.com).  

Following the earlier publication of the GTEx pilot (9) and mid-stage results (10), we 

present a final analysis from the GTEx Consortium based on the v8 data release. We provide the 

largest catalog to date of genetic regulatory variants affecting gene expression and splicing in cis 

and trans across 49 tissues, and describe patterns and mechanisms of tissue- and cell type 

specificity of genetic regulatory effects. Through integration of GTEx data with genome-wide 

association studies (GWAS), we characterize mechanisms of how genetic effects on the 

transcriptome mediate complex trait associations.  

 

 

 
Figure 1. Sample and data types in the GTEx v8 study. (A) Illustration of the 54 tissue types (including 11 

distinct brain regions and 2 cell lines), with sample numbers from genotyped donors in parentheses and color coding 

indicated in the adjacent circles. Tissues with ≥70 samples were included in QTL analyses. (B) Illustration of the 

core data types used throughout the study. Gene expression and splicing were quantified from bulk RNA-seq of 
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heterogenous tissue samples, and local and distal genetic effects (cis-QTLs and trans-QTLs, respectively) were 

quantified across individuals for each tissue. 

 

QTL discovery 

The GTEx v8 data set consists of 948 donors and 17,382 samples from 52 tissues and two 

cell lines, with 838 donors and 15,253 samples having both RNA sequence (RNA-seq) and 

genotype data from whole genome sequencing (WGS) (figs. 1a, S1–2). The 838 donors were 

85.3% European American, 12.3% African American, and 1.4% Asian American. Of the 54 

tissues, 49 had samples from at least 70 individuals and were used for analyses of quantitative trait 

loci (QTL) (15,201 samples total). WGS was performed for each donor to a median depth of 32x, 

resulting in the detection of a total of 43,066,422 single nucleotide polymorphisms (SNPs) after 

QC and phasing (10,008,325 with MAF ≥ 0.01) and 3,459,870 small indels (762,535 with MAF ≥ 

0.01) (fig. S3, table S1, (11)). The mRNA of each of the tissue samples was sequenced to a median 

depth of 82.6 million reads, and alignment, quantification and quality control were performed as 

described in (11) (figs. S4–5).  

The resulting data provide the broadest survey of individual- and tissue- specific gene 

expression to date, enabling a comprehensive view of the impact of genetic variation on gene 

expression and splicing (fig. 1b). Across all tissues, we discovered cis-eQTLs (5% FDR, per tissue 

(11)) for 18,262 protein coding and 5,006 lincRNA genes (23,268 total cis-eGenes, corresponding 

to 94.7% of all protein coding and 67.3% of all detected lincRNA genes detected in at least one 

tissue), with a total of 4,278,636 genetic variants (43% of all variants with MAF ≥ 0.01) that were 

significant in at least one tissue (cis-eVariants) (figs. 2a, S6, table S2). Cis-eQTLs for all long non-

coding RNAs (lncRNAs) are characterized in a companion analysis (12). The genes lacking a cis-

eQTL were enriched for those lacking expression in the tissues analyzed by GTEx, including genes 

involved in early development (fig. S7). While most of the discovered cis-eQTLs had small effect 

sizes measured as allelic fold change (aFC), across tissues an average of 22% of cis-eQTLs had an 

over 2-fold effect on gene expression (fig. S10). We mapped splicing QTLs in cis with intron 

excision ratios from LeafCutter (11, 13), and discovered 12,828 (66.5%) protein coding and 1,600 

(21.5%) lincRNA genes (14,424 total) with a cis-sQTL (5% FDR, per tissue) in at least one tissue 

(cis-sVariants) (fig. 2a, table S2). As expected (10), cis-QTL discovery was highly correlated with 

the sample size for each tissue (Spearman’s rho = 0.95 for cis-eQTLs, 0.92 for cis-sQTLs).  
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Previous studies have shown widespread allelic heterogeneity of gene expression in cis, 

i.e., multiple independent causal eQTLs per gene (4, 14, 15). We used two approaches to 

characterize this: 1) stepwise regression to identify conditionally independent cis-eQTLs, where 

the threshold for significance was defined by the single cis-eQTL mapping (10), and 2) a Bayesian 

approach where the posterior probability of linked variants was used to control the local FDR (11, 

16). Both methods showed concordant results of widespread allelic heterogeneity, with up to 50% 

of eGenes having more than one independent cis-eQTL in the tissues with the largest sample sizes 

(figs. 2b, S8). Our analysis captured a lower rate of allelic heterogeneity for cis-sQTLs, which can 

be a result of both underlying biology and lower power in cis-sQTL mapping (fig. S8). These 

results highlight continued gains in cis-eQTL mapping with increasing sample sizes even when 

the discovery of new eGenes in specific tissues starts to saturate. 

Trans-eQTL mapping yielded 143 trans-eGenes (121 protein coding and 22 lincRNA at 

5% FDR assessed at the gene level, separately for each gene type), after controlling for false 

positives due to read misalignment (11, 17) (table S13). The number of trans-eGenes discovered 

per tissue is correlated with sample size (Spearman’s rho = 0.68), and to the number of cis-eQTLs 

(rho = 0.77), with outlier tissues such as testis contributing disproportionately to both cis and trans 

(fig. 2c). We identified a total of 49 trans-eGenes in testis, with 47 found in no other tissue even 

at FDR 50%. Over two-fold effect sizes on trans-eGene expression were observed for 19% of 

trans-eQTLs (fig. S10). Trans-sQTLs mapping yielded 29 trans-sGenes (5% FDR, per tissue), 

including a replication of a previously described trans-sQTL (3) and visual support of the 

association pattern in several loci (11) (fig. S9, table S14). These results suggest that while trans-

sQTL mapping is challenging, we can discover robust genetic effects on splicing in trans. 

We produced allelic expression (AE) data using two complementary approaches (11). In 

addition to the conventional AE data for each heterozygous genotype, we produced AE data by 

haplotypes, integrating data from multiple heterozygous sites in the same gene, yielding 153 

million gene-level measurements (≥8 reads) across all samples (18). Allelic expression reflects 

differential regulation of the two haplotypes in individuals that are heterozygous for a regulatory 

variant in cis; indeed, cis-eQTL effect size is strongly correlated with allelic expression (median 

rho = 0.82) (10). We hypothesized that cis-sQTLs could also partially contribute to allelic 

imbalance even if only for parts of transcripts. However, there is drastically less signal of increased 

allelic imbalance among individuals heterozygous for cis-sQTLs (median Spearman’s rho = -0.05) 
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(fig. S11). This indicates that allelic expression data captures primarily cis-eQTL effects and 

genetic splicing variation in cis is not strongly reflected in gene-level AE data.  

 

 
Figure 2. QTL discovery. (A) The number of genes with a cis-eQTL (eGenes) or cis-sQTL (sGenes) per tissue, as a 

function of sample size. See Fig. 1A for the legend of tissue colors. (B) Allelic heterogeneity of cis-eQTLs depicted 

as proportion of eGenes with ≥1 independent cis-eQTLs (blue stacked bars; left y-axis) and as a mean number of cis-

eQTLs per gene (red dots; right y-axis). The tissues are ordered by sample size. (C) The number of genes with a trans-

eQTL as a function of the number of cis-eGenes. (D) Sex-biased cis-eQTL for AURKA in skeletal muscle, where 

rs2273535-T is associated with increased AURKA expression in males (p = 9.02x10-27) but not in females (p = 0.75). 

(E) Population-biased cis-eQTL for SLC44A5 in esophagus mucosa (allelic fold change = -2.85 and -4.82 in African 

Americans (AA) and European Americans (EA), respectively; permutation p-value = 1.2x10-3). 

 

Genetic regulatory effects across populations and sexes 

Variability in human traits and diseases between sexes and population groups is likely to 

partially derive from differences in genetic effects (19-21). To study this, we analyzed variable 

cis-eQTL effects between males and females, as well as between individuals of European and 

African ancestry. Since external replication data sets are sparse, we use a novel allelic expression 

approach for validation with an orthogonal data type from the same samples (18): allelic imbalance 

in individuals heterozygous for the cis-eQTL allows individual-level quantification of the cis-
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eQTL effect size (22), and can be correlated with the interaction terms used in cis-eQTL analysis 

to validate modifier effects of the cis-eQTL association.  

To characterize sex-differentiated genetic effects on gene expression in GTEx tissues, we 

mapped sex-biased cis-eQTLs (sb-eQTLs). Analyzing the set of all conditionally independent cis-

eQTLs, we identified eQTLs with significantly different effects between sexes by fitting a linear 

regression model and testing for a significant genotype-by-sex (G×S) interaction (11). Across the 

44 GTEx tissues shared among sexes, we identified 369 sb-eQTLs (FDR ≤ 25%), characterized 

further in (23). Sex-biased eQTL discovery had a modest correlation with tissue sample size 

(Spearman’s rho = 0.39, p = 0.03), with most sb-eQTLs discovered in breast but also in muscle, 

skin and adipose tissues. In some cases, the cis-eQTL signal — identified with males and females 

combined — seems to be driven exclusively by one sex. For example, the cis-eQTL association of 

rs2273535 with the gene AURKA in skeletal muscle (cis-eQTL p = 6.92x1024) is correlated with 

sex (pG×S = 9.28x10-12, Storey qG×S = 1.07x10-7, AE validation p = 1.15x10-11) and present only in 

males (figs. 2d, S12). AURKA is a member of the serine/threonine kinase family involved in mitotic 

chromosomal segregation that has been widely studied as a risk factor in several cancers (24-27) 

and has been recently shown to be involved in muscle differentiation (28). 

We also characterized population-biased cis-eQTLs (pb-eQTLs), where a variant’s 

molecular effect on gene expression differs between individuals of European and African ancestry, 

controlling for differences in allele frequency and Linkage Disequilibrium (LD) (11). Analyzing 

31 tissues with sample sizes >20 in both populations, we mapped genes with a different eQTL 

effect size measured by aFC. After applying stringent filters to remove differences potentially 

explained by LD or other artifacts (fig. S13a), we identified 178 pb-eQTLs for 141 eGenes (FDR 

≤ 25%) that show a moderate degree of validation in allele-specific expression data (fig. S13, table 

S10). While some of the pb-eQTL effects are tissue-specific, there are also effects that are shared 

across most tissues (fig. S13). Figure 2e shows an example of a pb-eQTL for the SLC44A5 gene 

involved in transport of sugars and amino acids, and expressed at different levels between 

epidermis of lighter and darker skin (reconstructed in vitro) (29, 30). In Europeans, the derived 

allele of rs4606268 decreases expression of the gene in esophagus mucosa (aFC = -4.82), but this 

effect is significantly lower in African Americans (aFC = -2.85, permutation p-value = 1.2x10-3, 

AE validation p = 0.002, fig. S13) 
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This relative paucity of both sex- and population-biased cis-eQTLs reflects the fact that 

they are challenging to identify and there are few with large effects, but that they can provide 

insights in to sex- or population-specific regulatory effects on gene expression.  

Fine-mapping 

A major challenge of all genetic association studies is to distinguish the causal variants 

from their LD proxies. We applied three different statistical fine-mapping methods — CaVEMaN 

(31), CAVIAR (32), and dap-g (16) — to infer likely causal variants of cis-eQTLs in each tissue 

(fig. 3a) (11). For many cis-eQTLs the causal variant can be mapped with a high probability to a 

handful of candidates: the 90% credible set for each cis-eQTL consists of variants that include the 

causal variant with 90% probability; using dap-g, we identified a median of 6 variants in the 90% 

credible set for each cis-eQTL (fig. S14). Furthermore, 9.3% of the cis-eQTLs have a variant with 

a posterior probability > 0.8 according to dap-g, indicating a single likely causal variant for those 

cis-eQTLs. We defined a consensus set of 24,740 cis-eQTLs across all tissues (7,709 unique 

variants), for which the posterior probability was >0.8 across all three methods (fig. S15). Fine-

mapped variants were significantly higher enriched among experimentally validated causal 

variants from MPRA (33) and SuRE (34) data, compared to the lead eVariant across all eGenes. 

The highest enrichment was observed for the consensus set although with overlapping confidence 

intervals (fig. 3b). This demonstrates how careful fine-mapping facilitates the identification of 

likely causal regulatory variants. 

Knowing the likely causal variant enables greater insights into the molecular mechanisms 

of individual eQTLs, including the mechanisms of their tissue-specific effects. Figure 3c shows an 

example of an eQTL for the gene CBX8 that colocalizes with breast cancer risk and birth weight 

(posterior probability 0.68 for both in lung). One of the three variants in the confident set overlaps 

the binding site and disrupts the motif of the transcription factor EGR1 (1) (fig. S16). The role of 

EGR1 as an upstream driver of this eQTL is further supported by a cross-tissue correlation of the 

effect size of the eQTL and the expression level of EGR1 (Spearman’s rho = -0.69) (fig. 3d).  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/787903doi: bioRxiv preprint 

https://doi.org/10.1101/787903
http://creativecommons.org/licenses/by/4.0/


 
Figure 3. Fine mapping of cis-eQTLs. (A) Number of eGenes per tissue with variants fine-mapped with >0.5 

posterior probability of causality, based on three methods. The overall number of eGenes with at least one fine-mapped 

eVariant increases with sample size for all methods. However, this increase is in part driven by better statistical power 

to detect small effect size cis-eQTLs (aFC or allelic fold change ≤1 in log2 scale) with larger sample sizes, and the 

proportion of well fine-mapped eGenes with small effect sizes increases more modestly with sample size (bottom vs. 

top panels), indicating that such cis-eQTLs are generally more difficult to fine-map. (B) Enrichment of variants among 

experimentally validated regulatory variants, shown for the cis-eVariant with the best p-value (top eVariant), and those 

with posterior probability of causality >0.8 according to each of the three methods individually or all of them 

(consensus). Error bars: 95% CI (C) The cis-eQTL signal for CBX8 is fine-mapped to a credible set of three variants 

(red and purple diamonds), of which rs9896202 (purple diamond) overlaps a large number of transcription factor 

binding sites in ENCODE ChIP-seq data and disrupts the binding motif of EGR1. (D) The potential role of EGR1 

binding driving this cis-eQTL is further supported by correlation between EGR1 expression and the CBX8 cis-eQTL 

effect size across tissues. 

Functional mechanisms of QTL associations 

Quantitative trait data from multiple molecular phenotypes, integrated with the regulatory 

annotation of the genome and GWAS data (table S3), offer a powerful way to understand the 

molecular mechanisms and phenotypic consequences of genetic regulatory effects. As expected, 
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cis-eQTLs and cis-sQTLs are significantly enriched in functional elements of the genome (fig. 4a). 

While the strongest enrichments are driven by variant classes that lead to splicing changes or 

nonsense-mediated decay, these account for relatively few variants. Cis-sQTLs have significant 

enrichments almost entirely in transcribed regions, while cis-eQTLs are significantly enriched in 

transcriptional regulatory elements as well. Previous studies (4, 35) have indicated that cis-eQTL 

and cis-sQTL effects on the same gene are typically driven by different genetic variants. This is 

corroborated by the GTEx v8 data, where the overlap of cis-eQTL credible sets of likely causal 

variants, based on CAVIAR, have only a 12% overlap with cis-sQTL credible sets (fig. S17). 

Functional enrichment of overlapping and non-overlapping cis-eQTLs and cis-sQTLs, based on 

stringent LD filtering, showed that the patterns characteristic for each type — such as enrichment 

of cis-eQTL in enhancers and cis-sQTLs in splice sites — are even stronger for distinct loci (fig. 

S17). 

We hypothesized that eVariants and their target eGenes in cis are more likely to be in the 

same topologically associated domains (TADs) that allow chromatin interactions between more 

distant regulatory regions and target gene promoters (36). To test this, we analyzed TAD data from 

ENCODE (1) and cis-eQTLs from matching GTEx tissues (table S3). Compared to matching 

random variant-gene pairs and controlling for distance from the transcription start site, cis-

eVariant-eGene pairs were significantly enriched for being in the same TAD (median log odds 

1.52; all p<10-12) (fig.S18).  

Trans-eQTLs are significantly enriched in regulatory annotations that suggest both pre- 

and post-transcriptional mechanisms (fig. 4b). Unlike cis-eQTLs, trans-eQTLs are strongly 

enriched in CTCF binding sites, suggesting that disruption of CTCF binding may underlie distal 

genetic regulatory effects, potentially via its effect on interchromosomal chromatin interactions 

(36). trans-eQTLs have also been shown to be partially driven by cis-eQTLs (37, 38). Indeed, we 

observed a significant enrichment of lead trans-eVariants tested in cis being also cis-eVariants in 

the same tissue (5.9x; two-sided Fisher’s exact test p = 5.03x10-22, fig. 4c). Lack of analogous 

strong enrichment suggests that cis-sQTLs are less important contributors to trans-eQTLs (p = 

0.064), and trans-sVariants had no significant enrichment of either cis-eQTLs (p = 0.051) or cis-

sQTLs (p = 0.53). A further demonstration of the important contribution of cis-eQTLs to trans-

eQTLs is that, based on mediation analysis, 77% of lead trans-eVariants that are also cis-eVariants 

appear to act through the cis-eQTL (figs. 4d, S19). Colocalization of cis-eQTLs and trans-eQTLs 
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was widespread and often tissue-specific, with figure 4e showing cis-eQTLs with at least ten 

nominally significant colocalized trans-eQTLs each (PP4 > 0.8 and trans-eQTL p-value < 10-5), 

pinpointing how local effects on gene expression can potentially lead to downstream regulatory 

effects across the genome (fig. S20, table S15).  

 

 

 
Figure 4. Functional mechanisms of genetic regulatory effects. QTL enrichment in functional annotations for (A) 

cis-eQTLs and cis-sQTLs and for (B) trans-eQTLs. cis-QTL enrichment is shown as mean ± s.d. across tissues; trans-

eQTL enrichment as 95% C.I. (C) Enrichment of lead trans-e/sVariants tested in cis being also cis-e/sVariants in the 

same tissue. * denotes significant enrichment, p < 10-21. (D) Proportion of trans-eQTLs that are significant cis-eQTLs 
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or mediated by cis-eQTLs. (E) Trans associations of cis-mediating genes identified through colocalization (PP4 > 0.8 

and nominal association with discovery trans-eVariant p < 10-5). Top: associations for four Thyroid cis-eQTLs 

(indicated by gene names); bottom: cis-mediating genes with ≥5 colocalizing trans-eQTLs. 

 

Genetic regulatory effects mediate complex trait associations 

In order to analyze the role of regulatory variants in genetic associations for human traits, 

we first asked whether variants in the GWAS catalog were enriched for significant QTLs, 

compared to all variants tested for QTLs (11).  We observed a 1.46-fold enrichment for cis-eQTLs 

(63% vs 43%) and 1.86-fold enrichment for cis-sQTLs (37% vs 20%). The enrichment was even 

stronger, 6.97-fold (0.029% vs 0.0042%) for trans-eQTLs, consistent with other analyses (39) 

(figs. 5a, S21-22, tables S5-6).  

This approach does not leverage the full power of genome-wide GWAS and QTL genetic 

association statistics, nor account for LD contamination, a situation wherein the causal variants for 

QTL and GWAS signals are distinct but LD between the two causal variants can suggest a false 

functional link (40). Hence, for subsequent analyses (below) we selected 87 Genome Wide 

Association Studies (GWAS) representing a broad array of binary and continuous complex traits 

that have summary results available in the public domain (11, 41) (tables S4, S11), and cis-QTL 

statistics calculated from the European subset of GTEx donors to match the ancestry of GWAS 

studies (fig. S24). Analyses described were performed for all pairwise combinations of 87 

phenotypes and 49 tissues, and are summarized using an approach that accounts for similarity 

between tissues and variable standard errors of the QTL effect estimates, driven mainly by tissue 

sample size (fig. S22, (11)).  

To analyze the mediating role of cis-regulation of gene expression on complex traits (35, 

42), we used two complementary approaches, QTLEnrich (43) and Stratified LD score regression 

(S-LDSC) (11). To rule out the possibility that enrichment is driven by specific features of cis-

QTLs such as allele frequency, distance to the transcription start site, or local level of LD (number 

of LD proxy variants; r2 ≥ 0.5), we used QTLEnrich. We found a 1.43-fold (SE=0.04) and 1.52-

fold (SE=0.04) enrichment of trait associations among best cis-eQTLs and cis-sQTLs, 

respectively, adjusting for enrichment among matched null variants (fig. 5a, tables S7). The fact 

that these enrichment estimates differ little from those derived from the GWAS catalog overlap 

(above), even after accounting for the potential confounders, indicates how relatively robust these 

estimates are. Next, we used S-LDSC adjusting for functional annotations (44) to confirm the 
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robustness of these results and to analyze how GWAS enrichment is affected by the causal 

e/sVariant being typically unknown (11). We computed the heritability enrichment of all cis-

QTLs, fine-mapped cis-QTLs (in 95% credible set and posterior probability > 0.01 from dap-g), 

and fine-mapped cis-QTLs with maximum posterior inclusion probability as continuous 

annotation (MaxCPP) (45) (fig. 5a). The largest increase in GWAS enrichment was for likely 

causal cis-QTL variants (11.1-fold (SE=1.2) for cis-eQTLs and 14.2-fold (SE=2.4) for and cis-

sQTLs, for the continuos annotation), which is strong evidence of shared causal effects of cis-

QTLs and GWAS, and for the importance of fine-mapping.  

Joint enrichment analysis of cis-eQTLs and cis-sQTLs shows an independent contribution 

to complex trait variation from both (fig. S23, (11)), consistent with their limited overlap (fig. 

S17). The relative GWAS enrichments of cis-sQTLs and cis-eQTLs were similar (fig. 5a; not 

significant for the robust QTLEnrich and LDSC analyses), but the larger number of cis-eQTLs 

discovered (fig. 2a) suggests a greater aggregated contribution of cis-eQTLs. 

To provide functional interpretation of the 5,385 significant GWAS associations in 1,167 

loci from approximately independent LD blocks (46) across the 87 complex traits, we performed 

colocalization with enloc (16) to quantify the probability that the cis-QTL and GWAS signals share 

the same causal variant. We also assessed the association between the genetically regulated 

component of expression or splicing and complex traits with PrediXcan (11, 41, 47). Both methods 

take multiple independent cis-QTLs into account, which is critical in large cis-eQTL studies such 

as GTEx with widespread allelic heterogeneity. Of the 5,385 GWAS loci, 43% and 23% were 

colocalized with a cis-eQTL and cis-sQTL, respectively (fig. 5b). A large proportion of colocalized 

genes coincide with significant PrediXcan trait associations with predicted expression or splicing 

(median of 86% and 88% across phenotypes respectively, figs. S25-S28, tables S8). Together, 

these results suggest target genes and their potential molecular changes for thousands of GWAS 

loci. 

Having multiple independent cis-eQTLs for a large number of genes allowed us to test 

whether mediated effects of primary and secondary cis-eQTLs on phenotypes — the ratio of 

GWAS and cis-eQTL effect sizes — are concordant. To make sure that concordance is not driven 

by residual LD between primary and secondary signals, we used LD-matched cis-eGenes with low 

colocalization probability as controls (11, 41), and observed a significant increase in primary and 

secondary cis-eQTL concordance for colocalized genes (p-value < 10-30; fig. 5c). Additionally, 
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colocalization of a cis-eQTL increased the colocalization of an independent cis-sQTL in the same 

locus (OR = 4.27, p < 10-16), and correspondingly colocalization of a cis-sQTL increased cis-eQTL 

colocalization (OR = 4.54 p < 10-16; fig. S29). This indicates that multiple regulatory effects for 

the same gene often mediate the same complex trait associations. Furthermore, genes with 

suggestive rare variant trait associations in the UK Biobank (48) have a substantially increased 

proportion of colocalized eQTLs for the same trait (fig. 5d), showing concordant trait effects from 

rare coding and common regulatory variants (49). These genes, as well as those with multiple 

colocalizing cis-QTLs, represent bona fide disease genes with multiple independent lines of 

evidence. 

The growing number of genome and phenome studies has revealed extensive pleiotropy, 

where the same variant or locus associates with multiple organismal phenotypes (50). We sought 

to analyze how this phenomenon can be driven by gene regulatory effects. First, we calculated the 

number of cis-eGenes of each fine-mapped and LD-pruned cis-eVariant per tissue at local LFSR 

< 5%, with cross-tissue smoothing of effect sizes with mashr (11, 51). We observed that a median 

of 57% of variants were associated with more than one gene per tissue, typically co-occurring 

across tissues, indicating widespread regulatory pleiotropy. Using a binary classification of cis-

eVariants with regulatory pleiotropy defined as those associated with more than one gene, we 

observed that they are more significantly associated with complex traits compared to matched cis-

eVariants (fig. S30). This could be due to the fact that if a variant regulates multiple genes, there 

is a higher probability that at least one of them affects a GWAS phenotype. However, cis-eVariants 

with regulatory pleiotropy also have higher GWAS complex trait pleiotropy (50) than cis-

eVariants with effects on a single gene (fig. 5e). This observation suggests a mechanism for 

complex trait pleiotropy of genetic effects where the expression of multiple genes in cis, rather 

than a single eGene effect, translates into diverse downstream physiological effects. Furthermore, 

GWAS pleiotropy is higher for tissue-shared (41) than tissue-specific cis-eQTLs, indicating that 

regulatory effects affecting multiple tissues are more likely to translate to diverse physiological 

traits (fig. 5e). 

Cis- and trans-eQTLs can provide insights into potential mechanisms and effects of trait-

associated variants. In one such example, rs1775555 on chr10p14 is a fibroblast-specific cis-eQTL 

for GATA3 (p=7.4x10-70) and a lincRNA gene GATA3-AS1 (p=1.8x10-45) and a trans-eQTL for 

MSTN on chromosome 2, which encodes a TGF-β ligand secreted protein (fig. S31) and has a role 
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in muscle growth and also the immune system (52). GATA3 is a transcription factor known to 

regulate a range of processes of immune system including T cell development, Th2 differentiation, 

and immune cell homeostasis and survival (53). The cis- (GATA3) and trans-eQTL (MSTN) 

associations colocalized (PP4 > 0.99) in fibroblasts, and mediation analysis supports that the effect 

of rs1775555 on MSTN is mediated through GATA3 (p=2.1x10-22, (11)). We also found that the 

cis- and trans-eQTL effect of rs1775555 colocalized with associations for multiple immune traits, 

including combined eosinophil and basophil counts, hayfever/eczema, and asthma (PP4 > 0.97 for 

all eQTL-trait combinations; fig. S31). DTNA, C4orf26, GK5, HSD11B1, SLC44A1, ARHGAP25, 

MAN2A1 are additional genes that showed trans association with this variant (FDR 10%, corrected 

for number of cross-chromosomal genes tested for association with rs1775555).  While the causal 

relationships are not obvious, this locus demonstrates broad impact on multiple phenotypes and 

both local and distal gene expression.   

 

 
Figure 5. Regulatory mechanisms of GWAS loci. (A) GWAS enrichment of cis-eQTLs, cis-sQTLs, and trans-

eQTLs measured with different approaches: enrichment based on GWAS summary statistics of the most significant 

cis-QTL per eGene/sGene with QTLEnrich and LD Score regression with all significant cis-QTLs (S-LDSC all cis-

QTLs), simple QTL overlap enrichment with all GWAS catalog variants, and LD Score regression with fine-mapped 

cis-QTLs in the 95% credible set (S-LDSC credible set) and using  posterior probability of causality as a continuous 
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annotation (S-LDSC causal posterior). Enrichment is shown as mean and 95% CI. (B) Number of GWAS loci linked 

to e/sGenes through colocalization (ENLOC) and association (PrediXcan), aggregated across tissues. (C) 

Concordance of mediated effects among independent cis-eQTLs for the same gene is shown for different levels of 

colocalization probability, which is used as a proxy for the gene's causality. As the null, we show the concordance for 

LD matched genes without colocalization. (D) Proportion of colocalized cis-eQTLs with a matching phenotype for 

genes with different level of rare variant trait association in the UK Biobank. (E) Horizontal GWAS trait pleiotropy 

score distribution for cis-eQTLs that regulate multiple vs. a single gene (left), and for cis-eQTLs that are tissue-shared 

vs specific.  

Tissue-specificity of genetic regulatory effects 

The GTEx data provide a unique opportunity to study patterns and mechanisms of tissue-

specificity of the transcriptome and its genetic regulation. Pairwise similarity of GTEx tissues was 

quantified using gene expression and splicing, as well as allelic expression, eQTLs in cis and trans, 

and cis-sQTLs (figs. 6a, S34, (11)). These show highly consistent patterns of tissue relatedness, 

indicating that the same biological processes that drive transcriptome similarity also control tissue 

sharing of genetic effects (fig. 6b). As seen in earlier versions of the GTEx data (9, 10), the brain 

regions form a separate cluster, and testis, LCLs, whole blood, and sometimes liver tend to be 

outliers, while most other organs have a notably high degree of similarity between each other. This 

indicates that blood is far from an ideal proxy for most tissues, but that some other relatively 

accessible tissues, such as skin, may be better at capturing molecular effects in other tissues.  

The overall tissue specificity of QTLs (11) follows a U-shaped curve recapitulating 

previous GTEx analyses (9, 10), where genetic regulatory effects tend to be either highly tissue-

specific or highly shared (fig. 6c), with trans-eQTLs being more tissue-specific than cis-eQTLs 

(fig. S33). Cis-sQTLs appear to be significantly more tissue specific than cis-eQTLs when 

considering all mapped cis-QTLs, but this pattern is reversed when considering only those cis-

QTLs where the gene or splicing event is quantified in all tissues (figs. 6c, S32). This indicates 

that splicing measures are more tissue-specific than gene expression, but genetic effects on splicing 

tend to be more shared, consistent with pairwise tissue sharing patterns (fig. S34). This is important 

for understanding effects that disease-causing splicing variants may have across tissues, and for 

validation of splicing effects in cell lines that rarely are an exact match to cells in vivo. Next, we 

analyzed the sharing of allelic expression (AE) across multiple tissues of an individual, which is a 

sensitive metric of sharing of any heterozygous regulatory variant effects in that individual and 

has been particularly useful for analysis of rare, potentially disease-causing variants (54). Using a 

clustering approach (11), we found that in 97.4% of the cases, AE across all tissues forms a single 
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cluster. This suggests that in AE analysis, different tissues are often relatively good proxies for 

one another, provided that the gene of interest is expressed in the probed tissue (fig. S35). 

We next computed the cross-tissue correlation of eQTL effect size and eGene expression 

level — often a proxy for gene functionality — and discovered that 1,971 cis-eQTLs (7.4%; FDR 

5%) had a significant and robust correlation between eGene expression and cis-eQTL effect size 

across tissues (fig. 6d, S36). These correlated cis-eQTLs are split nearly evenly between negative 

(937) and positive (1,034) correlations. Thus, the tissues with the highest cis-eQTL effect sizes are 

equally likely to be among tissues with higher or lower expression levels for the gene. Trans-

eQTLs show a different pattern, being typically observed in tissues with high expression of the 

trans-eGene relative to other tissues (fig. S36). These observations raise the question how to 

prioritize the relevant tissues for eQTLs in a disease context. To address this, we chose a subset of 

GWAS traits where previous studies provide a strong prior for the likely relevant tissue(s) (table 

S12). Analyzing colocalized cis-eQTLs for 1,778 GWAS loci (11), we discovered that the relevant 

tissues were modestly but significantly enriched in having high expression and effect sizes 

(p<1.5x10-4) (figs. S37-38, table S9). This indicates that both effect size and gene expression level 

are important in the interpretation of the tissue context where an eQTL may have downstream 

phenotypic effects.  

The diverse patterns of QTL tissue-specificity raise the question of what molecular 

mechanisms underlie the ubiquitous regulatory effects of some genetic variants and the highly 

tissue-specific effects of others. To gain insight into this question, we modeled cis-eQTL and cis-

sQTL tissue specificity using logistic regression as a function of the lead eVariant’s genomic and 

epigenomic context (11). Cis-QTLs where the top eVariant was in a transcribed region had overall 

higher sharing than those in classical transcriptional regulatory elements, indicating that genetic 

variants with post- or co-transcriptional expression or splicing effects have more ubiquitous effects 

(fig. 6e). Canonical splice and stop gained variant effects had the highest probability of being 

shared across tissues, which may benefit disease-focused studies relying on likely gene-disrupting 

variants. We also considered whether varying regulatory activity between tissues contributed to 

tissue-specificity of genetic effects, and found that shared chromatin state between the discovery 

and query tissues was associated with increased probability of cis-eQTL sharing and vice-versa 

(fig. 6f). cis-eQTLs and cis-sQTLs followed similar patterns. Since cis-sQTLs are more enriched 

in transcribed regions and likely post-transcriptional mechanisms (fig. 4a), this is likely to 
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contribute to their higher overall degree of tissue-sharing (fig. 6c). In comparison to cis-eQTLs, 

cis-sQTLs are indeed more often located in regions where regulatory effects are shared. These data 

offer a possibility to predict if an cis-eQTL observed in a GTEx tissue is active in another tissue 

of interest, based on its annotation and properties in the discovery tissue (11). After incorporating 

additional features including cis-QTL effect size, distance to transcription start site, and 

eGene/sGene expression levels, we obtain reasonably good predictions of whether a cis-QTL is 

active in a query tissue (median AUC = 0.779 and 0.807, min = 0.703 and 0.721, max = 0.807 and 

0.875 for cis-eQTLs and cis-sQTLs, respectively; fig. S39). This suggests that it is possible to 

extrapolate the GTEx cis-eQTL catalog to additional tissues or, for example, developmental stages 

where population-scale data for QTL analysis are particularly difficult to collect. 
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Figure 6. Tissue-specificity of cis-QTLs. (A) Tissue clustering based on pairwise Spearman correlation of cis-eQTL 

effect sizes. (B) Similarity of tissue clustering across core data types quantified using median pairwise Rand index 

calculated across tissues. (C) Tissue activity of cis expression and splicing QTLs, where an eQTL was considered 

active in a tissue if it had a mashr local false sign rate (LFSR, equivalent to FDR) of < 5%. This is shown for all cis-

QTLs and only those that could be tested in all 49 tissues (red and blue). (D) Spearman correlation (corr.) between 

cis-eQTL effect size and eGene expression level across tissues. cis-eQTL counts are shown for those not tested due 

to low expression level, tested but without significant (FDR < 5%) correlation (uncorrelated), a significant correlation 

but effect sizes crossed zero which made the correlation direction unclear (uninterpretable), positively correlated, and 
negatively correlated. (E-F) The effect of genomic function on cis-QTL tissue sharing modeled using logistic 

regression, using functional annotations (E) and chromatin state (F). CTCF Peak, Motif, TF Peak, and DHS indicate 

if the cis-QTL lies in a region annotated as having one of these features in any of the Ensembl Regulatory Build 

tissues. For chromatin states, model coefficients are shown for the discovery and replication tissues that have the same 

or different chromatin states.  
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From tissues to cell types 

The GTEx tissue samples consist of heterogeneous mixtures of multiple cell types. Hence, 

the RNA extracted and QTLs mapped from these samples reflect a composite of effects that may 

vary across cell types and may mask cell type-specific mechanisms. To characterize the effect of 

cell type heterogeneity on analyses from bulk tissue, we used the xCell method (55) to estimate 

the enrichment of 64 reference cell types from the bulk expression profile of each sample (11). 

The resulting enrichment scores were generally biologically meaningful, with for example 

myocytes enriched in heart left ventricle and skeletal muscle, hepatocytes enriched in liver, and 

various blood cell types enriched in whole blood, spleen, and lung, which is known to harbor a 

large leukocyte population (fig. S40). As discussed in more detail in (56), these results need to be 

interpreted with caution given the scarcity of validation data and quality and quantity of cell type 

reference data sets. Nonetheless, the pairwise relatedness of GTEx tissues derived from their cell 

type composition is highly correlated with tissue-sharing of regulatory variants (figs. 5b, S41, 

S34), suggesting similarity of regulatory variant activity between tissue pairs may often be due to 

the presence of similar cell types, and not necessarily shared regulatory networks within cells. This 

highlights the key role that characterizing cell type diversity will have, not only for understanding 

tissue biology, but the underlying role of genetic variation as well.  

Enrichment of many cell types shows inter-individual variation within a given tissue (56). 

In eQTL analysis, this variation can be leveraged to identify cis-eQTLs and cis-sQTLs with cell 

type specificity by extending the QTL model to include an interaction between genotype and cell 

type enrichment (11, 57). We applied this approach to seven tissue-cell type pairs that were chosen 

based on having robustly quantified cell types and the tissue where each cell type was most 

enriched (fig. 7a; an additional 36 pairs are described in (56)). Power to discover cell type 

interacting cis-eQTLs and cis-sQTLs (ieQTLs and isQTLs, respectively) varied as a function of 

tissue heterogeneity and complexity as well as sample size (56). We notably identified 1120 

neutrophil ieQTLs in whole blood and 1087 epithelial cell ieQTLs in transverse colon (fig. 1a); of 

these, 76 and 229 respectively, involved an eGene for which no QTL was detected in bulk tissue. 

eQTLs from purified neutrophils of an external data set (58) had higher neutrophil ieQTL effect 

sizes than eQTLs from other blood cell types (fig. S42). For other cell types external replication 
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data was lacking. Thus, we verified the robustness of the ieQTLs by the allelic expression 

validation approach that was used for sex- and population-biased cis-eQTL analyses: for ieQTL 

heterozygotes, we calculated the Spearman correlation of cell type enrichment and ieQTL effect 

size from AE data, and observed a high validation rate (56). It is important to note that ie/isQTLs 

should not be considered cell type-specific QTLs, because the enrichment of any cell type may be 

(anti-)correlated with other cell types (fig. S43). While full deconvolution of cis-eQTL effects 

driven by specific cell types remains a challenge for the future, ieQTLs and isQTLs can be 

interpreted as being enriched for cell type-specific effects. In most subsequent analyses to 

characterize the properties of ieQTLs and isQTLs, we focused on the neutrophil ieQTLs, which 

are numerous and supported by external replication data. 

Analysis of functional enrichment of neutrophil ieQTLs and isQTLs shows that these 

largely follow the enrichment patterns observed for bulk tissue cis-QTLs (fig. 7b), with ieQTLs 

more strongly enriched in promoter flanking regions and enhancers, which are known to be major 

drivers of cell type specific regulatory effects (2). We observed similar patterns for epithelial cell 

ieQTLs (fig. S44).   

We hypothesized that the widespread allelic heterogeneity observed in the bulk tissue cis-

eQTL data is partially driven by an aggregate signal from cis-eQTLs that are each active in a 

different cell type present in the tissue. Indeed, the number of cis-eQTLs per gene is higher for 

ieGenes than for standard eGenes in several tissues (fig. 7c). While differences in power could 

contribute to this pattern, it is strongly corroborated by eGenes that have independent cis-eQTLs 

(LD < 0.05) in five purified blood cell types (58) also showing an increased amount of allelic 

heterogeneity in GTEx whole blood (fig. 7c,d). Thus, insights into cell type specificity provides 

new understanding of mechanisms of genetic architecture of gene expression, with promise of 

improved resolution into complex patterns of allelic heterogeneity when effects manifesting in 

different cell types can be distinguished from each other. 

Next, we analyzed how cell type interacting cis-QTLs contribute to the interpretation of 

regulatory variants underlying complex disease risk. GWAS colocalization analysis of neutrophil 

ieQTLs (11) revealed multiple loci (111, ~32%) that colocalize only with ieQTLs and not with 

whole blood cis-eQTLs (fig. 7e), even though 75% (42/56) of the corresponding eGenes have both 

cis-eQTLs and ieQTLs. Improved resolution into allelic heterogeneity appears to contribute to this, 

with fig. S45 showing an example of a locus where the absence of colocalization between a platelet 
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count GWAS signal and bulk tissue cis-eQTL for SPAG7 appears to be due to the whole blood 

signal being an aggregate of multiple independent signals. The neutrophil ieQTL analysis uncovers 

a specific signal that mirrors the GWAS association, suggesting that platelet counts are affected 

by SPAG7 expression only in specific cell type(s). Thus, in addition to novel colocalizations 

pinpointing potential causal genes, ieQTL analysis has the potential to provide insights into cell 

type specific mechanisms of complex traits. 

 

 
Figure 7. Cell type interacting cis-eQTLs and cis-sQTLs. (A) Number of cell type interacting cis-eQTLs and cis-

sQTLs (ieQTLs and isQTLs, respectively) discovered in seven tissue-cell type pairs, with shading indicating whether 

the ieGene or isGene was discovered by cis-eQTL/cis-sQTL analysis in bulk tissue. Colored dots are proportional to 

sample size. (B) Functional enrichment of neutrophil ieQTLs and isQTLs compared to cis-eQTLs and cis-sQTLs from 

whole blood. (C) Proportion of conditionally independent cis-eQTLs per eGene, for eGenes that do or do not have 

ieQTLs in GTEx, and for eGenes that have shared (= eQTLs) or non-shared (≠ eQTLs) cis-eQTL across five sorted 

blood cell types. (D) Whole blood cis-eQTL p-value landscape for NCOA4, for the standard analysis (top row, 

Unconditional) and for two independent cis-eQTLs (bottom rows). In a data set of 5 sorted cell types (58), analyses 

of all cell types yielded a lead eVariant, rs2926494 (left), which is in high LD with the first independent cis-eQTL but 

not the second. The lead variant in monocyte cis-eQTL analysis, rs10740051, is in high LD with the second conditional 

cis-eQTL, indicating that this cis-eQTL is active specifically in monocytes. Thus, the full GTEx whole blood cis-

eQTL pattern and allelic heterogeneity is composed of cis-eQTLs that are active in different cell types. (E) COLOC 

posterior probability (PP4) of GWAS colocalization with whole blood ieQTLs and eQTLs of the same eGene for 36 

GWAS traits.  
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Discussion 

 

The GTEx v8 data release represents the deepest survey of both intra- and inter-individual 

transcriptome variation across a large number of tissues. With 838 donors and 15,253 samples, we 

have created a comprehensive catalog of genetic variants that influence gene expression and 

splicing in cis. The fine-mapping data of GTEx cis-eQTLs provides a catalog of thousands of likely 

causal functional variants – the largest resource of this type. While trans-QTL discovery, as well 

as characterization of sex-specific and population-specific genetic effects, are still limited by 

sample size, analyses of the V8 data provide important insights into each.  Cell type interacting 

cis-eQTLs and cis-sQTLs, mapped using computational estimates of cell type enrichment, 

constitute an important addition to the GTEx resource. The strikingly similar tissue-sharing 

patterns across these data types suggests shared biology from cell type composition to 

transcriptome variation and genetic regulatory effects. Our results indicate that shared cell types 

between tissues may be a key factor behind tissue-sharing of genetic regulatory effects, which will 

constitute a key challenge to tackle in the future. Finally, GWAS colocalization with cis-eQTLs 

and cis-sQTLs provides rich opportunities for further functional follow-up and characterization of 

regulatory mechanisms of GWAS associations.  

  

Given the very large number of cis-eQTLs, the extensive allelic heterogeneity – multiple 

independent regulatory variants affecting the same gene – is unsurprising. With well-powered cis-

QTL mapping, it becomes possible and important to describe and disentangle these effects; the 

assumption of a single causal variant in a cis-eQTL locus no longer holds true for data sets of this 

scale. Similarly, we highlight cis-eQTL and cis-sQTL effects on the same gene, typically driven 

by distinct causal variants. The joint complex trait contribution of independent cis-eQTLs and cis-

sQTLs, and cis-eQTLs and rare coding variants for the same gene highlights how different genetic 

variants and functional perturbations can converge at the gene level to similar physiological 

effects. This orthogonal evidence pinpoints gold-standard disease genes, and could be leveraged 

to build allelic series, a powerful tool for estimating dosage-risk relationship for the purposes of 

drug development (59). Finally, we provide mechanistic insights into the cellular causes of allelic 
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heterogeneity, showing the separate contributions from cis-eQTLs active in different cell types to 

the combined signal seen in a bulk tissue sample. With evidence that this increased cellular 

resolution improves colocalization in some loci, cell type specific analyses appear particularly 

promising for finer dissection of genetic association data.  

  

Integration of GTEx QTL data and functional annotation of the genome provides powerful insights 

into the molecular mechanisms of transcriptional and post-transcriptional regulation that affect 

gene expression levels and splicing. A large proportion of cis-eQTL effects are driven by genetic 

perturbations in classical regulatory elements of promoters and enhancers, with an enrichment of 

tissue-specific and cell-type interacting cis-eQTLs in enhancers and related elements that thus 

contribute to context-specific genetic effects. Furthermore, we demonstrate that regulatory 

elements and transcription factors with variable activity across tissues and cell types modify cis-

QTL effect sizes. While cis-eQTLs are enriched for a wide range of functional regions, the vast 

majority of cis-sQTL are located in transcribed regions, with likely co-/post-transcriptional 

regulatory effects. Interestingly, these appear to be less tissue-specific, which likely contributes to 

the higher tissue-sharing of cis-sQTLs than cis-eQTLs.  

Approximately half of the observed trans-eQTLs are mediated by cis-eQTLs, demonstrating how 

local genetic regulatory effects can translate to effects at the level of cellular pathways. All types 

of QTLs that were studied are strong mediators of genetic associations to complex traits, with a 

higher relative enrichment for cis-sQTLs than cis-eQTLs, with trans-eQTLs having the highest 

enrichment of all (35). With large GWAS/PheWAS studies having uncovered extensive pleiotropy 

of complex trait associations, the GTEx data provide important insights into its molecular 

underpinnings: variants that affect the expression of multiple genes and multiple tissues have a 

higher degree of complex trait pleiotropy, indicating that some of the pleiotropy arises at the 

proximal regulatory level. Dissecting this complexity, and pinpointing truly causal molecular 

effects that mediate specific phenotype associations will be a considerable challenge for the future. 

This study of the GTEx v8 data set has provided essential insights into genetic regulatory 

architecture and functional mechanisms. The extensive catalog of QTLs and associated data sets 

of annotations, cell types enrichments, and GWAS summary statistics provides rich material that 

requires careful interpretation for insights into the biology of gene regulation and functional 
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mechanisms of complex traits. We have demonstrated how QTL data can be used to inform on 

multiple layers of GWAS interpretation: mapping of likely causal variants, proximal regulatory 

mechanisms, target genes in cis, pathway effects in trans, in the context of multiple tissues and 

cell types. However, our understanding of genetic effects on cellular phenotypes is far from 

complete. We envision that further investigation into genetic regulatory effects in specific cell 

types, study of additional tissues and developmental time points not covered by GTEx, 

incorporation of a diverse set of molecular phenotypes, and continued investment in increasing 

sample sizes from diverse populations will continue to provide transformative scientific 

discoveries.  

 

Data availability 

 

All GTEx protected data are available via dbGaP (accession phs000424.v8). Access to the raw 

sequence data is now provided through the AnVIL platform 

(https://gtexportal.org/home/protectedDataAccess). The GTEx V8 non-protected data are 

available on the GTEx Portal, with multiple data views and analysis results publicly available on 

the Portal (www.gtexportal.org), as well as in the UCSC and Ensembl browsers. All components 

of the single tissue cis-QTL pipeline are available at https://github.com/broadinstitute/gtex-

pipeline, and analysis scripts are available at https://github.com/broadinstitute/gtex-v8. Residual 

GTEx biospecimens have been banked, and remain available as a resource for further studies 

(access can be requested on the GTEx Portal, https://www.gtexportal.org/home/samplesPage). 
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